JP5266033B2 - Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device - Google Patents

Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device Download PDF

Info

Publication number
JP5266033B2
JP5266033B2 JP2008317868A JP2008317868A JP5266033B2 JP 5266033 B2 JP5266033 B2 JP 5266033B2 JP 2008317868 A JP2008317868 A JP 2008317868A JP 2008317868 A JP2008317868 A JP 2008317868A JP 5266033 B2 JP5266033 B2 JP 5266033B2
Authority
JP
Japan
Prior art keywords
inspected
unevenness
aluminum
light
rolled plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008317868A
Other languages
Japanese (ja)
Other versions
JP2010139455A (en
Inventor
証 山口
英二 高橋
弘 國井
豊隆 山内
仁 有村
紀行 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008317868A priority Critical patent/JP5266033B2/en
Publication of JP2010139455A publication Critical patent/JP2010139455A/en
Application granted granted Critical
Publication of JP5266033B2 publication Critical patent/JP5266033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply detect unevenness to be detected in quality management on the surface of an aluminum rolled plate processed in the form of a thin plate by rolling with an optical method in non-contact without receiving influence of interference of reflective light caused by minute stripe-like unevenness or surface roughness rather than the unevenness. <P>SOLUTION: A method for detecting rolled plate unevenness includes: irradiating a surface to be inspected of an aluminum rolled plate 1 with diffusion light from a long light source 10 formed to be extended in a width direction Rx; imaging images of positive reflective light of irradiation light with a camera 20; and detecting the unevenness of the surface to be inspected with an image processor 40 on the basis of a coordinate of a high brightness part expressing images of the positive reflective light on an imaging image. For example, the surface to be inspected is the surface of a projection side of the aluminum rolled plate curved in a longitudinal direction Ry by supporting the aluminum rolled plate 1 while folding it along the width direction Rx. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は,アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板の被検査面の凹凸を検出するアルミ圧延板凹凸検出方法及びその装置に関するものである。   The present invention relates to an aluminum rolled plate unevenness detecting method and apparatus for detecting unevenness of a surface to be inspected of an aluminum rolled plate processed into a thin plate shape by rolling an aluminum member.

鋼材等の金属部材をロールを用いて圧延加工することにより,薄板状の金属の板材(以下,圧延板という)を製造する方法が広く用いられている。
前記圧延板は,その表面が,局所的な歪みによる凹凸の存在しない平坦な状態であることが品質上望ましい。品質管理上問題となる前記局所的な歪みによる凹凸は,例えば,10mm四方の局所領域に存在する10μm以上の高低差を有する凹凸である。また,前記圧延板の表面における凹凸の発生状況は,各種の圧延条件に応じて変化する。そのため,前記圧延板の製造工程においては,前記圧延板の表面の凹凸を検出し,その検出結果に応じて圧延条件を調節する圧延制御が行われる。
例えば,特許文献1には,接触式の圧力センサを用いて前記圧延板の幅方向の張力を測定し,その測定値を前記圧延板の表面形状として検出することについて示されている。
また,特許文献2及び特許文献3には,移動する測定対象物の表面に対し,レーザビーム光の走査やスリット光の照射を行うことによって光切断線の像を形成させ,その光切断線の像を撮像し,光切断法によって測定対象物の表面形状を測定することについて示されている。
前記圧延板は,熱延工程などを経た高温の状態においてその表面の凹凸の検出が行われることがあり,その表面にセンサを接触させると熱によるセンサの破損が生じやすい。また,接触式のセンサを用いた圧延板の表面の凹凸の検出は,そのセンサの配置密度の制限から,凹凸検出の空間分解能が低く,表面の局所的な凹凸については検出漏れが生じやすい。そのため,圧延板の表面の凹凸の検出は,非接触での検出が望ましい。
2. Description of the Related Art A method of manufacturing a thin metal plate (hereinafter referred to as a rolled plate) by rolling a metal member such as a steel material using a roll is widely used.
It is desirable in terms of quality that the rolled plate has a flat surface with no irregularities due to local distortion. The unevenness due to the local distortion, which is a problem in quality control, is an unevenness having a height difference of 10 μm or more existing in a local area of 10 mm square, for example. In addition, the occurrence of unevenness on the surface of the rolled sheet changes according to various rolling conditions. Therefore, in the manufacturing process of the rolled sheet, rolling control is performed in which irregularities on the surface of the rolled sheet are detected and the rolling conditions are adjusted according to the detection result.
For example, Patent Document 1 discloses that the tension in the width direction of the rolled sheet is measured using a contact-type pressure sensor, and the measured value is detected as the surface shape of the rolled sheet.
Further, in Patent Document 2 and Patent Document 3, an image of a light cutting line is formed by scanning a laser beam light or irradiating slit light on the surface of a moving measurement object. It shows that an image is taken and the surface shape of a measurement object is measured by a light cutting method.
The rolled plate may be subjected to detection of surface irregularities in a high temperature state after a hot rolling process or the like, and if the sensor is brought into contact with the surface, the sensor is easily damaged by heat. In addition, the detection of unevenness on the surface of a rolled plate using a contact-type sensor has a low spatial resolution for detecting unevenness due to the limitation of the arrangement density of the sensor, and detection of local unevenness on the surface tends to occur. Therefore, non-contact detection is desirable for detecting the unevenness of the surface of the rolled sheet.

ところで,鋼材等と同様に,アルミニウム部材についても,それをロールを用いて圧延加工することにより,薄板状のアルミニウムの板材(以下,アルミ圧延板という)を製造する方法が用いられている。
ここで,前記アルミ圧延板の表面は,ほぼ鏡面(光沢面)に近い状態であるため,その表面に照射した光の像を,正反射方向以外の方向から撮像しても,散乱光の像はほとんど得られない。但し,前記アルミ圧延板は,圧延の際に,その表面に,前記アルミ圧延板の長手方向に伸びる微小幅の筋状の凹凸(以下,筋状凹凸という)が形成される。この筋状凹凸は,品質上の問題となる凹凸ではなく,前記アルミ圧延板の表面における品質管理のために検出すべき凹凸よりもごく微小なものである。
そして,前記アルミ圧延板についても,その表面が,前記筋状凹凸よりも大きな凹凸の存在しない平坦な状態であることが品質上望ましい。そのため,前記アルミ圧延板の製造工程においても,鋼材の圧延板と同様に,前記アルミ圧延板の表面の凹凸を非接触で検出し,その検出結果に応じて圧延条件を調節することが望ましい。
また,前記アルミ圧延板に関し,必要に応じて,熱間圧延工程を施した後の冷間圧延の前に,或いは,熱間圧延工程を施した後の冷間圧延の途中又は後に,連続焼鈍炉等での焼鈍工程を施す場合に発生する熱歪による局所的な凹凸の有無を非接触で検査したいというニーズがある。更に必要に応じて,前記焼鈍工程後に矯正工程が施される製品である場合についても,熱歪による局所的な凹凸の有無を非接触で検査したいというニーズもある。
特開平10−103944号公報 特開平4−348211号公報 特開平7−324915号公報
By the way, the method of manufacturing a sheet-like aluminum plate material (henceforth an aluminum rolled plate) is also used about an aluminum member similarly to steel materials etc. by rolling it using a roll.
Here, since the surface of the aluminum rolled sheet is almost in the state of a mirror surface (glossy surface), even if an image of light irradiated on the surface is taken from a direction other than the regular reflection direction, an image of scattered light is obtained. Can hardly be obtained. However, when the rolled aluminum sheet is rolled, minute width streak irregularities (hereinafter referred to as streaky irregularities) extending in the longitudinal direction of the rolled aluminum sheet are formed on the surface thereof. These streaky irregularities are not irregularities that cause quality problems, but are much smaller than the irregularities to be detected for quality control on the surface of the rolled aluminum sheet.
In addition, it is desirable in terms of quality that the surface of the rolled aluminum plate is also in a flat state where there is no unevenness larger than the streaky unevenness. Therefore, also in the manufacturing process of the said aluminum rolled sheet, it is desirable to detect the unevenness | corrugation of the surface of the said aluminum rolled sheet by non-contact similarly to the rolled sheet of steel materials, and to adjust rolling conditions according to the detection result.
In addition, for the aluminum rolled sheet, continuous annealing may be performed before or after cold rolling after performing a hot rolling process, or during or after cold rolling after performing a hot rolling process, as necessary. There is a need for non-contact inspection of the presence or absence of local irregularities due to thermal strain that occurs when performing an annealing process in a furnace or the like. Furthermore, there is also a need for non-contact inspection for the presence or absence of local irregularities due to thermal strain even when the product is subjected to a straightening process after the annealing process as necessary.
Japanese Patent Laid-Open No. 10-103944 JP-A-4-348211 JP-A-7-324915

しかしながら,前記アルミ圧延板において,特許文献2及び特許文献3に示されるように,その表面にレーザ光のようなコヒーレント光を照射し,その反射光の像を撮像して光切断法による表面形状測定(凹凸検出)を行うと,以下のような問題点が生じる。
即ち,光切断線の像を撮像するカメラが,前記アルミ圧延板の表面への照射光の正反射方向以外の方向に配置された場合には,光切断線の像,即ち,散乱反射光の像はほとんど得られないという問題点があった。
また,仮に,光切断線の像が得られる程度まで前記アルミ圧延板の表面への照射光の強度を強くしたとしても,やはり以下のような問題点が残る。
即ち,板幅の大きな前記アルミ圧延板の表面凹凸を光切断法により測定した場合,前記アルミ圧延板の品質管理上問題となる高低差10μm程度の凹凸を確実に検出することができないという問題点がある。例えば,板幅が1000mm以上もある前記アルミ圧延板に形成された光切断線を1つの座標軸方向において1000画素程度の一般的な解像度の工業用カメラで撮像した場合,光切断法によって検出できる凹凸の高低差は1mm以上となり,その測定精度は前記アルミ圧延板の表面の凹凸検出には不十分である。
また,前記アルミ圧延板の表面に照射されたコヒーレント光が,検出すべきでない微小な前記筋状凹凸によってわずかに乱反射し,それら乱反射光の干渉光がカメラに到達するため,撮像画像に明瞭な光切断線の像が現れず,光切断法による表面形状測定を行うことができないという問題点があった。さらに,前記アルミ圧延板の表面にコヒーレント光が照射された場合,そのアルミ圧延板の表面粗さに起因して,撮像画像において細かな干渉縞ノイズであるスペックルノイズが発生し,表面形状を高精度で測定することができないという問題点もあった。
また,光切断法において,低コヒーレント光である拡散光をスリットを通じて測定対象物の表面に照射することも考えられなくはない。しかしながら,低コヒーレント光である拡散光は,コヒーレント光であるレーザ光のように前記アルミ圧延板の表面におけるスリット光の幅を十分に細くすることができず,光切断線の幅が太くなると測定精度が悪化する光切断法には適さないという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,圧延により薄板状に加工されたアルミ圧延板の表面における品質管理上検出すべき局所的な歪みによる凹凸を,その凹凸よりも微小な筋状の凹凸や表面粗さに起因する反射光の干渉の影響を受けずに,光学的手法により非接触で簡易に検出することができるアルミ圧延板凹凸検出方法及びその装置を提供することにある。
However, as shown in Patent Document 2 and Patent Document 3, the aluminum rolled sheet is irradiated with a coherent light such as a laser beam on the surface, an image of the reflected light is captured, and a surface shape obtained by a light cutting method is used. The following problems occur when measurement (irregularity detection) is performed.
That is, when the camera that captures the image of the light section line is arranged in a direction other than the regular reflection direction of the light irradiated to the surface of the aluminum rolled sheet, the image of the light section line, that is, the scattered reflected light There was a problem that almost no image was obtained.
Even if the intensity of the irradiation light on the surface of the aluminum rolled sheet is increased to the extent that an image of a light cutting line is obtained, the following problems still remain.
That is, when the surface unevenness of the aluminum rolled plate having a large plate width is measured by a light cutting method, the unevenness with a height difference of about 10 μm which is a problem in quality control of the aluminum rolled plate cannot be reliably detected. There is. For example, when an optical cutting line formed on the aluminum rolled plate having a plate width of 1000 mm or more is imaged with an industrial camera having a general resolution of about 1000 pixels in one coordinate axis direction, unevenness that can be detected by the optical cutting method The height difference is 1 mm or more, and the measurement accuracy is insufficient to detect the unevenness of the surface of the aluminum rolled sheet.
In addition, the coherent light irradiated on the surface of the rolled aluminum plate is slightly diffusely reflected by the minute streaks that should not be detected, and the interference light of the irregularly reflected light reaches the camera. There was a problem that the image of the light section line did not appear and the surface shape measurement by the light section method could not be performed. Furthermore, when the surface of the aluminum rolled sheet is irradiated with coherent light, speckle noise, which is fine interference fringe noise, is generated in the captured image due to the surface roughness of the aluminum rolled sheet, and the surface shape is changed. There was also a problem that it was impossible to measure with high accuracy.
In the light cutting method, it is not considered that the surface of the measurement object is irradiated with diffused light, which is low-coherent light, through the slit. However, the diffused light, which is a low-coherent light, cannot be made sufficiently narrow in the width of the slit light on the surface of the aluminum rolled plate like the laser light, which is a coherent light, and is measured when the width of the light section line is increased. There is a problem that it is not suitable for the light cutting method in which the accuracy deteriorates.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to provide unevenness due to local distortion to be detected in quality control on the surface of a rolled aluminum sheet processed into a thin plate shape by rolling. An aluminum rolled plate unevenness detection method that can be easily detected in a non-contact manner by an optical method without being affected by interference of reflected light caused by finer streak unevenness and surface roughness than the unevenness, and It is to provide such a device.

上記目的を達成するために本発明に係るアルミ圧延板凹凸検出方法は,アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板の被検査面の凹凸を検出する方法であって,前記被検査面は,前記アルミ圧延板を長手方向において湾曲させた前記アルミ圧延板の凸側の表面であり,次の(a1)〜(a3)に示される各手順を実行する方法である。
(a1)前記被検査面に対し,前記アルミ圧延板の長手方向に直交する幅方向に伸びて形成された光源から拡散光を照射する拡散光照射手順。
(a2)前記拡散光照射手順により前記被検査面に照射された光の正反射光の像を撮像手段により撮像する撮像手順。
(a3)前記撮像手順により得られる撮像画像における前記正反射光の像を表す高輝度部の座標に基づいて前記被検査面の凹凸を検出する凹凸検出手順。
また、前記撮像手順では,前記拡散光照射手順によって前記被検査面に対して前記拡散光が照射された場合に,前記被検査面において前記拡散光が照射されている領域内において,前記幅方向に直線状に伸びる1本の稜線の部分のみからの正反射光の像を前記撮像手段により撮像する。前記1本の稜線は,前記被検査面において前記拡散光が照射されている領域内において,前記1本の稜線から前記光源に向かう方向と前記1本の稜線から前記撮像手段に向かう方向とのなす角度を二等分する方向が,前記1本の稜線の部分における前記被検査面の法線方向に一致する位置に存在する
In order to achieve the above object, an aluminum rolled plate unevenness detecting method according to the present invention is a method for detecting unevenness of an inspection surface of an aluminum rolled plate processed into a thin plate by rolling an aluminum member, the inspection target being The surface is a surface on the convex side of the aluminum rolled plate obtained by bending the aluminum rolled plate in the longitudinal direction, and is a method of executing each procedure shown in the following (a1) to (a3).
(A1) A diffused light irradiation procedure for irradiating diffused light to a surface to be inspected from a light source formed extending in a width direction perpendicular to the longitudinal direction of the aluminum rolled sheet.
(A2) An imaging procedure in which an image of regular reflection light of the light irradiated on the surface to be inspected by the diffused light irradiation procedure is captured by an imaging unit.
(A3) Concavity and convexity detection procedure for detecting concavities and convexities on the surface to be inspected based on the coordinates of the high-luminance portion representing the image of the regular reflection light in the captured image obtained by the imaging procedure.
Further, in the imaging procedure, when the diffused light is irradiated on the surface to be inspected by the diffused light irradiation procedure, the width direction is within the region where the diffused light is irradiated on the surface to be inspected. An image of specularly reflected light from only one ridge line extending in a straight line is picked up by the image pickup means. The one ridge line includes a direction from the one ridge line toward the light source and a direction from the one ridge line toward the imaging unit in a region where the diffused light is irradiated on the surface to be inspected. The direction that bisects the formed angle exists at a position that coincides with the normal direction of the surface to be inspected at the portion of the one ridgeline .

本発明においては,低コヒーレント光である拡散光が前記被検査面に照射されるため,検出すべき局所的な歪みによる凹凸よりも微小な筋状の凹凸や表面粗さに起因する反射光の干渉がほとんど生じない。従って,本発明によれば,前記アルミ圧延板の表面における品質管理上検出すべき局所的な歪みによる凹凸を,その凹凸よりも微小な筋状の凹凸や表面粗さに起因する反射光の干渉の影響を受けずに,光学的手法により非接触で検出することができる。そのため,前記焼鈍工程等を経た前記アルミ圧延板の表面の局所的な凹凸の有無を非接触で検査したいというニーズにも対応できる。
また,前記被検査面と前記撮像手段との間の距離を十分に確保することにより,前記被検査面の凹凸による僅かな表面角度の変化により,撮像画像における正反射光の像の位置(座標)が大きく変化する。従って,本発明によれば,前記被検査面の局所的な歪みによる凹凸を高感度で検出することができる。
また,前記被検査面,前記アルミ圧延板を長手方向において湾曲させた前記アルミ圧延板の凸側の表面である
これにより,湾曲した前記被検査面において,正反射光が前記撮像手段に向かう前記幅方向の1本の直線状の稜線の部分が,前記光源及び前記撮像手段の位置合わせを高精度で行わなくてもほぼ必ずどこかに生じる。その結果,前記光源及び前記撮像手段の位置合わせに高い精度が要求されることなく簡易に高感度の凹凸検出を実現できる。
また,湾曲した前記被検査面における前記幅方向の1本の直線状の稜線の部分についてのみ,前記光源からの照射光の正反射光が前記撮像手段の方向へ向かい,その他の部分については,正反射光が前記撮像手段の方向に対して大きく外れる。即ち,湾曲した前記被検査面において,法線方向が前記光源の方向と前記撮像手段の方向とのなす角度を二等分する方向となる1本の直線状の稜線の部分についてのみ,その部分からの正反射光が,前記撮像手段において明瞭な細い線状の高輝度の像として結像する。また,前記被検査面に比較的大きな凹凸が存在すれば,それが前記線状の高輝度の像の乱れとして現れる。従って,前記アルミ圧延板の平らな表面に低コヒーレントなスリット光を照射する場合のように,その正反射光の像,即ち,前記線状の高輝度の像が太くボケた状態で現れることを回避できる。その結果,アルミ圧延板の表面における品質管理上検出すべき凹凸を確実に検出できる。
In the present invention, since the inspected surface is irradiated with diffused light, which is low-coherent light, reflected light caused by fine streaks and surface roughness smaller than the unevenness caused by local distortion to be detected. There is almost no interference. Therefore, according to the present invention, unevenness due to local distortion to be detected in quality control on the surface of the aluminum rolled plate is caused by interference of reflected light caused by finer unevenness and surface roughness than the unevenness. It is possible to detect without contact by an optical method without being affected by the above. Therefore, it is possible to meet the need for non-contact inspection of the presence or absence of local irregularities on the surface of the aluminum rolled sheet that has undergone the annealing process or the like.
In addition, by ensuring a sufficient distance between the surface to be inspected and the imaging means, the position (coordinates) of the image of the specularly reflected light in the captured image due to a slight change in surface angle due to the unevenness of the surface to be inspected. ) Changes significantly. Therefore, according to the present invention, it is possible to detect unevenness due to local distortion of the surface to be inspected with high sensitivity.
Moreover, the inspection surface, the aluminum rolled sheet is a convex surface of the aluminum rolled sheet is curved in the longitudinal side direction.
As a result, on the curved surface to be inspected, the portion of the single linear ridge line in the width direction in which the specularly reflected light is directed to the imaging unit does not align the light source and the imaging unit with high accuracy. But it almost always occurs somewhere. As a result, high-sensitivity unevenness detection can be easily realized without requiring high accuracy in alignment of the light source and the imaging means.
Further, the specularly reflected light of the irradiation light from the light source is directed toward the imaging means only for the portion of one straight ridgeline in the width direction on the curved surface to be inspected, and for the other portions, The specularly reflected light deviates greatly from the direction of the imaging means. That is, in the curved surface to be inspected, only the portion of one linear ridge line in which the normal direction is a direction that bisects the angle between the direction of the light source and the direction of the imaging means. The regular reflection light from the image is formed as a clear thin linear high-brightness image in the imaging means. Further, if a relatively large unevenness exists on the surface to be inspected, it appears as a disturbance of the linear high-luminance image. Therefore, as in the case of irradiating the flat surface of the rolled aluminum sheet with low-coherent slit light, the specularly reflected light image, that is, the linear high-intensity image appears to be thickly blurred. Can be avoided. As a result, it is possible to reliably detect irregularities to be detected for quality control on the surface of the aluminum rolled sheet.

また,前記拡散光照射手順において,前記アルミ圧延板を,前記幅方向に伸びる支持部に対して前記被検査面の反対側の面を内側にして引っ掛けた状態で張力を付勢しつつ支持させることにより,前記被検査面を前記支持部の周りに湾曲させることが考えられる。
これにより,検出すべき凹凸とは関係のない前記アルミ圧延板全体の変形(大きなうねり)が張力により矯正され,前記被検査面の凹凸をより正確に検出することができる。
また,前記支持部が,前記幅方向に伸びる回転軸の周りに回転する円柱状又は円筒状のロールであることが考えられる。この場合,前記撮像手順において,前記ロールの回転に連動して移動する前記被検査面に照射された光の正反射光の像を連続して撮像することが考えられる。
これにより,前記被検査面における前記長手方向の各位置について,前記幅方向に線状に伸びる高輝度の像を連続的に高速で得ることができる。また,前記ロールは,前記アルミ圧延板の製造工程に通常存在する設備(いわゆるテンションロール)であり,既存の設備を有効活用することができる。
Further, in the diffused light irradiation procedure, the aluminum rolled plate is supported while urging the tension in a state where the aluminum rolled plate is hooked with the surface opposite to the surface to be inspected inside the support portion extending in the width direction. Thus, it can be considered that the surface to be inspected is curved around the support portion.
Thereby, the deformation (large undulation) of the entire aluminum rolled plate, which is not related to the unevenness to be detected, is corrected by the tension, and the unevenness of the surface to be inspected can be detected more accurately.
Further, it is conceivable that the support portion is a columnar or cylindrical roll that rotates around a rotation axis extending in the width direction. In this case, in the imaging procedure, it is conceivable to continuously capture images of specularly reflected light of the light irradiated on the surface to be inspected that moves in conjunction with the rotation of the roll.
Thereby, it is possible to continuously obtain a high-luminance image extending linearly in the width direction at each position in the longitudinal direction on the surface to be inspected. In addition, the roll is equipment (a so-called tension roll) that normally exists in the manufacturing process of the rolled aluminum sheet, and the existing equipment can be used effectively.

また,前記ロールが用いられる場合,前記凹凸検出手順において,前記撮像手順での連続撮像により得られる複数の撮像画像相互間における,前記幅方向の各位置に相当する各座標での前記長手方向に相当する座標方向における前記正反射光の像を表す高輝度部の位置の変動の大きさによって前記被検査面における凹凸の有無を検出することが考えられる。この凹凸検出手順は,前記撮像手順での連続撮像により得られる複数の撮像画像相互間での相対評価によって前記被検査面における凹凸の有無を検出する手順である。これにより,前記光源及び前記撮像手段の位置合わせに高い精度が要求されることなく,正確な凹凸検出を実現できる。
また,前記凹凸検出手順において,前記撮像手順で得られる撮像画像における前記幅方向の各位置に相当する各座標について,前記長手方向に相当する座標方向において輝度が最高である画素(輝度値がピークとなる画素)の座標を,前記正反射光の像を表す高輝度部の座標として検出することが考えられる。
また,前記拡散光照射手順において,前記光源から前記幅方向に伸びて形成されたスリットを通じて拡散光を前記被検査面に対して照射することが考えられる。これにより,前記被検査面に照射されるスリット光の幅をより狭めることができ,前記長手方向における表面凹凸検出の空間分解能をより高めることができる。
When the roll is used, in the unevenness detection procedure, in the longitudinal direction at each coordinate corresponding to each position in the width direction between a plurality of captured images obtained by continuous imaging in the imaging procedure. It is conceivable to detect the presence or absence of irregularities on the surface to be inspected based on the magnitude of the change in the position of the high-luminance portion representing the image of the specularly reflected light in the corresponding coordinate direction. This unevenness detection procedure is a procedure for detecting the presence or absence of unevenness on the surface to be inspected by relative evaluation between a plurality of captured images obtained by continuous imaging in the imaging procedure. Accordingly, accurate unevenness detection can be realized without requiring high accuracy in the alignment of the light source and the imaging means.
In the unevenness detection procedure, for each coordinate corresponding to each position in the width direction in the captured image obtained by the imaging procedure, the pixel having the highest luminance in the coordinate direction corresponding to the longitudinal direction (the luminance value has a peak value). It is conceivable to detect the coordinates of the pixel) as the coordinates of the high-luminance part representing the image of the regular reflection light.
In the diffused light irradiation procedure, it is conceivable to irradiate the surface to be inspected with diffused light through a slit formed extending in the width direction from the light source. As a result, the width of the slit light irradiated onto the surface to be inspected can be further narrowed, and the spatial resolution for detecting surface irregularities in the longitudinal direction can be further increased.

また,本発明は,以上に示した本発明に係るアルミ圧延板凹凸検査方法を実現するアルミ圧延板凹凸検出装置として捉えることもできる。
即ち,本発明に係るアルミ圧延板凹凸検出装置は,アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板の被検査面の凹凸を検出する装置であり,前記被検査面は,前記アルミ圧延板を長手方向において湾曲させた前記アルミ圧延板の凸側の表面であり,次の(b1)〜(b3)に示される各構成要素を備える。
(b1)前記アルミ圧延板の長手方向に直交する幅方向に伸びて形成された光源から,前記長手方向において前記支持部の周りに凸状に湾曲した前記被検査面に対して拡散光を照射する拡散光照射手段。
(b2)前記拡散光照射手段から前記被検査面に照射された光の正反射光の像を撮像する撮像手段。
(b3)前記撮像手段により得られる撮像画像における前記正反射光の像を表す高輝度部の座標に基づいて前記被検査面の凹凸を検出する凹凸検出手段。
また、前記撮像手段は,前記拡散光照射手段によって前記被検査面に対して前記拡散光が照射された場合に,前記被検査面において前記拡散光が照射されている領域内において,前記幅方向に直線状に伸びる1本の稜線の部分のみからの正反射光の像を撮像する。前記1本の稜線は,前記被検査面において前記拡散光が照射されている領域内において,前記1本の稜線から前記光源に向かう方向と前記1本の稜線から前記撮像手段に向かう方向とのなす角度を二等分する方向が,前記1本の稜線の部分における前記被検査面の法線方向に一致する位置に存在する。
Moreover, this invention can also be grasped | ascertained as an aluminum rolling plate unevenness detection apparatus which implement | achieves the aluminum rolled plate unevenness inspection method which concerns on this invention shown above.
In other words, the aluminum rolled plate unevenness detecting device according to the present invention is a device for detecting unevenness of a surface to be inspected of an aluminum rolled plate processed into a thin plate shape by rolling an aluminum member, and the surface to be inspected is the aluminum rolled plate. It is the surface of the convex side of the said aluminum rolling plate which curved the plate in the longitudinal direction, and is provided with each component shown by following (b1)-(b3).
(B1) A diffused light is irradiated from the light source formed extending in the width direction orthogonal to the longitudinal direction of the rolled aluminum sheet to the surface to be inspected that is convexly curved around the support portion in the longitudinal direction. Diffused light irradiation means.
(B2) Image pickup means for picking up an image of specularly reflected light emitted from the diffused light irradiation means to the surface to be inspected.
(B3) Concavity and convexity detection means for detecting the concavity and convexity of the surface to be inspected based on the coordinates of the high-intensity part representing the image of the regular reflection light in the captured image obtained by the imaging means.
In addition, the imaging means may be arranged in the width direction within a region where the diffused light is irradiated on the surface to be inspected when the diffused light is irradiated on the surface to be inspected by the diffused light irradiation means. An image of specularly reflected light from only one ridge line extending in a straight line is captured. The one ridge line includes a direction from the one ridge line toward the light source and a direction from the one ridge line toward the imaging unit in a region where the diffused light is irradiated on the surface to be inspected. The direction that bisects the formed angle exists at a position that coincides with the normal direction of the surface to be inspected at the portion of the one ridgeline.

また,本発明に係るアルミ圧延板凹凸検出装置が,さらに次の(b4)に示される構成要素を備えることが考えられる。
(b4)前記幅方向に伸びて形成され,張力が付勢された前記アルミ圧延板を前記被検査面の反対側の面から前記幅方向に沿って引っ掛けて支持することにより前記被検査面を前記長手方向において湾曲させる支持部。
また,前記支持部が,前記幅方向に伸びる回転軸の周りに回転する円柱状又は円筒状のロールである場合,前記撮像手段が,前記ロールの回転に連動して移動する前記被検査面に照射された光の正反射光の像を連続して撮像することが考えられる。
また,前記凹凸検出手段が,前記撮像手段による連続撮像によって得られる複数の撮像画像相互間における,前記幅方向の各位置に相当する各座標での前記長手方向に相当する座標方向における前記正反射光の像を表す高輝度部の位置の変動の大きさによって前記被検査面における凹凸の有無を検出することが考えられる。
また,前記拡散光照射手段が,前記光源から前記幅方向に伸びて形成されたスリットを通じて拡散光を前記被検査面に対して照射することも考えられる。
以上に示した本発明に係るアルミ圧延板凹凸検出装置によれば,前述した本発明に係るアルミ圧延板凹凸検出方法を実現できる。
In addition, it is conceivable that the rolled aluminum plate unevenness detecting device according to the present invention further includes a component shown in the following (b4).
(B4) The inspected surface is formed by hooking and supporting the rolled aluminum sheet, which is formed extending in the width direction and is energized with tension, from the surface opposite to the inspected surface along the width direction. A support portion curved in the longitudinal direction.
In the case where the support portion is a columnar or cylindrical roll that rotates around a rotation axis extending in the width direction, the imaging means is disposed on the surface to be inspected that moves in conjunction with the rotation of the roll. It is conceivable to continuously capture images of regularly reflected light of the irradiated light.
In addition, the irregularity detection unit may perform the regular reflection in a coordinate direction corresponding to the longitudinal direction at each coordinate corresponding to each position in the width direction between a plurality of captured images obtained by continuous imaging by the imaging unit. It is conceivable to detect the presence or absence of irregularities on the surface to be inspected based on the magnitude of the change in the position of the high-luminance portion representing the light image.
It is also conceivable that the diffused light irradiation means irradiates the surface to be inspected with diffused light through a slit formed in the width direction from the light source.
According to the aluminum rolled plate unevenness detecting apparatus according to the present invention described above, the above-described aluminum rolled plate unevenness detecting method according to the present invention can be realized.

本発明によれば,微小な前記筋状の凹凸による照射光の乱反射の影響を受けずに,アルミ圧延板の表面における品質管理上検出すべき局所的な歪みによる凹凸を,その凹凸よりも微小な筋状の凹凸や表面粗さに起因する反射光の干渉の影響を受けずに,光学的手法により非接触で簡易に検出することができる。   According to the present invention, the unevenness due to local distortion to be detected in quality control on the surface of the aluminum rolled plate is less than the unevenness without being affected by the irregular reflection of the irradiation light due to the fine streaky unevenness. Without being affected by interference of reflected light caused by uneven streaks and surface roughness, it can be easily detected in a non-contact manner by an optical method.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係るアルミ圧延板凹凸検出装置X1の概略構成図,図2はアルミ圧延板凹凸検出装置X1における長尺光源及びアルミ圧延板の湾曲被検査面を示す斜視図,図3はアルミ圧延板凹凸検出装置X1における長尺光源,カメラ及びアルミ圧延板の湾曲被検査面の位置関係を示す図,図4はアルミ圧延板凹凸検出装置X1における撮像画像の一例を表す図,図5は本発明の第2実施形態に係るアルミ圧延板凹凸検出装置X2における複数の長尺光源及びアルミ圧延板の湾曲被検査面を示す斜視図,図6はアルミ圧延板凹凸検出装置X2における撮像画像の一例を表す図,図7はアルミ圧延板を湾曲させるための支持構造の実施例を表す図,図8はスリットを通じて拡散光をアルミ圧延板に照射する実施例を表す図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of an aluminum rolled plate unevenness detecting device X1 according to the first embodiment of the present invention, and FIG. 2 is a long light source and an aluminum rolled plate curved surface to be inspected in the aluminum rolled plate unevenness detecting device X1. FIG. 3 is a diagram showing the positional relationship between the long light source, the camera and the curved inspection surface of the aluminum rolled plate in the aluminum rolled plate unevenness detecting device X1, and FIG. 4 is a captured image in the aluminum rolled plate unevenness detecting device X1. FIG. 5 is a perspective view showing a plurality of long light sources and a curved surface to be inspected of the aluminum rolled plate in the aluminum rolled plate unevenness detecting device X2 according to the second embodiment of the present invention, and FIG. FIG. 7 is a diagram illustrating an example of a captured image in the plate unevenness detection apparatus X2, FIG. 7 is a diagram illustrating an embodiment of a support structure for curving the aluminum rolled plate, and FIG. 8 is an embodiment in which the aluminum rolled plate is irradiated with diffused light through a slit. The table It is a diagram.

アルミ圧延板凹凸検出装置X1は,アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板(帯状のアルミ部材)の被検査面(表面)の凹凸を検出する装置である。
前記アルミ圧延板は,アルミニウム部材を加熱しながら圧延する熱延工程,その熱延工程により圧延されたアルミ圧延板に対して熱処理を行う熱処理工程,その熱処理工程を経たアルミ圧延板を加熱せずに圧延する冷延工程等を経た後,アルミ圧延板を所定の長さで切断するとともにコイル状に巻き取る巻取り工程において最終的な製品となる。
また,前記アルミ圧延板は,前記熱延工程から前記巻取り工程に至るまでは,一連の帯状(可撓性を有する薄板状)の部材の状態で搬送される。
アルミ圧延板凹凸検出装置X1は,例えば,前記熱延工程後の前記熱処理工程と前記冷延工程との間における帯状の前記アルミ圧延板1の搬送位置に配置される。或いは,アルミ圧延板凹凸検出装置X1が,前記焼鈍工程や前記矯正工程の後の工程に配置されることも考えられる。
The rolled aluminum plate unevenness detection device X1 is a device that detects unevenness of a surface to be inspected (surface) of a rolled aluminum plate (strip-shaped aluminum member) processed into a thin plate shape by rolling an aluminum member.
The aluminum rolled sheet includes a hot rolling process in which an aluminum member is rolled while heating, a heat treatment process in which heat treatment is performed on the aluminum rolled sheet rolled in the hot rolling process, and the aluminum rolled sheet that has undergone the heat treatment process is not heated. After a cold rolling process or the like that is rolled into an aluminum sheet, a final product is obtained in a winding process in which the rolled aluminum sheet is cut into a predetermined length and wound into a coil.
The rolled aluminum sheet is conveyed in the form of a series of strip-shaped (flexible thin plate-shaped) members from the hot rolling process to the winding process.
The aluminum rolled plate unevenness detecting device X1 is disposed, for example, at a transport position of the strip-shaped aluminum rolled plate 1 between the heat treatment step after the hot rolling step and the cold rolling step. Alternatively, it is also conceivable that the aluminum rolled plate unevenness detection device X1 is arranged in a step after the annealing step or the straightening step.

以下,図1に示される構成図を参照しつつ,本発明の第1実施形態に係るアルミ圧延板凹凸検出装置X1について説明する。
図1に示されるように,アルミ圧延板凹凸検出装置X1は,長尺光源10と,カメラ20と,テンションロール30と,画像処理装置40とを備えている。
以下,前記アルミ圧延板1の搬送方向であり,その長手方向でもある方向を長手方向Ry,その長手方向に直交する方向を幅方向Rxと称する。
前記テンションロール30は,前記幅方向Rxに伸びて形成され,前記幅方向Rxに伸びる回転軸の周りに回転する円柱状又は円筒状のロールである。
そして,前記テンションロール30は,前記長手方向Ryに張力が付勢された前記アルミ圧延板1を被検査面(一方の表面)の反対側の面から引っ掛けて支持することによって前記被検査面を湾曲させる支持部の一例である。これにより,前記テンションロール30が,前記アルミ圧延板1を前記幅方向Rxに沿って折り曲げた状態で支持することになり,前記被検査面が前記長手方向Ryにおいて凸状に湾曲する。即ち,前記被検査面は,前記テンションロール30に支持されて湾曲した前記アルミ圧延板1の凸側の面である。そして,前記アルミ圧延板1の被検査面は,前記テンションロール30の回転に連動して前記長手方向Ryにおいて移動する。
このように,アルミ圧延板凹凸検出装置X1は,前記アルミ圧延板1を,前記幅方向Rxに伸びる前記テンションロール30に対して前記被検査面の反対側の面を内側にして引っ掛けた状態で張力を付勢しつつ支持させることにより,前記被検査面を前記支持部の周りに凸状に湾曲させる。これにより,前記被検査面が,前記長手方向Ryの断面において円弧状に湾曲する。以下,このようにして湾曲した被検査面のことを,湾曲被検査面1aと称する。
なお,図1は,2つのアルミ圧延板凹凸検出装置X1が前記アルミ圧延板1の両面それぞれについて設けられ,前記アルミ圧延板1の表裏両面が前記被検査面として検査される様子を表している。
Hereinafter, the aluminum rolled plate unevenness detecting device X1 according to the first embodiment of the present invention will be described with reference to the configuration diagram shown in FIG.
As shown in FIG. 1, the rolled aluminum plate unevenness detection device X1 includes a long light source 10, a camera 20, a tension roll 30, and an image processing device 40.
Hereinafter, the direction in which the rolled aluminum sheet 1 is conveyed, which is also the longitudinal direction, is referred to as the longitudinal direction Ry, and the direction orthogonal to the longitudinal direction is referred to as the width direction Rx.
The tension roll 30 is a columnar or cylindrical roll formed to extend in the width direction Rx and rotate around a rotation axis extending in the width direction Rx.
Then, the tension roll 30 supports the surface to be inspected by hooking and supporting the rolled aluminum sheet 1 urged in the longitudinal direction Ry from the surface opposite to the surface to be inspected (one surface). It is an example of the support part made to curve. Accordingly, the tension roll 30 supports the rolled aluminum sheet 1 in a state of being bent along the width direction Rx, and the surface to be inspected is curved in a convex shape in the longitudinal direction Ry. That is, the surface to be inspected is a convex surface of the rolled aluminum sheet 1 that is supported by the tension roll 30 and curved. The surface to be inspected of the aluminum rolled plate 1 moves in the longitudinal direction Ry in conjunction with the rotation of the tension roll 30.
In this way, the rolled aluminum plate unevenness detection device X1 is in a state where the rolled aluminum plate 1 is hooked on the tension roll 30 extending in the width direction Rx with the surface opposite to the surface to be inspected inside. The surface to be inspected is curved in a convex shape around the support portion by supporting the surface while applying tension. Thereby, the surface to be inspected is curved in an arc shape in the cross section in the longitudinal direction Ry. Hereinafter, the surface to be inspected curved in this way is referred to as a curved surface 1a to be inspected.
FIG. 1 shows a state in which two aluminum rolled plate unevenness detecting devices X1 are provided on both sides of the aluminum rolled plate 1, and both the front and back surfaces of the aluminum rolled plate 1 are inspected as the surface to be inspected. .

前記長尺光源10は,前記幅方向Rxに伸びて形成された拡散光の光源である。この長尺光源10は,例えば,蛍光管等であり,前記長手方向Ryにおいて前記テンションロール30の周りに凸状に湾曲した前記湾曲被検査面1aに対して拡散光を照射する拡散光照射手段の一例である。
そして,アルミ圧延板凹凸検出装置X1は,前記テンションロール30で支持することによって前記長手方向Ryにおいて凸状に湾曲させた前記湾曲被検査面1aに対し,前記幅方向Rxに伸びて形成された前記長尺光源10から拡散光を照射する拡散光照射手順を実行する。
図2は,前記長尺光源10と前記湾曲被検査面1aとの位置関係を表した斜視図である。
アルミ圧延板凹凸検出装置X1においては,前記長尺光源10の長さが,前記アルミ圧延板1の幅(前記幅方向Rxの寸法)よりも大きい。そして,前記長尺光源10は,前記湾曲被検査面1aに対向する位置において,前記アルミ圧延板1の幅の全範囲(前記幅方向Rxの全範囲)を一部に含む範囲で拡散光を放射する。これにより,1本の前記長尺光源10が,前記湾曲被検査面1aの幅方向の全範囲をカバーする。
The long light source 10 is a diffused light source formed extending in the width direction Rx. The long light source 10 is, for example, a fluorescent tube or the like, and diffused light irradiating means for irradiating diffused light to the curved surface 1a to be curved convexly around the tension roll 30 in the longitudinal direction Ry. It is an example.
The aluminum rolled plate unevenness detecting device X1 is formed to extend in the width direction Rx with respect to the curved surface to be inspected 1a curved in a convex shape in the longitudinal direction Ry by being supported by the tension roll 30. A diffused light irradiation procedure for irradiating diffused light from the long light source 10 is executed.
FIG. 2 is a perspective view showing the positional relationship between the long light source 10 and the curved surface 1a to be inspected.
In the aluminum rolled plate unevenness detecting device X1, the length of the long light source 10 is larger than the width of the aluminum rolled plate 1 (dimension in the width direction Rx). The long light source 10 emits diffused light in a range partially including the entire range of the width of the rolled aluminum sheet 1 (the entire range in the width direction Rx) at a position facing the curved surface to be inspected 1a. Radiate. Thereby, one said long light source 10 covers the whole range of the width direction of the said to-be-inspected curved surface 1a.

図3は,前記幅方向Rxから見た前記長尺光源10,前記カメラ20及び前記湾曲被検査面1aの位置関係を表す図である。
アルミ圧延板凹凸検出装置X1においては,低コヒーレント光である拡散光が前記湾曲被検査面1aに照射されるため,検出すべき凹凸よりも微小な筋状の凹凸による乱反射光が干渉しない。また,低コヒーレント光である拡散光は,前記湾曲被検査面1aの表面粗さに起因する細かな干渉縞ノイズであるスペックルノイズをほとんど発生させない。
また,前記湾曲被検査面1aは,円筒状又は円柱状の前記テンションロール30の表面に沿って断面が円弧状になるように湾曲した面である。この湾曲被検査面1aにおいて,正反射光が前記カメラ20に向かう前記幅方向の1本の直線状の稜線の部分1Lが,前記長尺光源10及び前記カメラ20の位置合わせを高精度で行わなくてもほぼ必ずどこかに生じる。図3には,前記長尺光源10及び前記カメラ20と前記湾曲検査面1aとの位置関係が変動した場合でも,前記湾曲被検査面1aのどこかに前記幅方向の1本の直線状の稜線の部分1Lが生じることを示している。これにより,前記長尺光源10及び前記カメラ20の位置合わせに高い精度が要求されることなく簡易に凹凸検出を実現できる。
FIG. 3 is a diagram showing the positional relationship among the long light source 10, the camera 20, and the curved surface to be inspected 1a as viewed from the width direction Rx.
In the aluminum rolled plate unevenness detecting device X1, diffusely reflected light, which is low coherent light, is irradiated to the curved surface to be inspected 1a, so that irregularly reflected light due to fine unevenness that is smaller than the unevenness to be detected does not interfere. Further, the diffused light which is low coherent light hardly generates speckle noise which is fine interference fringe noise due to the surface roughness of the curved surface 1a to be inspected.
The curved surface 1a to be inspected is a surface that is curved so that the cross section thereof becomes an arc shape along the surface of the cylindrical or columnar tension roll 30. On the curved surface to be inspected 1a, the portion 1L of the one straight ridge line in the width direction in which the specularly reflected light is directed to the camera 20 aligns the long light source 10 and the camera 20 with high accuracy. Even if not, it almost always occurs somewhere. In FIG. 3, even when the positional relationship between the long light source 10 and the camera 20 and the curved inspection surface 1 a varies, one linear line in the width direction is somewhere on the curved inspection surface 1 a. It is shown that a ridge line portion 1L occurs. Accordingly, it is possible to easily realize the unevenness detection without requiring high accuracy in positioning the long light source 10 and the camera 20.

また,アルミ圧延板凹凸検出装置X1においては,前記湾曲被検査面1aに対し,前記幅方向Rxに伸びて形成された前記長尺光源10から拡散光が照射される。これにより,前記湾曲被検査面1aにおける前記幅方向Rxの1本の直線状の稜線の部分1L(図2参照)についてのみ,前記長尺光源10からの照射光の正反射光が前記カメラ20の方向へ向かい,その他の部分については,前記正反射光が前記カメラ20の方向に対して大きく外れる。即ち,前記湾曲被検査面1aにおいて,法線方向Rfが前記長尺光源10の方向と前記カメラ20の方向とのなす角度を二等分する方向となる1本の直線状の稜線の部分1Lについてのみ,その部分1Lからの正反射光が,前記カメラ20において明瞭な細い線状の高輝度の像として結像する。   Further, in the aluminum rolled plate unevenness detecting device X1, the diffused light is irradiated from the long light source 10 formed to extend in the width direction Rx on the curved surface to be inspected 1a. Thereby, the regular reflection light of the irradiation light from the long light source 10 is applied to the camera 20 only in the one linear ridge portion 1L (see FIG. 2) in the width direction Rx on the curved inspection surface 1a. In the other direction, the specularly reflected light deviates greatly from the direction of the camera 20. That is, in the curved surface 1a to be inspected, a straight line ridge portion 1L in which the normal direction Rf is a direction that bisects the angle formed by the direction of the long light source 10 and the direction of the camera 20. Only, the specularly reflected light from the portion 1L is formed as a clear thin linear high-brightness image in the camera 20.

前記カメラ20は,前記長尺光源10から前記湾曲被検査面1aに照射された拡散光の正反射光の像を撮像する撮像手段の一例であり,例えばCCDカメラ等である。そして,前記カメラ20は,前記テンションロール30の回転に連動して移動する前記湾曲被検査面1aに照射された拡散光の正反射光の像を連続して(周期的に)撮像を行う。例えば,前記カメラ20により,30分の1秒の周期で連続して撮像が行われ,30分の1秒ごとのフレーム画像データ(1コマ分の画像データ)が,前記画像処理装置40に順次取り込まれる。
図4は,前記カメラ20の撮像画像の一例を表す図である。なお,図4に示される撮像画像において,X軸方向が,撮像対象における前記幅方向Rxに相当し,Y軸方向が,撮像対象における前記長手方向Ryに相当する。また,図4(a)は,前記被検査面に局所的な歪みなどの凹凸(検査対象となる凹凸)が存在しない場合の撮像画像の一例,図4(b)は,前記被検査面に局所的な歪みなどの凹凸が存在する場合の撮像画像の一例である。
図4に示されるように,前記カメラ20の撮像画像には,前記湾曲被検査面1aに照射された拡散光の正反射光の像として,X軸方向に直線状(細い帯状)に伸びる高輝度の像(図3に示す撮像画像における白抜き部分)が含まれる。
そして,前記湾曲被検査面1aに局所的な歪み等の表面凹凸が存在すると,その表面凹凸の位置に相当するX座標の位置において,前記高輝度の像の位置がY座標方向にズレた状態(位置が乱れた状態)となる。この位置ズレの有無の検出により,前記表面凹凸の有無を検出できる。
また,前記湾曲被検査面1aと前記カメラ20との間の距離を十分に確保することにより,前記湾曲被検査面1aの凹凸による僅かな表面角度の変化が,撮像画像における前記正反射光の像の位置(座標)の大きな変化として表れるため,前記被検査面の凹凸を高感度で検出することができる。そのため,アルミ圧延板凹凸検出装置X1によれば,例えば,前記焼鈍工程等を経た前記アルミ圧延板の表面に局所的な凹凸が存在するか否かの検査も可能である。
The camera 20 is an example of an imaging unit that captures an image of specularly reflected diffused light emitted from the long light source 10 onto the curved surface 1a to be inspected, and is a CCD camera, for example. The camera 20 continuously (periodically) captures the image of the regular reflection light of the diffused light irradiated on the curved surface 1a that moves in conjunction with the rotation of the tension roll 30. For example, the camera 20 continuously captures images with a period of 1/30 second, and frame image data (image data for one frame) every 1/30 second is sequentially transferred to the image processing device 40. It is captured.
FIG. 4 is a diagram illustrating an example of a captured image of the camera 20. In the captured image shown in FIG. 4, the X-axis direction corresponds to the width direction Rx in the imaging target, and the Y-axis direction corresponds to the longitudinal direction Ry in the imaging target. FIG. 4A shows an example of a captured image when there is no unevenness such as local distortion (unevenness to be inspected) on the surface to be inspected, and FIG. 4B shows the surface to be inspected. It is an example of the captured image when unevenness, such as local distortion, exists.
As shown in FIG. 4, the captured image of the camera 20 is a high-level image extending in a straight line (thin band) in the X-axis direction as an image of specularly reflected diffused light irradiated on the curved surface to be inspected 1a. A luminance image (a white portion in the captured image shown in FIG. 3) is included.
When surface irregularities such as local distortion exist on the curved surface to be inspected 1a, the position of the high-luminance image is shifted in the Y coordinate direction at the position of the X coordinate corresponding to the position of the surface irregularities. (Position is disturbed). The presence or absence of the surface irregularities can be detected by detecting the presence or absence of this positional deviation.
In addition, by ensuring a sufficient distance between the curved surface to be inspected 1a and the camera 20, a slight change in surface angle due to the unevenness of the curved surface to be inspected 1a is caused by the regular reflected light in the captured image. Since it appears as a large change in the position (coordinates) of the image, the unevenness of the surface to be inspected can be detected with high sensitivity. Therefore, according to the aluminum rolled plate unevenness detection device X1, it is possible to inspect whether or not local unevenness exists on the surface of the aluminum rolled plate that has undergone the annealing process or the like.

また,前記画像処理装置40は,前記カメラ20により得られる各フレーム画像データ(撮像画像)から,前記湾曲被検査面1aに照射された拡散光の正反射光の像を表す高輝度部の座標を検出し,その検出座標に基づいて前記アルミ圧延板1の被検査面の凹凸(前記表面凹凸)を検出する凹凸検出手段の一例である。
以下,前記湾曲被検査面1aに照射された拡散光の正反射光の像を表す高輝度部の座標を,単に高輝度部の座標という。
より具体的には,前記画像処理装置40は,前記カメラ20による連続撮像によって得られる複数のフレーム画像データそれぞれについて,前記幅方向Rxの各位置に相当する各座標(ここでは,X軸座標)での前記長手方向Ryに相当する座標方向(ここでは,Y軸方向)における前記高輝度部の位置(即ち,Y座標の値)を検出する。
例えば,前記画像処理装置40は,X座標ごとに,Y軸方向における各画素の輝度値を参照し,その輝度値が最大であり(ピーク輝度である),かつ予め定められた下限輝度値以上である画素のY座標を,当該X座標の位置における前記高輝度部のY座標として検出する。これは,前記カメラ20により得られる1フレーム分の撮像画像における前記幅方向Rxの各位置に相当する各座標(X座標)について,前記長手方向Ryに相当する座標方向(Y座標方向)において輝度が最高である画素の座標を,前記高輝度部の座標として検出する処理の一例である。
その他,X座標ごとに,Y軸方向に連続する複数の画素の輝度値が予め定められたしきい値以上である範囲(Y軸方向の範囲)を特定し,その範囲の中心位置のY座標を,当該X座標の位置における前記高輝度部のY座標として検出すること等も考えられる。
In addition, the image processing device 40 uses the coordinates of the high-intensity part representing the image of the specularly reflected light of the diffused light irradiated on the curved surface 1a to be inspected from each frame image data (captured image) obtained by the camera 20. Is an example of an unevenness detecting means for detecting unevenness on the surface to be inspected of the aluminum rolled sheet 1 (the surface unevenness) based on the detected coordinates.
Hereinafter, the coordinates of the high luminance part representing the image of the regular reflection light of the diffused light irradiated on the curved surface 1a is simply referred to as the coordinates of the high luminance part.
More specifically, the image processing device 40, for each of a plurality of frame image data obtained by continuous imaging by the camera 20, coordinates corresponding to the respective positions in the width direction Rx (here, X-axis coordinates). The position (that is, the value of the Y coordinate) of the high luminance portion in the coordinate direction (here, the Y-axis direction) corresponding to the longitudinal direction Ry in FIG.
For example, the image processing device 40 refers to the luminance value of each pixel in the Y-axis direction for each X coordinate, the luminance value is maximum (peak luminance), and is equal to or greater than a predetermined lower limit luminance value. Is detected as the Y coordinate of the high-intensity part at the position of the X coordinate. This is because the brightness in the coordinate direction (Y coordinate direction) corresponding to the longitudinal direction Ry of each coordinate (X coordinate) corresponding to each position in the width direction Rx in the captured image of one frame obtained by the camera 20 is described. This is an example of processing for detecting the coordinate of the pixel having the highest value as the coordinate of the high-luminance portion.
In addition, for each X coordinate, a range (Y axis direction range) in which the luminance values of a plurality of pixels continuous in the Y axis direction are equal to or greater than a predetermined threshold value is specified, and the Y coordinate of the center position of the range May be detected as the Y coordinate of the high-intensity part at the position of the X coordinate.

そして,前記画像処理装置40は,各フレーム画像データについて検出した前記高輝度部の座標に基づいて,前記アルミ圧延板1の被検査面の凹凸(前記表面凹凸)を検出する。
より具体的には,前記画像処理装置40は,前記カメラ20による連続撮像によって得られる複数の撮像画像相互間における,各X座標でのY座標方向における前記高輝度部の座標(位置)の変動の大きさによって前記被検査面における凹凸の有無を検出する。
例えば,前記画像処理装置40は,各X座標(=x)について,連続する所定数(2つ以上)の前記フレーム画像データから得られた前記高輝度部のY座標の最大差Δyp(x)を算出する。さらに,前記画像処理装置40は,その最大差Δyp(x)が予め定められた許容差(例えば,2画素分)を超える場合に,それら複数のフレーム画像データの撮像が行われた前記被検査面の位置(長手方向Ryの位置)に,凹凸が存在すると判別する。
この凹凸検出の手法は,前記カメラ20の連続撮像により得られる複数の撮像画像相互間での相対評価によって前記被検査面における凹凸の有無を検出する手法である。これにより,前記長尺光源10及び前記カメラ20の位置合わせに高い精度が要求されることなく,正確な凹凸検出を実現できる。
Then, the image processing device 40 detects the unevenness (the surface unevenness) of the surface to be inspected of the aluminum rolled sheet 1 based on the coordinates of the high brightness portion detected for each frame image data.
More specifically, the image processing device 40 changes the coordinates (positions) of the high-intensity part in the Y coordinate direction at each X coordinate between a plurality of captured images obtained by continuous imaging by the camera 20. The presence / absence of irregularities on the surface to be inspected is detected according to the size of.
For example, the image processing apparatus 40 determines, for each X coordinate (= x), the maximum difference Δyp (x) between the Y coordinates of the high-intensity portion obtained from a predetermined number (two or more) of the frame image data. Is calculated. Furthermore, when the maximum difference Δyp (x) exceeds a predetermined tolerance (for example, two pixels), the image processing apparatus 40 is configured to capture the plurality of frame image data. It is determined that there is unevenness at the surface position (position in the longitudinal direction Ry).
This unevenness detection method is a method of detecting the presence or absence of unevenness on the surface to be inspected by relative evaluation between a plurality of captured images obtained by continuous imaging of the camera 20. Thereby, accurate unevenness detection can be realized without requiring high accuracy for alignment of the long light source 10 and the camera 20.

その他,前記画像処理装置40が,1つの前記フレーム画像データごとに,各X座標方向における前記高輝度部のY座標のばらつきの大きさによって前記被検査面における凹凸の有無を検出することも考えられる。
例えば,前記画像処理装置40は,1つの前記フレーム画像データごとに,X座標方向における前記高輝度部のY座標の最大値と最小値との差が,予め定められた許容差を超える場合に,当該フレーム画像データの撮像が行われた前記被検査面の位置(長手方向Ryの位置)に,凹凸が存在すると判別する。
このような前記被検査面における凹凸の有無の検出手法も,本発明の実施形態の一例である。
In addition, it may be considered that the image processing device 40 detects the presence or absence of unevenness on the surface to be inspected based on the magnitude of variation in the Y coordinate of the high-luminance portion in each X coordinate direction for each frame image data. It is done.
For example, when the difference between the maximum value and the minimum value of the Y coordinate of the high luminance portion in the X coordinate direction exceeds a predetermined tolerance for each frame image data, the image processing device 40 , It is determined that there is an unevenness at the position (position in the longitudinal direction Ry) of the surface to be inspected where the frame image data is captured.
Such a method for detecting the presence or absence of unevenness on the surface to be inspected is also an example of an embodiment of the present invention.

以上に示した実施形態は,1本の前記長尺光源10が,前記湾曲被検査面1aの幅方向の全範囲をカバーする例であったが,その他の例も考えられる。
以下,図5を参照しつつ,複数の長尺光源を備えた本発明の第2実施形態に係るアルミ圧延板凹凸検出装置X2について説明する。このアルミ圧延板凹凸検出装置X2においては,複数本の前記長尺光源により前記湾曲被検査面1aの幅方向の全範囲をカバーする。
なお,図5は,アルミ圧延板凹凸検出装置X2における複数の長尺光源及びアルミ圧延板1の前記湾曲被検査面1aを示す斜視図である。アルミ圧延板凹凸検出装置X2は,複数本の長尺光源を備えること以外は,前記アルミ圧延板凹凸検出装置X1と同じ構成を備えている。
In the embodiment described above, one long light source 10 covers the entire range in the width direction of the curved surface 1a to be inspected, but other examples are also conceivable.
Hereinafter, an aluminum rolled plate unevenness detection device X2 according to a second embodiment of the present invention provided with a plurality of long light sources will be described with reference to FIG. In this rolled aluminum plate unevenness detecting device X2, the entire range in the width direction of the curved surface to be inspected 1a is covered by a plurality of the long light sources.
FIG. 5 is a perspective view showing a plurality of long light sources and the curved surface 1a to be inspected of the aluminum rolled plate 1 in the aluminum rolled plate unevenness detecting device X2. The aluminum rolled plate unevenness detection device X2 has the same configuration as the aluminum rolled plate unevenness detection device X1 except that it includes a plurality of long light sources.

図5に示すアルミ圧延板凹凸検出装置X2においては,それぞれ前記幅方向Rxに伸びて形成された3本の長尺光源10a,10b,10c(以下,便宜上,単位長尺光源と称する)により前記長尺光源10に相当する長尺光源10’が構成されている。これら3本の単位長尺光源10a,10b,10cは,前記アルミ圧延板1の幅に対する寸法(長さ)が異なる以外は,前記アルミ圧延板凹凸検出装置X1における前記長尺光源10と同じものである。即ち,前記単位長尺光源10a,10b,10cの長さは,前記アルミ圧延板1の幅(前記幅方向Rxの寸法)よりも小さい。
そして,前記単位長尺光源10a,10b,10cは,前記湾曲被検査面1aに対向する位置において,前記長手方向Ryにおける位置をずらした状態で,前記幅方向Rxにおいて一部が重複するよう配置されている。
図5に示される例では,1つの前記単位長尺光源10aが前記幅方向における中央部に,残り2つの前記単位長尺光源10b,10cが前記幅方向における左右両側に配置されている。
そして,前記単位長尺光源10a,10b,10c全体が,前記湾曲被検査面1aに対向する位置において,前記アルミ圧延板1の幅の全範囲(前記幅方向Rxの全範囲)を一部に含む範囲で拡散光を放射する。これにより,3本の前記単位長尺光源10a,10b,10cが,それぞれ領域を分けて前記湾曲被検査面1aの幅方向の全範囲をカバーする。
In the aluminum rolled plate unevenness detection apparatus X2 shown in FIG. 5, the three long light sources 10a, 10b, 10c (hereinafter referred to as unit long light sources for convenience) formed to extend in the width direction Rx are used. A long light source 10 ′ corresponding to the long light source 10 is configured. These three unit long light sources 10a, 10b, and 10c are the same as the long light source 10 in the aluminum rolled plate unevenness detector X1 except that the dimensions (length) with respect to the width of the aluminum rolled plate 1 are different. It is. That is, the length of the unit long light sources 10a, 10b, and 10c is smaller than the width of the aluminum rolled plate 1 (dimension in the width direction Rx).
The unit long light sources 10a, 10b, and 10c are arranged so as to partially overlap in the width direction Rx with the positions in the longitudinal direction Ry being shifted at positions facing the curved surface 1a to be inspected. Has been.
In the example shown in FIG. 5, one unit long light source 10a is disposed at the center in the width direction, and the remaining two unit long light sources 10b and 10c are disposed on both the left and right sides in the width direction.
The entire unit long light sources 10a, 10b, and 10c are partially located at the position facing the curved surface to be inspected 1a, with the entire width of the rolled aluminum sheet 1 (the entire range in the width direction Rx) being a part. Diffuse light is emitted within the range. Accordingly, the three unit long light sources 10a, 10b, and 10c each divide the region and cover the entire range in the width direction of the curved surface 1a to be inspected.

図6は,アルミ圧延板凹凸検出装置X2における前記カメラ20による撮像画像の一例を表す図である。なお,図6に示される撮像画像において,X軸方向が,撮像対象における前記幅方向Rxに相当し,Y軸方向が,撮像対象における前記長手方向Ryに相当する。
図6に示されるように,前記カメラ20の撮像画像には,前記湾曲被検査面1aに照射された拡散光の正反射光の像として,3本のX軸方向に直線状(細い帯状)に伸びる高輝度の像(図6に示す撮像画像における白抜き部分)が含まれる。これら3本の高輝度の像は,3本の前記単位長尺光源10a,10b,10cそれぞれに対応する像である。
また,3本の前記単位長尺光源10a,10b,10cのうち隣り合うものどうしの前記幅方向Rxにおける位置が一部重複しているため,3本の高輝度の像のX軸方向における位置も一部が重複している。
FIG. 6 is a diagram illustrating an example of an image captured by the camera 20 in the aluminum rolled plate unevenness detection device X2. In the captured image shown in FIG. 6, the X-axis direction corresponds to the width direction Rx in the imaging target, and the Y-axis direction corresponds to the longitudinal direction Ry in the imaging target.
As shown in FIG. 6, the image captured by the camera 20 has three straight X-axis directions (thin strips) as images of specularly reflected diffused light irradiated onto the curved surface 1 a to be inspected. A high-intensity image extending in (a white portion in the captured image shown in FIG. 6) is included. These three high-intensity images are images corresponding to the three unit long light sources 10a, 10b, and 10c, respectively.
In addition, since the positions in the width direction Rx of adjacent ones of the three unit long light sources 10a, 10b, and 10c partially overlap, the positions in the X-axis direction of the three high-luminance images There is also some overlap.

図6に示されるような撮像画像に対し,例えば,前記画像処理装置40は,前記アルミ圧延板凹凸検出装置X1の場合と同様に,X座標ごとに,Y軸方向における各画素の輝度値を参照し,その輝度値が最大であり(ピーク輝度である),かつ予め定められた下限輝度値以上である画素のY座標を,当該X座標の位置における前記高輝度部のY座標として検出する。
但し,アルミ圧延板凹凸検出装置X2においては,3本の前記単位長尺光源10a,10b,10cそれぞれの光の照射範囲に対応して予め区分されたX座標の範囲Wxa,Wxb,Wxcごとに,ピーク輝度の画素を検出するためのY軸方向における画素の参照方向が個別に設定されている。
図6に示される例では,中央の前記単位長尺光源10aに対応するX座標の範囲Wxaにおいては,Y軸座標の昇順に各画素の輝度値が参照されてピーク輝度の画素が検出される。一方,その両側のX座標の範囲Wxb,Wxcにおいては,Y軸座標の降順に各画素の輝度値が参照されてピーク輝度の画素が検出される。これにより,X座標の各範囲Wxa,Wxb,Wxcごとに,前記高輝度の像の座標が適切に検出される。
なお,前記被検査面における凹凸の有無の検出方法は,前記アルミ圧延板凹凸検出装置X1における方法と同様である。
このような実施形態も,本発明の実施形態の一例である。例えば,アルミ圧延板凹凸検出装置X2は,前記焼鈍工程等を経た前記アルミ圧延板1の表面に局所的な凹凸が存在するか否かの検査等にも利用可能である。
For the captured image as shown in FIG. 6, for example, the image processing device 40 calculates the luminance value of each pixel in the Y-axis direction for each X coordinate as in the case of the aluminum rolled plate unevenness detection device X1. Referring to the pixel, the Y coordinate of the pixel whose luminance value is maximum (peak luminance) and equal to or higher than a predetermined lower limit luminance value is detected as the Y coordinate of the high luminance portion at the position of the X coordinate. .
However, in the aluminum rolled plate unevenness detecting device X2, the X coordinate ranges Wxa, Wxb, Wxc are divided in advance corresponding to the light irradiation ranges of the three unit long light sources 10a, 10b, 10c. , Pixel reference directions in the Y-axis direction for detecting pixels of peak luminance are individually set.
In the example shown in FIG. 6, in the X-coordinate range Wxa corresponding to the unit long light source 10a at the center, the luminance value of each pixel is referred to in ascending order of the Y-axis coordinates, and the pixel having the peak luminance is detected. . On the other hand, in the X-coordinate ranges Wxb and Wxc on both sides, the luminance value of each pixel is referred to in descending order of the Y-axis coordinates, and the pixel having the peak luminance is detected. Thus, the coordinates of the high-luminance image are appropriately detected for each of the X coordinate ranges Wxa, Wxb, and Wxc.
In addition, the detection method of the presence or absence of the unevenness | corrugation in the said to-be-inspected surface is the same as the method in the said aluminum rolled sheet unevenness detection apparatus X1.
Such an embodiment is also an example of an embodiment of the present invention. For example, the aluminum rolled plate unevenness detection device X2 can be used for checking whether or not local unevenness is present on the surface of the aluminum rolled plate 1 that has undergone the annealing process or the like.

また,前述した実施形態では,前記被検査面を湾曲させるために,前記アルミ圧延板1が,180°折り返すように円筒状又は円柱状の前記テンションロール30に引っ掛けられて支持される例を示したが,前記湾曲被検査面1aを作るための前記アルミ圧延板1の支持構造としては,その他の例も考えられる。
図7は前記アルミ圧延板1を湾曲させるための支持構造の実施例を表す図であり,その支持構造を前記幅方向Rxから見た図である。
例えば,図7示されるように,前記アルミ圧延板1が,180°よりも小さい角度だけ搬送方向が変化するように円筒状又は円柱状の前記テンションロール30に引っ掛けられて支持される例も考えられる。
また,図8に示されるように,前記光源10から前記幅方向Rxに伸びて形成されたスリット11を通じて拡散光を前記湾曲被検査面1aに対して照射することも考えられる。これにより,前記カメラ20において,前記湾曲被検査面1aからの正反射光が,より細い線状の高輝度の像として結像され,前記長手方向Ryにおける測定の空間分解能をより高めることができる。
図7及び図8に示されるような実施例も,本発明の実施例として考えられる。
また,本発明は,前記アルミ圧延板1の平坦な面,即ち,湾曲していない平面を被検出面としてその凹凸を検出する装置へも適用可能である。
In the above-described embodiment, in order to curve the surface to be inspected, the aluminum rolled plate 1 is supported by being hooked on the cylindrical or columnar tension roll 30 so as to be folded back 180 °. However, other examples of the support structure of the rolled aluminum plate 1 for forming the curved surface 1a to be inspected are also conceivable.
FIG. 7 is a view showing an example of a support structure for bending the rolled aluminum sheet 1, and is a view of the support structure as viewed from the width direction Rx.
For example, as shown in FIG. 7, an example in which the rolled aluminum sheet 1 is supported by being hooked on the cylindrical or columnar tension roll 30 so that the conveying direction is changed by an angle smaller than 180 ° is also considered. It is done.
Further, as shown in FIG. 8, it is conceivable to irradiate the curved surface 1a with diffused light from the light source 10 through a slit 11 formed extending in the width direction Rx. Thereby, in the camera 20, the specularly reflected light from the curved surface to be inspected 1a is formed as a finer line-like high-brightness image, and the spatial resolution of the measurement in the longitudinal direction Ry can be further increased. .
Embodiments as shown in FIGS. 7 and 8 are also considered as embodiments of the present invention.
The present invention can also be applied to an apparatus for detecting unevenness using the flat surface of the aluminum rolled sheet 1, that is, a non-curved plane as a detected surface.

本発明は,アルミ圧延板凹凸検出方法に利用可能である。   The present invention is applicable to a method for detecting unevenness of a rolled aluminum plate.

本発明の第1実施形態に係るアルミ圧延板凹凸検出装置X1の概略構成図。The schematic block diagram of the aluminum rolling plate unevenness | corrugation detection apparatus X1 which concerns on 1st Embodiment of this invention. アルミ圧延板凹凸検出装置X1における長尺光源及びアルミ圧延板の湾曲被検査面を示す斜視図。The perspective view which shows the curved to-be-inspected surface of the elongate light source and aluminum rolled plate in the aluminum rolled plate uneven | corrugated detection apparatus X1. アルミ圧延板凹凸検出装置X1における長尺光源,カメラ及びアルミ圧延板の湾曲被検査面の位置関係を示す図。The figure which shows the positional relationship of the elongate light source in the aluminum rolling plate unevenness | corrugation detection apparatus X1, a camera, and the curved to-be-inspected surface of an aluminum rolled plate. アルミ圧延板凹凸検出装置X1における撮像画像の一例を表す図。The figure showing an example of the captured image in the aluminum rolling plate unevenness | corrugation detection apparatus X1. 本発明の第2実施形態に係るアルミ圧延板凹凸検出装置X2における複数の長尺光源及びアルミ圧延板の湾曲被検査面を示す斜視図。The perspective view which shows the curved to-be-inspected surface of the some elongate light source and aluminum rolled plate in the aluminum rolled plate unevenness detection apparatus X2 which concerns on 2nd Embodiment of this invention. アルミ圧延板凹凸検出装置X2における撮像画像の一例を表す図。The figure showing an example of the captured image in the aluminum rolling plate unevenness | corrugation detection apparatus X2. アルミ圧延板を湾曲させるための支持構造の実施例を表す図。The figure showing the Example of the support structure for curving an aluminum rolled sheet. スリットを通じて拡散光をアルミ圧延板に照射する実施例を表す図。The figure showing the Example which irradiates a diffused light to an aluminum rolled sheet through a slit.

符号の説明Explanation of symbols

X1,X2:アルミ圧延板凹凸検出装置
1 :アルミ圧延板
10:長尺光源
11:スリット
20:カメラ
30:テンションロール
40:画像処理装置
X1, X2: Aluminum rolled plate unevenness detecting device 1: Aluminum rolled plate 10: Long light source 11: Slit 20: Camera 30: Tension roll 40: Image processing device

Claims (11)

アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板の被検査面の凹凸を検出するアルミ圧延板凹凸検出方法であって,
前記被検査面は,前記アルミ圧延板を長手方向において湾曲させた前記アルミ圧延板の凸側の表面であり,
前記被検査面に対し,前記長手方向に直交する幅方向に伸びて形成された光源から拡散光を照射する拡散光照射手順と,
前記拡散光照射手順により前記被検査面に照射された光の正反射光の像を撮像手段により撮像する撮像手順と,
前記撮像手順により得られる撮像画像における前記正反射光の像を表す高輝度部の座標に基づいて前記被検査面の凹凸を検出する凹凸検出手順と,
を有してなり,
前記撮像手順は,前記拡散光照射手順によって前記被検査面に対して前記拡散光が照射された場合に,前記被検査面において前記拡散光が照射されている領域内において,前記幅方向に直線状に伸びる1本の稜線の部分のみからの正反射光の像を前記撮像手段により撮像し,
前記1本の稜線は,前記被検査面において前記拡散光が照射されている領域内において,前記1本の稜線から前記光源に向かう方向と前記1本の稜線から前記撮像手段に向かう方向とのなす角度を二等分する方向が,前記1本の稜線の部分における前記被検査面の法線方向に一致する位置に存在することを特徴とするアルミ圧延板凹凸検出方法。
An aluminum rolled plate unevenness detecting method for detecting unevenness of a surface to be inspected of an aluminum rolled plate processed into a thin plate shape by rolling an aluminum member,
The surface to be inspected is a convex surface of the aluminum rolled sheet obtained by bending the aluminum rolled sheet in the longitudinal direction;
The relative surface to be inspected, and the diffused light irradiation procedure to irradiation diffused light before Sulfur butterfly light sources formed extending in a width direction orthogonal to the longitudinal direction,
An imaging procedure for capturing an image of specularly reflected light of the light irradiated on the surface to be inspected by the diffused light irradiation procedure;
An unevenness detecting procedure for detecting unevenness of the surface to be inspected based on the coordinates of the high-intensity part representing the image of the specularly reflected light in the captured image obtained by the imaging procedure;
Ri name have,
In the imaging procedure, when the diffused light is irradiated on the surface to be inspected by the diffused light irradiation procedure, a straight line extends in the width direction in the region where the diffused light is irradiated on the surface to be inspected. An image of specularly reflected light from only one ridge line extending in a shape is captured by the imaging means,
The one ridge line includes a direction from the one ridge line toward the light source and a direction from the one ridge line toward the imaging unit in a region where the diffused light is irradiated on the surface to be inspected. An aluminum rolled plate unevenness detecting method, characterized in that a direction in which an angle formed is bisected exists at a position that coincides with a normal direction of the surface to be inspected in the portion of the one ridgeline .
前記拡散光照射手順において,前記アルミ圧延板を,前記幅方向に伸びる支持部に対して前記被検査面の反対側の面を内側にして引っ掛けた状態で張力を付勢しつつ支持させることにより,前記被検査面を前記支持部の周りに湾曲させてなる請求項に記載のアルミ圧延板凹凸検出方法。 In the diffused light irradiation procedure, the aluminum rolled plate is supported while urging tension in a state where the aluminum rolled plate is hooked with the surface opposite to the surface to be inspected inside the support portion extending in the width direction. aluminum rolled plate unevenness detecting method according to claim 1 comprising by bending the test surface around the support portion. 前記支持部が,前記幅方向に伸びる回転軸の周りに回転する円柱状又は円筒状のロールであり,
前記撮像手順において,前記ロールの回転に連動して移動する前記被検査面に照射された光の正反射光の像を連続して撮像してなる請求項に記載のアルミ圧延板凹凸検出方法。
The support is a columnar or cylindrical roll that rotates about a rotation axis extending in the width direction;
The method for detecting unevenness of a rolled aluminum sheet according to claim 2 , wherein in the imaging procedure, images of specularly reflected light of the light irradiated on the surface to be inspected moving in conjunction with rotation of the roll are continuously captured. .
前記凹凸検出手順において,前記撮像手順での連続撮像により得られる複数の撮像画像相互間における,前記幅方向の各位置に相当する各座標での前記長手方向に相当する座標方向における前記正反射光の像を表す高輝度部の位置の変動の大きさによって前記被検査面における凹凸の有無を検出してなる請求項1〜のいずれかに記載のアルミ圧延板凹凸検出方法。 In the unevenness detection procedure, the regular reflection light in a coordinate direction corresponding to the longitudinal direction at each coordinate corresponding to each position in the width direction between a plurality of captured images obtained by continuous imaging in the imaging procedure. The method for detecting unevenness of a rolled aluminum sheet according to any one of claims 1 to 3 , wherein the presence or absence of unevenness on the surface to be inspected is detected based on the magnitude of variation in the position of the high-luminance portion representing the image of the above. 前記凹凸検出手順において,前記撮像手順で得られる撮像画像における前記幅方向の各位置に相当する各座標について,前記長手方向に相当する座標方向において輝度が最高である画素の座標を,前記正反射光の像を表す高輝度部の座標として検出してなる請求項1〜のいずれかに記載のアルミ圧延板凹凸検出方法。 In the unevenness detection procedure, for each coordinate corresponding to each position in the width direction in the captured image obtained by the imaging procedure, the coordinate of the pixel having the highest luminance in the coordinate direction corresponding to the longitudinal direction is the regular reflection. The aluminum rolled sheet unevenness detecting method according to any one of claims 1 to 4 , which is detected as coordinates of a high-luminance part representing an image of light. 前記拡散光照射手順において,前記光源から前記幅方向に伸びて形成されたスリットを通じて拡散光を前記被検査面に対して照射してなる請求項1〜のいずれかに記載のアルミ圧延板凹凸検出方法。 In the said diffused light irradiation procedure, the aluminum rolling plate unevenness | corrugation in any one of Claims 1-5 formed by irradiating the said to-be-inspected surface with a diffused light through the slit formed in the said width direction from the said light source. Detection method. アルミニウム部材の圧延により薄板状に加工されたアルミ圧延板の被検査面の凹凸を検出するアルミ圧延板凹凸検出装置であって,
前記被検査面は,前記アルミ圧延板を長手方向において湾曲させた前記アルミ圧延板の凸側の表面であり,
前記アルミ圧延板の長手方向に直交する幅方向に伸びて形成された光源から前記被検査面に対して拡散光を照射する拡散光照射手段と,
前記拡散光照射手段から前記被検査面に照射された光の正反射光の像を撮像する撮像手段と、
前記撮像手段により得られる撮像画像における前記正反射光の像を表す高輝度部の座標に基づいて前記被検査面の凹凸を検出する凹凸検出手段と,
を具備してなり,
前記撮像手段は,前記拡散光照射手段によって前記被検査面に対して前記拡散光が照射された場合に,前記被検査面において前記拡散光が照射されている領域内において,前記幅方向に直線状に伸びる1本の稜線の部分のみからの正反射光の像を撮像し,
前記1本の稜線は,前記被検査面において前記拡散光が照射されている領域内において,前記1本の稜線から前記光源に向かう方向と前記1本の稜線から前記撮像手段に向かう方向とのなす角度を二等分する方向が,前記1本の稜線の部分における前記被検査面の法線方向に一致する位置に存在することを特徴とするアルミ圧延板凹凸検出装置。
An aluminum rolled plate unevenness detecting device for detecting unevenness of a surface to be inspected of an aluminum rolled plate processed into a thin plate shape by rolling an aluminum member,
The surface to be inspected is a convex surface of the aluminum rolled sheet obtained by bending the aluminum rolled sheet in the longitudinal direction;
A diffused light irradiating means for irradiating the surface to be inspected with diffused light from a light source formed extending in a width direction perpendicular to the longitudinal direction of the aluminum rolled plate;
An imaging unit that captures an image of regular reflection light of the light irradiated on the surface to be inspected from the diffused light irradiation unit;
Unevenness detecting means for detecting unevenness of the surface to be inspected based on the coordinates of the high-luminance portion representing the image of the specularly reflected light in the captured image obtained by the imaging means;
Ri name comprises a,
When the diffused light irradiating means irradiates the diffused light to the surface to be inspected, the imaging means linearly extends in the width direction within the region where the diffused light is irradiated on the surface to be inspected. An image of specularly reflected light from only one ridge line extending in a shape,
The one ridge line includes a direction from the one ridge line toward the light source and a direction from the one ridge line toward the imaging unit in a region where the diffused light is irradiated on the surface to be inspected. An aluminum rolled plate unevenness detecting apparatus , wherein a direction in which the angle formed is bisected exists at a position that coincides with a normal direction of the surface to be inspected in the portion of the one ridgeline .
前記幅方向に伸びて形成され,張力が付勢された前記アルミ圧延板を前記被検査面の反対側の面から前記幅方向に沿って引っ掛けて支持することにより前記被検査面を前記長手方向において湾曲させる支持部を具備してなる請求項に記載のアルミ圧延板凹凸検出装置。 The aluminum surface is formed by extending in the width direction, and the tensioned biased aluminum sheet is hooked along the width direction from the surface opposite to the surface to be inspected to support the surface to be inspected in the longitudinal direction. The aluminum rolled plate unevenness detecting device according to claim 7 , further comprising a support portion that is curved in the step. 前記支持部が,前記幅方向に伸びる回転軸の周りに回転する円柱状又は円筒状のロールであり,
前記撮像手段が,前記ロールの回転に連動して移動する前記被検査面に照射された光の正反射光の像を連続して撮像してなる請求項に記載のアルミ圧延板凹凸検出装置。
The support is a columnar or cylindrical roll that rotates about a rotation axis extending in the width direction;
The aluminum rolled plate unevenness detecting device according to claim 8 , wherein the imaging means continuously captures images of specularly reflected light of the light irradiated on the surface to be inspected that moves in conjunction with rotation of the roll. .
前記凹凸検出手段が,前記撮像手段による連続撮像によって得られる複数の撮像画像相互間における,前記幅方向の各位置に相当する各座標での前記長手方向に相当する座標方向における前記正反射光の像を表す高輝度部の位置の変動の大きさによって前記被検査面における凹凸の有無を検出してなる請求項のいずれかに記載のアルミ圧延板凹凸検出装置。 The unevenness detecting unit is configured to detect the specularly reflected light in a coordinate direction corresponding to the longitudinal direction at each coordinate corresponding to each position in the width direction between a plurality of captured images obtained by continuous imaging by the imaging unit. The aluminum rolled plate unevenness detection apparatus according to any one of claims 7 to 9 , wherein the presence or absence of unevenness on the surface to be inspected is detected based on the magnitude of fluctuation of the position of the high-luminance portion representing an image. 前記拡散光照射手段が,前記光源から前記幅方向に伸びて形成されたスリットを通じて
拡散光を前記被検査面に対して照射してなる請求項10のいずれかに記載のアルミ圧
延板凹凸検出装置。
The diffused light irradiation means, an aluminum rolled plate irregularities according to any of claims 7-10 obtained by irradiating the diffused light to the inspection surface through slit formed extending in the width direction from the light source Detection device.
JP2008317868A 2008-12-15 2008-12-15 Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device Expired - Fee Related JP5266033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317868A JP5266033B2 (en) 2008-12-15 2008-12-15 Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317868A JP5266033B2 (en) 2008-12-15 2008-12-15 Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device

Publications (2)

Publication Number Publication Date
JP2010139455A JP2010139455A (en) 2010-06-24
JP5266033B2 true JP5266033B2 (en) 2013-08-21

Family

ID=42349708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317868A Expired - Fee Related JP5266033B2 (en) 2008-12-15 2008-12-15 Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device

Country Status (1)

Country Link
JP (1) JP5266033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353340A (en) * 2016-10-18 2017-01-25 厦门威芯泰科技有限公司 Surface defect detection method for rod-like high-reflectance part

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939206B1 (en) * 2010-12-23 2019-01-16 피렐리 타이어 소시에떼 퍼 아찌오니 A Method and an Apparatus for Controlling Production and Feeding of Semifinished Products in a Tyre Building Process
JP6038434B2 (en) * 2011-08-11 2016-12-07 株式会社ヒューテック Defect inspection equipment
JP5529829B2 (en) * 2011-11-01 2014-06-25 株式会社神戸製鋼所 Height measuring device and height measuring method
JP2017173300A (en) * 2016-03-16 2017-09-28 株式会社リコー Texture evaluation device, texture evaluation method, and program
JP6954209B2 (en) * 2018-03-30 2021-10-27 日本製鉄株式会社 Surface defect inspection method and surface defect inspection device for steel sheets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745088B2 (en) * 1991-12-28 1998-04-28 関東自動車工業株式会社 Method and apparatus for recording surface quality data
JPH0989801A (en) * 1995-09-28 1997-04-04 Nisshin Steel Co Ltd Method and device for surface inspection of long object
JP4215473B2 (en) * 2002-09-13 2009-01-28 株式会社リコー Image input method, image input apparatus, and image input program
JP4081414B2 (en) * 2002-10-08 2008-04-23 新日本製鐵株式会社 Strip shape inspection method and apparatus
JP4511978B2 (en) * 2005-03-07 2010-07-28 新日本製鐵株式会社 Surface flaw inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353340A (en) * 2016-10-18 2017-01-25 厦门威芯泰科技有限公司 Surface defect detection method for rod-like high-reflectance part
CN106353340B (en) * 2016-10-18 2019-07-16 厦门威芯泰科技有限公司 A kind of rodlike high reflectance surface defects of parts detection method

Also Published As

Publication number Publication date
JP2010139455A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5266033B2 (en) Aluminum rolled plate unevenness detection method, aluminum rolled plate unevenness detection device
US7345698B2 (en) Optical system for imaging distortions in moving reflective sheets
US8459073B2 (en) Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
JP5031691B2 (en) Surface flaw inspection device
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
TW201221901A (en) Method and device for evaluating surface shape
JP2008275424A (en) Surface inspection device
KR102289972B1 (en) Device and method for detecting defect of optical film
JP4896828B2 (en) Shape detection method and shape detection apparatus
JP4901578B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
JP2009019942A (en) Shape measuring method, program, and shape measuring device
KR100856276B1 (en) Detecting device for thickness of rolled material
JP2010243263A (en) Surface inspecting device and surface inspection method of belt-like body, and program
WO2013115386A1 (en) Method of measuring height of projections or protrusions on article surface, and device therefor
JP2007071562A (en) Surface inspection device, surface inspection method, and manufacturing method of film
JP2012173194A (en) Surface inspection device, surface inspection method, and film manufacturing devise
JP4496257B2 (en) Defect inspection equipment
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2017145133A (en) Tension correction method of web and manufacturing method of processed film
JP2012141322A (en) Surface defect inspection device
JP2004036048A (en) Apparatus for inspecting fabric weight of sheet material
JP2021162584A (en) Surface defect detector, surface defect detecting method, steel plate production method, steel plate quality management method and steel plate production facility
JP2019066314A (en) Inspection device, method for inspection, and program for inspection device
JP5921423B2 (en) Sheet width measuring method and sheet width measuring apparatus
WO2023047866A1 (en) Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees