JP6939247B2 - ボールねじ軸及びボールねじ軸を用いた工作機械 - Google Patents

ボールねじ軸及びボールねじ軸を用いた工作機械 Download PDF

Info

Publication number
JP6939247B2
JP6939247B2 JP2017161052A JP2017161052A JP6939247B2 JP 6939247 B2 JP6939247 B2 JP 6939247B2 JP 2017161052 A JP2017161052 A JP 2017161052A JP 2017161052 A JP2017161052 A JP 2017161052A JP 6939247 B2 JP6939247 B2 JP 6939247B2
Authority
JP
Japan
Prior art keywords
shaft
ball screw
axis
inner shaft
hollow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017161052A
Other languages
English (en)
Other versions
JP2019039477A (ja
Inventor
敬介 臼田
敬介 臼田
伸充 堀
伸充 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2017161052A priority Critical patent/JP6939247B2/ja
Publication of JP2019039477A publication Critical patent/JP2019039477A/ja
Application granted granted Critical
Publication of JP6939247B2 publication Critical patent/JP6939247B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明は、ボールねじ軸及びボールねじ軸を用いた工作機械に関する。
従来、工作機械等では、公知のボールねじを利用して工具又は工作物を所望の位置まで直線移動させ位置決めを行なう技術がある。しかし、通常、工作機械によって加工を実施すると、各モータの発熱、及び加工による発熱等の各種要因によって工作機械は昇温する。そして、工具又は工作物の移動に伴うボールねじの回転やナット内のボールとの接触などにより、ボールねじを構成するボールねじ軸も昇温する。このため、ボールねじ軸は、自身の材質が有する固有の線膨張係数に応じて、昇温した温度分だけ軸線方向に伸長する。従って、制御装置がボールねじの駆動モータの回転制御を常温時における場合と同様の指令値で制御すると、工具の移動量がボールねじ軸の伸長分に応じて所望の値からずれてしまう虞がある。
これに対し、例えば特許文献1の工作機械では、ボールねじ2に螺合するナット5の温度を逐次測定し、測定したナットの温度からボールねじのねじ軸全長に亘る温度を推定し、推定温度に基づいて軸線方向における寸法変化量を算出して寸法変化量に応じた分だけ駆動モータの制御量を補正(熱変位補正)している。
特開平7−186005号公報
しかしながら、特許文献1の工作機械では、熱変位補正を行なうため、付帯装置が多数必要となる。このため、部品点数が多くなりシステムが複雑になる。
そこで、本発明は、温度上昇時においても付帯装置を設けずに精度よく位置制御が可能なボールねじ軸及びボールねじ軸を用いた工作機械を提供することを目的とする。
(1.ボールねじ軸)
本発明の第一の態様に係るボールねじ軸は、第一線膨張係数を有する金属材料によって円筒状に形成され円筒内側に中空部を備える外側軸と、前記第一線膨張係数よりも小さな第二線膨張係数を有する材料によって形成され、前記外側軸の前記中空部に前記外側軸と一体的に配置される内側軸と、を備え、前記内側軸を形成する前記材料は、炭素繊維強化プラスチックであり、前記内側軸の前記炭素繊維強化プラスチックの繊維の配向方向が、前記外側軸の軸線方向と一致する。
本発明の第二の態様に係るボールねじ軸は、第一線膨張係数を有する金属材料によって円筒状に形成され円筒内側に中空部を備える外側軸と、前記第一線膨張係数よりも小さな第二線膨張係数を有する材料によって形成され、前記外側軸の前記中空部に前記外側軸と一体的に配置される内側軸と、を備え、前記内側軸は、第一内側軸及び第二内側軸を備え、前記第一内側軸及び前記第二内側軸は、それぞれ前記外側軸の前記中空部に前記中空部の両端から各々挿入されて配置される。
これにより、ボールねじ軸は金属材料で形成された外側軸が第一線膨張係数に従って軸線方向に伸長しようとしても、外側軸の中空部に外側軸と一体的に配置された第一線膨張係数よりも小さな第二線膨張係数で形成された内側軸によって、その伸長を規制される。従って、ボールねじ軸が昇温しても、従来技術のように、昇温した温度をセンサで測定し、測定した温度変化に基づいて制御量を補正する必要がないので、付帯設備を設けずとも精度よくボールねじの位置制御ができる。
(2.ボールねじ軸を用いた工作機械)
本発明に係る工作機械は、上記ボールねじ軸を用いた工作機械であって、ボールねじ軸を用いて構成されるボールねじの作動により、工具又は工作物の位置が直線移動して位置決めされる。このように本発明に係る温度変化に対して寸法変化が小さなボールねじ軸が、工作機械において重要な要素である工具又は工作物の位置決めを行なうボールねじに適用されるので、精度よく工作物が作製できる。
本発明に係る工作機械の第一実施形態の研削盤の平面図である。 図1に示すII−II矢視断面図である。 図2に示すP視方向から視たボールねじ軸の端面の図である。 変形態様におけるボールねじ軸の軸線方向断面図(模式図)である。
<第一実施形態>
(1.工作機械の概要)
本発明に係るボールねじ軸を用いた工作機械の第一実施形態について図面を参照して説明する。なお、第一実施形態における工作機械は、図1に示す研削盤1である。具体的には、研削盤1は、軸状の工作物の研削が可能な砥石台トラバース型円筒研削盤である。なお、図1において、Z軸方向は、トラバース方向である。X軸方向は、トラバース方向と直角な水平方向である。また、Y軸方向は、トラバース方向と直角な鉛直方向である。図1に示すように、研削盤1は、主として、ベッド10、主軸台20、心押台30、砥石支持装置40及び制御装置50を備える。
ベッド10は、直方体状に形成され、設置面(床)上に固定される。このベッド10の上面には一対のZ軸ガイドレール11a,11bが設けられる。一対のZ軸ガイドレール11a,11bは、Z軸方向に延在し相互に平行に配置され固定される。一対のZ軸ガイドレール11a,11bは、砥石支持装置40を構成する砥石台トラバースベース41をZ軸方向に摺動可能とするものである。
そして、一対のZ軸ガイドレール11a,11bの間には、Z軸ボールねじ12、及びZ軸モータ12bが配置される。Z軸ボールねじ12は、砥石台トラバースベース41をZ軸方向に駆動する装置である。Z軸モータ12bは、Z軸ボールねじ12を構成するZ軸ボールねじ軸12a(本発明のボールねじ軸に相当)を回転駆動し、Z軸ボールねじ12を作動させる。
主軸台20は、主軸台本体21、主軸22、主軸モータ23及び主軸センタ24を備える。主軸22は、主軸台本体21に相対回転可能に挿通支持される。主軸台本体21は、主軸22の軸方向がZ軸方向と一致し、且つ一対のZ軸ガイドレール11a,11bと平行になるようにベッド10の上面に固定される。
主軸モータ23は、図1における主軸22の左端に設けられる。主軸22は、主軸モータ23の駆動により主軸台本体21に対してZ軸回りに回転駆動される。主軸センタ24は、軸状の工作物Wの軸方向一端を支持するよう、図1における主軸22の右端に取り付けられる。
心押台30は、心押台本体31及び心押センタ32を備える。心押センタ32は、心押台本体31に相対回転可能に挿通支持される。心押台本体31は、心押センタ32の軸方向がZ軸方向と一致し、且つ心押センタ32の回転軸が主軸22の回転軸と同軸となるようベッド10の上面に固定される。すなわち、心押センタ32は、主軸センタ24と工作物Wの軸方向両端を支持してZ軸回りに回転可能に配置される。心押センタ32は、工作物Wの長さに応じて心押台本体31の右端面からの突出量の調整が可能に構成される。
砥石支持装置40は、砥石台トラバースベース41、砥石台42及び円盤状の砥石車43(本発明の工具に相当)を備える。砥石台トラバースベース41は、矩形の平板状に形成される。上述したように、砥石台トラバースベース41は、ベッド10の上面において一対のZ軸ガイドレール11a,11b上をZ軸方向に摺動可能に配置される。
砥石台トラバースベース41は、Z軸ボールねじ軸12a(ボールねじ軸)と図略のボール(鋼球)を介して螺合する図略のZ軸ナット部材に連結される。なお、Z軸ボールねじ軸12a、図略のボール及び図略のZ軸ナット部材によってZ軸ボールねじ12が構成される。
そして、Z軸モータ12bの駆動によりZ軸ボールねじ軸12aが回転されると、Z軸ボールねじ軸12aと螺合するZ軸ナット部材がボール(図略)を介してZ軸ボールねじ軸12aの軸線方向に移動される。これにより、Z軸ナット部材と連結される砥石台トラバースベース41が一対のZ軸ガイドレール11a,11bに沿って移動される。
砥石台トラバースベース41の上面には、砥石台42を摺動可能とする一対のX軸ガイドレール41a,41bが、X軸方向に延在し、且つ、相互に平行に配置される。砥石台トラバースベース41の上面の一対のX軸ガイドレール41a,41bの間には、砥石台42をX軸方向に駆動するためのX軸ボールねじ13、及びX軸ボールねじ13を構成するX軸ボールねじ軸13a(本発明のボールねじ軸に相当)を回転駆動するX軸モータ13bが配設される。
砥石台42は、図2に示すように、X軸ボールねじ軸13a(ボールねじ軸)と図略のボール(鋼球)を介して螺合するX軸ナット部材13cに連結される。なお、X軸ボールねじ軸13a、図略のボール及びX軸ナット部材13cによってX軸ボールねじ13が構成される。
そして、X軸モータ13bの駆動によりX軸ボールねじ軸13aが回転されると、X軸ボールねじ軸13aと螺合するX軸ナット部材13cがボール(図略)を介してX軸ボールねじ軸13aの軸線方向に移動される(図2の矢印Ar1参照)。これにより、X軸ナット部材13cと連結される砥石台42が一対のX軸ガイドレール41a,41bに沿って移動される。
砥石台42は、図1に示すように、砥石台本体44,回転軸部材45及びベルト・プーリ機構46を備える。砥石台本体44は、図略の軸受を介して回転軸部材45をZ軸方向に延在する軸線周りに回転可能に支持する。回転軸部材45の一端には、円盤状の砥石車43が回転軸部材45と同軸で固定される。また、砥石台本体44の上面には、砥石回転用モータ47が固定される。砥石回転用モータ47は、ベルト・プーリ機構46と接続され、ベルト・プーリ機構46及びベルト・プーリ機構46と接続される回転軸部材45を介して砥石車43を回転駆動する。
制御装置50は、Z軸方向及びX軸方向における工作物Wに対する砥石車43(工具)の相対位置を制御して、工作物Wの外周面の研削を実施する。具体的には、制御装置50は、各モータ23,47を制御して、工作物W及び砥石車43をZ軸回りに回転させる。また、制御装置50は、各モータ12b,13bを回転制御して、Z軸ボールねじ12及びX軸ボールねじ13を作動させ、Z軸ナット部材(図略)及びX軸ナット部材13cの各軸線方向における直線移動量を制御する。
これにより、各ナット部材に連結される砥石台トラバースベース41及び砥石台42の各移動量を制御し、延いては砥石車43の移動量を制御する。なお、本実施形態において制御装置50は、研削盤周りの雰囲気温度、及び研削盤1(工作機械)の各部の温度変化に関わらず、予め設定された指令値に従って、砥石車43をZ軸方向又はX軸方向に移動させる制御を行なう。
(2.ボールねじ軸の詳細)
次に、Z軸ボールねじ軸12a(ボールねじ軸に相当)及びX軸ボールねじ軸13a(ボールねじ軸に相当)について、詳細に説明する。ただし、Z軸ボールねじ軸12aは、X軸ボールねじ軸13aと同様の構成を備える。このため、代表として、X軸ボールねじ軸13aのみについて詳細に説明し、Z軸ボールねじ軸12aについての詳細な説明は省略する。図3に示すように、X軸ボールねじ13を構成するX軸ボールねじ軸13aは、外側軸26、内側軸27及び接着層28を備える。
(2−1.外側軸26)
外側軸26は、第一線膨張係数α1を有する金属材料によって円筒状に形成され円筒内側に中空部26aを備える。本実施形態において、金属材料は鉄系材料とする。鉄系材料とは、鉄を主成分とする金属からなる材料をいう。鉄系材料の一例としては、クロムモリブデン鋼、ステンレス鋼、炭素鋼等が挙げられる。ただし、外側軸26の材質は、これらに限定されるものではなく、鉄系材料であれば、どのようなものでもよい。なお、参考のため記載しておくと、クロムモリブデン鋼の第一線膨張係数α1は、12.3X10−6/℃程度、ステンレス鋼の第一線膨張係数α1は、9.9〜17.3X10−6/℃程度、炭素鋼の第一線膨張係数α1は、9.6〜11.6X10−6/℃程度である。
また、外側軸26は、外周面26bに螺旋状に形成された外周ボール転動溝26b1を備える。外周ボール転動溝26b1は、外側軸26の径方向外側に配置されるX軸ナット部材13cの内周面(図略)に形成される内周ボール転動溝(図略)と対向し、内周ボール転動溝との間で図略のボールの循環路を形成する。X軸ナット部材13cは、外側軸26と内側軸27(以下で詳細に説明する)とがX軸ボールねじ軸13aを構成した状態(図2,図3参照)において、内周ボール転動溝と外側軸26の外周ボール転動溝26b1との間に図略のボールを介した状態でX軸ボールねじ軸13a(外側軸26)と螺合される。
(2−2.内側軸27)
内側軸27は、第二線膨張係数α2を有する材料によって、円筒状(又は円柱状)に形成される。ここで、第二線膨張係数α2は、上述した外側軸26が有する第一線膨張係数α1よりも小さい(α2<α1)。また、本実施形態において、内側軸27の軸線方向長さL1(図略)は、外側軸26の軸線方向長さL2(図略)と同じとする(L1=L2)。そして、内側軸27は、外側軸26の中空部26aに配置される。
本実施形態において、内側軸27を形成する材料は、炭素繊維強化プラスチック(以後、CFRPとのみ称す場合がある)である。そして、内側軸27は、CFRPの炭素繊維の配向方向の少なくとも一部が、外側軸26(X軸ボールねじ13)の軸線方向と一致するよう形成される。なお、図3において、CFRPの炭素繊維Qの配向方向が外側軸26の軸線方向と一致する状態を、模式図で示す。
CFRPの線膨張係数である第二線膨張係数α2は、0.2〜0.4X10−6/℃程度である。つまり、第二線膨張係数α2は、第一線膨張係数α1に対し非常に小さい。また、CFRPは、炭素繊維の配向方向における引張弾性率が、約150〜300GPaであり、極めて高い。
つまり、CFRPの炭素繊維の配向方向の少なくとも一部が、外側軸26(X軸ボールねじ13)の軸線方向と一致するよう形成された内側軸27は、熱の影響を受け昇温しても炭素繊維の配向方向における熱膨張量は小さい。また、内側軸27は、高弾性率であるため、外側軸26の膨張に起因して内側軸27に作用する力による伸びで破壊されにくい。
図3に示すように、本実施形態においては、常温時において、中空部26aの内周面26a1の内径φAが、内側軸27の外周面27aの外径φBよりも若干大きくなるよう形成される(φA>φB)。つまり、常温時においては、内側軸27の外周面27aと中空部26aの内周面26a1との間には、若干の隙間tを有する。隙間tには、接着剤が充填され、硬化し接着層28を形成する。
そして、硬化した接着層28の接着剤によって、内側軸27の外周面27aと中空部26aの内周面26a1との間が強固に接着される。つまり、内側軸27が外側軸26の中空部26aに接着層28(接着剤)を介して外側軸26と一体的に配置される。
本実施形態において、接着剤は、例えば二液性のエポキシ樹脂系接着剤である。二液性のエポキシ樹脂系接着剤は、公知の接着剤である。通常、二液性のエポキシ樹脂系接着剤を接着剤として使用する場合、使用前に分離して保管されるエポキシ基を含有する液状の化合物(主剤)と、アミン類や酸無水物などで形成される液状の硬化剤との二種の液を使用直前に混合する。そして、混合後の混合接着剤(以降、二液を混合した状態のエポキシ樹脂系接着剤を「混合接着剤」と称す)を接着させたい二部材間に充填(配置)する。その後、混合接着剤は硬化し二部材を強固に接着する。ただし、接着剤は、上記で説明した二液性に限らず、一液性の接着剤であっても良い。
(3.作用)
次に、研削盤1に用いられたX軸ボールねじ13(Z軸ボールねじ12)の作用について説明する。研削盤1が始動されると、制御装置50は、X軸モータ13b(Z軸モータ12b)を回転制御して、X軸ボールねじ13(Z軸ボールねじ12)を作動させ、X軸ナット部材13c(Z軸ナット部材(図略))の軸線方向における直線移動量を制御する。
これにより、X軸ナット部材13c(Z軸ナット部材(図略))に連結される砥石台42(砥石台トラバースベース41)の移動量を制御し、延いては砥石車43の移動量を制御する。上述したように、制御装置50は、ボールねじ軸の温度、研削盤周りの雰囲気温度、及び研削盤1(工作機械)の各部の温度変化に関わらず、予め設定された指令値に従って、砥石車43をZ軸方向又はX軸方向に移動させる制御を行なう。これにより、工作物Wの研削を予め設定されたプログラムに基づき行なう。
研削盤1の始動時においては、研削盤1自体の温度はそれほど高温にはなっておらず常温近傍にある。このため、内側軸27の外周面27a及び中空部26aの内周面26a1は残留応力、特に熱に基づく残留応力を一切有しておらずX軸ボールねじ13(Z軸ボールねじ12)の軸線方向における寸法変化はない。これにより、制御装置50が、予め設定された指令値に従って、砥石車43をZ軸方向又はX軸方向に移動させる制御を行ない工作物Wの研削を行なっても、砥石車43の位置は精度よく制御されるので、工作物Wを精度よく研削できる。
しかしながら、工作物Wの研削が進んでくると、ボールねじ軸自体の昇温、研削盤1自体の発熱、及び研削される工作物Wの発熱等によって、X軸ボールねじ13(Z軸ボールねじ12)が昇温する。このため、X軸ボールねじ13(Z軸ボールねじ12)を構成する、鉄系材料(例えばクロムモリブデン鋼)で形成された外側軸26が、クロムモリブデン鋼の第一線膨張係数α1の大きさに応じて軸線方向に線膨張(伸長)しようとする。
これにより、外側軸26は、外側軸26の中空部26aの内周面26a1に接着される接着層28との接着界面に対し線膨張(伸長)方向にせん断応力を付与する。これに伴い、接着層28、及び接着層28と外周面27aで接着される内側軸27を軸線方向に引張ることになる。
しかしながら、内側軸27は、炭素繊維強化プラスチック(CFRP)で形成されるとともに、CFRPの炭素繊維の配向方向の多く(少なくとも一部に相当)が、外側軸26(X軸ボールねじ13)の軸線方向と一致するよう形成される。
また、上述したように、CFRPの線膨張係数である第二線膨張係数α2は、第一線膨張係数α1より非常に小さい。また、CFRPは、炭素繊維の配向方向における弾性率、及び引張り強度が、鉄系材料に対して極めて高い。
このため、内側軸27が接着層28を介し、伸長しようとする外側軸26に引っ張られても、内側軸27は、大きく伸長することはない。即ち、内側軸27が接着層28を介して外側軸26の伸長を規制するので、X軸ボールねじ13として全長が変化することはない。なお、Z軸ボールねじ12についても同様である。これにより、制御装置50が、温度変化に関わらず、予め設定された指令値に従って、砥石車43をZ軸方向又はX軸方向に移動させる制御を行ない工作物Wの研削を行なっても、砥石車43の位置は精度よく制御されるので、工作物Wを精度よく研削できる。
(4.その他)
なお、上記実施形態では、工作機械を研削盤1として説明した。しかし、この態様に限らず、変形例として工作機械は、公知のマシニングセンタ(縦型及び横型、図略)であっても良い。この場合、マシニングセンタ(縦型及び横型)において、工具を駆動させる三つの駆動軸として相互に直交する三つの直進軸(X,Y,Z軸)を作動させる各ボールねじに本発明に係るボールねじを適用すればよい。これによっても上記実施形態と同様の効果が得られる。また、上記以外にも、ボールねじを使用する工作機械であれば、どのようなものにも適用できる。また、本発明に係るボールねじは、工作機械に限らず、ボールねじを使用する工作機械以外のどのような装置にも適用可能である。
また、上記実施形態では、X軸ボールねじ13(Z軸ボールねじ12)において、内側軸27の軸線方向長さL1(図略)は、外側軸26の軸線方向長さL2(図略)と同じであるとして説明した(L1=L2)。しかし、この態様には限らない。外側軸26のうち、軸線方向において、機能上膨張を許容しない部分にのみ、内側軸27を外側軸26と一体的に配置し、膨張を許容してもよい部分には、内側軸27を配置しなくてもよい。これによっても十分な効果は得られる。
また、上記実施形態では、内側軸27の外周面27aと外側軸26の中空部26aの内周面26a1との間の隙間tに混合接着材を充填し硬化させて、内側軸27と外側軸26とを一体的に配置すると説明した。しかし、この態様には限らない。外側軸を加熱した後、加熱によって内径が拡大した中空部に内側軸を挿入し、外側軸の冷却後に内側軸と外側軸とを一体的に配置する公知の焼き嵌めによって、各ボールねじ軸を形成してもよい。なお、このとき、接着層は不要である。これによっても相応の効果が得られる。
また、上記実施形態では、内側軸27を炭素繊維強化プラスチック(CFRP)で形成した。しかし、この態様にはかぎらない。内側軸27は、線膨張係数が、外側軸26の第一線膨張係数α1より非常に小さければ、他の材質で形成されてもよい。例えばインバー(不変鋼)やセラミック(例えば、アドセラム等)でもよい。インバーは、常温付近で熱膨張率が比較的小さい合金であり、スーパーインバー、ステンレスインバー、Fe−Pt合金、Fe−Pd合金、36%ニッケル鋼などが知られている。ちなみに、36%ニッケル鋼の線膨張係数は、1.4×10−6/℃である。
また、上記実施形態では、内側軸素材を形成する際、一方向に配向された炭素繊維によって形成するものとして説明した。しかし、この態様には限らない。炭素繊維は、直交、又は所定の角度を有して二方向以上に配向された状態で形成されてもよい。ただし、配向方向のうち一方向は、内側軸の軸線方向と一致していることが好ましい。これによっても十分な効果が期待できる。
また、上記実施形態では、砥石車43(工具)の位置をボールねじ13(12)によって制御し位置決めする態様とした。しかしながら、この態様には限らず、砥石車43(工具)の位置及び工作物Wの位置、又は工作物Wのみの位置をボールねじによって制御する態様であっても良い。
また、上記実施形態の態様に限らず、変形態様として、図4の模式図に示すように、内側軸を例えば等分で二分割し、第一内側軸127a及び第二内側軸127bとして、外側軸26の中空部26aに配置しても良い。このとき、第一内側軸127a及び第二内側軸127bは、それぞれ外側軸26の中空部26aに中空部26aの両端から各々挿入して配置するものとする。ここで、第一内側軸127a及び第二内側軸127bの各外周面と中空部26aの内周面26a1との間には接着層28を備える。また、外側軸26の中空部26aに配置された第一内側軸127a及び第二内側軸127bは、対向する各端面間に隙間βを有するよう配置する。ただし、隙間βは無くても良い。
内側軸27を第一内側軸127a及び第二内側軸127bに二分割したことにより、内側軸が長軸でかつ一本で形成される場合と比べ、外側軸26の軸線(軸心)に対する内側軸の軸線(軸心)のずれ量を抑制することができる。また、第一内側軸127a及び第二内側軸127bの対向する各端面間に隙間βを設けたことにより、第一内側軸127aと第二内側軸127bとの間の干渉が防止できる。
また、上記実施形態によれば、内側軸27の炭素繊維強化プラスチック(CFRP)の繊維の配向方向の少なくとも一部が、外側軸26の軸線方向と一致するよう形成したが、この態様には限らない。内側軸27の炭素繊維強化プラスチック(CFRP)の繊維の配向方向は、外側軸26の軸線方向に対して、0度から20度程度の小さな傾きを有して形成されても良い。
(5.実施形態による効果)
上記実施形態によれば、ボールねじ軸13a(12a)は、第一線膨張係数α1を有する金属材料である鉄系材料(例えば、クロムモリブデン鋼)によって円筒状に形成され円筒内側に中空部26aを備える外側軸26と、第一線膨張係数α1よりも小さな第二線膨張係数α2を有する材料によって形成され、外側軸26の中空部26aに外側軸26と一体的に配置される内側軸27と、を備える。
これにより、ボールねじ軸13a(12a)は鉄系材料(金属材料)で形成された外側軸26が第一線膨張係数α1に従って軸線方向に伸長しようとしても、外側軸26の中空部26aに外側軸26と一体的に配置された第一線膨張係数α1よりも小さな第二線膨張係数α2で形成された内側軸27によって、その伸長を規制される。従って、ボールねじ軸13a(12a)が昇温しても、従来技術のように、昇温した温度をセンサで測定し、測定した温度変化に基づいて制御量を補正する必要がないので、使用する部品点数が抑制でき、機械を簡素化できる。
また、上記実施形態によれば、内側軸27を形成する材料は、炭素繊維強化プラスチック(CFRP)である。CFRPの第二線膨張係数α2は、外側軸26の第一線膨張係数α1より非常に小さい。このため、内側軸27は、熱の影響を受け昇温してもほとんど熱膨張しない。これにより、外側軸26が第一線膨張係数α1に従って軸線方向に伸長しようとしても、外側軸26の伸長を効果的に規制することができる。
また、上記実施形態によれば、内側軸27の炭素繊維強化プラスチック(CFRP)の繊維の配向方向の少なくとも一部が、外側軸26の軸線方向と一致する。このため、内側軸27は、熱の影響を受け昇温しても、特に炭素繊維の配向方向である軸線方向における熱膨張は小さい。また、配向方向における引張りに対して特に高弾性率である。これにより、外側軸26が第一線膨張係数α1に従って軸線方向に伸長しようとしても、外側軸26の伸長をより効果的に規制することができる。
また、上記実施形態の変形態様によれば、ボールねじ軸の内側軸は第一内側軸127a及び第二内側軸127bを備え、第一内側軸127a及び第二内側軸127bはそれぞれ外側軸26の中空部26aに中空部26aの両端から各々挿入されて配置される。これにより、内側軸が長軸でかつ一本で形成される場合と比べ、外側軸26の軸線(軸心)に対する内側軸の軸線(軸心)のずれ量を抑制することができる。
また、上記実施形態の変形態様によれば、外側軸26の中空部26aに配置された第一内側軸127a及び第二内側軸127bは、対向する各端面間に隙間βを有する。これにより、第一内側軸127aと第二内側軸127bとの間の干渉が防止できる。
また、上記実施形態によれば、工作機械は、上記ボールねじ軸13a(12a)を用いた研削盤1であって、ボールねじ軸13a(12a)を用いて構成されるボールねじ13(12)の作動により、砥石車43(工具)が直線移動して位置決めされる。
このように本発明に係る温度変化に対して寸法変化が小さなボールねじ軸13a(12a)が、研削盤1(工作機械)の作動において重要な要素である砥石車43(工具)の位置決めを行なうボールねじに適用されるので、精度よく工作物が作製できる。
1;研削盤(工作機械)、 12a;Z軸ボールねじ軸、 13a;X軸ボールねじ軸、 26;外側軸、 26a;中空部、 26a1;内周面、 26b;外周面、 27;内側軸、 27a;外周面、 28;接着層、 43;砥石車(工具)、 W;工作物、 α1;第一線膨張係数、 α2;第二線膨張係数。

Claims (5)

  1. 第一線膨張係数を有する金属材料によって円筒状に形成され円筒内側に中空部を備える外側軸と、
    前記第一線膨張係数よりも小さな第二線膨張係数を有する材料によって形成され、前記外側軸の前記中空部に前記外側軸と一体的に配置される内側軸と、
    を備え
    前記内側軸を形成する前記材料は、炭素繊維強化プラスチックであり、
    前記内側軸の前記炭素繊維強化プラスチックの繊維の配向方向が、前記外側軸の軸線方向と一致する、ボールねじ軸。
  2. 前記内側軸は第一内側軸及び第二内側軸を備え、
    前記第一内側軸及び前記第二内側軸はそれぞれ前記外側軸の前記中空部に前記中空部の両端から各々挿入されて配置される、請求項に記載のボールねじ軸。
  3. 第一線膨張係数を有する金属材料によって円筒状に形成され円筒内側に中空部を備える外側軸と、
    前記第一線膨張係数よりも小さな第二線膨張係数を有する材料によって形成され、前記外側軸の前記中空部に前記外側軸と一体的に配置される内側軸と、
    を備え、
    前記内側軸は、第一内側軸及び第二内側軸を備え、
    前記第一内側軸及び前記第二内側軸は、それぞれ前記外側軸の前記中空部に前記中空部の両端から各々挿入されて配置される、ボールねじ軸。
  4. 前記外側軸の前記中空部に配置された前記第一内側軸及び前記第二内側軸は、対向する各端面間に隙間を有する、請求項2又は3に記載のボールねじ軸。
  5. 請求項1−の何れか1項に記載の前記ボールねじ軸を用いた工作機械であって、
    前記ボールねじ軸を用いて構成されるボールねじの作動により、工具又は工作物が直線移動して位置決めされるボールねじ軸を用いた工作機械。
JP2017161052A 2017-08-24 2017-08-24 ボールねじ軸及びボールねじ軸を用いた工作機械 Active JP6939247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161052A JP6939247B2 (ja) 2017-08-24 2017-08-24 ボールねじ軸及びボールねじ軸を用いた工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161052A JP6939247B2 (ja) 2017-08-24 2017-08-24 ボールねじ軸及びボールねじ軸を用いた工作機械

Publications (2)

Publication Number Publication Date
JP2019039477A JP2019039477A (ja) 2019-03-14
JP6939247B2 true JP6939247B2 (ja) 2021-09-22

Family

ID=65727510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161052A Active JP6939247B2 (ja) 2017-08-24 2017-08-24 ボールねじ軸及びボールねじ軸を用いた工作機械

Country Status (1)

Country Link
JP (1) JP6939247B2 (ja)

Also Published As

Publication number Publication date
JP2019039477A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP5364299B2 (ja) 線形摩擦溶接装置及び方法
EP2684640B1 (en) Machine tool and method using such a machine
JP2008030190A (ja) 同心性を向上させた工作機械
JP6911547B2 (ja) 溝の超仕上げ方法及び軸受の製造方法
JP5353586B2 (ja) 工作機械および加工方法
US6988933B2 (en) Truing method and apparatus
KR102208309B1 (ko) 중심 및/또는 편심 워크피스 영역, 특히 크랭크샤프트의 베어링 포인트의 가공 동안 중심 워크피스 영역을 지지하는 방진구, 및 이러한 방진구를 갖는 연삭기
JP6939247B2 (ja) ボールねじ軸及びボールねじ軸を用いた工作機械
JP5581825B2 (ja) 工作機械の基準位置検出装置および基準位置検出方法
JP6237097B2 (ja) 球体研磨装置および球体研磨方法
CN107530860A (zh) 利用主轴旋转轴线的测微前进控制和倾斜的主轴定位
JP2005279902A (ja) 研磨加工装置及び研磨加工方法
JPH10296631A (ja) 研削ホイール用超精密ツルーイング装置
JP2005254333A (ja) 円筒研削盤及び研削方法
JP2004082261A (ja) ねじ研削盤
CN210435923U (zh) 一种晶体材料均一化抛光装置
JP6145384B2 (ja) ダイシング装置
JP3753886B2 (ja) 高精度加工装置
JP5789171B2 (ja) 方形ワークの三面取り研削方法
JP3959053B2 (ja) 表面研削装置の微小チルト装置
JP2008307627A (ja) ドラム型調整車の研磨装置
JP6497214B2 (ja) 球体研磨装置及びそのツルーイング方法
JP2015217496A (ja) 主軸装置
JP6597012B2 (ja) 研削盤
JP4127247B2 (ja) 研削装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150