JP6922797B2 - 静電容量式圧力センサ - Google Patents

静電容量式圧力センサ Download PDF

Info

Publication number
JP6922797B2
JP6922797B2 JP2018047681A JP2018047681A JP6922797B2 JP 6922797 B2 JP6922797 B2 JP 6922797B2 JP 2018047681 A JP2018047681 A JP 2018047681A JP 2018047681 A JP2018047681 A JP 2018047681A JP 6922797 B2 JP6922797 B2 JP 6922797B2
Authority
JP
Japan
Prior art keywords
electrode
pressure sensor
substrate
flexible substrate
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047681A
Other languages
English (en)
Other versions
JP2019158716A (ja
Inventor
淳也 山本
淳也 山本
貴弘 増田
貴弘 増田
将貴 矢和田
将貴 矢和田
千紘 宮原
千紘 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018047681A priority Critical patent/JP6922797B2/ja
Publication of JP2019158716A publication Critical patent/JP2019158716A/ja
Application granted granted Critical
Publication of JP6922797B2 publication Critical patent/JP6922797B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、静電容量式圧力センサに関する。
圧力センサは、主として気体や液体の圧力を検出するものであり、気圧センサや高度センサ、水圧センサとして各種の装置に適用されている。また、近年においては、これを高度センサとして利用する場合の一態様として、位置情報を得るためのナビゲーション装置への応用やユーザの運動量を精緻に計測する計測器への応用等、その適用範囲が広がりつつある。
MEMS(Micro Electro Mechanical System)センサチップとしての静電容量式圧力
センサが知られている。静電容量式圧力センサは、可動電極を有する基板と、固定電極を有する硬質基板とを備えている。可動電極と固定電極との間には、ギャップに応じた静電容量が発生する。静電容量式圧力センサに圧力が印加されることにより、可動電極を有する基板が撓み、可動電極と固定電極との間のギャップが変化することで、静電容量の変化を検出する。静電容量の変化に応じた圧力が検出される。フレキシブルな圧力センサデバイスが提案されている(特許文献1参照)。
特開2007−178256号公報
本発明は、フレキシブル基板の屈曲時でも高い測定精度の静電容量式圧力センサを提供することを目的とする。
本発明では、上記課題を解決するために、以下の手段を採用した。すなわち、本発明は、第1電極を含むフレキシブル基板と、前記フレキシブル基板に対向して配置され、前記第1電極との間に中空部を介して前記第1電極に対向配置される第2電極を含む硬質基板と、前記フレキシブル基板と前記硬質基板との間であって、前記中空部を囲むように設けられ、前記フレキシブル基板と前記硬質基板とを接合する接合部と、を備え、前記硬質基板における前記フレキシブル基板との対向面の法線方向からの平面視において、前記第1電極及び前記第2電極が前記接合部の外周から外側にはみ出していない、静電容量式圧力センサである。
静電容量式圧力センサの硬質基板におけるフレキシブル基板との対向面の法線方向からの平面視において、フレキシブル基板の第1電極及び硬質基板の第2電極が接合部の外周から外側にはみ出していない、これにより、静電容量式圧力センサに圧力が印加され、第1電極が撓んだ後における寄生容量の変化が抑制される。すなわち、圧力センサに対して圧力が印加される前の寄生容量と圧力センサに対して圧力が印加された後の寄生容量との差が低減する。したがって、静電容量式圧力センサによれば、寄生容量の変化が抑制されるため、静電容量式圧力センサの測定精度が向上する。これにより、フレキシブル基板の屈曲時でも高い測定精度の静電容量式圧力センサを提供することができる。
静電容量式圧力センサにおいて、前記中空部内に設けられ、前記第2電極に電気的に接
続された金属膜を備え、前記第1電極の外周部分が、前記接合部によって支持されており、前記第1電極と前記金属膜との間の距離が、前記中空部の中心側から前記中空部の外周側に向かって短くなっている。第1電極の外周部分が、接合部によって支持されているため、圧力センサに対して圧力が印加されてフレキシブル基板が撓んだ際、第1電極の中心部分の撓み量が大きく、第1電極の外周部分の撓み量が小さい。フレキシブル基板が撓んだ際、中空部の中心側における第1電極と金属膜との間の距離が小さく、かつ、中空部の外周側における第1電極と金属膜との間の距離が小さくなる。これにより、静電容量式圧力センサの測定感度が向上し、静電容量式圧力センサの測定精度が向上する。
静電容量式圧力センサにおいて、前記接合部は、前記フレキシブル基板側に配置された金属部材と、前記硬質基板側に配置された防湿性の高い絶縁膜とを含む。これにより、接合部における絶縁膜の吸湿が抑制され、静電容量式圧力センサの測定精度が向上する。静電容量式圧力センサは、前記第2電極に電気的に接続され、前記フレキシブル基板に設けられた信号線と、前記フレキシブル基板に設けられたシールド線と、を備え、前記信号線を挟んでシールド線が配置されている。これにより、信号線によって伝播される信号に混入するノイズが抑制され、静電容量式圧力センサの測定精度が向上する。静電容量式圧力センサは、前記フレキシブル基板に設けられ、前記第1電極に接続された熱伝導性部材と、前記フレキシブル基板に設けられ、前記熱伝導性部材の近傍に配置された温度センサと、を備える。これにより、温度センサは、熱伝導性部材の温度を第1電極の温度として測定することができる。
静電容量式圧力センサは、前記フレキシブル基板における前記硬質基板との対向面の反対面に設けられたシールド膜を備える。シールド膜がフレキシブル基板を覆うことにより、フレキシブル基板の吸湿が抑制され、静電容量式圧力センサの測定精度が向上する。静電容量式圧力センサにおいて、前記第1電極及び前記シールド膜が同電位である。これにより、シールド膜に人体が触れた場合における寄生容量の発生が抑制されため、静電容量式圧力センサの測定精度が向上する。静電容量式圧力センサは、前記中空部内に設けられ、前記第2電極上に配置された絶縁性の突起部材を備える。これにより、静電容量式圧力センサに圧力が印加され、フレキシブル基板が撓んだ際、突起部材が第1電極と第2電極との接触を阻止するため、第1電極と第2電極との短絡が回避される。
静電容量式圧力センサにおいて、前記フレキシブル基板は前記第1電極を複数含んでおり、複数の前記第1電極に対応する複数の前記第2電極、複数の前記硬質基板及び複数の前記接合部を備える。これにより、フレキシブル基板と複数の硬質基板とが接合された静電容量式圧力センサを用いた圧力の面測定が可能となる。
本発明によれば、フレキシブル基板の屈曲時でも高い測定精度の静電容量式圧力センサを提供することができる。
図1は、実施形態に係る圧力センサの一例を示す断面図である。 図2は、可動電極の平面図である。 図3は、固定電極の平面図である。 図4は、実施形態に係る圧力センサの一例を示す断面図である。 図5は、圧力センサの平面図の一例である。 図6Aは、実施形態に係る圧力センサの一例を示す断面図である。 図6Bは、実施形態に係る圧力センサの一例を示す断面図である。 図7は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図8は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図9は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図10は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図11は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図12は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図13は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図14は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図15は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図16は、実施形態に係る圧力センサの製造工程の一例を示す図である。 図17は、実施形態に係る圧力センサの製造工程の一例を示す図である。
以下、実施形態について図を参照しながら説明する。以下に示す実施形態は、本願の一態様であり、本願の技術的範囲を限定するものではない。
<適用例>
まず、本発明が適用される場面の一例について説明する。図1は、実施形態に係る圧力センサ100の一例を示す断面図である。圧力センサ100は、静電容量式圧力センサの一例である。圧力センサ100は、可動部10及び固定基板部20を備える。可動部10は、可撓性を有する。可動部10は、シート基板11及び可動電極12を含む。可動電極12は、導体部13及びメッキ部14を有する。可動部10は、フレキシブル基板の一例である。また、シート基板11が、フレキシブル基板の一例であってもよい。可動電極12は、第1電極の一例である。
固定基板部20は、基板部21、固定電極22及び金属膜25を含む。固定基板部20は、可動部10との間に中空部(空隙)30を介して可動部10に対向して配置されている。固定電極22は、可動電極12との間に中空部30を介して可動電極12に対向配置されている。絶縁部23は、第1絶縁膜26及び第2絶縁膜27を有する。絶縁部23は、固定電極22を囲むようにして、固定基板部20上に設けられている。絶縁部23及び壁部24は、中空部30を囲むように設けられており、可動部10と固定基板部20とを接合する。固定基板部20は、硬質基板の一例である。固定電極22は、第2電極の一例である。絶縁部23は、固定基板部20側に配置され、壁部24は、可動部10側に配置されている。絶縁部23及び壁部24は、接合部の一例である。更に、圧力センサ100は、可動部10に設けられたシールド膜31を備える。なお、実施形態において、金属膜25及びシールド膜31の形成を省略してもよい。圧力センサ100は、可動電極12が撓むことで生じる静電容量の変化を検出することにより、可動電極12に印加された圧力を測定する。
図2は、可動電極12の平面図である。図3は、固定電極22の平面図である。なお、図1は、図2のB−B線における断面及び図3のD−D線における断面に対応している。図2の例では、平面視における可動電極12の形状は円形であり、図3の例では、平面視における固定電極22の形状は円形である。図2及び図3の例に限定されず、平面視における可動電極12の形状及び平面視における固定電極22の形状は、楕円形、矩形等の他の形状であってもよい。図2に示すように、可動電極12は、グランド(GND)線16に接続されている。また、信号線15が、可動電極12を挟むようにして、グランド線16に対向配置されている。信号線15は、可動電極12から離間している。可動電極12、信号線15及びグランド線16は、可動部10における固定基板部20との対向面に設けられている。具体的には、可動電極12、信号線15及びグランド線16は、シート基板11の下面に設けられている。シート基板11の下面は、基板部21の上面と対向している。図2では、シート基板11の外形線を点線で示している。図3に示すように、固定電極22は、信号パッド28に接続されている。また、グランドパッド29が、固定電極
22を挟むようにして、信号パッド28に対向配置されている。
固定基板部20における可動部10との対向面の法線方向(図1の矢印Aで示す方向)からの平面視において、可動電極12及び固定電極22が壁部24の外周から外側にはみ出していない。これにより、圧力センサ100に圧力が印加され、可動電極12が撓んだ後における寄生容量の変化が抑制される。すなわち、圧力センサ100に対して圧力が印加される前の寄生容量と圧力センサ100に対して圧力が印加された後の寄生容量との差が低減する。これにより、寄生容量の変化が抑制されるため、圧力センサ100の測定精度が向上する。実施形態によれば、可動部10の屈曲時でも高い測定精度の圧力センサ100を提供することができる。
<実施形態>
図4は、実施形態に係る圧力センサ100の一例を示す断面図である。図5は、圧力センサ100の平面図の一例である。図4は、図5のF−F線に沿った断面を示している。また、図4は、図2のC−C線における断面及び図3のE−E線における断面に対応している。図5では、4つの圧力センサ100(100A、100B、100C及び100D)が例示されると共に、コネクタ200及び静電容量測定回路300が例示される。図5の例では、4つの圧力センサ100が例示されているが、圧力センサ100の個数は増減可能である。4つの圧力センサ100は、シート基板11を共有する。
可動部10は、シート基板11、可動電極12、信号線15、グランド線16を含む。シート基板11は、可撓性を有する部材(例えば、ポリイミド)で形成される。シート基板11の下面に可動電極12、信号線15、グランド線16が設けられている。可動電極12、信号線15、グランド線16は、導電性を有する。可動電極12は、導体部13A及びメッキ部14Bを有する。信号線15は、導体部13B及びメッキ部14Bを有する。グランド線16は、導体部13C及びメッキ部14Cを有する。導体部13A、13B、13Cは、例えば、Cu(銅)等の金属で形成されている。メッキ部14A、14B、14Cは、例えば、Ti(チタン)、Au(金)等で形成されている。なお、導体部13A、13B、13Cを総称する場合、導体部13と称し、メッキ部14A、14B、14Cを総称する場合、メッキ部14と称する。
固定基板部20は、基板部21、固定電極22、金属膜25、信号パッド28、グランドパッド29を含む。基板部21は、容易に変形しない部材(例えば、ガラス)で形成される。基板部21の厚さは、例えば、300μm以上600μm以下であるが、この範囲に限定されない。基板部21が容易に変形しない部材で形成されるため、シート基板11への圧力の印加により可動部10が撓んでも、固定基板部20の変形は抑制される。基板部21の上面に固定電極22、信号パッド28、グランドパッド29が配置されている。基板部21の上面は、シート基板11の下面と対向している。固定電極22、金属膜25、信号パッド28、グランドパッド29は、導電性を有する。固定電極22、信号パッド28、グランドパッド29は、例えば、Cr(クロム)等で形成されている。金属膜25は、例えば、Ti、Au等で形成されている。
固定基板部20には、固定電極22、信号パッド28、グランドパッド29の周囲を囲むと共に、固定電極22、信号パッド28、グランドパッド29の一部を覆う絶縁部23が設けられている。絶縁部23は、第1絶縁膜26、第2絶縁膜27を有する。第1絶縁膜26は、例えば、TEOS(テトラエトキシシラン)、SiO(二酸化ケイ素)等によって形成されている。第2絶縁膜27は、SiN(窒化ケイ素)によって形成されている。固定電極22の一部を覆う絶縁部23A上に壁部24Aが設けられている。絶縁部23A及び壁部24Aは、基板部21上において、中空部30を囲むように設けられている。信号パッド28の一部を覆う絶縁部23B上に壁部24Bが設けられている。グランド
パッド29の一部を覆う絶縁部23C上に壁部24Cが設けられている。壁部24A、24B、24Cは、例えば、Cu等の金属で形成されている。なお、絶縁部23A、23B、23Cを総称する場合、絶縁部23と称する。
絶縁部23(23A、23B、23C)及び壁部24(24A、24B、24C)が、可動部10と固定基板部20とを接合することで可動部10と固定基板部20とが一体となり、圧力センサ100が形成される。壁部24Bは、信号線15及び信号パッド28に接触している。壁部24Bを介して、信号線15が信号パッド28に電気的に接続されている。固定電極22が、信号パッド28に接続されているため、信号線15が固定電極22に電気的に接続されている。壁部24Cを介して、グランド線16がグランドパッド29に電気的に接続されている。圧力センサ100は、可動電極12及び固定電極22を電極板とするコンデンサとして動作する。
図5に示すように、複数の信号線15がコネクタ200に接続されている。コネクタ200は、静電容量測定回路300に接続されている。図5に例示されるように、シート基板11を共有して複数の圧力センサ100を並べることが可能である。すなわち、単一のシート基板11に複数の可動電極12を設けることにより、単一のシート基板11に複数の可動電極12及び複数の固定基板部20を列状、格子状又はアレイ状に配置することが可能である。したがって、圧力センサ100は、単一のシート基板11を共有する複数のセンサ素子を有する。この場合、複数の可動電極12同士が離間し、複数の固定基板部20同士が離間している。そのため、圧力センサ100に圧力が印加された際、隣接する複数の可動部10の一方が、隣接する複数の可動部10の他方の基板が撓むことを阻害しない。したがって、圧力センサ100に圧力が印加された際における可動部10の撓みが阻害されず、圧力センサ100に印加された圧力を高い精度で測定することができる。
圧力センサ100では、中空部30の上方から圧力センサ100に圧力が印加されると、印加された圧力に応じて可動部10が固定基板部20に向かって撓む。また、圧力センサ100に圧力が印加されなくなると、圧力センサ100は圧力が印加される前の状態に戻る。すなわち、圧力センサ100では、印加された圧力に応じて、可動電極12と固定電極22との間の距離が変動する。可動電極12と固定電極22との間の距離が変動すると、圧力センサ100の静電容量が変動する。例えば、図5に例示される静電容量測定回路300によって圧力センサ100の静電容量の変動が測定されることで、圧力センサ100に印加された圧力が検出される。
平面視において、可動電極12及び固定電極22が壁部24の外周から外側にはみ出している場合、可動電極12が撓んだ後における寄生容量の変化が大きい。実施形態によれば、平面視において、可動電極12及び固定電極22が壁部24の外周から外側にはみ出していない。可動電極12が撓んだ後における寄生容量の変化が抑制されるため、圧力センサ100の測定精度が向上する。
第1絶縁膜26は、TEOS、SiO等によって形成された酸化シリコン膜である。酸化シリコン膜は吸湿性を有する。酸化シリコン膜が吸湿することにより、圧力センサ100の測定に悪影響を与える可能性がある。第2絶縁膜27は、SiNによって形成された窒化シリコン膜である。窒化シリコン膜は防湿性の高い部材である。第2絶縁膜27は、防湿性の高い絶縁膜の一例である。絶縁部23が第2絶縁膜27を含むことにより、絶縁部23の吸湿が抑制され、圧力センサ100の測定精度が向上する。例えば、図4に示すように、第2絶縁膜27が第1絶縁膜26を覆うことにより、第1絶縁膜26の吸湿が抑制され、圧力センサ100の測定精度が向上する。
図4に示すように、中空部30内であって、固定電極22上に金属膜25が設けられて
いる。金属膜25は、固定電極22に電気的に接続されている。可動電極12の外周部分が、絶縁部23A、壁部24Aによって支持されている。壁部24Aは、金属部材の一例である。図4の例では、金属膜25は、中空部30の中心側から中空部30の外周側に向かって高くなる段差を有している。したがって、可動電極12と金属膜25との間の距離が、中空部30の中心側から中空部30の外周側に向かって短くなっている。また、金属膜25が、中空部30の中心側から中空部30の外周側に向かって高くなる傾斜面を有してもよい。中空部30の上方から圧力センサ100に圧力が印加されると、可動部10が固定基板部20に向かって撓む。可動部10が撓んだ際、可動電極12と固定電極22との間の距離に基づいて、圧力センサ100に印加された圧力が検出される。可動電極12の外周部分が、絶縁部23A、壁部24Aによって支持されているため、可動電極12の中心部分の撓み量が大きく、可動電極12の外周部分の撓み量が小さい。このため、可動部10が撓んだ際、中空部30の中心側における可動電極12と金属膜25との間の距離と、中空部30の外周側における可動電極12と金属膜25との間の距離との差が小さくなる。これにより、圧力センサ100の測定感度が向上し、圧力センサ100の測定精度が向上する。
図4に示すように、可動部10における固定基板部20との対向面の反対面にシールド膜31が設けられている。シールド膜31は、例えば、Ti、Al(アルミニウム)等の金属で形成されている。シールド膜31がシート基板11を覆うことにより、シート基板11の吸湿が抑制され、圧力センサ100の測定精度が向上する。可動電極12及びシールド膜31が同電位であってもよい。例えば、図6Aに示すように、オペアンプ33を可動電極12及びシールド膜31に接続し、可動電極12とシールド膜31とを同電位にしてもよい。図6Aは、実施形態に係る圧力センサ100の一例を示す断面図である。シート基板11に人体が接触した場合、人体と可動電極12との間に寄生容量が発生する。可動電極12及びシールド膜31が同電位であることで、シールド膜31に人体が触れた場合における寄生容量の発生が抑制される。寄生容量の発生が抑制されると共に、圧力センサ100に圧力が印加され、可動電極12が撓んだ後における寄生容量の変化が抑制されるため、圧力センサ100の測定精度が向上する。
図5に示すように、各信号線15を挟んで複数のシールド線32が配置されている。複数のシールド線32がコネクタ200に接続されている。シールド線32は、例えば、Cu、Al等の金属で形成されている。また、シールド線32は、導電性樹脂であってもよい。信号線15を挟んでシールド線32を配置することにより、信号線15によって伝播される信号に混入するノイズを抑制することができる。これにより、圧力センサ100の測定精度が向上する。なお、実施形態において、シールド線32の形成を省略してもよい。
可動部10に接続線41、熱伝導性部材42及び温度センサ43が設けられている。図5に示すように、隣接する可動電極12の間に接続線41が配置されており、隣接する可動電極12同士が接続線41によって接続されている。接続線41は、可動電極12と同じ材料で形成されているが、接続線41は、熱伝導性樹脂で形成されてもよい。可動電極12同士が接続されることにより、複数の可動電極12の温度が均等化される。複数の可動電極12のうちの両端の可動電極12には、熱伝導性部材42が接続されている。複数の可動電極12の熱が熱伝導性部材42に伝わるため、複数の可動電極12の温度と熱伝導性部材42の温度とが一致する。温度センサ43が、熱伝導性部材42の近傍に配置されている。図5に例示するように、温度センサ43が、熱伝導性部材42に隣接して配置されてもよい。温度センサ43は、熱伝導性部材42の温度を測定する。これにより、温度センサ43は、熱伝導性部材42の温度を可動電極12の温度として測定することができる。
温度センサ43は、コネクタ200に接続されている。静電容量測定回路300は、温度センサ43によって測定された温度データを取得する。シート基板11、可動電極12、基板部21、固定電極22の各熱膨張係数が異なる場合、温度変化により静電容量が変化する。静電容量測定回路300は、温度データを用いて静電容量を補正して、可動電極12に印加された圧力を測定する。これにより、圧力センサ100の測定精度が向上する。なお、実施形態において、接続線41、熱伝導性部材42、温度センサ43の形成を省略してもよい。
図6Bは、実施形態に係る圧力センサ100の一例を示す断面図である。図6Bでは、圧力センサ100の一部を拡大して示している。図6Bに示すように、中空部30内であって、固定電極22上に突起部材34が設けられている。突起部材34の個数は単数であってもよいし、複数であってもよい。突起部材34は、絶縁性部材である。突起部材34は、SiNによって形成された窒化シリコン膜であってもよい。第2絶縁膜27及び突起部材34が、同一の材料で形成されてもよい。第2絶縁膜27及び突起部材34が、同一の工程によって形成されてもよい。中空部30の上方から圧力センサ100に圧力が印加されると、可動部10が固定基板部20に向かって撓む。可動部10が撓んだ際、可動電極12が撓むことにより可動電極12が固定電極22に接触すると、可動電極12と固定電極22とが短絡する。可動部10が撓んだ際、突起部材34が可動電極12と固定電極22との接触を阻止するため、可動電極12と固定電極22との短絡が回避される。中空部30内であって、金属膜25上に突起部材34が設けられてもよい。また、中空部30内であって、固定電極22上に突起部材34が設けられると共に、金属膜25上に突起部材34が設けられてもよい。可動部10が撓んだ際、突起部材34が可動電極12と金属膜25との接触を阻止するため、可動電極12と金属膜25との短絡が回避される。
<圧力センサ100の製造工程>
図7(A)から図14(B)は、圧力センサ100の製造工程の一例を示す図である。以下、図7(A)から図14(B)を参照して、圧力センサ100の製造工程の一例について説明する。
(固定基板部20の製造工程)
図7(A)から図10(B)は固定基板部20の製造工程の一例を示す。図7(A)、図8(A)、図9(A)、図10(A)は、固定基板部20の平面図である。図7(B)、図8(B)、図9(B)、図10(B)は、固定基板部20の断面図である。図7(B)、図8(B)、図9(B)、図10(B)のそれぞれは、図7(A)、図8(A)、図9(A)、図10(A)の各G−G線に沿った断面を示している。図7(A)、図7(B)では、基板部21の可動部10に対向する面上に固定電極22、信号パッド28、グランドパッド29が形成される。固定電極22、信号パッド28、グランドパッド29の各厚みは、例えば、200nmであるが、この値に限定されない。次に、図8(A)、図8(B)では、固定電極22の一部、信号パッド28の一部、グランドパッド29の一部を覆うように第1絶縁膜26が形成される。第1絶縁膜26の厚みは、例えば、550nmであるが、この値に限定されない。続いて、図9(A)、図9(B)では、第1絶縁膜26を覆うように第2絶縁膜27が形成される。これにより、絶縁部23Aが固定電極22の一部を覆い、絶縁部23Bが信号パッド28の一部を覆い、絶縁部23Cがグランドパッド29の一部を覆う。絶縁部23A、23B、23Cは、第1絶縁膜26、第2絶縁膜27を有する。第2絶縁膜27の厚みは、例えば、100nmであるが、この値に限定されない。固定電極22、絶縁部23A、23B、23C、信号パッド28、グランドパッド29は、例えば、フォトリソグラフィー及びエッチングを行うことによって、所定パターンに形成される。
次いで、図10(A)、図10(B)では、メッキ処理を行うことにより、固定基板部
20に壁部24及び金属膜25が形成される。詳細には、絶縁部23A上に壁部24Aが形成され、絶縁部23B上に壁部24Bが形成され、絶縁部23C上に壁部24Cが形成され、固定電極22上に金属膜25が形成される。壁部24Bが、信号パッド28に接触しており、壁部24Bと信号パッド28とが電気的に接続される。壁部24Cが、グランドパッド29に接触しており、壁部24Bとグランドパッド29とが電気的に接続される。なお、壁部24A、24B、24Cを総称する場合、壁部24と称する。金属膜25が、固定電極22に接触しており、金属膜25が固定電極22に電気的に接続される。また、金属膜25が固定電極22上の第2絶縁膜27の一部を覆うことにより、金属膜25に段差が形成される。なお、壁部24及び金属膜25をスパッタリングにより形成してもよい。即ち、スパッタ装置にて固定基板部20にメッキ層を成膜した後で、レジストを塗布してエッチングすることによって壁部24及び金属膜25のパターンを形成してもよい。
(可動部10の製造工程)
図11(A)から図14(B)は可動部10の製造工程の一例を示す。
図11(A)、図12(A)、図13(A)、図14(A)は、可動部10の平面図である。図11(B)、図12(B)、図13(B)、図14(B)は、可動部10の断面図である。図11(B)、図12(B)、図13(B)、図14(B)のそれぞれは、図11(A)、図12(A)、図13(A)、図14(A)の各J−J線に沿った断面を示している。図11(A)、図11(B)では、サポート基板50に固定されたシート基板11の固定基板部20に対向する面上に導体部13が形成される。導体部13は、CMP(Chemical Mechanical Polishing)によって平坦化される。図12(A)、図12(B)
では、導体部13上にメッキ部14が形成される。例えば、導体部13上に50nmの厚みのTiと、100nmの厚みのAuとを形成することにより、導体部13上にメッキ部14が形成されてもよい。図13(A)、図13(B)では、フォトリソグラフィー及びエッチングを行うことにより、導体部13、メッキ部14のパターンが形成される。これにより、シート基板11の固定基板部20に対向する面上に可動電極12、信号線15、グランド線16、接続線41が形成される。図14(A)、図14(B)では、可動部10からサポート基板50が剥離される。
(可動部10と固定基板部20の接合工程)
図15は、固定基板部20と可動部10とを接合する工程の一例を示す。図15では、可動部10と固定基板部20とが接合される。接合方法は特に限定されない。可動部10と固定基板部20とは、例えば、常温接合によって接合されてもよい。常温接合では、例えば、メッキ部14の壁部24に対向する面と壁部24のメッキ部14に対向する面とに対して、当該面を平滑にする処理と当該面から不純物を除去して清浄にする処理とが行われる。これらの処理が施されたメッキ部14と壁部24とが接触すると、メッキ部14と壁部24との間で働く分子間力によって、可動部10と固定基板部20とが接合される。図16に示すように、可動部10にシールド膜31を形成してもよい。図16は、シールド膜31を成膜する工程の一例を示す。図16では、シート基板11の固定基板部20に対向する面の反対面上にシールド膜31が形成される。
図17は、図7(A)から図16までの工程によって製造された圧力センサ100について、シート基板11を共有する2つの圧力センサ100を並べた様子を例示する。図17では、固定基板部20がダイシングによって個片化されている。図17に例示するように、シート基板11を共有して複数の圧力センサ100を並べることで、圧力検出の対象とする面積を広げることが可能である。図17の例では、2つの圧力センサ100(100A、100B)が例示されているが、圧力センサ100の個数は増減可能である。
また、可動部10と固定基板部20の接合工程においてメッキ部14及び壁部24の表面を平坦化する処理を行わずに、可動部10、固定基板部20それぞれの製造工程で、表
面の平坦性を担保するようにしてもよい。例えば、可動部10の製造工程において、シート基板11に対して可動電極12となる金属(例えばCu)をCMP処理して平坦にし、その上にスパッタ装置でメッキ部14を成膜してもよい。
<付記>
第1電極(12)を含むフレキシブル基板(10)と、
前記フレキシブル基板(10)に対向して配置され、前記第1電極(12)との間に中空部(30)を介して前記第1電極に(12)対向配置される第2電極(22)を含む硬質基板(20)と、
前記フレキシブル基板(10)と前記硬質基板(20)との間であって、前記中空部を囲むように設けられ、前記フレキシブル基板(10)と前記硬質基板(20)とを接合する接合部(24)と、
を備え、
前記硬質基板(20)における前記フレキシブル基板(10)との対向面の法線方向からの平面視において、前記第1電極(12)及び前記第2電極(22)が前記接合部(24)の外周から外側にはみ出していない、
ことを特徴とする静電容量式圧力センサ(100)。
100、100A、100B、100C、100D・・・圧力センサ
10・・・可動部
11・・・シート基板
12・・・可動電極
15・・・信号線
16・・・グランド線
20・・・固定基板部
21・・・基板部
22・・・固定電極
23、23A、23B、23C・・・絶縁部
24、24A、24B、24C・・・壁部
25・・・金属膜
26・・・第1絶縁膜
27・・・第2絶縁膜
30・・・中空部

Claims (8)

  1. 第1電極を含むフレキシブル基板と、
    前記フレキシブル基板に対向して配置され、前記第1電極との間に中空部を介して前記第1電極に対向配置される第2電極を含む硬質基板と、
    前記フレキシブル基板と前記硬質基板との間であって、前記中空部を囲むように設けられ、前記フレキシブル基板と前記硬質基板とを接合する接合部と、
    を備え、
    記硬質基板における前記フレキシブル基板との対向面の法線方向からの平面視において、前記第1電極及び前記第2電極が前記接合部の外周から外側にはみ出しておらず、
    前記接合部は、前記フレキシブル基板側に配置され前記第1電極に接触する金属部材と、前記硬質基板側に配置された防湿性の高い絶縁膜とを含む、
    ことを特徴とする静電容量式圧力センサ。
  2. 前記中空部内に設けられ、前記第2電極に電気的に接続された金属膜を備え、
    前記第1電極の外周部分が、前記接合部によって支持されており、
    前記第1電極と前記金属膜との間の距離が、前記中空部の中心側から前記中空部の外周側に向かって短くなっている、
    ことを特徴とする請求項1に記載の静電容量式圧力センサ。
  3. 前記第2電極に電気的に接続され、前記フレキシブル基板に設けられた信号線と、
    前記フレキシブル基板に設けられたシールド線と、
    を備え、
    前記信号線を挟んでシールド線が配置されている、
    ことを特徴とする請求項1又は2に記載の静電容量式圧力センサ。
  4. 前記フレキシブル基板に設けられ、前記第1電極に接続された熱伝導性部材と、
    前記フレキシブル基板に設けられ、前記熱伝導性部材の近傍に配置された温度センサと、
    を備えることを特徴とする請求項1からの何れか一項に記載の静電容量式圧力センサ
  5. 前記フレキシブル基板における前記硬質基板との対向面の反対面に設けられたシールド膜を備える、
    ことを特徴とする請求項1からの何れか一項に記載の静電容量式圧力センサ。
  6. 前記第1電極及び前記シールド膜が同電位である、
    ことを特徴とする請求項に記載の静電容量式圧力センサ。
  7. 前記中空部内に設けられ、前記第2電極上に配置された絶縁性の突起部材を備える、
    ことを特徴とする請求項1からの何れか一項に記載の静電容量式圧力センサ。
  8. 前記フレキシブル基板は前記第1電極を複数含んでおり、
    複数の前記第1電極に対応する複数の前記第2電極、複数の前記硬質基板及び複数の前記接合部を備える、
    ことを特徴とする請求項1からの何れか一項に記載の静電容量式圧力センサ。
JP2018047681A 2018-03-15 2018-03-15 静電容量式圧力センサ Active JP6922797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047681A JP6922797B2 (ja) 2018-03-15 2018-03-15 静電容量式圧力センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047681A JP6922797B2 (ja) 2018-03-15 2018-03-15 静電容量式圧力センサ

Publications (2)

Publication Number Publication Date
JP2019158716A JP2019158716A (ja) 2019-09-19
JP6922797B2 true JP6922797B2 (ja) 2021-08-18

Family

ID=67993877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047681A Active JP6922797B2 (ja) 2018-03-15 2018-03-15 静電容量式圧力センサ

Country Status (1)

Country Link
JP (1) JP6922797B2 (ja)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222135A (ja) * 1986-03-25 1987-09-30 Matsushita Electric Ind Co Ltd 静電容量式重量検知器
JPH0627494Y2 (ja) * 1987-09-26 1994-07-27 豊田合成株式会社 ステアリングホイール用センサ
JPH09257617A (ja) * 1996-03-21 1997-10-03 Matsushita Electric Ind Co Ltd 圧力センサ及びこれを用いたガス異常監視装置
JPH10197377A (ja) * 1996-12-27 1998-07-31 Hokuriku Electric Ind Co Ltd 圧力センサモジュール
JP4803917B2 (ja) * 2001-07-30 2011-10-26 京セラ株式会社 圧力検出装置用パッケージ
JP2004294156A (ja) * 2003-03-26 2004-10-21 Toyoda Mach Works Ltd 静電容量型圧力センサ
JP2005207993A (ja) * 2004-01-26 2005-08-04 Alps Electric Co Ltd 面圧分布センサおよび面圧分布センサの製造方法
JP2005321257A (ja) * 2004-05-07 2005-11-17 Alps Electric Co Ltd 静電容量型圧力センサ
JP4658627B2 (ja) * 2005-01-27 2011-03-23 京セラ株式会社 圧力検出装置用パッケージおよび圧力検出装置並びに圧力検出装置用パッケージの製造方法
JP5743852B2 (ja) * 2011-01-28 2015-07-01 京セラ株式会社 圧力検出装置用パッケージおよび圧力検出装置
JP5609907B2 (ja) * 2011-05-25 2014-10-22 株式会社デンソー 乗員検知センサ
JP2012247372A (ja) * 2011-05-30 2012-12-13 Nippon Mektron Ltd 圧力センサ及びその製造方法並びに圧力検出モジュール
JP5779487B2 (ja) * 2011-11-30 2015-09-16 株式会社フジクラ 圧力センサモジュール
CN102539029B (zh) * 2012-02-29 2013-09-25 上海交通大学 基于柔性mems技术的三维流体应力传感器及其阵列
JP2014077767A (ja) * 2012-10-12 2014-05-01 Ngk Spark Plug Co Ltd センサ素子
JP2014142193A (ja) * 2013-01-22 2014-08-07 Oga Inc 荷重分布検出装置
FI126999B (en) * 2014-01-17 2017-09-15 Murata Manufacturing Co Improved pressure sensor
JP2016061672A (ja) * 2014-09-18 2016-04-25 セイコーエプソン株式会社 シリコンデバイスの製造方法

Also Published As

Publication number Publication date
JP2019158716A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US9967679B2 (en) System and method for an integrated transducer and temperature sensor
JP5488534B2 (ja) 湿度センサ及びその製造方法
US20070222006A1 (en) Micromechanical component and corresponding manufacturing method
JP4452526B2 (ja) 歪検出素子及び圧力センサ
TWI671510B (zh) 靜電電容式壓力傳感器
JP6773007B2 (ja) 静電容量式圧力センサ
JP6922797B2 (ja) 静電容量式圧力センサ
JP4867792B2 (ja) ウェハレベルパッケージ構造体およびセンサ装置
JP6922798B2 (ja) 静電容量式圧力センサ
JP6812953B2 (ja) 静電容量式圧力センサ
US20160280534A1 (en) Capacitive mems-sensor element having bond pads for the electrical contacting of the measuring capacitor electrodes
JP5016383B2 (ja) センサ装置
JP6773008B2 (ja) 静電容量式圧力センサ
JP6834919B2 (ja) 静電容量式圧力センサ
TWI593948B (zh) 具有複合腔體的壓力感測器及其製造方法
JP6951225B2 (ja) 湿度センサ
JP5016382B2 (ja) センサ装置およびその製造方法
JP6696494B2 (ja) 静電容量式圧力センサ
JP7370819B2 (ja) センサチップ
JP5652733B2 (ja) 静電容量型圧力センサ、圧力測定装置、及び、静電容量型圧力センサの製造方法
JP2017150819A (ja) ガスセンサ
JP2008294135A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150