JP6968630B2 - Measurement method and quality control method for the physical properties of needle-shaped substances - Google Patents

Measurement method and quality control method for the physical properties of needle-shaped substances Download PDF

Info

Publication number
JP6968630B2
JP6968630B2 JP2017170581A JP2017170581A JP6968630B2 JP 6968630 B2 JP6968630 B2 JP 6968630B2 JP 2017170581 A JP2017170581 A JP 2017170581A JP 2017170581 A JP2017170581 A JP 2017170581A JP 6968630 B2 JP6968630 B2 JP 6968630B2
Authority
JP
Japan
Prior art keywords
scattering
needle
substance
diameter
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170581A
Other languages
Japanese (ja)
Other versions
JP2019045390A (en
Inventor
泰直 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017170581A priority Critical patent/JP6968630B2/en
Publication of JP2019045390A publication Critical patent/JP2019045390A/en
Application granted granted Critical
Publication of JP6968630B2 publication Critical patent/JP6968630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、針状物質の物性(平均直径、直径の標準偏差及び配向性)の測定方法及び品質管理方法に関する。 The present invention relates to a method for measuring physical characteristics (average diameter, standard deviation of diameter and orientation ) of a needle-like substance and a quality control method .

球状のナノ粒子においては、動的光散乱法により径を求めることが一般によく用いられる方法であるが、棒状オブジェクトに動的光散乱法を適用しようとしても、径と長さの情報が分離できないため、径サイズを求めることが不可能である。そのため、SEM(以下、「走査型電子顕微鏡」と言うことがある。)やTEM(以下、「透過型電子顕微鏡」と言うことがある。)といった顕微鏡的手法によって画像を取得し、一本一本測長したのち、統計的に処理することによって、径を算出している。 For spherical nanoparticles, it is a commonly used method to determine the diameter by the dynamic light scattering method, but even if the dynamic light scattering method is applied to a rod-shaped object, the diameter and length information cannot be separated. Therefore, it is impossible to obtain the diameter size. Therefore, images are acquired by a microscopic method such as SEM (hereinafter, may be referred to as "scanning electron microscope") or TEM (hereinafter, may be referred to as "transmission electron microscope"), one by one. After the main measurement, the diameter is calculated by statistical processing.

一方で、実際に小角X線散乱における針状散乱体の散乱による測長はあまり用いられることはなかった。その理由は、直径にばらつきがあると、得られるプロファイルがブロードニングし、あいまいな結果しか得られないためである。 On the other hand, in practice, the length measurement by scattering of needle-shaped scatterers in small-angle X-ray scattering has not been used much. The reason is that variations in diameter will broaden the resulting profile and give only ambiguous results.

A. Guinier and G. Fournet: Small Angle Scattering of X-rays, Willey, New York (1955).A. Guinier and G. Fournet: Small Angle Scattering of X-rays, Willey, New York (1955). Ann. N.Y. Acad. Sci. 1949, 51, 627-659.Ann. N.Y. Acad. Sci. 1949, 51, 627-659. Recl. Trav. Chim. Pays-Bas 1946, 7-8, 427-447.Recl. Trav. Chim. Pays-Bas 1946, 7-8, 427-447.

球状のナノ粒子においては、動的光散乱法により径を求めることが一般によく用いられる方法であるが、針状物質に動的光散乱法を適用しようとしても、径と長さの情報が分離できないため、径サイズを求めることが不可能である。そのため、前記顕微鏡的手法によって観察可能な試料(通常、乾燥状態の試料)を調製し、画像を取得し、一本一本測長したのち、統計的に処理することによって、平均直径等を算出していた。このような顕微鏡的手法では、一部の試料の測定しかできず、必ずしも代表値が得られるとは限らない。また、代表値を得ようと測定試料数を増やすと膨大な労力が必要であった。 For spherical nanoparticles, it is a commonly used method to determine the diameter by the dynamic light scattering method, but even if the dynamic light scattering method is applied to a needle-like substance, the diameter and length information is separated. Since it is not possible, it is impossible to determine the diameter size. Therefore, a sample that can be observed by the microscopic method (usually a dry sample) is prepared, an image is acquired, the length of each sample is measured, and then statistical processing is performed to calculate the average diameter and the like. Was. With such a microscopic method, only a part of the sample can be measured, and a representative value is not always obtained. In addition, increasing the number of measured samples in order to obtain a representative value required enormous labor.

本発明の一態様は、上記のような事情を鑑み、針状物質を簡便に測長することを目的とする。 One aspect of the present invention is intended to easily measure the length of a needle-like substance in view of the above circumstances.

すなわち、本発明は以下に示す構成を備えるものである。 That is, the present invention has the following configurations.

[1] 針状物質の物性を測定する方法であって、
前記物性が、平均直径、直径の標準偏差、配向性及びたわみから選ばれる少なくとも1つであり、
前記物性を、分散液中に分散された針状物質の小角X線散乱を測定し、その散乱ベクトルのデータから求めることを特徴とする、
針状物質の物性を測定する方法。
[2] 前記物性が、平均直径、直径の標準偏差及び配向性である前項[1]に記載の方法。
[3] 前記針状物質のアスペクト比が10以上である前項[1]または[2]に記載の方法。
[4] 前記平均直径を測定する方法が、
針状物質の与える小角散乱の形状因子Pの散乱強度と散乱ベクトルqとの関係において、最も小角における散乱強度の極小値の散乱ベクトルをqminとし、
下記式(1)

Figure 0006968630
(ただし、J1は一次のベッセル関数であり、Pは針状物質の小角X線散乱の形状因子であり、qは散乱ベクトルであり、Rは針状物質の半径であり、L≧10×平均直径Dである。)
の半径R値を調整し、シミュレーションによるqminを、前記小角X線散乱で測定されるqminに一致するようにした時のR2倍を針状物質の平均直径Dとするものである前項[1]〜[3]のいずれかに記載の方法。
[5] 直径の標準偏差を測定する方法が、
小角X線散乱のシミュレーションにより、針状物質の直径が標準偏差を有する場合の散乱プロファイルを求め、この散乱プロファイルを実測された散乱プロファイルにフィッティングすることにより、直径の標準偏差を求める方法である前項[1]〜[3]のいずれかに記載の方法。
[6] 前記配向性を測定する方法が、
任意のq値を半径とした円上の散乱強度I(θ)を小角X線散乱の散乱パターンより求め、さらに、下記式(2)
Figure 0006968630
(ただし、式(2)中の<cosθ>は、
Figure 0006968630
である。)
のS値を求め、針状物質は、S=1の時は長さ方向に配向し、S=0の時は配向せず等方的となり、S=−0.5の時は横方向に配向していると判断するものである前項[1]〜[5]のいずれかに記載の方法。
[7] 前記たわみを測定する方法が、
縦軸を散乱強度、横軸を散乱ベクトルとして両対数プロットし、散乱ベクトルが0.1nm−1の未満の領域を直線で近似し、その直線の傾きの値を得、傾き−1のとき針状物質が完全な直線状であり、傾きが負に大きくなるにつれ針状物質がより多くたわんでいると判断するものである前項[1]に記載の方法。
[8] 前記針状物質が金属ナノワイヤである、前項[1]〜[7]のいずれか一項に記載の方法。
[9] 前項[1]〜[8]のいずれか一項に記載の方法を用いることを特徴とする針状物質の品質管理方法。 [1] A method for measuring the physical characteristics of needle-like substances.
The physical property is at least one selected from average diameter, standard deviation of diameter, orientation and deflection.
The physical characteristics are obtained by measuring small-angle X-ray scattering of a needle-like substance dispersed in a dispersion liquid and obtaining the scattering vector data.
A method for measuring the physical characteristics of needle-shaped substances.
[2] The method according to the preceding item [1], wherein the physical properties are an average diameter, a standard deviation of diameters, and orientation.
[3] The method according to the preceding item [1] or [2], wherein the needle-like substance has an aspect ratio of 10 or more.
[4] The method for measuring the average diameter is
In the relationship between the scattering intensity of the small-angle scattering shape factor P given by the needle-like substance and the scattering vector q, the scattering vector with the minimum value of the scattering intensity at the smallest angle is set to q min .
The following formula (1)
Figure 0006968630
(However, J1 is a first-order Bessel function, P is a shape factor of small-angle X-ray scattering of a needle-like substance, q is a scattering vector, R is a radius of a needle-like substance, and L ≧ 10 × average. Diameter D.)
The average diameter D of the needle-like substance is doubled when the radius R value of the above is adjusted so that q min by simulation matches q min measured by the small-angle X-ray scattering. 1] The method according to any one of [3].
[5] The method of measuring the standard deviation of the diameter is
By simulating small-angle X-ray scattering, the scattering profile when the diameter of the needle-shaped substance has a standard deviation is obtained, and by fitting this scattering profile to the measured scattering profile, the standard deviation of the diameter is obtained. The method according to any one of [1] to [3].
[6] The method for measuring the orientation is
The scattering intensity I (θ) on a circle with an arbitrary q value as the radius is obtained from the scattering pattern of small-angle X-ray scattering, and further, the following equation (2)
Figure 0006968630
(However, <cos 2 θ> in equation (2) is
Figure 0006968630
Is. )
When S = 1, the needle-like substance is oriented in the length direction, when S = 0, it is not oriented and isotropic, and when S = -0.5, it is laterally oriented. The method according to any one of the preceding paragraphs [1] to [5], which is to be determined to be oriented.
[7] The method for measuring the deflection is
Both logarithmic plots are performed with the vertical axis as the scattering intensity and the horizontal axis as the scattering vector, and the region where the scattering vector is less than 0.1 nm -1 is approximated by a straight line, and the value of the slope of the straight line is obtained. The method according to the preceding paragraph [1], wherein it is determined that the needle-like substance is more flexed as the shape substance is completely linear and the inclination becomes negatively large.
[8] The method according to any one of the preceding items [1] to [7], wherein the needle-like substance is a metal nanowire.
[9] A method for quality control of a needle-like substance, which comprises using the method according to any one of the preceding paragraphs [1] to [8].

分散液中での針状物質を簡便に測長することができる。 The needle-like substance in the dispersion can be easily measured in length.

実施例1において試料Aの散乱ベクトルqと散乱強度との関係を示す図である。It is a figure which shows the relationship between the scattering vector q and the scattering intensity of a sample A in Example 1. FIG. 実施例1において試料Bの散乱ベクトルqと散乱強度との関係を示す図である。It is a figure which shows the relationship between the scattering vector q of the sample B, and the scattering intensity in Example 1. FIG. 直径30nmの針状物質の与える小角散乱の散乱強度のシミュレーション図である。It is a simulation figure of the scattering intensity of small-angle scattering given by the needle-like substance of a diameter of 30 nm. 直径22nmの針状物質の与える小角散乱の散乱強度のシミュレーション図である。It is a simulation figure of the scattering intensity of the small angle scattering given by the needle-like substance of the diameter 22 nm. 顕微鏡的手法などの従来の方法で得た平均直径とqminとから得られる検量線である。It is a calibration curve obtained from the average diameter and q min obtained by a conventional method such as a microscopic method. 小角X線散乱の散乱パターンを示す図である。It is a figure which shows the scattering pattern of small-angle X-ray scattering. 超音波処理をした試料のSEM写真である。It is an SEM photograph of the sample which was sonicated. 小角X線散乱の散乱プロファイルを示す図である。It is a figure which shows the scattering profile of small-angle X-ray scattering. 本発明の小角X線散乱の一実施形態である。It is an embodiment of the small-angle X-ray scattering of the present invention. 式(1)におけるqminと長さLとの関係を示す図である。It is a figure which shows the relationship between q min and a length L in an equation (1).

以下に、本発明の実施形態について説明するが、本発明は、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments of the present invention will be described, but the present invention can be appropriately modified and implemented without changing the gist thereof.

本実施形態の測定方法は、針状物質の物性を測定する方法であって、前記物性が、平均直径、直径の偏差、配向性及びたわみから選ばれる少なくとも1つであり、前記物性は、小角X線散乱により測定される。 The measuring method of the present embodiment is a method for measuring the physical properties of a needle-shaped substance, wherein the physical properties are at least one selected from an average diameter, a deviation in diameter, an orientation, and a deflection, and the physical properties are small angles. Measured by X-ray scattering.

(針状物質)
本実施形態の針状物質は、特に大きさについての制限はなく、液中に分散されていればよい。通常、液中に分散されることから、直径1nm〜10μm程度、長さは直径の10倍以上(アスペクト比10以上)となることが多い。
(Needle-like substance)
The needle-like substance of the present embodiment is not particularly limited in size and may be dispersed in the liquid. Since it is usually dispersed in a liquid, it often has a diameter of about 1 nm to 10 μm and a length of 10 times or more the diameter (aspect ratio of 10 or more).

具体的な針状物質としては、銀ナノワイヤ、銅ナノワイヤ、ニッケルナノワイヤ等の金属ナノワイヤ、カーボンナノファイバー、セルロースナノファイバー、などが挙げられる。 Specific examples of the needle-like material include metal nanowires such as silver nanowires, copper nanowires, and nickel nanowires, carbon nanofibers, and cellulose nanofibers.

(平均直径)
本実施形態では、針状物質を含む分散液の小角X線散乱測定を行うことにより、前記針状物質の平均直径を以下のように得ることができる。
(Average diameter)
In the present embodiment, the average diameter of the needle-shaped substance can be obtained as follows by performing small-angle X-ray scattering measurement of the dispersion liquid containing the needle-shaped substance.

針状物質の与える小角散乱の形状因子Pと散乱ベクトルqとの関係として、非特許文献1に記載されている下記式(1)を用いた。

Figure 0006968630
(ただし、J1は一次のベッセル関数であり、Pは針状物質の小角X線散乱の形状因子であり、qは散乱ベクトルであり、Rは針状物質の半径であり、Lは針状物質の長さである。) The following formula (1) described in Non-Patent Document 1 was used as the relationship between the small-angle scattering shape factor P given by the needle-shaped substance and the scattering vector q.
Figure 0006968630
(However, J1 is a first-order Bessel function, P is a shape factor for small-angle X-ray scattering of a needle-like substance, q is a scattering vector, R is the radius of the needle-like substance, and L is a needle-like substance. Is the length of.)

ここで、式(1)のシミュレーションによる形状因子Pの散乱強度と散乱ベクトルqとの関係は、例えば図3に示すようなプロファイルとなる。この最も小角における散乱強度の極小値の散乱ベクトルをqminとする。 Here, the relationship between the scattering intensity of the shape factor P and the scattering vector q by the simulation of the equation (1) has a profile as shown in FIG. 3, for example. Let q min be the scattering vector of the minimum value of the scattering intensity at the smallest angle.

一方、実際に測定される散乱強度は、この形状因子Pを反映し、バックグラウンド等も加味されるので、例えば図1に示すようなプロファイルとなる。図3のような急峻な谷にはならないが、qminは読み取れる。 On the other hand, the actually measured scattering intensity reflects this shape factor P, and the background and the like are also taken into consideration, so that the profile is as shown in FIG. 1, for example. Although it does not form a steep valley as shown in FIG. 3, q min can be read.

ここで、式(1)の半径R値を調整し、シミュレーションによるqminが実測のqminに一致するようにする。この時のRの2倍を針状物質の平均直径Dとする。なお、式(1)において、針状物質の長さLが直径Dに比べ十分大きければ(アスペクト比10倍以上)、ほとんどqmin値に影響しない。そのため、LにはDに比べ十分大きな値を入れて計算すればよい。 Here, by adjusting the radius R value of formula (1), q min by simulation so as to match the q min of the actual measurement. Twice R at this time is defined as the average diameter D of the needle-shaped substance. In the formula (1), if the length L of the needle-shaped substance is sufficiently larger than the diameter D (aspect ratio of 10 times or more), it has almost no effect on the q min value. Therefore, it is sufficient to put a value sufficiently larger than D in L for calculation.

実際に、R=15nm(D=30nm)のときのqminとLとの関係を図10に示す。Dの10倍以上となるL=0.3μm以上(L≧10×D)であればqminから得られる平均直径は誤差1%以内に収まる。より簡易的には、下記式(4)
D=2×R=7.664/qmin ・・・(4)
として計算することもできる。
Actually, the relationship between q min and L when R = 15 nm (D = 30 nm) is shown in FIG. If L = 0.3 μm or more (L ≧ 10 × D), which is 10 times or more of D, the average diameter obtained from q min is within an error of 1%. More simply, the following formula (4)
D = 2 × R = 7.664 / q min ... (4)
It can also be calculated as.

(直径の標準偏差の測定)
本実施形態では、以下のように、直径の標準偏差の測定を行う。
まず、小角X線散乱のシミュレーションにより、針状物質の直径が各標準偏差を有する場合の散乱プロファイルを求める(図8)。図8中(a)に示した単分散の直径の針状物質(R=15nm、L=20μm)の散乱プロファイルのするどい谷は、直径の標準偏差が大きくなるにつれ、ブロードな谷になっていく(図8(a):標準偏差0%、図8(b):標準偏差5%、図8(c):標準偏差10%、図8(d):15%)。このようなブロードニングを、実測された散乱プロファイルにフィッティングすることにより、直径の標準偏差を求める。
なお、前記シミュレーションは、例えば、小角散乱解析ソフトSasView(http://www.sasview.org/)のシリンダーモデルを用いて行うことができる。
(Measurement of standard deviation of diameter)
In this embodiment, the standard deviation of the diameter is measured as follows.
First, by simulating small-angle X-ray scattering, the scattering profile when the diameter of the needle-shaped substance has each standard deviation is obtained (FIG. 8). The sharp valley of the scattering profile of the monodisperse diameter needle-like material (R = 15 nm, L = 20 μm) shown in FIG. 8 (a) becomes a broad valley as the standard deviation of the diameter increases. (FIG. 8 (a): standard deviation 0%, FIG. 8 (b): standard deviation 5%, FIG. 8 (c): standard deviation 10%, FIG. 8 (d): 15%). By fitting such broadening to the measured scattering profile, the standard deviation of the diameter is determined.
The simulation can be performed using, for example, a cylinder model of the small-angle scattering analysis software SasView (http://www.sasview.org/).

(配向性)
本実施形態では、以下のように、配向性の測定を行う。
針状物質の配向性については、任意のq値を半径とした円上の散乱強度I(θ)を小角X線散乱の散乱パターンより求め、さらに、下記式(2)のS値を求め、評価した(非特許文献3)。

Figure 0006968630
(ただし、式(2)中の<cosθ>は、
Figure 0006968630
である。) (Orientation)
In this embodiment, the orientation is measured as follows.
Regarding the orientation of the needle-shaped substance, the scattering intensity I (θ) on a circle with an arbitrary q value as the radius is obtained from the scattering pattern of small-angle X-ray scattering, and the S value of the following equation (2) is obtained. Evaluated (Non-Patent Document 3).
Figure 0006968630
(However, <cos 2 θ> in equation (2) is
Figure 0006968630
Is. )

ここで、針状物質は、キャピラリに対し、S=1の時は長さ方向に配向し、S=0の時は配向せず等方的となり、S=−0.5の時は横方向に配向していることを示す。 Here, the needle-like substance is oriented in the length direction when S = 1, is not oriented and isotropic when S = 0, and is isotropic to the capillary when S = −0.5. Indicates that it is oriented to.

(たわみ)
本実施形態では、以下のように、針状物質のたわみの測定を行う。
針状物質のたわみを以下の様に評価する。
縦軸を散乱強度、横軸を散乱ベクトルとして両対数プロットし、散乱ベクトルが0.1nm−1の未満の領域(ほぼ直線になる)を直線で近似し、その直線の傾きを読み取る(図9)。
この傾きの値により、針状物質のたわみを評価する、すなわち、この傾きは質量フラクタル次元を反映し、針状物質が完全な直線状であれば傾き−1であり、針状物質が弓形により多くたわむにつれ傾きが負に大きくなる(非特許文献1)。
(Deflection)
In this embodiment, the deflection of the needle-shaped substance is measured as follows.
The deflection of the needle-like substance is evaluated as follows.
Log-log plot with the vertical axis as the scattering intensity and the horizontal axis as the scattering vector , approximate the region where the scattering vector is less than 0.1 nm -1 (which becomes almost a straight line) with a straight line, and read the slope of the straight line (Fig. 9). ).
The value of this slope evaluates the deflection of the needle-like material, that is, this slope reflects the mass fractal dimension, the slope is -1 if the needle-like material is perfectly linear, and the needle-like material is bowed. The more the deflection, the larger the inclination becomes negative (Non-Patent Document 1).

上記物性の測定、即ち、平均直径、直径の偏差及び配向性は、散乱ベクトルqの測定範囲(例えば、0.1nm−1〜4nm−1)が同様なので、これら物性の内2つまたは3つ全部を同時に測定することが可能である。 Since the measurement range of the scattering vector q (for example, 0.1 nm -1 to 4 nm -1 ) is the same for the measurement of the above physical properties, that is, the average diameter, the deviation of the diameter, and the orientation, two or three of these physical properties are used. It is possible to measure all at the same time.

また、前記シミュレーションは、例えば、小角散乱解析ソフトSasView(http://www.sasview.org/)等を用いて行うことができる。 Further, the simulation can be performed using, for example, small-angle scattering analysis software SasView (http://www.sasview.org/) or the like.

(品質管理)
針状物質の品質管理方法であって、前記針状物質の、平均直径、直径の偏差、配向性及びたわみから選ばれる少なくとも1つの物性を品質管理値に含む場合、上述のこれらの測定方法で測定することができる。特に、針状物質が分散液となっている場合など、前述の顕微鏡的な手法と異なり、局所的なばらつきの問題が回避でき、平均化された情報が得られやすい。
(quality management)
When the quality control value of the needle-shaped substance includes at least one physical property selected from the average diameter, the deviation of the diameter, the orientation and the deflection of the needle-shaped substance, the above-mentioned measuring method is used. Can be measured. In particular, unlike the above-mentioned microscopic method, such as when the needle-like substance is a dispersion liquid, the problem of local variation can be avoided and averaged information can be easily obtained.

顕微鏡的手法など、従来の手法から本発明の方法に移行する場合は、例えば、平均直径では、前記従来の方法で得た平均直径と、qminとで図5のような検量線を作成し、測定されるqminから前記従来法で得られるであろう平均直径を算出することもできる。 When shifting from the conventional method such as the microscopic method to the method of the present invention, for example, for the average diameter, a calibration curve as shown in FIG. 5 is created by using the average diameter obtained by the conventional method and q min. , The average diameter that would be obtained by the conventional method can also be calculated from the measured q min.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<試料>
針状物質として銀ナノワイヤを含有する試料として、以下のA,Bの2種類を用いた。
A:銀ナノワイヤ(TEM観察により求めた平均直径28nm)0.2質量%の水分散液。
B:銀ナノワイヤ(TEM観察により求めた平均直径20nm)0.2質量%の水分散液。
<Sample>
The following two types, A and B, were used as samples containing silver nanowires as needle-like substances.
A: Silver nanowire (average diameter 28 nm determined by TEM observation) 0.2% by mass aqueous dispersion.
B: Silver nanowire (average diameter 20 nm determined by TEM observation) 0.2% by mass aqueous dispersion.

なお、前記各試料のTEM観察による平均直径は、以下のように求めた。
針状物質を含む分散液を観察用グリッド上にキャストしたのち、乾燥させることで試料とした。この試料を日立製HF−2200透過型電子顕微鏡(TEM)を用いて加速電圧200kVにて観察し、TEM写真から、任意に選んだ100本の針状物質の直径を測定した。
得られた直径値から、算術平均による平均直径を求めた。
The average diameter of each sample by TEM observation was determined as follows.
A dispersion containing a needle-like substance was cast on an observation grid and then dried to prepare a sample. This sample was observed at an acceleration voltage of 200 kV using a Hitachi HF-2200 transmission electron microscope (TEM), and the diameters of 100 arbitrarily selected needle-like substances were measured from TEM photographs.
From the obtained diameter values, the average diameter by arithmetic mean was calculated.

(実施例1)平均直径の測定
試料を、内径2mmのガラスキャピラリに封入し、小角X線散乱測定(Spring−8 BL03XU第二ハッチを利用した。)を行った。その際、測定条件を、カメラ長2.3m、X線波長0.1mm、検出器Pilatus、散乱ベクトルqの測定範囲を0.1nm−1〜4nm−1とした。
(Example 1) Measurement of average diameter A sample was enclosed in a glass capillary having an inner diameter of 2 mm, and small-angle X-ray scattering measurement (using the Spring-8 BL03XU second hatch) was performed. At that time, the measurement conditions, camera length 2.3 m, X-ray wavelength 0.1 mm, detector Pilatus, the measuring range of the scattering vector q was 0.1nm -1 ~4nm -1.

ここで、前述の式(1)の半径R値を調整し、シミュレーションによるqminが各試料のqminに一致するようRを調整した。なお、式(1)において、針状物質の長さLは、試料A,B中の針状物質の長さ程度の値として20μmとした。 Here, by adjusting the radius R value of formula (1) described above, q min simulation was adjusted R to match the q min of each sample. In the formula (1), the length L of the needle-shaped substance was set to 20 μm as a value of about the length of the needle-shaped substance in the samples A and B.

結果として、試料Aにおいて、q=0.25、0.47、0.68nm−1においてピークの谷が測定され(図1)、qminを0.25nm−1とした。qminが0.25nm−1となるRを式(1)に基づいてシミュレーションしたところ、R=15nm(直径30nm)ときに合致した(図3)。さらに、試料Bにおいては、q=0.35、0.64、0.92nm−1においてピークの谷が観測され(図2)、qminを0.35nm−1とした。qminが0.35nm−1となるRを式(1)に基づいてシミュレーションしたところ、R=11nm(直径22nm)ときに合致した(図4)。結果を表1に示す。 As a result, in Sample A, the q = 0.25,0.47,0.68nm -1 measured valley peaks (Fig. 1), and the q min and 0.25 nm -1. When R having q min of 0.25 nm -1 was simulated based on the equation (1), it matched when R = 15 nm (diameter 30 nm) (FIG. 3). Further, in sample B, peak valleys were observed at q = 0.35, 0.64, 0.92 nm -1 (FIG. 2), and q min was set to 0.35 nm -1 . When R having q min of 0.35 nm -1 was simulated based on the equation (1), it matched when R = 11 nm (diameter 22 nm) (FIG. 4). The results are shown in Table 1.

(実施例2)直径の偏差の測定
散乱強度のシミュレーションを、小角散乱解析ソフトSasView(http://www.sasview.org/)のシリンダーモデルを用いて行い、試料A,Bについて、それぞれ図1,2にフィッティングすることにより針状物質の直径の偏差を得た。結果を表1に示す。
(Example 2) Measurement of diameter deviation A scattering intensity simulation was performed using a cylinder model of the small-angle scattering analysis software SasView (http://www.sasview.org/), and Samples A and B were shown in FIG. 1, respectively. Deviations in the diameter of the needle-like material were obtained by fitting to, 2. The results are shown in Table 1.

Figure 0006968630
Figure 0006968630

(実施例3)配向性の測定
試料Aについて、配向性の測定を前記平均直径の測定と同時に行った。すなわち、小角X線散乱測定の条件は前記平均直径の測定と同じである。
試料Aの配向性として、小角X線散乱の散乱パターン(図6(a))から、前述の式(2)のS値が0.17と見積もられた。このことは、銀ナノワイヤ(針状物質)がキャピラリに沿って縦に配向している傾向があることを示している。
(Example 3) Measurement of orientation With respect to sample A, the orientation was measured at the same time as the average diameter was measured. That is, the conditions for measuring small-angle X-ray scattering are the same as those for measuring the average diameter.
As the orientation of the sample A, the S value of the above formula (2) was estimated to be 0.17 from the scattering pattern of small-angle X-ray scattering (FIG. 6A). This indicates that the silver nanowires (needle-like material) tend to be oriented vertically along the capillary.

この銀ナノワイヤ分散液に超音波処理を行うと、銀ナノワイヤが折れ、破断する。実際に、iuchi製ULTRASONIC CLEANER VS−150を用いて超音波処理3分(以下、この処理をした試料を「試料C」ということがある。)および10分(以下、この処理をした試料を「試料D」ということがある。)を行った結果のSEM写真を図7に示す。処理前にほとんど折れがみられずしなやかにたわんでいた試料A(図7(a))、くの字に折れ曲がった点がみられる試料C(図7(b))、3μm程度のセグメントからなる短いワイヤへと破断した試料D(図7(c))が観察された。 When this silver nanowire dispersion liquid is subjected to ultrasonic treatment, the silver nanowires are broken and broken. Actually, ultrasonic treatment using ULTRASONIC CLEANER VS-150 manufactured by iuchi for 3 minutes (hereinafter, the sample subjected to this treatment may be referred to as "sample C") and 10 minutes (hereinafter, the sample subjected to this treatment is referred to as "sample C"). The SEM photograph of the result of performing "Sample D") is shown in FIG. It consists of a sample A (Fig. 7 (a)) that was bent flexibly with almost no creases before the treatment, and a sample C (Fig. 7 (b)) that had a bent point in a dogleg shape, with a segment of about 3 μm. Sample D (FIG. 7 (c)) broken into short wires was observed.

試料C及びDについても同様に配向性の測定を行ったところ、試料Cは図6(b)の小角X線散乱の散乱パターンを示しS=0.05となり、試料Dは図6(c)の小角X線散乱の散乱パターンを示しS=0.001となった。超音波処理に伴う折れ・破断とともに配向性が失われ、等方的になって行くに従い、S値が0に近づくことが分かる。 When the orientation of samples C and D was measured in the same manner, sample C showed the scattering pattern of small-angle X-ray scattering in FIG. 6 (b) and S = 0.05, and sample D was shown in FIG. 6 (c). The scattering pattern of small-angle X-ray scattering was shown, and S = 0.001. It can be seen that the orientation is lost with breakage and breakage due to ultrasonic treatment, and the S value approaches 0 as it becomes isotropic.

(実施例4)たわみの測定
試料A及びDについて、散乱ベクトルqの測定範囲を0.075nm−1〜0.4nm−1とし、0.1nm−1の未満の領域における傾きを読み取った(図9)。試料Aは傾き−1.8(図9中(a))であったのに対し、超音波10分処理をした試料Dにおいては、傾き−1.3であった(図9中(b))。この結果より、もともとたわんでいたワイヤが、超音波処理で断片化し、より直線的となったことが分かる。

Measurement Samples A and D (Example 4) deflection, the measuring range of the scattering vector q and 0.075nm -1 ~0.4nm -1, were read gradient in the region of fewer than the 0.1 nm -1 (Fig. 9). Sample A had a slope of -1.8 ((a) in FIG. 9), whereas sample D treated with ultrasonic waves for 10 minutes had a slope of -1.3 ((b) in FIG. 9). ). From this result, it can be seen that the originally bent wire was fragmented by sonication and became more linear.

Claims (8)

針状物質の物性のうち、平均直径、直径の標準偏差及び配向性から選ばれ、且つ平均直径を含む2つまたは3つ全部の物性同時に測定する方法であって、
前記物性を、分散液中に分散された針状物質の小角X線散乱を測定し、その散乱ベクトルのデータから求める方法であり
前記平均直径を測定する方法が、
針状物質の与える小角散乱の形状因子Pの散乱強度と散乱ベクトルqとの関係において、最も小角における散乱強度の極小値の散乱ベクトルをq min とし、
下記式(1)
Figure 0006968630
(ただし、J1は一次のベッセル関数であり、Pは針状物質の小角X線散乱の形状因子であり、qは散乱ベクトルであり、Rは針状物質の半径であり、L≧10×平均直径Dである。)
の半径R値を調整し、シミュレーションによるq min を、前記小角X線散乱で測定されるq min に一致するようにした時のR2倍を針状物質の平均直径Dとするものである、針状物質の物性を測定する方法。
It is a method of simultaneously measuring the physical characteristics of all two or three needle-shaped substances, which are selected from the average diameter, standard deviation of diameter and orientation, and include the average diameter.
It is a method of measuring the small-angle X-ray scattering of a needle-like substance dispersed in a dispersion liquid and obtaining the physical characteristics from the data of the scattering vector.
The method for measuring the average diameter is
In the relationship between the scattering intensity of the small-angle scattering shape factor P given by the needle-shaped substance and the scattering vector q, the scattering vector of the minimum value of the scattering intensity at the smallest angle is set to q min .
The following formula (1)
Figure 0006968630
(However, J1 is a first-order Bessel function, P is a shape factor of small-angle X-ray scattering of a needle-like substance, q is a scattering vector, R is a radius of a needle-like substance, and L ≧ 10 × average. Diameter D.)
The average diameter D of the needle-like substance is 2 times R when the radius R value of the needle is adjusted so that the q min measured by the simulation matches the q min measured by the small-angle X-ray scattering. A method for measuring the physical properties of a substance.
前記物性のうちが、平均直径、直径の標準偏差及び配向性の3つ全部の物性を同時に測定する方法である請求項1に記載の方法。 The method according to claim 1, wherein among the physical properties, a method of simultaneously measuring all three physical properties of average diameter, standard deviation of diameter, and orientation. 前記針状物質のアスペクト比が10以上である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the needle-like substance has an aspect ratio of 10 or more. 直径の標準偏差を測定する方法が、
小角X線散乱のシミュレーションにより、針状物質の直径が種々の標準偏差を有する場合の散乱プロファイルを求め、この散乱プロファイルを実測された散乱プロファイルにフィッティングすることにより、直径の標準偏差を求める方法である請求項1〜3のいずれかに記載の方法。
The method of measuring the standard deviation of the diameter is
By simulating small-angle X-ray scattering, the scattering profile when the diameter of the needle-like substance has various standard deviations is obtained, and by fitting this scattering profile to the measured scattering profile, the standard deviation of the diameter is obtained. The method according to any one of claims 1 to 3.
前記配向性を測定する方法が、
任意のq値を半径とした円上の散乱強度I(θ)を小角X 線散乱の散乱パターンより求め、さらに、下記式(2)
Figure 0006968630
(ただし、式(2)中の<cosθ>は、
Figure 0006968630
I(θ):ある角度における散乱強度である。)
のS 値を求め、針状物質は、S=1の時は長さ方向に配向し、S=0の時は配向せず等方的となり、S=−0.5の時は横方向に配向していると判断するものである請求項1〜のいずれかに記載の方法。
The method for measuring the orientation is
The scattering intensity I (θ) on a circle with an arbitrary q value as the radius is obtained from the scattering pattern of small-angle X-ray scattering, and further, the following equation (2)
Figure 0006968630
(However, <cos 2 θ> in equation (2) is
Figure 0006968630
I (θ): Scattering intensity at a certain angle. )
When S = 1, the needle-like substance is oriented in the length direction, when S = 0, it is not oriented and is isotropic, and when S = -0.5, it is laterally oriented. The method according to any one of claims 1 to 4 , which is determined to be oriented.
軸を散乱強度、横軸を散乱ベクトルとして両対数プロットし、散乱ベクトルが0.1nm−1の未満の領域を直線で近似し、その直線の傾きの値を得、傾き−1のとき針状物質が完全な直線状であり、傾きが負に大きくなるにつれ針状物質がより多くたわんでいると判断する、針状物質のたわみを測定する工程をさらに有する請求項1に記載の方法。 Both logarithmic plots are performed with the vertical axis as the scattering intensity and the horizontal axis as the scattering vector, and the region where the scattering vector is less than 0.1 nm-1 is approximated by a straight line, and the value of the slope of the straight line is obtained. The method according to claim 1, further comprising a step of measuring the deflection of the needle-like material, which determines that the needle-like material is more flexed as the slope is negatively increased and the shape material is perfectly linear. 前記針状物質が金属ナノワイヤである、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6 , wherein the needle-like substance is a metal nanowire. 請求項1〜のいずれか一項に記載の方法を用いることを特徴とする針状物質の品質管理方法。 A quality control method for a needle-like substance, which comprises using the method according to any one of claims 1 to 7.
JP2017170581A 2017-09-05 2017-09-05 Measurement method and quality control method for the physical properties of needle-shaped substances Active JP6968630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170581A JP6968630B2 (en) 2017-09-05 2017-09-05 Measurement method and quality control method for the physical properties of needle-shaped substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170581A JP6968630B2 (en) 2017-09-05 2017-09-05 Measurement method and quality control method for the physical properties of needle-shaped substances

Publications (2)

Publication Number Publication Date
JP2019045390A JP2019045390A (en) 2019-03-22
JP6968630B2 true JP6968630B2 (en) 2021-11-17

Family

ID=65814057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170581A Active JP6968630B2 (en) 2017-09-05 2017-09-05 Measurement method and quality control method for the physical properties of needle-shaped substances

Country Status (1)

Country Link
JP (1) JP6968630B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241272B2 (en) * 2018-03-26 2023-03-17 株式会社レゾナック Method for measuring the orientation of needle-like substances in materials
WO2020230815A1 (en) * 2019-05-16 2020-11-19 昭和電工株式会社 Testing method for lubricating oil composition and production method for said lubricating oil composition
JP7364885B2 (en) 2019-11-25 2023-10-19 横浜ゴム株式会社 How to obtain rubber material information and how to select rubber materials

Also Published As

Publication number Publication date
JP2019045390A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6968630B2 (en) Measurement method and quality control method for the physical properties of needle-shaped substances
Xu et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses
Dalmas et al. Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks
Van Doren et al. Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials
JP7241272B2 (en) Method for measuring the orientation of needle-like substances in materials
Nakamura et al. Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance
Mirzaali et al. Crumpling-based soft metamaterials: The effects of sheet pore size and porosity
Moreaud et al. TEM image analysis and modelling: application to boehmite nanoparticles
Grulke et al. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images
JP2016024199A (en) Method to measure mean square radius of particles in sample fraction comprised of predominantly monodisperse particles and method to determine dimensions of monodisperse particles of known shape in suspension, by multiangle light scattering (mals)
Wang et al. Preliminary study on nanoparticle sizes under the APEC technology cooperative framework
Wang et al. Quantifying morphology and diffusion properties of mesoporous carbon from high-fidelity 3D reconstructions
Lee et al. Carbon nanotube thin film strain sensor models assembled using nano-and micro-scale imaging
JP2015072135A (en) Particle size distribution measurement method
WO2019065379A1 (en) Silver powder mixture, method for producing same, and conductive paste
Thiele et al. A case study in sizing nanoparticles
de Oliveira Hein et al. Extended depth from focus reconstruction using NIH ImageJ plugins: quality and resolution of elevation maps
Ureña-Benavides et al. Static light scattering of triaxial nanoparticle suspensions in the Rayleigh-Gans-Debye regime: application to cellulose nanocrystals
WO2019087837A1 (en) Carbon nanotube liquid dispersion, and method for producing same
KR102368510B1 (en) Analysis method of dispersion for microstructure
Vanhecke et al. Assumption-free morphological quantification of single anisotropic nanoparticles and aggregates
Patel et al. A quantitative method of characterizing dispersion in nanocomposites
Phinjaroenphan et al. SAXS/WAXS capability and absolute intensity measurement study at the SAXS beamline of the Siam Photon Laboratory
Antonenkov Method of the aquatic environment image processing for determining the mineral suspension parameters
Phromsuwan et al. Quantitative analysis of X-ray lithographic pores by SEM image processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6968630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350