JP6956656B2 - Antifouling and deterioration resistant resin insulation - Google Patents

Antifouling and deterioration resistant resin insulation Download PDF

Info

Publication number
JP6956656B2
JP6956656B2 JP2018039331A JP2018039331A JP6956656B2 JP 6956656 B2 JP6956656 B2 JP 6956656B2 JP 2018039331 A JP2018039331 A JP 2018039331A JP 2018039331 A JP2018039331 A JP 2018039331A JP 6956656 B2 JP6956656 B2 JP 6956656B2
Authority
JP
Japan
Prior art keywords
resin
filler
parts
mass
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039331A
Other languages
Japanese (ja)
Other versions
JP2019151785A (en
Inventor
孝幸 福岡
知孝 矢野
伸介 三木
味沙 野月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018039331A priority Critical patent/JP6956656B2/en
Publication of JP2019151785A publication Critical patent/JP2019151785A/en
Application granted granted Critical
Publication of JP6956656B2 publication Critical patent/JP6956656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

この発明は、受配電機器等に使用されるバルクモールディングコンパウンド(BulkMolding Compound:BMC)等の樹脂絶縁物の配合組成に関するものである。 The present invention relates to a compounding composition of a resin insulating material such as a bulk molding compound (BMC) used in a power receiving and distributing device or the like.

受配電機器等に用いられる不飽和ポリエステル樹脂をベースとする上記BMCやシートモールディングコンパウンド(Sheet Molding Compound:SMC)のような樹脂絶縁物は、添加剤として炭酸カルシウムや水酸化アルミニウム等の充填材が含まれる。しかし、これらの充填材は大気中の酸性ガス等と反応し絶縁物の表面抵抗率を低下させるため、放電や短絡が発生し受配電機器の故障の原因となる。そのため、酸性ガス等に対する耐汚損劣化性に優れる不飽和ポリエステル樹脂が求められる。
これまでの検証から、樹脂と充填材の密着性を向上させることにより、耐汚損劣化性が向上することがわかった。密着性向上のためには、成形収縮率を低減させることが効果的であることが知られている。樹脂の成形収縮を低減させる方法には、異なる粒径の充填材を添加し充填材が最密に充填されるようにする方法(例えば特許文献1参照)がある。
Resin insulators such as BMC and Sheet Molding Compound (SMC), which are based on unsaturated polyester resin used in power receiving and distribution equipment, have fillers such as calcium carbonate and aluminum hydroxide as additives. included. However, since these fillers react with acid gas in the atmosphere and lower the surface resistivity of the insulator, electric discharge and short circuit occur, which causes a failure of the power receiving and distribution equipment. Therefore, an unsaturated polyester resin having excellent stain resistance and deterioration resistance to acid gas and the like is required.
From the verification so far, it has been found that the stain resistance and deterioration resistance are improved by improving the adhesion between the resin and the filler. It is known that it is effective to reduce the molding shrinkage rate in order to improve the adhesion. As a method of reducing the molding shrinkage of the resin, there is a method of adding fillers having different particle sizes so that the fillers are packed most densely (see, for example, Patent Document 1).

特開昭63−243121号公報Japanese Unexamined Patent Publication No. 63-243121

耐汚損劣化性の向上には、(1)樹脂と充填材の密着性の向上に加え、(2)樹脂絶縁物の表面で大気中の酸性ガスと接触する充填材の面積である表面露出充填材面積の低減が有効であることを実験から明らかにした。
これに対して上記先行特許文献1は、成形収縮率の低減により樹脂と充填材の密着性が改善され、耐汚汚損劣化性が向上する可能性があるが、充填材粒径が十分に小さくないために、表面露出充填材面積が大きく、充填材と大気中の酸性ガスとの反応量が大きいため、耐劣化性に対する効果は十分ではない。
本発明は、樹脂と充填材の密着性がよく表面露出充填材面積を低減させることにより、耐汚損劣化性に優れる樹脂絶縁物を提供することを目的としている。
In order to improve the stain resistance and deterioration resistance, in addition to (1) improving the adhesion between the resin and the filler, (2) surface exposure filling, which is the area of the filler that comes into contact with the acid gas in the atmosphere on the surface of the resin insulator. Experiments have shown that reducing the material area is effective.
On the other hand, in the above-mentioned prior patent document 1, the adhesion between the resin and the filler may be improved by reducing the molding shrinkage rate, and the stain resistance and deterioration resistance may be improved, but the filler particle size is sufficiently small. Therefore, the surface exposed filler area is large, and the amount of reaction between the filler and the acid gas in the atmosphere is large, so that the effect on the deterioration resistance is not sufficient.
An object of the present invention is to provide a resin insulating material having excellent adhesion between the resin and the filler and having excellent stain resistance and deterioration resistance by reducing the surface exposed filler area.

この発明によれば、水酸化アルミニウムからなる充填材を含み、充填材の配合比が樹脂組成物の全体100質量部中、50〜75質量部であり、粒径0.1μm以下の充填材を充填材全体100質量部中0.006〜0.03質量部含み、粒径11〜30μmの充填材を充填材全体100質量部中55〜85質量部含むことにより、樹脂と充填材の密着性を保ちつつ、表面露出充填材面積を低減させることにより、耐汚損劣化性に優れる樹脂絶縁物を提供する。 According to the present invention , a filler containing a filler made of aluminum hydroxide, the compounding ratio of the filler is 50 to 75 parts by mass in 100 parts by mass of the entire resin composition, and the particle size is 0.1 μm or less. Adhesion between the resin and the filler is contained by containing 0.006 to 0.03 parts by mass in 100 parts by mass of the entire filler and 55 to 85 parts by mass of the filler having a particle size of 11 to 30 μm in 100 parts by mass of the entire filler. By reducing the area of the surface-exposed filler while maintaining the above, a resin insulating material having excellent stain resistance and deterioration resistance is provided.

この発明によれば、樹脂と充填材の密着性がよく、表面露出充填材面積を低減することにより、充填材と酸性ガスとの反応を最小限にとどめ、耐汚損劣化性に優れる樹脂絶縁物を提供する。 According to the present invention, a resin insulator having good adhesion between the resin and the filler, minimizing the reaction between the filler and the acid gas by reducing the surface exposed filler area, and having excellent stain resistance and deterioration resistance. I will provide a.

この発明の実施の形態1の実施例1及び実施例2と、実施の形態2の実施例3から実施例5と、実施の形態3の実施例6から実施例8における組成と樹脂特性評価結果の一覧表である。Composition and resin property evaluation results in Examples 1 and 2 of the first embodiment of the present invention, Examples 3 to 5 of the second embodiment, and Examples 6 to 8 of the third embodiment. It is a list of.

実施の形態1.
本発明の耐汚損劣化性樹脂絶縁物は、少なくとも樹脂、充填材、繊維強化剤を含む。
樹脂は、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂など絶縁物に使用されるもの一般を示す。ここでは、不飽和ポリエステル樹脂を用いた場合の樹脂絶縁物について説明する。
Embodiment 1.
The stain-resistant and deteriorating resin insulator of the present invention contains at least a resin, a filler, and a fiber reinforced plastic.
As the resin, general ones used for insulating materials such as unsaturated polyester resin, phenol resin, epoxy resin, and silicone resin are shown. Here, a resin insulator when an unsaturated polyester resin is used will be described.

不飽和ポリエステル樹脂とは、不飽和多塩基酸と多価アルコール、必要に応じて飽和多塩基酸とのエステル化反応による縮合生成物である。
多価アルコールとしては、特に限定されず、当該技術分野において公知のものを用いることができる。多価アルコールの例としては、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等が挙げられる。これらは単独でも2種類以上を併用してもよい。
The unsaturated polyester resin is a condensation product obtained by an esterification reaction of an unsaturated polybasic acid with a polyhydric alcohol and, if necessary, an unsaturated polybasic acid.
The polyhydric alcohol is not particularly limited, and those known in the art can be used. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydride bisphenol A, bisphenol A, glycerin and the like. .. These may be used alone or in combination of two or more.

不飽和多塩基酸としては、特に限定されず、当該技術分野において公知のものを用いることができる。不飽和多塩基酸の例としては、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が挙げられる。これらは単独でも2種類以上を併用してもよい。
反応希釈剤としては、不飽和ポリエステルと重合可能な重合性二重結合を有しているものであれば、特に限定されるものではない。例えば、スチレン、ジアリルフタレート、ジアリルフタレートプレポリマー、メチル(メタ)アクリレート、ジビニルベンゼン、トリアリルイソシアネート等が挙げられる。これらは、単独で用いてもよく、2種類以上をくみあわせてもよい。反応性希釈剤の配合量は、特に限定されず、作業性、重合性、硬化物の収縮などの観点から樹脂組成物100質量部に対して3から15質量部である。
The unsaturated polybasic acid is not particularly limited, and those known in the art can be used. Examples of unsaturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, hetic acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydrophthalic anhydride and the like. Can be mentioned. These may be used alone or in combination of two or more.
As the reactive diluent, as long as it has a polymerizable polymerizable double bond and the unsaturated polyester it is not particularly limited. For example, styrene, diallyl phthalate, diallyl phthalate prepolymer, methyl (meth) acrylate, divinylbenzene, triallyl isocyanate and the like can be mentioned. These may be used alone or in combination of two or more. The blending amount of the reactive diluent is not particularly limited, and is 3 to 15 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of workability, polymerizable property, shrinkage of the cured product, and the like.

不飽和ポリエステル樹脂は、上記のような原料を用いて公知の方法で合成することができる。
本発明において、用いられる不飽和ポリエステル樹脂は、当該技術分野において成形材料として使用される公知のものを用いることができ、市販品のうちから適宜選択して用いてよい。
充填材は、水酸化アルミニウム、炭酸カルシウム、ガラス、シリカ、タルク、クレー、硫酸バリウム、ケイ酸カルシウム、酸化チタン等が挙げられる。これらは単独で用いてもよく、2種類以上を組み合わせてよい。ここでは水酸化アルミニウムを例に充填材の粒径と配合比について説明する。
充填材の配合比は、樹脂組成物の全体100質量部中、通常50〜75質量部程度、好ましくは55〜65質量部である。55質量部以上とすることにより、成形収縮率が大きくなるのを防止し、65質量部以下とすることにより、成形性の低下や機械強度の低下を防ぐ。樹脂に対する充填材比率が高いほど成形収縮率が低下するため、樹脂と充填材の密着性が向上する。
The unsaturated polyester resin can be synthesized by a known method using the above-mentioned raw materials.
As the unsaturated polyester resin used in the present invention, a known material used as a molding material in the art can be used, and a commercially available product may be appropriately selected and used.
Examples of the filler include aluminum hydroxide, calcium carbonate, glass, silica, talc, clay, barium sulfate, calcium silicate, titanium oxide and the like. These may be used alone or in combination of two or more. Here, the particle size and compounding ratio of the filler will be described using aluminum hydroxide as an example.
The compounding ratio of the filler is usually about 50 to 75 parts by mass, preferably 55 to 65 parts by mass, based on 100 parts by mass of the entire resin composition. By setting the content to 55 parts by mass or more, it is possible to prevent the molding shrinkage rate from increasing, and by setting the content to 65 parts by mass or less, it is possible to prevent a decrease in moldability and a decrease in mechanical strength. The higher the ratio of the filler to the resin, the lower the molding shrinkage rate, so that the adhesion between the resin and the filler is improved.

充填材の粒径は、樹脂組成物中で均一に分散させる観点から、平均粒径が0.5〜100μmであることが好ましく、より好ましくは1〜30μmである。また、樹脂絶縁物表面に小さい粒径の充填材を配置させるために、粒径0.1μm以下の充填材を充填材全体100質量部中0.006〜0.03質量部含み、粒径11〜30μmの充填材を充填材全体100質量部中55〜85質量部含む。粒径0.1μm以下の充填材の配合量が0.006質量部以下では、十分な耐汚損劣化性の効果が得られず、0.03質量部以上では、樹脂組成物の流動性が低下し成形性が劣る。粒径11〜30μmの充填材の配合量が55質量部以下では樹脂組成物の流動性が低下し、85質量部以上では成形収縮率が大きくなり、耐汚損劣化性が低下する。
繊維強化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。繊維強化剤の例としては、ガラス繊維、パルプ繊維、ポリエチレンテレフタレート繊維、ビニロン繊維、カーボン繊維、アラミド繊維などの様々な有機および無機繊維を陰ることができる。繊維長は1.5mm〜25mmで、繊維径は好ましくは3〜25μmである。
The particle size of the filler is preferably 0.5 to 100 μm, more preferably 1 to 30 μm, from the viewpoint of uniformly dispersing in the resin composition. Further, in order to dispose a filler having a small particle size on the surface of the resin insulator, a filler having a particle size of 0.1 μm or less is contained in an amount of 0.006 to 0.03 parts by mass based on 100 parts by mass of the entire filler, and the particle size is 11. A filler of ~ 30 μm is contained in 55 to 85 parts by mass out of 100 parts by mass of the entire filler. When the blending amount of the filler having a particle size of 0.1 μm or less is 0.006 parts by mass or less, a sufficient antifouling deterioration effect cannot be obtained, and when it is 0.03 parts by mass or more, the fluidity of the resin composition is lowered. Poor moldability. When the blending amount of the filler having a particle size of 11 to 30 μm is 55 parts by mass or less, the fluidity of the resin composition decreases, and when it is 85 parts by mass or more, the molding shrinkage rate increases and the stain resistance and deterioration resistance decrease.
The fiber strengthening agent is not particularly limited, and those known in the art can be used. Examples of fiber strengthening agents can be shaded from various organic and inorganic fibers such as glass fiber, pulp fiber, polyethylene terephthalate fiber, vinylon fiber, carbon fiber, aramid fiber and the like. The fiber length is 1.5 mm to 25 mm, and the fiber diameter is preferably 3 to 25 μm.

本発明の樹脂組成物には、機能を阻害しない範囲で上記組成成分に加えて、硬化剤、低収縮剤、内部離型剤、重合禁止剤を必要に応じて含有させることができる。この場合、これらの任意の成分の配合量は、本発明の効果を妨げない範囲であれば特に限定されない。
硬化剤には、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、パーオキシエステル等の有機過酸化物やアド化合物等が挙げられる。例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、アゾビスイソブチロニトリル等である。これらは単独でも2種類以上を併用してもよい。
The resin composition of the present invention may contain, if necessary, a curing agent, a low shrinkage agent, an internal mold release agent, and a polymerization inhibitor in addition to the above composition components as long as the function is not impaired. In this case, the blending amount of these arbitrary components is not particularly limited as long as it does not interfere with the effects of the present invention.
Examples of the curing agent include organic peroxides such as ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, and peroxyesters, and ad compounds. For example, benzoyl peroxide, t-butylperoxybenzoate, azobisisobutyronitrile and the like. These may be used alone or in combination of two or more.

低収縮剤の例としては、ポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、スチレン-酢酸ビニル共重合体、飽和ポリエステル、合成ゴム等が挙げられる。これらは単独でも2種類以上を併用してもよい。
内部離型剤の例としては、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の脂肪族金属石けんが挙げられる。これらは単独でも2種類以上を併用してもよい。
重合禁止剤の例としては、ハイドロキノン、メトキノン、パラベンゾキノン、t―ブチルカテコール、6−ジ−t−ブチル−p−クレゾール等のキノン類やハイドロキノン類、モノフェノール類が挙げられる。これらは単独でも2種類以上を併用してもよい。
Examples of the low shrinkage agent include polystyrene, polymethylmethacrylate, polyvinyl acetate, styrene-vinyl acetate copolymer, saturated polyester, synthetic rubber and the like. These may be used alone or in combination of two or more.
Examples of the internal mold release agent include aliphatic metal soaps such as stearic acid, zinc stearate, calcium stearate, and magnesium stearate. These may be used alone or in combination of two or more.
Examples of the polymerization inhibitor include quinones such as hydroquinone, methquinone, parabenzoquinone, t-butylcatechol, 6-di-t-butyl-p-cresol, hydroquinones, and monophenols. These may be used alone or in combination of two or more.

上記の成分を含む本発明の樹脂絶縁物は、当該技術分野において通常行われる方法により、各種成分を配合し混合することにより製造することができる。たとえは、所定量の各種成分を混練機に投じて混練することにより樹脂組成物が得られる。これらの樹脂組成物は、所望の形状に成形して熱硬化させることにより硬化物の成形品を製造できる。成形および硬化方法は、例えば圧縮成形、射出成形、トランスファー成形等を用いることができる。 The resin insulating material of the present invention containing the above components can be produced by blending and mixing various components by a method usually used in the art. For example, a resin composition can be obtained by throwing a predetermined amount of various components into a kneader and kneading them. These resin compositions can be molded into a desired shape and heat-cured to produce a cured product. As the molding and curing method, for example, compression molding, injection molding, transfer molding and the like can be used.

以下、実施例および比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
下記の、実施例および比較例における各種樹脂特性は次の(1)から(4)のようにして評価した。
(1)絶縁性
所定の大きさの樹脂絶縁物に櫛形電極を取り付け、高抵抗測定計を用いて表面抵抗率を測定した。
(2)耐汚損劣化性
所定の大きさの樹脂絶縁物を酸性ガス雰囲気下で所定時間暴露し、暴露後の樹脂絶縁物の汚損状態を化学分析により評価した。
(3)樹脂と充填材の密着性
酸性ガス雰囲気下で所定時間暴露した樹脂絶縁物の断面を走査型電子顕微鏡にて観察し、樹脂と充填材間の隙間の有無を評価した。
(4)表面穴体積
酸性ガス雰囲気下で所定時間暴露した樹脂絶縁物の表面を走査型電子顕微鏡にて観察し、絶縁物表面あいた穴の大きさを画像解析により求めた。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
The various resin properties in Examples and Comparative Examples below were evaluated as described in (1) to (4) below.
(1) Insulation A comb-shaped electrode was attached to a resin insulator of a predetermined size, and the surface resistivity was measured using a high resistance measuring meter.
(2) Antifouling Deterioration Resistance A resin insulating material having a predetermined size was exposed to an acidic gas atmosphere for a predetermined time, and the fouling state of the resin insulating material after exposure was evaluated by chemical analysis.
(3) Adhesion between resin and filler The cross section of the resin insulator exposed for a predetermined time in an acid gas atmosphere was observed with a scanning electron microscope, and the presence or absence of a gap between the resin and the filler was evaluated.
(4) Surface hole volume The surface of the resin insulator exposed for a predetermined time in an acid gas atmosphere was observed with a scanning electron microscope, and the size of the hole formed on the surface of the insulator was determined by image analysis.

(実施例1)
各種成分として、以下の(1)から(6)に示すものを代表例として用い、樹脂絶縁物を製造した。
樹脂組成物全体を100質量部とし各配合量を示す。
(1)不飽和ポリエステル樹脂 26質量部
不飽和ポリエステル:昭和電工製リゴラック
反応性希釈剤(スチレン):三菱化学製スチレンモノマー
(2)硬化剤(t−ブチルパーオキシベンゾエート):日油製パーブチル 0.5質量部
(3)充填材(水酸化アルミニウム):55質量部 粒径とその配合比は図1の実施例1の通りとした。
(4)繊維強化剤(ガラス繊維):日東紡製CS 15質量部
(5)低収縮剤(ポリスチレン):日立化成製ポリスチレン樹脂 1質量部
(6)内部離型剤(ステアリン酸カルシウム): 2.5質量部
不飽和ポリエステルに反応性希釈剤、硬化剤を添加し混練した。これに、ガラス繊維、充填材、低収縮剤、内部離型剤を添加し、ニーダーを用いて混練することにより不飽和ポリエステル樹脂組成物を得た。得られた樹脂組成物をプレスにて加熱成形し樹脂絶縁物を得た。
(Example 1)
As various components, those shown in the following (1) to (6) were used as typical examples to produce a resin insulator.
The total amount of the resin composition is 100 parts by mass, and each compounding amount is shown.
(1) Unsaturated polyester resin 26 parts by mass Unsaturated polyester: Showa Denko Rigolac reactive diluent (styrene): Mitsubishi Chemical styrene monomer (2) Hardener (t-butyl peroxybenzoate): Nikko Perbutyl 0 .5 parts by mass (3) Filler (aluminum hydroxide): 55 parts by mass The particle size and its compounding ratio were as shown in Example 1 of FIG.
(4) Fiber strengthening agent (glass fiber): Nitto Boseki CS 15 parts by mass (5) Low shrinkage agent (polystyrene): Hitachi Kasei polystyrene resin 1 part by mass (6) Internal mold release agent (calcium stearate): 2. A reactive diluent and a curing agent were added to 5 parts by mass of unsaturated polyester and kneaded. A glass fiber, a filler, a low shrinkage agent, and an internal mold release agent were added thereto, and the mixture was kneaded with a kneader to obtain an unsaturated polyester resin composition. The obtained resin composition was heat-molded by a press to obtain a resin insulator.

(実施例2)
不飽和ポリエステル樹脂、充填材、繊維強化剤の配合比を図1の実施例2の通りとしたこと以外は実施例1と同様にして樹脂絶縁物を得た。
(Example 2)
A resin insulator was obtained in the same manner as in Example 1 except that the compounding ratio of the unsaturated polyester resin, the filler, and the fiber reinforced agent was as shown in Example 2 of FIG.

(比較例)
本発明の実施例と比較とするため、従来の樹脂絶縁物の一例を比較例として図1に記載した。充填材の粒径とその配合比を図1の比較例の通りとしたこと以外は実施例と同様にして樹脂絶縁物を得た。
なお、図1において、記号「○」「×」は、「○」は必要な特性を有する、「×」は必要な特性を有さない、という意味を示す。
(Comparison example)
For comparison with the examples of the present invention, an example of a conventional resin insulator is shown in FIG. 1 as a comparative example. A resin insulator was obtained in the same manner as in the examples except that the particle size of the filler and the compounding ratio thereof were as shown in the comparative example of FIG.
In addition, in FIG. 1, the symbols "○" and "x" mean that "○" has a necessary characteristic and "x" does not have a necessary characteristic.

実施の形態2.
実施の形態1では、表面処理剤を用いずに耐汚損劣化性を向上させる樹脂絶縁物の組成比について述べたが、シランカップリング剤等の表面処理剤を用いることにより樹脂と充填材の密着性が向上すること、1μm程度の粒形の小さい充填材を多量に含む場合であっても樹脂組成物の流動性が高く成形性に優れることの効果が期待できる。
Embodiment 2.
In the first embodiment, the composition ratio of the resin insulator that improves the stain resistance and deterioration resistance without using the surface treatment agent has been described, but the resin and the filler adhere to each other by using a surface treatment agent such as a silane coupling agent. It can be expected that the property is improved and that the resin composition has high fluidity and excellent moldability even when a large amount of a filler having a small grain shape of about 1 μm is contained.

表面処理剤の例としては、シランカップリング剤やチタネート処理剤、ステアリン酸処理剤等を用いることができる。無機充填剤と不飽和ポリエステル樹脂の密着性を向上させる目的では、樹脂との相性からシランカップリング剤が好ましい。シランカップリング剤の例としては、ビニルトリメトキシシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、β−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、γ‐メルカプトプロピルトリメトキシシラン等がある。あらかじめ充填材にシランカップリング処理を施したものを用いてもよく、樹脂に添加してもよい。樹脂に添加の場合は、樹脂組成物の全体100質量部中、0.1〜2質量部程度である。シランカップリング剤の混合順序は、どのような順序でも混合することができ、シランカップリング剤を予め不飽和ポリエステル樹脂と混練したものにその他材料を混合してもよく、すべての材料とともに混練してもよい。本発明において、用いられる表面処理剤は当該技術分野において表面処理剤、または表面処理充填剤として使用される公知のものを用いることができ、市販品のうちから適宜選択して用いてよい。これらは単独でも2種類以上を併用してもよい。
以下、実施例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
As an example of the surface treatment agent, a silane coupling agent, a titanate treatment agent, a stearic acid treatment agent and the like can be used. For the purpose of improving the adhesion between the inorganic filler and the unsaturated polyester resin, a silane coupling agent is preferable because of its compatibility with the resin. Examples of silane coupling agents include vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- There are mercaptopropyltrimethoxysilane and the like. A filler having been subjected to a silane coupling treatment in advance may be used, or may be added to the resin. When added to the resin, it is about 0.1 to 2 parts by mass out of 100 parts by mass of the entire resin composition. The mixing order of the silane coupling agent can be any order, and the silane coupling agent may be mixed with the unsaturated polyester resin in advance and other materials may be mixed, and the silane coupling agent is kneaded together with all the materials. You may. In the present invention, as the surface treatment agent used, a known surface treatment agent used as a surface treatment agent or a surface treatment filler in the art can be used, and a commercially available product may be appropriately selected and used. These may be used alone or in combination of two or more.
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(実施例3)
すべての粒径の充填材に対してシランカップリング剤による処理を施したこと以外は図1の実施例1と同様にして樹脂絶縁物を得た。
(Example 3)
A resin insulator was obtained in the same manner as in Example 1 of FIG. 1 except that the fillers having all particle sizes were treated with a silane coupling agent.

(実施例4)
粒径1μm以下の充填材に対してシランカップリング剤による処理を施したこと以外は図1の実施例1と同様にして樹脂絶縁物を得た。
(Example 4)
A resin insulator was obtained in the same manner as in Example 1 of FIG. 1 except that the filler having a particle size of 1 μm or less was treated with a silane coupling agent.

(実施例5)
各種成分として、以下の(1)から(7)に示すものを代表例として用い、樹脂絶縁物を製造した。
樹脂組成物全体を100質量部とし各配合量を示す。
(1)不飽和ポリエステル樹脂 26質量部
不飽和ポリエステル:昭和電工製リゴラック
反応性希釈剤(スチレン):三菱化学製スチレンモノマー
(2)硬化剤(t−ブチルパーオキシベンゾエート):日油製パーブチル 0.5質量部
(3)充填材(水酸化アルミニウム):55質量部 粒径とその配合比は図1の実施例1の通りとした。
(4)繊維強化剤(ガラス繊維):日東紡製CS 15質量部
(5)低収縮剤(ポリスチレン):日立化成製ポリスチレン樹脂 1質量部
(6)内部離型剤(ステアリン酸カルシウム): 2質量部
(7)シランカップリング処理剤(γ‐メタクリロキシプロピルトリメトキシシラン):
0.5質量部
不飽和ポリエステルに反応性希釈剤、シランカップリング処理剤、硬化剤を添加し混練した。これに、ガラス繊維、充填材、低収縮剤、内部離型剤を加えニーダーを用いて混練することにより不飽和ポリエステル樹脂組成物を得た。得られた樹脂組成物をプレスにて加熱成形し樹脂絶縁物を得た。
(Example 5)
Resin insulators were produced by using the following components (1) to (7) as typical examples.
The total amount of the resin composition is 100 parts by mass, and each compounding amount is shown.
(1) Unsaturated polyester resin 26 parts by mass Unsaturated polyester: Showa Denko Rigolac reactive diluent (styrene): Mitsubishi Chemical styrene monomer (2) Hardener (t-butyl peroxybenzoate): Nikko Perbutyl 0 .5 parts by mass (3) Filler (aluminum hydroxide): 55 parts by mass The particle size and its compounding ratio were as shown in Example 1 of FIG.
(4) Fiber strengthening agent (glass fiber): Nitto Boseki CS 15 parts by mass (5) Low shrinkage agent (polystyrene): Hitachi Kasei polystyrene resin 1 part by mass (6) Internal mold release agent (calcium stearate): 2 parts by mass Part (7) Silane coupling treatment agent (γ-methacryloxypropyltrimethoxysilane):
A reactive diluent, a silane coupling treatment agent, and a curing agent were added to 0.5 parts by mass of unsaturated polyester and kneaded. A glass fiber, a filler, a low shrinkage agent, and an internal mold release agent were added thereto and kneaded with a kneader to obtain an unsaturated polyester resin composition. The obtained resin composition was heat-molded by a press to obtain a resin insulator.

実施の形態3.
シランカップリング剤等の表面処理剤を用いる場合は、樹脂と充填材の混合物の増粘が軽減され成形性が低下しないため、表面処理剤を用いない場合よりも1μm以下の粒径の充填材の配合比を増やすことが可能となる。この場合、1μm以下の粒径の充填材の比率を、充填材全体100質量部中30〜100質量部とすることができる。
以下、実施例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
Embodiment 3.
When a surface treatment agent such as a silane coupling agent is used , the thickening of the mixture of the resin and the filler is reduced and the moldability is not deteriorated. Therefore, the filler having a particle size of 1 μm or less is smaller than that when the surface treatment agent is not used. It is possible to increase the compounding ratio of. In this case, the ratio of the filler particle size of less than 1 [mu] m, can be 30 to 100 parts by weight in 100 parts by weight total filler.
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(実施例6)
不飽和ポリエステル樹脂、充填材、繊維強化剤の配合比を図1の実施例6の通りとしたこと以外は実施例3と同様にして樹脂絶縁物を得た。
(Example 6)
A resin insulator was obtained in the same manner as in Example 3 except that the compounding ratio of the unsaturated polyester resin, the filler, and the fiber strengthening agent was as shown in Example 6 of FIG.

(実施例7)
不飽和ポリエステル樹脂、充填材、繊維強化剤の配合比を図1の実施例7の通りとしたこと以外は実施例4と同様にして樹脂絶縁物を得た。
(Example 7)
A resin insulator was obtained in the same manner as in Example 4 except that the compounding ratio of the unsaturated polyester resin, the filler, and the fiber strengthening agent was as shown in Example 7 of FIG.

(実施例8)
不飽和ポリエステル樹脂、充填材、繊維強化剤の配合比を図1の実施例8の通りとしたこと以外は実施例3と同様にして樹脂絶縁物を得た。
(Example 8)
A resin insulator was obtained in the same manner as in Example 3 except that the compounding ratio of the unsaturated polyester resin, the filler, and the fiber strengthening agent was as shown in Example 8 of FIG.

Claims (6)

少なくとも樹脂と水酸化アルミニウムからなる充填材の2つ以上の材料から構成される樹脂絶縁物であって、前記充填材の配合比が樹脂組成物の全体100質量部中、50〜75質量部であり、粒径0.1μm以下の充填材を充填材全体100質量部中0.006〜0.03質量部含み、粒径11〜30μmの充填材を充填材全体100質量部中55〜85質量部含む耐汚損劣化性樹脂絶縁物。 A resin insulator composed of two or more materials of the filler consisting of at least a resin and aluminum hydroxide, the mixing ratio of the filler total of 100 parts by weight of the resin composition, with 50 to 75 parts by weight Yes, a filler having a particle size of 0.1 μm or less is contained in an amount of 0.006 to 0.03 parts by mass in 100 parts by mass of the entire filler, and a filler having a particle size of 11 to 30 μm is contained in an amount of 55 to 85 parts by mass in 100 parts by mass of the filler. Antifouling and deteriorating resin insulation including parts. 前記樹脂として、不飽和ポリエステル樹脂、エポキシエステル樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂のいずれかを用いたことを特徴とする請求項1に記載の耐汚損劣化性樹脂絶縁物。 The stain-resistant and deteriorating resin insulator according to claim 1, wherein any of an unsaturated polyester resin, an epoxy ester resin, a phenol resin, a silicone resin, and an epoxy resin is used as the resin. 前記充填材の全量または一部にシランカップリング処理にて表面処理したものを用いたことを特徴とする請求項1に記載の耐汚損劣化性樹脂絶縁物。 The antifouling and deteriorating resin insulator according to claim 1, wherein all or part of the filler is surface-treated by a silane coupling treatment. 前記樹脂に表面処理剤を添加したことを特徴とする請求項1に記載の耐汚損劣化性樹脂絶縁物。 The antifouling and deteriorating resin insulator according to claim 1, wherein a surface treatment agent is added to the resin. 表面処理剤としてシランカップリング剤を用いたことを特徴とする請求項に記載の耐汚損劣化性樹脂絶縁物。 The antifouling and deteriorating resin insulator according to claim 4 , wherein a silane coupling agent is used as the surface treatment agent. 少なくとも樹脂と水酸化アルミニウムからなる充填材の2つ以上の材料から構成される樹脂絶縁物であって、前記充填材は配合比が樹脂組成物の全体100質量部中、50〜75質量部であるとともに、前記充填材の全量または一部にシランカップリング処理にて表面処理したものを用い、さらに前記充填材は、粒径が30μm以下であり、かつ1μm以下の粒径の充填剤の比率を、充填材全体100質量部中30〜100質量部含むことを特徴とする耐汚損劣化性樹脂絶縁物。 It is a resin insulator composed of at least two or more materials of a filler composed of resin and aluminum hydroxide, and the filler has a compounding ratio of 50 to 75 parts by mass in 100 parts by mass of the entire resin composition. In addition, all or part of the filler is surface-treated by a silane coupling treatment, and the filler has a particle size of 30 μm or less and a ratio of fillers having a particle size of 1 μm or less. A stain-resistant and deteriorating resin insulator, which comprises 30 to 100 parts by mass in 100 parts by mass of the entire filler.
JP2018039331A 2018-03-06 2018-03-06 Antifouling and deterioration resistant resin insulation Active JP6956656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018039331A JP6956656B2 (en) 2018-03-06 2018-03-06 Antifouling and deterioration resistant resin insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039331A JP6956656B2 (en) 2018-03-06 2018-03-06 Antifouling and deterioration resistant resin insulation

Publications (2)

Publication Number Publication Date
JP2019151785A JP2019151785A (en) 2019-09-12
JP6956656B2 true JP6956656B2 (en) 2021-11-02

Family

ID=67948353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039331A Active JP6956656B2 (en) 2018-03-06 2018-03-06 Antifouling and deterioration resistant resin insulation

Country Status (1)

Country Link
JP (1) JP6956656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116745330A (en) * 2020-12-21 2023-09-12 株式会社力森诺科 Unsaturated polyester resin composition and molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780256B2 (en) * 1998-08-24 2011-09-28 信越化学工業株式会社 Polymer insulator sealing material and polymer insulator repair material
JP5322689B2 (en) * 2009-02-20 2013-10-23 信越化学工業株式会社 Silicone rubber composition for high voltage electrical insulation
WO2015072262A1 (en) * 2013-11-12 2015-05-21 住友ベークライト株式会社 Metal-clad laminate, circuit board, and electronic device
CN109476128B (en) * 2016-08-05 2020-11-24 信越化学工业株式会社 Thermally conductive silicone rubber composite sheet

Also Published As

Publication number Publication date
JP2019151785A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP4598822B2 (en) Unsaturated polyester resin composition for lamp reflector and molded product thereof
US20060249869A1 (en) Low-density, class a sheet molding compounds containing divinylbenzene
JP6956656B2 (en) Antifouling and deterioration resistant resin insulation
WO2006121769A2 (en) Low-density, class a sheet molding compounds from isophthalate-maleate thermoset resins
CN113330045B (en) Unsaturated polyester resin composition, molding material, molded article, and battery pack case for electric vehicle
JP5225793B2 (en) Thermosetting molding material and low specific gravity molding
JP5033576B2 (en) Thermosetting resin composition, cured product and high thermal conductive coil
JP2001261954A (en) Flame-retardant low-specific gravity unsaturated polyester resin composition
JP2007177127A (en) Thermosetting molding material
JP5001122B2 (en) High thermal conductive molding material
JP6901257B2 (en) Arc resistance BMC
KR102090180B1 (en) Thermosetting resin mixture for injection molding and with high strength
JPH1095904A (en) Mold material and mold motor
JP4099034B2 (en) Thermosetting molding material for press-fitting molded products and molded products
JPH01234434A (en) Bulk molding compound composition and molded article produced therefrom
JP5636169B2 (en) Thermosetting resin composition and electric / electronic component
JP4245994B2 (en) Flame retardant unsaturated polyester resin composition
JP5042922B2 (en) Thermosetting molding material and molded body
JPWO2019097824A1 (en) Bulk molding compound and how to use it to seal the motor
JP6251490B2 (en) Unsaturated polyester resin composition and slice table using the same
JP2006022163A (en) Thermosetting resin molding material
JP2007002060A (en) Thermosetting resin composition for molding and molded article
JPWO2015186597A1 (en) Molding material for heat compression molding and molded product thereof
JP2007177126A (en) Thermosetting molding material
JPH0113742B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R151 Written notification of patent or utility model registration

Ref document number: 6956656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151