JP6954209B2 - Surface defect inspection method and surface defect inspection device for steel sheets - Google Patents

Surface defect inspection method and surface defect inspection device for steel sheets Download PDF

Info

Publication number
JP6954209B2
JP6954209B2 JP2018067481A JP2018067481A JP6954209B2 JP 6954209 B2 JP6954209 B2 JP 6954209B2 JP 2018067481 A JP2018067481 A JP 2018067481A JP 2018067481 A JP2018067481 A JP 2018067481A JP 6954209 B2 JP6954209 B2 JP 6954209B2
Authority
JP
Japan
Prior art keywords
steel sheet
image signal
surface defect
steel plate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067481A
Other languages
Japanese (ja)
Other versions
JP2019178924A (en
Inventor
繁樹 平松
繁樹 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018067481A priority Critical patent/JP6954209B2/en
Publication of JP2019178924A publication Critical patent/JP2019178924A/en
Application granted granted Critical
Publication of JP6954209B2 publication Critical patent/JP6954209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、表面検査の対象物である鋼板に対して、光源から照明光を照射し、その反射光を撮像カメラで撮像し、得られた画像の信号を処理して表面疵の検査を行う鋼板の表面疵検査方法とその装置とに関する。 In the present invention, a steel plate, which is an object of surface inspection, is irradiated with illumination light from a light source, the reflected light is imaged by an imaging camera, and the signal of the obtained image is processed to inspect the surface defect. The present invention relates to a method for inspecting a surface defect of a steel plate and its device.

焼鈍工程、調質圧延工程を経て生産される鋼板の表面に現れる外観異常として、ヘゲ疵、巻き締め疵、焼鈍縞、油汚れ、表面光沢ムラなどがある。これらのうち、特にヘゲ疵や巻き締め疵などの表面疵は有害な外観異常、謂わば表面欠陥であり、これらの表面欠陥を含む鋼板は品質不良品となる。一方、焼鈍縞、油汚れ、表面光沢ムラなどは無害な外観異常であり、これらの外観異常を含む鋼板は品質不良品とはならない。このため、鋼板の製造現場では、これらの外観異常を精度よく峻別することが求められる。 Appearance abnormalities appearing on the surface of the steel sheet produced through the annealing process and the temper rolling process include dents, winding defects, annealing fringes, oil stains, and uneven surface gloss. Of these, surface defects such as hesitation defects and winding defects are harmful appearance abnormalities, so-called surface defects, and steel sheets containing these surface defects are poor quality products. On the other hand, annealing stripes, oil stains, uneven surface gloss, etc. are harmless appearance abnormalities, and the steel sheet including these appearance abnormalities is not a defective product. Therefore, at the steel sheet manufacturing site, it is required to accurately distinguish these appearance abnormalities.

従来より、鋼板の表面検査装置として、鋼板の表面を照明し、その反射光を撮像して得られた画像信号を解析することにより、表面欠陥の有無を検査する装置が提案されている。この種の装置では、撮像した画像信号の輝度を所定の閾(しきい)値と比較し、この閾値よりも高輝度となる部位の中から「表面疵として判定されるべき部位の候補」を抽出する2値化処理と、その2値化処理で抽出された「表面疵として判定されるべき部位の候補」を所定の判定ルールに従って「有害な外観異常(表面欠陥)」と「無害な外観異常」とに峻別する判定処理とが行なわれる。
このような鋼板の表面検査装置において、例えば、下記の特許文献1(日本国・特開平8−94542号公報)には、鋼板の表面に発生した欠陥を光学的に検出する際に、光源から鋼板の表面への光の入射角度αを15°〜30°の間の角度に設定するとともに、撮像装置3の受光角度をα+3°〜α+7°に設定する技術が開示されている。かかる技術によれば、亜鉛めっき系鋼板上に存在する様々な形態をもつ押し疵を安定的に検出することが可能になるとされている。
Conventionally, as a surface inspection device for a steel sheet, an device for inspecting the presence or absence of surface defects by illuminating the surface of the steel sheet and analyzing the image signal obtained by imaging the reflected light has been proposed. In this type of device, the brightness of the captured image signal is compared with a predetermined threshold value, and "candidates for parts to be judged as surface defects" are selected from the parts whose brightness is higher than this threshold value. The binarization process to be extracted and the "candidates for parts to be judged as surface defects" extracted by the binarization process are classified into "harmful appearance abnormality (surface defect)" and "harmless appearance" according to a predetermined judgment rule. Judgment processing that distinguishes from "abnormal" is performed.
In such a steel sheet surface inspection device, for example, in Patent Document 1 below (Japanese Patent Laid-Open No. 8-94542), when a defect generated on the surface of a steel sheet is optically detected, it is detected from a light source. A technique is disclosed in which the angle of incidence of light on the surface of a steel sheet α is set to an angle between 15 ° and 30 °, and the light receiving angle of the image pickup apparatus 3 is set to α + 3 ° to α + 7 °. According to such a technique, it is said that it is possible to stably detect dents having various forms existing on a galvanized steel sheet.

特開平8−94542号公報Japanese Unexamined Patent Publication No. 8-94542

しかしながら、上記従来の鋼板の表面検査装置では、検査対象の材料がめっき鋼板の場合には押し疵のような外観異常を効率よく検出することができるものの、検査対象の材料がめっきの施されていない鋼板の場合には、以下のような問題が生じていた。
すなわち、この種の装置では、検査対象である鋼板表面からの反射光を撮像して得られる画像信号の信号レベルが所定の階調領域(階調範囲)内に収まるよう、その信号レベルの増幅幅又は照明光の発光量の少なくとも一方がフィードバック制御されている。ここで、めっき鋼板のようにコイル毎の鋼板表面の光沢度(地合)が極めて近似しているものでは、一旦、上記の増減幅の初期値や上記の発光量の初期値を決めてしまえば、コイル毎に大きな変動がないため、各コイルにおける鋼板の検査開始直後から画像信号の信号レベルが所定の階調領域内に収まって正確な表面検査を実行することできる。これに対し、めっきの施されていない鋼板では、塗油が付着していたり焼鈍縞が存在する等のため、鋼板表面の光沢度(地合)がコイル毎に大きく異なり、一旦、信号レベルの増減幅の初期値や照明光の発光量の初期値を決めていても、鋼板の検査開始直後からある一定の時間(例えば、1分以上)経過するまでは画像信号の信号レベルが所定の階調領域内に収まらない場合が生じ得る。このため、鋼板の検査開始から画像信号の信号レベルが所定の階調領域内に収まるまでの間は、実質的に表面疵の検査が実行できずロスが生じる。このようなロスが生じた部分については、製品から除外するか、製品とする場合には、その部分全量について、査員の目視判定に頼らざるを得ず、検査効率が低下するようになる、という問題があった。
それゆえに、本発明の目的は、表面にめっき等の表面処理が施されていない鋼板を検査対象とする場合であっても、表面検査開始直後からのロスを極小化することができる鋼板の表面疵検査方法およびその装置を提供することである。
However, in the above-mentioned conventional surface inspection device for steel sheets, when the material to be inspected is a plated steel sheet, it is possible to efficiently detect an appearance abnormality such as a dent, but the material to be inspected is plated. In the case of no steel plate, the following problems occurred.
That is, in this type of device, the signal level is amplified so that the signal level of the image signal obtained by imaging the reflected light from the surface of the steel plate to be inspected is within a predetermined gradation region (gradation range). At least one of the width and the amount of emission of the illumination light is feedback-controlled. Here, in the case of a plated steel sheet in which the glossiness (form) of the steel sheet surface for each coil is extremely similar, the initial value of the above increase / decrease width and the above initial value of the light emission amount are once determined. For example, since there is no large variation for each coil, the signal level of the image signal falls within a predetermined gradation region immediately after the start of the inspection of the steel plate in each coil, and an accurate surface inspection can be performed. On the other hand, in the unplated steel sheet, the glossiness (texture) of the steel sheet surface differs greatly for each coil due to the presence of oil coating and bleeding streaks, and once the signal level is reached. Even if the initial value of the increase / decrease width and the initial value of the emission amount of the illumination light are determined, the signal level of the image signal is on the predetermined floor until a certain time (for example, 1 minute or more) elapses immediately after the inspection of the steel sheet is started. It may not fit within the tuning area. Therefore, from the start of the inspection of the steel sheet to the time when the signal level of the image signal falls within the predetermined gradation region, the inspection of the surface defect cannot be substantially performed and a loss occurs. It is said that the part where such a loss occurs must be excluded from the product, or if it is made into a product, the inspection efficiency will decrease because the total amount of the part must be visually judged by the inspector. There was a problem.
Therefore, an object of the present invention is to minimize the loss immediately after the start of surface inspection even when the surface of the steel sheet is not subjected to surface treatment such as plating. It is to provide a defect inspection method and its apparatus.

発明者らによる詳細な研究の結果、画像信号の信号レベルのフィードバック制御に最も影響を及ぼす(検査対象である各コイルの)鋼板表面の光沢度(地合)と、その鋼板が表面疵検査装置に持ち込まれるまでの来歴との間に極めて高い相関があることを見出し、本発明を完成させるに至った。
すなわち、上記の目的を達成するため、本発明は、例えば、図1から図4に示すように、鋼板の表面疵検査方法を次のように構成した。
鋼板12の表面上にある撮像対象部位に照明光を照射する。上記の撮像対象部位からの反射光を撮像する。撮像して得られた画像信号を所定の閾値に基いて2値化すると共に、その2値化されたデータの中から所定の判定ルールに基づいて鋼板12の疵を判定する。その際に、上記の画像信号は、その信号レベルが所定の階調領域(階調範囲)内に収まるよう、その増幅幅又は上記の照明光の発光量の少なくとも一方がフィードバック制御される。そして、上記の増幅幅及び上記の発光量それぞれの初期値は、検査対象鋼板の製造履歴に基づいて個別に設定される。
As a result of detailed research by the inventors, the glossiness (texture) of the surface of the steel sheet (for each coil to be inspected), which has the greatest effect on the feedback control of the signal level of the image signal, and the surface defect inspection device for the steel sheet. We have found that there is an extremely high correlation with the history of the product, which led to the completion of the present invention.
That is, in order to achieve the above object, for example, as shown in FIGS. 1 to 4, the present invention comprises the following method for inspecting a surface defect of a steel sheet.
Illumination light is applied to a portion to be imaged on the surface of the steel plate 12. The reflected light from the above-mentioned imaging target portion is imaged. The image signal obtained by imaging is binarized based on a predetermined threshold value, and a defect of the steel plate 12 is determined from the binarized data based on a predetermined determination rule. At that time, at least one of the amplification width or the emission amount of the illumination light is feedback-controlled so that the signal level of the image signal falls within a predetermined gradation region (gradation range). Then, the initial values of the amplification width and the light emission amount are individually set based on the manufacturing history of the steel sheet to be inspected.

また、かかる方法を実施するための鋼板の表面検査装置を次のように構成した。
すなわち、鋼板12の表面上にある撮像対象部位に照明光を照射する照明部14と、上記の照明光に対する撮像対象部位からの反射光を撮像する反射光撮像部16と、上記の反射光撮像部16で撮像して得られた画像信号の信号レベルが所定の階調領域内に収まるよう、その増幅幅又は上記の照明光の発光量の少なくとも一方をフィードバック制御すると共に、その画像信号を所定の閾値に基づいて2値化し、2値化されたデータの中から所定の判定ルールに基づいて鋼板12の疵を判定する画像信号処理部18とを含む。また、上位PC(パーソナルコンピュータ)30又はサーバーより受け取った、もしくは鋼板製造・加工装置に記録させておいた上記の鋼板の製造履歴に基づいて、上記の画像信号処理部に対して、上記の増幅幅及び上記の発光量それぞれの初期値が検査対象の鋼板に固有のものを選択するように指令を出す判定条件選択手段32を有する。
なお、上記の「鋼板製造・加工装置」とは、本発明装置の検査対象である鋼板12がその表面検査前までに通過してきた装置を示すものであって、具体的には各種圧延装置や焼鈍炉或いはスリッター装置などを例示することができる。
In addition, a steel sheet surface inspection device for carrying out such a method was configured as follows.
That is, the illumination unit 14 that irradiates the imaging target portion on the surface of the steel plate 12 with the illumination light, the reflected light imaging unit 16 that captures the reflected light from the imaging target portion with respect to the illumination light, and the reflected light imaging. The amplification width or at least one of the emission amount of the illumination light is feedback-controlled so that the signal level of the image signal obtained by imaging in the unit 16 falls within a predetermined gradation region, and the image signal is predetermined. Includes an image signal processing unit 18 that binarizes based on the threshold value of the above and determines a defect of the steel plate 12 based on a predetermined determination rule from the binarized data. Further, based on the manufacturing history of the steel sheet received from the host PC (personal computer) 30 or the server or recorded in the steel sheet manufacturing / processing apparatus, the above amplification is performed with respect to the above image signal processing unit. It has a determination condition selection means 32 for issuing a command to select an initial value of each of the width and the above-mentioned light emission amount unique to the steel sheet to be inspected.
The above-mentioned "steel plate manufacturing / processing apparatus" refers to an apparatus through which the steel sheet 12 to be inspected by the apparatus of the present invention has passed before the surface inspection thereof, and specifically, various rolling apparatus and various rolling apparatus. An annealing furnace or a slitter device can be exemplified.

これらの発明では、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるよう、その増幅幅又は上記の照明光の発光量の少なくとも一方がフィードバック制御されているが、その増幅幅及び発光量それぞれの初期値が、検査対象鋼板12の製造履歴に基づいて個別に設定されるので、製造履歴に起因する鋼板12表面の光沢度(地合)の違いに応じて上記の初期値が適切に設定され、鋼板12の表面疵検査開始当初から表面疵の判定に用いる画像信号の信号レベルを適正範囲にアジャストすることができる。その結果、従来、鋼板の表面疵検査開始直後より発生していた検査不能区間の範囲を極小化することができる。 In these inventions, at least one of the amplification width or the amount of light emitted from the above illumination light is feedback-controlled so that the signal level of the image signal used for determining the surface defect is within a predetermined gradation region. Since the initial values of the amplification width and the light emission amount are individually set based on the manufacturing history of the steel sheet 12 to be inspected, the above-mentioned above depends on the difference in glossiness (formation) of the surface of the steel sheet 12 due to the manufacturing history. The initial value is appropriately set, and the signal level of the image signal used for determining the surface defect can be adjusted within an appropriate range from the beginning of the surface defect inspection of the steel sheet 12. As a result, it is possible to minimize the range of the uninspectable section that has conventionally occurred immediately after the start of the surface defect inspection of the steel sheet.

本発明においては、上記の製造履歴が、冷間圧延機種,冷間圧延ロールの研磨方法,調質圧延機種,調質圧延ロールの種類,調質圧延油使用の有無,調質圧延油の種類,焼鈍炉機種,焼鈍条件,スリッター工程で通板したラインの種類及び合紙の有無からなるのが好ましい。
これらの製造履歴は、検査対象の鋼板表面の光沢度に大きな影響を及ぼすものである。
In the present invention, the above manufacturing history is based on the cold rolling model, the polishing method of the cold rolling roll, the tempering rolling model, the type of the tempering rolling roll, the presence or absence of the tempering rolling oil, and the type of the tempering rolling oil. , annealing furnace Kishu, annealing conditions preferably ing from the type and Umu of slip sheet of strip passing the line slitter step.
These manufacturing histories have a great influence on the glossiness of the surface of the steel sheet to be inspected.

さらに、本発明は、後述する実施形態に記載された特有の構成を付加することが好ましい。 Further, it is preferable that the present invention adds a unique configuration described in an embodiment described later.

本発明によれば、表面にめっき等の表面処理が施されていない鋼板を検査対象とする場合であっても、表面検査開始直後からのロスを極小化することができる鋼板の表面疵検査方法およびその装置を提供することができる。 According to the present invention, a method for inspecting a surface defect of a steel sheet that can minimize the loss immediately after the start of the surface inspection even when the surface of the steel sheet is not subjected to surface treatment such as plating. And its equipment can be provided.

本発明の鋼板の表面疵検査装置の構成例を示す図である。It is a figure which shows the structural example of the surface defect inspection apparatus of the steel sheet of this invention. 本発明の鋼板の表面疵検査方法の一例を示すプロセスフロー図である。It is a process flow diagram which shows an example of the surface defect inspection method of the steel sheet of this invention. テーブルの一例を示す図である。It is a figure which shows an example of a table. 判定処理の一例を示す説明図である。It is explanatory drawing which shows an example of the determination process. 本発明の鋼板の表面疵検査装置における他の構成例を示す図である。It is a figure which shows the other structural example in the surface defect inspection apparatus of the steel sheet of this invention. 本発明の鋼板の表面疵検査方法の他の例を示すプロセスフロー図である。It is a process flow diagram which shows another example of the surface defect inspection method of the steel sheet of this invention.

以下、本発明の鋼板の表面疵検査方法及び表面検査装置について図面を参照しつつ説明する。なお、本実施形態(第1の実施形態)における鋼板は、表面にめっき処理が施されておらず、塗油などが付着した状態のものである。 Hereinafter, the method for inspecting the surface defect of the steel sheet and the surface inspection apparatus of the present invention will be described with reference to the drawings. The steel sheet in the present embodiment (first embodiment) is in a state where the surface is not plated and oil or the like is attached.

図1は、本発明の鋼板の表面疵検査装置10の構成例を示す図である。本実施形態の鋼板の表面疵検査装置10は、鋼板12の表面に現れる外観異常のうち有害な外観異常(すわなち、表面欠陥)であるヘゲ疵や巻き締め疵と言った表面疵を、無害な外観異常である油汚れや焼鈍縞などと峻別して検出するものであり、この図が示すように、照明部14,反射光撮像部16,画像信号処理部18,検査結果出力部20及び判定条件選択手段32で大略構成される。 FIG. 1 is a diagram showing a configuration example of a surface defect inspection device 10 for a steel sheet of the present invention. The surface defect inspection device 10 for the steel sheet of the present embodiment detects surface defects such as hesitation defects and winding defects, which are harmful appearance abnormalities (that is, surface defects) among the appearance abnormalities appearing on the surface of the steel sheet 12. It is detected separately from oil stains and burnt fringes, which are harmless appearance abnormalities. As shown in this figure, the illumination unit 14, the reflected light imaging unit 16, the image signal processing unit 18, and the inspection result output unit are detected. It is roughly composed of 20 and the determination condition selection means 32.

照明部14は、鋼板12の表面の撮像対象部位に照明光を照射するもので、その光源として、鋼板12の板幅方向に照明光を照射するLED式のライン照明が用いられる。なお、照明部14の光源はこれに限定されるものではなく、LEDに代えてハロゲンランプ、HIDランプ、蛍光灯などを用いることもできる。
図示実施形態の鋼板の表面疵検査装置10において、この照明部14は、鋼板12表面の撮像対象部位において鋼板12の走行方向に直交する面22(以下、「直交面22」とも言う。)よりも鋼板12の走行方向下流側に設置されると共に、鋼板12の表面に対する照明光の入射角αが、直交面22に対して所定の鋭角に設定されている。また、鋼板12がピンチロール24,26に挟まれ、これらピンチロール24,26間で検査ロール28に支持される位置が、鋼板12が板厚方向に揺れることのない検査位置、すなわち撮像対象部位となっている。
また、この照明部14は、後で詳述するが、画像信号処理部18によって光源(照明光)の発光量が制御されるようになっている。
The illumination unit 14 irradiates an image pickup target portion on the surface of the steel plate 12 with illumination light, and as a light source thereof, LED-type line illumination that irradiates the illumination light in the plate width direction of the steel plate 12 is used. The light source of the illumination unit 14 is not limited to this, and a halogen lamp, a HID lamp, a fluorescent lamp, or the like can be used instead of the LED.
In the surface defect inspection device 10 for a steel sheet according to the illustrated embodiment, the illumination unit 14 is formed from a surface 22 (hereinafter, also referred to as “orthogonal surface 22”) orthogonal to the traveling direction of the steel sheet 12 at an image pickup target portion on the surface of the steel sheet 12. Is also installed on the downstream side in the traveling direction of the steel plate 12, and the incident angle α of the illumination light on the surface of the steel plate 12 is set to a predetermined sharp angle with respect to the orthogonal surface 22. Further, the position where the steel plate 12 is sandwiched between the pinch rolls 24 and 26 and is supported by the inspection roll 28 between the pinch rolls 24 and 26 is the inspection position where the steel plate 12 does not shake in the plate thickness direction, that is, the part to be imaged. It has become.
Further, as will be described in detail later, the illumination unit 14 is designed so that the amount of light emitted from the light source (illumination light) is controlled by the image signal processing unit 18.

反射光撮像部16は、照明部12から照射された照明光が鋼板12表面の撮像対象部位で反射した光のうち、鋼板12表面の塗油ムラの影響を受け難い乱反射光を撮像するもので、高分解能のCCDラインセンサカメラが用いられる。なお、反射光撮像部16はこれに限定されるものではなく、CCDラインセンサカメラに代えてCCDエリアセンサカメラやCMOSラインセンサカメラなどを用いることもできる。また、反射光撮像部16の空間分解能や濃度分解能は、検出対象とする表面欠陥の種類に応じて適宜選択される。
この反射光撮像部16は、上記の直交面22より鋼板12の走行方向上流側に設置されると共に、鋼板12の表面からの反射光の反射角βが、直交面22に対して所定の鋭角であって、上記のαとは異なる角度のものを撮像するように設定されている。このため、反射光撮像部16は、鋼板12の表面で反射した光のうち、乱反射光を撮像するようになっている。
The reflected light imaging unit 16 captures diffusely reflected light that is not easily affected by oil coating unevenness on the surface of the steel plate 12 among the light reflected by the illumination light emitted from the illumination unit 12 at the imaging target portion on the surface of the steel plate 12. , A high resolution CCD line sensor camera is used. The reflected light imaging unit 16 is not limited to this, and a CCD area sensor camera, a CMOS line sensor camera, or the like can be used instead of the CCD line sensor camera. Further, the spatial resolution and the density resolution of the reflected light imaging unit 16 are appropriately selected according to the type of the surface defect to be detected.
The reflected light imaging unit 16 is installed on the upstream side of the steel plate 12 in the traveling direction from the orthogonal surface 22, and the reflection angle β of the reflected light from the surface of the steel plate 12 is a predetermined acute angle with respect to the orthogonal surface 22. Therefore, it is set to take an image at an angle different from the above α. Therefore, the reflected light imaging unit 16 captures diffusely reflected light among the light reflected on the surface of the steel plate 12.

画像信号処理部18は、反射光撮像部16が撮像して得られた画像信号を処理して鋼板12の外観異常を抽出し、更に抽出した外観異常から表面欠陥を分類判定する。この画像信号処理部18は、例えば、反射光撮像部16で得られた画像信号の信号レベルが所定の階調領域内に収まるよう、照明部14の光源より照射される照明光の発光量(以下、「照明部14の光源の発光量」とも言う。)をフィードバック制御するプログラムや、後述する判定条件選択手段32からの指令に基づいて、照明部14の光源の発光量の初期値を選定して照明部14に指令を出す光学条件選定プログラム、或いは後述する表面疵判定ロジックを実行するために必要な各種プログラムが格納されたPC(パーソナルコンピュータ)やマイクロコンピュータなどの演算処理装置で構成される。 The image signal processing unit 18 processes the image signal obtained by the reflected light imaging unit 16 to extract the appearance abnormality of the steel sheet 12, and further classifies and determines the surface defect from the extracted appearance abnormality. The image signal processing unit 18 determines, for example, the amount of illumination light emitted from the light source of the illumination unit 14 so that the signal level of the image signal obtained by the reflected light imaging unit 16 falls within a predetermined gradation region. Hereinafter, the initial value of the light emission amount of the light source of the illumination unit 14 is selected based on a program for feedback control of "the light emission amount of the light source of the illumination unit 14" and a command from the determination condition selection means 32 described later. It is composed of an arithmetic processing device such as a PC (personal computer) or a microcomputer in which various programs necessary for executing an optical condition selection program for issuing a command to the lighting unit 14 or a surface defect determination logic described later are stored. NS.

検査結果出力部20は、画像信号処理部18により表面欠陥が抽出された場合に、表面欠陥が検出された旨および検出された表面欠陥の種類を、表示、印刷等の手段により当製造工程、次の製造工程や必要に応じてユーザーに知らせるものである。この検査結果出力部20は、例えば、モニタ装置やプリンタ装置などで構成される。 When the surface defect is extracted by the image signal processing unit 18, the inspection result output unit 20 indicates that the surface defect has been detected and the type of the detected surface defect by means of display, printing, or the like in this manufacturing process. It informs the user of the next manufacturing process and as needed. The inspection result output unit 20 is composed of, for example, a monitor device, a printer device, or the like.

判定条件選択手段32は、上位PC30より受け取った鋼板12の製造履歴に基づいて、画像信号処理部18(より具体的には、画像信号処理部18に格納された光学条件選定プログラム)に対して、その鋼板12に固有の光学条件、具体的には、照明部14の光源が照射する照射光の発光量の初期値を選択させるための指令を出すものである。この判定条件選択手段32には、検査対象である鋼板12のコイル明細を入力するレシピ選択テーブル34(図3参照)が備えられる。なお、この判定条件選択手段32は、上記の指令を実行するための各種プログラムが格納されたPCやマイクロコンピュータなどの演算処理装置で構成されるが、この演算処理装置として上述の画像信号処理部18が構成された演算処理装置を共用するようにしてもよい。 The determination condition selection means 32 refers to the image signal processing unit 18 (more specifically, the optical condition selection program stored in the image signal processing unit 18) based on the manufacturing history of the steel plate 12 received from the upper PC 30. , The optical conditions peculiar to the steel plate 12, specifically, a command for selecting an initial value of the emission amount of the irradiation light emitted by the light source of the illumination unit 14 is issued. The determination condition selection means 32 is provided with a recipe selection table 34 (see FIG. 3) for inputting the coil details of the steel plate 12 to be inspected. The determination condition selection means 32 is composed of an arithmetic processing unit such as a PC or a microcomputer in which various programs for executing the above commands are stored. The image signal processing unit described above is used as the arithmetic processing unit. The arithmetic processing unit in which 18 is configured may be shared.

なお、以上のように構成された鋼板の表面疵検査装置10の設置場所は、特に限定されるものではないが、鋼板12が最終製品としてテンションリールに巻き取られる直前の工程に設置するのが好ましい。 The installation location of the surface defect inspection device 10 for the steel sheet configured as described above is not particularly limited, but it is preferable to install the steel sheet 12 in the process immediately before it is wound on the tension reel as a final product. preferable.

次に、以上のように構成された表面疵検査装置10を用いて、鋼板12の表面疵を検知する表面疵検査方法について、図2〜図4を参照しつつ説明する。 Next, a surface defect inspection method for detecting a surface defect of the steel sheet 12 by using the surface defect inspection apparatus 10 configured as described above will be described with reference to FIGS. 2 to 4.

先ず始めに、表面疵検査装置10における判定条件選択手段32のレシピ選択テーブル34に、検査のため通板する鋼板12のコイル明細を入力する。このコイル明細を入力する際には、図3に示すように、レシピ選択テーブル34の所定の入力箇所に必要な事項を入力する。すると、判定条件選択手段32に格納された所定のプログラムが起動して、その鋼板12の製造履歴が蓄積されている上位PC30より当該鋼板12のコイルに該当する製造履歴が抽出され、抽出された製造履歴に対応する固有の指令内容がこれにタグ付けされたレシピNo.(ナンバー)と共に選択される。選択されたレシピNo.は製造履歴と共にレシピ選択テーブル34に表示され、それと同時に、当該レシピNo.の指令内容が画像信号処理部18に与えられ、その指令に基づいて光学条件選定プログラムが照明部14における所定の発光量の初期値を選択すると共に、選択されたその初期値が照明部14へと与えられ、光学条件選定処理S1が完了する。 First, the coil details of the steel plate 12 to be passed for inspection are input to the recipe selection table 34 of the determination condition selection means 32 in the surface defect inspection device 10. When inputting the coil details, as shown in FIG. 3, necessary items are input to the predetermined input points of the recipe selection table 34. Then, a predetermined program stored in the determination condition selection means 32 is activated, and the manufacturing history corresponding to the coil of the steel plate 12 is extracted from the upper PC 30 in which the manufacturing history of the steel plate 12 is accumulated. Recipe No. with a unique instruction content corresponding to the manufacturing history tagged with this. Selected with (number). Selected recipe No. Is displayed in the recipe selection table 34 together with the manufacturing history, and at the same time, the recipe No. The command content is given to the image signal processing unit 18, and the optical condition selection program selects an initial value of a predetermined light emission amount in the illumination unit 14 based on the command, and the selected initial value is sent to the illumination unit 14. Is given, and the optical condition selection process S1 is completed.

ここで、照明部14における所定の発光量の初期値は、製造履歴に起因する鋼板表面の地合(光沢度など)の違いによって大きく変動する反射光の光量が、或る一定の範囲内に収まるように設定される。例えば、鋼板12表面の光沢度が高い場合には、照明部14における光源の発光量の初期値が低く抑えられ、逆に、鋼板12表面の光沢度が低い場合には、照明部14における光源の発光量の初期値が高く設定される。
なお、鋼板12表面の地合の変動と相関が高い製造履歴としては、冷間圧延機種,冷間圧延ロールの研磨方法,調質圧延機種,調質圧延ロールの種類,調質圧延油使用の有無,調質圧延油の種類,焼鈍炉機種,焼鈍条件,スリッター工程で通板したラインの種類及び合紙の有無などが挙げられる。本実施形態では、製造履歴に対応する照明部14での発光量の初期値を設定する際に、図3に示すように、これらの製造履歴の殆ど全てが用いられる。
Here, the initial value of the predetermined light emission amount in the illumination unit 14 is such that the light amount of the reflected light greatly fluctuates due to the difference in the texture (glossiness, etc.) of the steel plate surface due to the manufacturing history within a certain range. Set to fit. For example, when the glossiness of the surface of the steel plate 12 is high, the initial value of the light emission amount of the light source in the illumination unit 14 is suppressed to a low value, and conversely, when the glossiness of the surface of the steel plate 12 is low, the light source in the illumination unit 14 The initial value of the amount of light emitted from is set high.
The manufacturing history that is highly correlated with the fluctuation of the texture of the surface of the steel sheet 12 includes the cold rolling model, the polishing method of the cold rolling roll, the tempering rolling model, the type of the tempering rolling roll, and the use of the tempering rolling oil. Presence / absence, type of tempered rolling oil, annealing furnace model, annealing conditions, type of line passed in the slitter process, presence / absence of interleaving paper, etc. In the present embodiment, as shown in FIG. 3, almost all of these manufacturing histories are used when setting the initial value of the amount of light emitted by the lighting unit 14 corresponding to the manufacturing history.

続いて、上述のような固有の初期値で照明部14の光源の発光を開始させた後、表面疵検査装置10への鋼板12の通板を開始させると、反射光撮像部16で得られる画像信号の信号レベルが適切なものとなるよう照明部14の光源の発光量がフィードバック制御される。このフィードバック制御により、照明部14の光源の発光量が適切なものに調整された後、反射光撮像部16は、鋼板12の表面で反射した乱反射光を撮像し、CCDによるデジタル変換処理を行って256階調の画像信号を得る。これにより反射光撮像部16によるデジタル変換S2が完了する。得られた画像信号は画像信号処理部18に与えられ、続く2値化処理S3が実行される。 Subsequently, after starting the light emission of the light source of the illumination unit 14 with the above-mentioned unique initial value, and then starting the passing of the steel plate 12 to the surface defect inspection device 10, the reflected light imaging unit 16 obtains the light. The amount of light emitted from the light source of the illumination unit 14 is feedback-controlled so that the signal level of the image signal becomes appropriate. After the light emission amount of the light source of the illumination unit 14 is adjusted to an appropriate level by this feedback control, the reflected light imaging unit 16 images the diffusely reflected light reflected on the surface of the steel plate 12 and performs digital conversion processing by the CCD. To obtain an image signal with 256 gradations. As a result, the digital conversion S2 by the reflected light imaging unit 16 is completed. The obtained image signal is given to the image signal processing unit 18, and the subsequent binarization process S3 is executed.

2値化処理S3は、反射光撮像部16で得られた256階調の画像信号を所定の閾値で2値化し、その輝度が閾値よりも高い明部分を「表面疵として判定すべき部位の候補」として抽出する処理である。なお、2値化の方法としては公知のものを利用することができる。
そして、2値化処理S3でノイズが除去され「表面疵として判定すべき部位の候補」が抽出された2値化画像は、続く判定処理S4へと与えられる。
The binarization process S3 binarizes the image signal of 256 gradations obtained by the reflected light imaging unit 16 with a predetermined threshold value, and the bright portion whose brightness is higher than the threshold value is "a portion to be determined as a surface defect". This is the process of extracting as "candidates". As a binarization method, a known method can be used.
Then, the binarized image from which noise is removed by the binarization process S3 and "candidates for a portion to be determined as a surface defect" are extracted is given to the subsequent determination process S4.

判定処理S4は、2値化処理S3で得られた2値化画像上にある「表面疵として判定すべき部位の候補」に対して、明部分の形状,密度(分布),面積,アスペクト比などの様々な特徴量を検討し、表面疵であるか否かを判定する処理である。例えば、図4に示す判定方法では、表面疵候補である明部分のドット36のリストを作成し、幅方向10mm以内で且つ長手方向10mm以内に纏められるもの(勿論、この距離は表面疵検査装置で任意の値に設定できる)を表面疵との疑いが強い一つの表面疵懐疑グループとする。表面疵検査装置の機種によってはこの表面疵懐疑グループを複数の種類設定することが出来る。図4に示す例では、前記の表面疵懐疑グループに追加して、幅方向10mm以内かつ長手方向100mm以内のものも表面疵懐疑グループとして追加している。これらの表面疵懐疑グループに対して、欠陥(グループ)全体の大きさが25mm2以上であって、ドットの集合体の数が2点以上の場合は、巻き締め疵38と判定する。加えて、幅方向10mm以下、長手方向100mm以下のものをヘゲ疵(カキ疵)40と判定する。 The determination process S4 has a shape, density (distribution), area, and aspect ratio of the bright part with respect to the "candidate of the part to be determined as a surface defect" on the binarized image obtained by the binarization process S3. It is a process of examining various features such as, and determining whether or not it is a surface defect. For example, in the determination method shown in FIG. 4, a list of dots 36 in the bright portion, which is a candidate for surface defects, is created and summarized within 10 mm in the width direction and within 10 mm in the longitudinal direction (of course, this distance is the surface defect inspection device). Can be set to any value with) is regarded as one surface defect skeptic group with a strong suspicion of surface defects. Depending on the model of the surface defect inspection device, a plurality of types of this surface defect skepticism group can be set. In the example shown in FIG. 4, in addition to the above-mentioned surface defect skeptic group, a group having a width direction of 10 mm or less and a longitudinal direction of 100 mm or less is also added as a surface defect skeptic group. For these surface defect skeptical groups, if the total size of the defect (group) is 25 mm 2 or more and the number of dot aggregates is 2 or more, it is determined to be a winding defect 38. In addition, those having a width direction of 10 mm or less and a longitudinal direction of 100 mm or less are determined to be oyster flaws 40.

そして、判定処理S4で表面疵と判定された情報は、検査結果出力部20に与えられ、表面疵の検出された旨および検出された表面欠陥の種類が、表示、印刷等の手段により当製造工程、次の製造工程、或いは必要に応じてユーザーに知らされて、検査結果出力S5が完了する。 Then, the information determined to be a surface defect in the determination process S4 is given to the inspection result output unit 20, and the fact that the surface defect is detected and the type of the detected surface defect are displayed, printed, or the like. The inspection result output S5 is completed by being notified to the user of the process, the next manufacturing process, or if necessary.

本実施形態の鋼板の表面疵検査装置10及び表面疵検査方法によれば、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるよう、照明部14の光源が照射する照明光の発光量がフィードバック制御されているが、その初期値が、検査対象鋼板12の製造履歴に基づいて個別に設定されるので、製造履歴に起因する鋼板12表面の光沢度(地合)の違いに応じて上記の初期値が適切に設定され、鋼板12の表面疵検査開始当初から表面疵の判定に用いる画像信号の信号レベルを適正範囲にアジャストすることができる。その結果、従来、鋼板の表面疵検査開始直後より発生していた検査不能区間の範囲を極小化することができる。 According to the surface defect inspection device 10 and the surface defect inspection method for the steel sheet of the present embodiment, the light source of the illumination unit 14 irradiates the steel sheet so that the signal level of the image signal used for determining the surface defect is within a predetermined gradation region. The amount of light emitted from the illumination light is feedback-controlled, but since the initial value is individually set based on the manufacturing history of the steel sheet 12 to be inspected, the glossiness (formation) of the surface of the steel sheet 12 due to the manufacturing history. The above initial values are appropriately set according to the difference between the above, and the signal level of the image signal used for determining the surface defect can be adjusted within an appropriate range from the beginning of the surface defect inspection of the steel sheet 12. As a result, it is possible to minimize the range of the uninspectable section that has conventionally occurred immediately after the start of the surface defect inspection of the steel sheet.

次に、図5及び図6に示す、第2の実施形態について説明する。
上述した第1の実施形態と異なる点は、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるよう、照明光の発光量ではなく、画像信号処理部18内における画像信号の信号レベルの増幅幅がフィードバック制御されると共に、その増幅幅の初期値が検査対象鋼板12の製造履歴に基づいて個別に設定される点である。
なお、これら以外の部分については前記第1の実施形態と同じであるので、前記第1の実施形態の説明を援用して本実施形態の説明に代える。
Next, the second embodiment shown in FIGS. 5 and 6 will be described.
The difference from the first embodiment described above is that the image in the image signal processing unit 18 is not the amount of illumination light emitted so that the signal level of the image signal used for determining the surface defect is within a predetermined gradation region. The point is that the amplification width of the signal level of the signal is feedback-controlled, and the initial value of the amplification width is individually set based on the manufacturing history of the steel plate 12 to be inspected.
Since the parts other than these are the same as those of the first embodiment, the description of the first embodiment will be used instead of the description of the present embodiment.

この実施形態では、画像信号処理部18に、反射光撮像部16で得られた画像信号の信号レベルが所定の階調領域内に収まるよう、その信号レベルの増幅幅をフィードバック制御するプログラムや、判定条件選択手段32からの指令に基づいて、反射光撮像部16から与えられた画像信号の信号レベルの増幅幅の初期値を選定する光学条件選定プログラムなどが格納される。
このため、表面疵検査装置10における判定条件選択手段32のレシピ選択テーブル34に、検査のため通板する鋼板12のコイル明細を入力すると、判定条件選択手段32に格納された所定のプログラムが起動して、その鋼板12の製造履歴が蓄積されている上位PC30より当該鋼板12のコイルに該当する製造履歴が抽出され、抽出された製造履歴に対応する固有の指令内容が画像信号処理部18に与えられ、その指令に基づいて光学条件選定プログラムが反射光撮像部16から与えられる画像信号の信号レベルの増幅幅の初期値を選択すると共に、選択されたその初期値が画像信号処理部18内での信号レベルの増幅に与えられ、光学条件選定処理S1が完了する。
ここで、画像信号処理部18における所定の画像信号の信号レベルの増幅幅の初期値は、製造履歴に起因する鋼板表面の地合(光沢度など)の違いによって大きく変動する画像信号の信号レベルが、或る一定の範囲内に収まるように設定される。例えば、鋼板12表面の光沢度が高い場合には、画像信号処理部18における信号レベルの増幅倍数が低く抑えられ、逆に、鋼板12表面の光沢度が低い場合には、画像信号処理部18における信号レベルの増幅倍数が高く設定される。
In this embodiment, the image signal processing unit 18 is provided with a program that feedback-controls the amplification width of the signal level so that the signal level of the image signal obtained by the reflected light imaging unit 16 falls within a predetermined gradation region. An optical condition selection program or the like for selecting an initial value of the amplification width of the signal level of the image signal given by the reflected light imaging unit 16 based on a command from the determination condition selection means 32 is stored.
Therefore, when the coil details of the steel plate 12 to be passed for inspection are input to the recipe selection table 34 of the determination condition selection means 32 in the surface defect inspection device 10, a predetermined program stored in the determination condition selection means 32 is activated. Then, the manufacturing history corresponding to the coil of the steel plate 12 is extracted from the upper PC 30 in which the manufacturing history of the steel plate 12 is accumulated, and the unique command content corresponding to the extracted manufacturing history is sent to the image signal processing unit 18. Given, the optical condition selection program selects the initial value of the amplification width of the signal level of the image signal given from the reflected light imaging unit 16 based on the command, and the selected initial value is in the image signal processing unit 18. It is given to the amplification of the signal level in, and the optical condition selection process S1 is completed.
Here, the initial value of the amplification width of the signal level of the predetermined image signal in the image signal processing unit 18 varies greatly depending on the difference in the texture (glossiness, etc.) of the steel sheet surface due to the manufacturing history. Is set to fall within a certain range. For example, when the glossiness of the surface of the steel plate 12 is high, the amplification multiple of the signal level in the image signal processing unit 18 is suppressed to a low level, and conversely, when the glossiness of the surface of the steel plate 12 is low, the image signal processing unit 18 The amplification multiple of the signal level in is set high.

以上のように構成された第2の実施形態の鋼板の表面疵検査装置10及び表面疵検査方法によれば、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるよう、画像信号処理部18内での信号レベルの増幅幅がフィードバック制御されているが、その初期値(より詳しくは増幅倍数の初期値)が、検査対象鋼板12の製造履歴に基づいて個別に設定されるので、製造履歴に起因する鋼板12表面の光沢度(地合)の違いに応じて上記の初期値が適切に設定され、鋼板12の表面疵検査開始当初から表面疵の判定に用いる画像信号の信号レベルを適正範囲にアジャストすることができる。その結果、従来、鋼板の表面疵検査開始直後より発生していた検査不能区間の範囲を極小化することができる。 According to the surface defect inspection device 10 and the surface defect inspection method for the steel sheet of the second embodiment configured as described above, the signal level of the image signal used for determining the surface defect is within a predetermined gradation region. , The amplification width of the signal level in the image signal processing unit 18 is feedback-controlled, and its initial value (more specifically, the initial value of the amplification multiple) is individually set based on the manufacturing history of the steel sheet 12 to be inspected. Therefore, the above initial values are appropriately set according to the difference in glossiness (texture) of the surface of the steel sheet 12 due to the manufacturing history, and the image used for determining the surface defect from the beginning of the surface defect inspection of the steel sheet 12. The signal level of the signal can be adjusted to an appropriate range. As a result, it is possible to minimize the range of the uninspectable section that has conventionally occurred immediately after the start of the surface defect inspection of the steel sheet.

なお、上述の各実施形態では、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるようにするため、照明光の発光量又は画像信号の信号レベルの増幅幅のいずれか一方がフィードバック制御されると共に、その照明光の発光量又は画像信号の信号レベルの増幅幅の初期値が検査対象鋼板12の製造履歴に基づいて個別に設定される場合を示しているが、表面疵の判定に用いる画像信号の信号レベルが所定の階調領域内に収まるよう、照明光の発光量及び画像信号の信号レベルの増幅幅の両方がフィードバック制御されると共に、その照明光の発光量及び画像信号の信号レベルの増幅幅の両方の初期値が検査対象鋼板12の製造履歴に基づいて個別に設定されるようにしてもよい。 In each of the above-described embodiments, in order to keep the signal level of the image signal used for determining the surface defect within a predetermined gradation region, either the emission amount of the illumination light or the amplification width of the signal level of the image signal One of them is feedback-controlled, and the initial value of the emission amount of the illumination light or the amplification width of the signal level of the image signal is individually set based on the manufacturing history of the steel plate 12 to be inspected. Both the emission amount of the illumination light and the amplification width of the signal level of the image signal are feedback-controlled so that the signal level of the image signal used for determining the surface defect is within a predetermined gradation region, and the illumination light is emitted. Initial values of both the quantity and the amplification width of the signal level of the image signal may be individually set based on the manufacturing history of the steel plate 12 to be inspected.

また、上述の各実施形態では、照明光の発光量又は画像信号の信号レベルの増幅幅の初期値を設定する際の製造履歴として、例示したものの殆ど全てを用いる場合を示しているが、この製造履歴は、冷間圧延機種,冷間圧延ロールの研磨方法,調質圧延機種,調質圧延ロールの種類,調質圧延油使用の有無,調質圧延油の種類,焼鈍炉機種,焼鈍条件,スリッター工程で通板したラインの種類及び合紙の有無からなる群より選ばれる何れか一つ又は複数を選択するようにしてもよい。 Further, in each of the above-described embodiments, a case is shown in which almost all of the examples are used as the manufacturing history when setting the initial value of the emission amount of the illumination light or the amplification width of the signal level of the image signal. The manufacturing history includes cold rolling model, cold rolling roll polishing method, temper rolling model, temper rolling roll type, presence / absence of temper rolling oil, annealing furnace model, annealing conditions. , One or more selected from the group consisting of the type of the line passed through the slitter step and the presence or absence of the interleaving sheet may be selected.

また、上述の各実施形態では、判定条件選択手段32が上位PC30から検査対象の鋼板12の製造履歴を抽出する場合を示しているが、そのような製造履歴が上位PC30ではなく、(図示しないが)サーバーに蓄積・管理されているような場合には、判定条件選択手段32は当該サーバーから検査対象の鋼板12の製造履歴を抽出し、又、各種の鋼板製造・加工装置に記録させている場合には、判定条件選択手段32は当該鋼板製造・加工装置から検査対象の鋼板12の製造履歴を受け取る。 Further, in each of the above-described embodiments, the case where the determination condition selection means 32 extracts the manufacturing history of the steel sheet 12 to be inspected from the upper PC 30 is shown, but such manufacturing history is not the upper PC 30 (not shown). However, when it is stored and managed in the server, the determination condition selection means 32 extracts the manufacturing history of the steel sheet 12 to be inspected from the server and records it in various steel sheet manufacturing / processing devices. If so, the determination condition selection means 32 receives the manufacturing history of the steel sheet 12 to be inspected from the steel sheet manufacturing / processing apparatus.

また、本発明は、当業者が想定できる範囲でその他の変更を行えることは勿論である。 In addition, it goes without saying that the present invention can make other changes within the range that can be assumed by those skilled in the art.

10:鋼板の表面疵検査装置,12:鋼板,14:照明部,16:反射光撮像部,18:画像信号処理部,20:検査結果出力部,22:直交面,24:ピンチロール,26:ピンチロール,28:検査ロール,30:上位PC,32:判定条件選択手段,34:レシピ選択テーブル. 10: Steel plate surface defect inspection device, 12: Steel plate, 14: Lighting unit, 16: Reflected light imaging unit, 18: Image signal processing unit, 20: Inspection result output unit, 22: Orthogonal surface, 24: Pinch roll, 26 : Pinch roll, 28: Inspection roll, 30: Upper PC, 32: Judgment condition selection means, 34: Recipe selection table.

Claims (2)

鋼板の表面上にある撮像対象部位に照明光を照射し、
上記の撮像対象部位からの反射光を撮像し、
撮像して得られた画像信号を所定の閾値に基いて2値化すると共に、その2値化されたデータの中から表面欠陥を基に予め設定した判定ルールに基づいて鋼板の疵を判定する鋼板の表面疵検査方法において、
上記の画像信号は、その信号レベルが所定の階調領域内に収まるよう、その増幅幅又は上記の照明光の発光量の少なくとも一方がフィードバック制御されており、
上記の増幅幅及び上記の発光量それぞれの初期値は、検査対象鋼板の製造履歴に基づいて個別に設定され、その製造履歴が、冷間圧延機種,冷間圧延ロールの研磨方法,調質圧延機種,調質圧延ロールの種類,調質圧延油使用の有無,調質圧延油の種類,焼鈍炉機種,焼鈍条件,スリッター工程で通板したラインの種類及び合紙の有無からなる、ことを特徴とする鋼板の表面疵検査方法。
Illuminate the part to be imaged on the surface of the steel plate with illumination light.
The reflected light from the above-mentioned imaging target part is imaged, and
The image signal obtained by imaging is binarized based on a predetermined threshold value, and the defect of the steel sheet is determined from the binarized data based on a predetermined determination rule based on the surface defect. In the method of inspecting surface defects of steel sheets,
At least one of the amplification width and the emission amount of the illumination light of the above image signal is feedback-controlled so that the signal level falls within a predetermined gradation region.
The initial values of the amplification width and the light emission amount are individually set based on the manufacturing history of the steel sheet to be inspected, and the manufacturing history is based on the cold rolling model, the polishing method of the cold rolling roll, and temper rolling. It consists of the model, the type of tempered rolling roll, the presence or absence of tempered rolling oil, the type of tempered rolling oil, the annealing furnace model, the annealing conditions, the type of line passed through the slitter process, and the presence or absence of interleaving paper. A characteristic method for inspecting surface defects of steel sheets.
鋼板の表面上にある撮像対象部位に照明光を照射する照明部と、An illumination unit that irradiates the imaging target area on the surface of the steel plate with illumination light,
上記の照明光に対する撮像対象部位からの反射光を撮像する反射光撮像部と、A reflected light imaging unit that captures the reflected light from the imaging target site with respect to the above illumination light,
上記の反射光撮像部で撮像して得られた画像信号の信号レベルが所定の階調領域内に収まるよう、その増幅幅又は上記の照明光の発光量の少なくとも一方をフィードバック制御すると共に、その画像信号を所定の閾値に基づいて2値化し、2値化されたデータの中から表面欠陥を基に予め設定した判定ルールに基づいて鋼板の疵を判定する画像信号処理部とを含む鋼板の表面疵検査装置であって、The amplification width or at least one of the emission amount of the illumination light is feedback-controlled so that the signal level of the image signal obtained by imaging with the reflected light imaging unit falls within a predetermined gradation region, and the signal level thereof is controlled. A steel plate including an image signal processing unit that binarizes an image signal based on a predetermined threshold value and determines a defect of the steel plate based on a determination rule set in advance based on surface defects from the binarized data. It is a surface defect inspection device,
上位PC又はサーバーより受け取った、もしくは鋼板製造・加工装置に記録させておいた上記の鋼板の製造履歴のうち、冷間圧延機種,冷間圧延ロールの研磨方法,調質圧延機種,調質圧延ロールの種類,調質圧延油使用の有無,調質圧延油の種類,焼鈍炉機種,焼鈍条件,スリッター工程で通板したラインの種類及び合紙の有無からなるものに基づいて、上記の画像信号処理部に対して、上記の増幅幅及び上記の発光量それぞれの初期値が検査対象の鋼板に固有のものを選択するように指令を出す判定条件選択手段を有する、Of the above-mentioned steel sheet manufacturing history received from the host PC or server or recorded in the steel sheet manufacturing / processing equipment, cold rolling model, cold rolling roll polishing method, temper rolling model, temper rolling The above image is based on the type of roll, the presence or absence of tempered rolling oil, the type of tempered rolling oil, the annealing furnace model, the annealing conditions, the type of line passed through the slitter process, and the presence or absence of interleaving paper. It has a determination condition selection means for issuing a command to the signal processing unit to select an initial value of each of the above amplification width and the above light emission amount unique to the steel sheet to be inspected.
ことを特徴とする鋼板の表面疵検査装置。A surface defect inspection device for steel sheets.
JP2018067481A 2018-03-30 2018-03-30 Surface defect inspection method and surface defect inspection device for steel sheets Active JP6954209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067481A JP6954209B2 (en) 2018-03-30 2018-03-30 Surface defect inspection method and surface defect inspection device for steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067481A JP6954209B2 (en) 2018-03-30 2018-03-30 Surface defect inspection method and surface defect inspection device for steel sheets

Publications (2)

Publication Number Publication Date
JP2019178924A JP2019178924A (en) 2019-10-17
JP6954209B2 true JP6954209B2 (en) 2021-10-27

Family

ID=68278509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067481A Active JP6954209B2 (en) 2018-03-30 2018-03-30 Surface defect inspection method and surface defect inspection device for steel sheets

Country Status (1)

Country Link
JP (1) JP6954209B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213241B (en) * 2022-09-20 2023-02-03 山东钢铁股份有限公司 Online identification method and system for thick hot steel plate
CN117314924B (en) * 2023-11-30 2024-02-09 湖南西欧新材料有限公司 Image feature-based electroplated product surface flaw detection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330566A (en) * 2000-05-23 2001-11-30 Kawasaki Steel Corp Surface flaw inspection method by ccd camera
JP2004184242A (en) * 2002-12-04 2004-07-02 Matsushita Electric Ind Co Ltd Inspection method and inspection device
JP5266033B2 (en) * 2008-12-15 2013-08-21 株式会社神戸製鋼所 Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device
JP5392903B2 (en) * 2009-03-27 2014-01-22 日新製鋼株式会社 Surface flaw inspection device
EP2647949A1 (en) * 2012-04-04 2013-10-09 Siemens VAI Metals Technologies GmbH Method and device for measuring the flatness of a metal product

Also Published As

Publication number Publication date
JP2019178924A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
KR101867256B1 (en) Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects
JP6027295B1 (en) Surface defect inspection apparatus and surface defect inspection method for hot dip galvanized steel sheet
JP2007132757A (en) Visual examination method and device
JP2010025652A (en) Surface flaw inspection device
JP6954209B2 (en) Surface defect inspection method and surface defect inspection device for steel sheets
JP2008275424A (en) Surface inspection device
JP6950811B2 (en) Metal plate surface defect detection method and equipment, and galvanized steel sheet manufacturing method
JP2012251983A (en) Wrap film wrinkle inspection method and device
JP6822494B2 (en) Defect inspection equipment and defect inspection method for steel sheets
JP6431643B1 (en) Metal plate surface defect inspection method and surface defect inspection apparatus
JP2008286646A (en) Surface flaw inspection device
JP5732605B2 (en) Appearance inspection device
JP6699694B2 (en) Inspection system, inspection method
JP5787668B2 (en) Defect detection device
JP2002139446A (en) Method and apparatus for detection of surface defect
JP5201014B2 (en) Scale remaining inspection equipment for pickled steel sheet
JP5655610B2 (en) Surface inspection device
JP2016125817A (en) Inspection system, and inspection method
JP2024036007A (en) Surface inspection device of metal band, surface inspection method, and metal band manufacturing method
JP2013134136A (en) Surface defect inspection system
JP7141872B2 (en) Perforated sheet inspection method and inspection apparatus, and perforated sheet manufacturing method
JP5392903B2 (en) Surface flaw inspection device
JP5487535B2 (en) Surface defect detection device, surface defect detection method, computer program, and storage medium
JP2023059590A (en) Surface inspection device for metal strip, surface inspection method, and manufacturing method
JP6627689B2 (en) Metal strip surface inspection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6954209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151