JP6897572B2 - Water treatment equipment, adsorption elements, and water treatment methods - Google Patents

Water treatment equipment, adsorption elements, and water treatment methods Download PDF

Info

Publication number
JP6897572B2
JP6897572B2 JP2017560402A JP2017560402A JP6897572B2 JP 6897572 B2 JP6897572 B2 JP 6897572B2 JP 2017560402 A JP2017560402 A JP 2017560402A JP 2017560402 A JP2017560402 A JP 2017560402A JP 6897572 B2 JP6897572 B2 JP 6897572B2
Authority
JP
Japan
Prior art keywords
water
adsorption element
water treatment
organic compound
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017560402A
Other languages
Japanese (ja)
Other versions
JPWO2017119441A1 (en
Inventor
大樹 河野
大樹 河野
杉浦 勉
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2017119441A1 publication Critical patent/JPWO2017119441A1/en
Application granted granted Critical
Publication of JP6897572B2 publication Critical patent/JP6897572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Description

本発明は、有機化合物を含有する水(被処理水、原水)から有機化合物を除去して浄化する装置に関し、特に各種工場、研究施設の排水、最終処分場の浸出水、地下水等から有機溶剤等の有機化合物を除去する装置に関するものである。 The present invention relates to an apparatus for removing and purifying organic compounds from water containing organic compounds (water to be treated, raw water), and in particular, an organic solvent from wastewater from various factories and research facilities, leachate from a final disposal site, groundwater, etc. It relates to an apparatus for removing organic compounds such as.

有機化合物などを含有する水を浄化する装置として、特許文献1記載の吸脱着式の水処理装置が知られている。この水処理装置は、吸着素子に有機化合物を含有する水を通流させて有機化合物を吸着させる吸着工程と、その後有機化合物を吸着した吸着素子にガスを供給して吸着素子に付着する付着水を除去するパージ(脱水)工程と、高温の加熱ガスを供給して吸着素子に吸着された有機化合物を脱離させて吸着素子を再生する脱着工程とを実施し、これらの工程を繰返し行うことで、吸着素子を再生しながら、基本的に吸着素子の交換なしに、連続的に水の浄化ができる。 As an apparatus for purifying water containing an organic compound or the like, an adsorption / desorption type water treatment apparatus described in Patent Document 1 is known. This water treatment device has an adsorption step in which water containing an organic compound is passed through an adsorption element to adsorb the organic compound, and then gas is supplied to the adsorption element on which the organic compound is adsorbed to adhere to the adsorption element. A purging (dehydration) step of removing the above-mentioned substances and a desorption step of supplying a high-temperature heating gas to desorb the organic compound adsorbed on the adsorbing element to regenerate the adsorbing element are carried out, and these steps are repeated. Therefore, while regenerating the adsorption element, water can be continuously purified basically without replacing the adsorption element.

特許文献1の水処理装置において、吸着素子を再生するためのエネルギー(以下、吸着素子の再生エネルギー)としては、吸着素子に吸着された有機化合物の脱離のほかに、吸着素子に吸着した水の脱離および吸着素子表面に残存した付着水の乾燥に使用される加熱ガスを供給するためのエネルギーが必要となる。そのため、付着水を高効率に脱水除去できれば、吸着素子の再生エネルギーの削減が可能となる。 In the water treatment apparatus of Patent Document 1, the energy for regenerating the adsorbent element (hereinafter referred to as the regenerative energy of the adsorbent element) includes desorption of the organic compound adsorbed on the adsorbent element and water adsorbed on the adsorbent element. Energy is required to supply the heating gas used for desorption and drying of the adsorbed water remaining on the surface of the adsorption element. Therefore, if the adhering water can be dehydrated and removed with high efficiency, the renewable energy of the adsorption element can be reduced.

また、特許文献1の水処理装置において、吸着素子の圧力損失が低いほど、脱水工程や脱着工程でのガスの通気にかかるエネルギーを削減できる。 Further, in the water treatment apparatus of Patent Document 1, the lower the pressure loss of the adsorption element, the more energy required for gas aeration in the dehydration step and the desorption step can be reduced.

本発明者らは、上述の再生エネルギーの削減において、吸着素子として活性炭素繊維の不織布を用いる場合、活性炭素繊維径を太くすることで改善できることを見出し、繊維径を太くした活性炭素繊維の不織布を開発し(特許文献2)、上述の水処理装置に適用することで、高脱水効率かつ低圧損で再生可能であるとしている(特許文献3)。 The present inventors have found that when a non-woven fabric of activated carbon fibers is used as an adsorption element, it can be improved by increasing the diameter of the activated carbon fibers in the above-mentioned reduction of the regenerated energy, and the non-woven fabric of the activated carbon fibers having a large fiber diameter is used. (Patent Document 2), and by applying it to the above-mentioned water treatment apparatus, it is said that it can be regenerated with high dehydration efficiency and low pressure loss (Patent Document 3).

日本国特許公報「特許第4512993号」Japanese Patent Gazette "Patent No. 4512993" 日本国公報「特許第5250717号」Japanese Gazette "Patent No. 5250717" 日本国公開特許公報「特開2013−111551号」Japanese Patent Publication "Japanese Patent Laid-Open No. 2013-111551"

上記のように、特許文献3から、不織布を構成する活性炭素繊維をより太くすることが、再生エネルギーの削減に有効な手段と言える。しかし、特許文献2から、活性炭素繊維径を40μmを超えて太くすると、繊維が交絡せず、強度低下が起き、吸着素子としての構造を保持できないことがわかる。そのため、活性炭素繊維径を40μmを超えて太くすると、上述の水処理装置の処理槽への充填時や吸脱着操作の繰返しによって破損や繊維の脱落などが発生する場合がある。 As described above, from Patent Document 3, it can be said that making the activated carbon fibers constituting the non-woven fabric thicker is an effective means for reducing the renewable energy. However, from Patent Document 2, it can be seen that when the diameter of the activated carbon fiber is increased to more than 40 μm, the fibers are not entangled, the strength is lowered, and the structure as an adsorption element cannot be maintained. Therefore, if the diameter of the activated carbon fiber is increased to more than 40 μm, breakage or fiber shedding may occur due to filling of the treatment tank of the above-mentioned water treatment apparatus or repeated suction / desorption operations.

そこで、本発明は上記の課題を解決するためになされたものであり、その目的は、破損や繊維の脱落が抑制された高脱水効率で低圧損の吸着素子を備え、かつ、その吸着素子の再生のためのエネルギーが削減可能な水処理装置等を提供することである。 Therefore, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an adsorption element having high dehydration efficiency and low pressure loss in which breakage and fiber shedding are suppressed, and the adsorption element thereof. The purpose is to provide a water treatment device or the like that can reduce energy for regeneration.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の構成からなる。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention. That is, the present invention has the following configuration.

1.有機化合物を含有する水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させる吸着処理と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水処理と、前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された前記有機化合物を脱着する脱着処理と、を繰返し実行することを特徴とする水処理装置。2.吸着素子が充填された処理槽と、該吸着素子に有機化合物を吸着させるため前記処理槽に有機化合物を含有する水を通流させる水通流部と、前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、前記吸着素子から有機化合物を脱着するために前記処理槽に加熱ガスを通気させる加熱ガス通気部と、を備えた水処理装置であり、前記吸着素子は、繊維束から成る活性炭素繊維の構造体を含む、ことを特徴とする水処理装置。3.前記繊維束の直径が、100〜600μmである前記1または2に記載の水処理装置。4.前記脱水工程にて除去した付着水を、再度、前記吸着素子に吸着させる返送ルートを備えた前記1から3のいずれか1つに記載の水処理装置。5.前記構造体が、織物または編物である前記1から4のいずれか1つに記載の水処理装置。6.前記構造体が、フライス編による編物であることを特徴とする前記1から4のいずれか1つに記載の水処理装置。7.前記1〜6のいずれか1つに記載の水処理装置に用いられる繊維束から成る活性炭素繊維の構造体を含む吸着素子。8.有機化合物を含有する水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させる吸着工程と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水工程と、前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された前記有機化合物を脱着する脱着工程と、を繰返し実行することを特徴とする水処理方法。 1. 1. Water containing an organic compound is passed through an adsorption element containing an activated carbon fiber structure composed of a fiber bundle to adsorb the organic compound on the adsorption element, and gas is aerated through the adsorption element. The feature is that the dehydration treatment for removing the adhering water from the adsorption element and the desorption treatment for desorbing the organic compound adsorbed on the adsorption element by aerating a heating gas through the adsorption element are repeatedly executed. Water treatment equipment. 2. A treatment tank filled with an adsorption element, a water passage portion for allowing water containing the organic compound to flow through the treatment tank in order to adsorb the organic compound in the adsorption element, and a water passage portion for removing adhering water from the adsorption element. A water treatment apparatus including a gas aeration unit for aerating gas to the treatment tank and a heating gas aeration unit for aeration of heating gas to the treatment tank for desorbing an organic compound from the adsorption element. The adsorption element is a water treatment apparatus including a structure of activated carbon fibers composed of a fiber bundle. 3. 3. The water treatment apparatus according to 1 or 2, wherein the fiber bundle has a diameter of 100 to 600 μm. 4. The water treatment apparatus according to any one of 1 to 3, further comprising a return route for adsorbing the adhering water removed in the dehydration step to the adsorption element again. 5. The water treatment device according to any one of 1 to 4, wherein the structure is a woven fabric or a knitted fabric. 6. The water treatment apparatus according to any one of 1 to 4, wherein the structure is a knitted material obtained by milling. 7. An adsorption element containing an activated carbon fiber structure composed of a fiber bundle used in the water treatment apparatus according to any one of 1 to 6 above. 8. A adsorption step in which water containing an organic compound is passed through an adsorption element containing an activated carbon fiber structure composed of a fiber bundle to adsorb the organic compound on the adsorption element, and a gas is aerated through the adsorption element. The feature is that the dehydration step of removing the adsorbed water of the adsorption element and the desorption step of ventilating the adsorption element with a heating gas to desorb the organic compound adsorbed on the adsorption element are repeatedly executed. Water treatment method.

本発明の上記構成によれば、吸着素子の破損や繊維の脱落を抑制し、吸着素子としての構造を保持でき、吸着素子を再生するエネルギー量を低減することができる水処理装置を提供することができる。 According to the above configuration of the present invention, there is provided a water treatment apparatus capable of suppressing breakage of the adsorption element and falling off of fibers, maintaining the structure as the adsorption element, and reducing the amount of energy for regenerating the adsorption element. Can be done.

本発明の実施の一形態の水処理装置を示す図である。It is a figure which shows the water treatment apparatus of one Embodiment of this invention. 本発明の実施の一形態の水処理装置に用いる吸着素子における(a)編物の組織構造の例、(b)は織物の組織構造の例を示す図である。It is a figure which shows the example of the structure structure of (a) the knitted fabric, and (b) is the example of the structure structure of the woven fabric in the adsorption element used in the water treatment apparatus of one embodiment of the present invention.

本発明の実施形態について詳細に説明する。 本発明に係る水処理装置は、有機化合物を含有する水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着処理(吸着工程)と、前記吸着素子にガスを通気させて該吸着素子の付着水を除去する脱水処理(脱水工程)と、前記吸着素子に加熱ガスを通流させて該吸着素子に吸着された有機化合物を脱着する脱着処理(脱着工程)と、を繰り返し実行する処理装置である。この構成により、吸着素子の交換無しに、水処理を連続的に行うことができる。 Embodiments of the present invention will be described in detail. The water treatment apparatus according to the present invention is an adsorption treatment (adsorption step) in which water containing an organic compound is passed through an adsorption element containing an activated carbon fiber structure composed of a fiber bundle to adsorb the organic compound on the adsorption element. ), A dehydration treatment (dehydration step) in which gas is aerated through the adsorption element to remove the adhering water of the adsorption element, and an organic compound adsorbed by the adsorption element by passing a heated gas through the adsorption element. It is a processing device that repeatedly executes a desorption process (desorption step) for desorption. With this configuration, water treatment can be continuously performed without exchanging the adsorption element.

また、本発明に係る水処理装置は、以下の構成と言うこともできる。吸着素子が充填された処理槽と、該吸着素子に有機化合物を吸着させるため前記処理槽に有機化合物を含有する水を通流させる被処理水流通部と、前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、前記吸着素子から有機化合物を脱着するために前記処理槽に加熱ガスを通気させる加熱ガス通気部と、を備えた水処理装置であり、前記吸着素子は、繊維束から成る活性炭素繊維の構造体を含む、装置である。 Further, the water treatment apparatus according to the present invention can be said to have the following configuration. A treatment tank filled with an adsorption element, a water flow section to be treated that allows water containing the organic compound to flow through the treatment tank in order to adsorb the organic compound to the adsorption element, and the adsorbed water is removed from the adsorption element. It is a water treatment apparatus including a gas aeration unit for aerating gas to the treatment tank for the purpose and a heating gas aeration part for aeration of heating gas to the treatment tank for desorbing an organic compound from the adsorption element. The adsorption element is an apparatus including a structure of activated carbon fibers composed of a fiber bundle.

好ましい水処理装置の構造としては、吸着素子を複数備えており、吸着工程と脱水工程と脱着工程とをダンパー等にて切替操作を行い、吸着、脱水、脱着を連続的に行う水処理装置である。また、吸着素子が回転することができ、吸着工程で有機化合物を吸着した吸着素子の部位が、吸着素子の回転により、脱水、脱着工程へ移動する構造を有する水処理装置も好ましい装置の構造である。 A preferable structure of the water treatment device is a water treatment device that includes a plurality of adsorption elements and continuously performs adsorption, dehydration, and desorption by switching between the adsorption step, the dehydration step, and the desorption step with a damper or the like. is there. Further, a water treatment device having a structure in which the adsorption element can be rotated and the portion of the adsorption element that has adsorbed the organic compound in the adsorption step moves to the dehydration / desorption step due to the rotation of the adsorption element is also a preferable device structure. is there.

そこで、本実施形態では、本発明に係る水処理装置の一例として、図1に示すダンパー切替方式の水処理装置100について説明する。 Therefore, in the present embodiment, the damper switching type water treatment device 100 shown in FIG. 1 will be described as an example of the water treatment device according to the present invention.

図1に示すように、水処理装置100は、それぞれ吸着素子11、12が充填された第1処理槽10および第2処理槽20を有している。処理槽の数は限定されない。第1処理槽10および第2処理槽20にはダンパーや弁(バルブV1〜V12)等が取付けられており、吸着工程、脱水工程および脱着工程は、これらのダンパーや弁等の開閉操作を行うことで流路を切替える制御を行う。 As shown in FIG. 1, the water treatment apparatus 100 has a first treatment tank 10 and a second treatment tank 20 filled with adsorption elements 11 and 12, respectively. The number of treatment tanks is not limited. Dampers, valves (valves V1 to V12) and the like are attached to the first treatment tank 10 and the second treatment tank 20, and the suction step, the dehydration step and the desorption step perform opening and closing operations of these dampers and valves. By doing so, the flow path is controlled to be switched.

吸着素子11、12は、原水(被処理水)を接触させることで被処理水に含有される有機物質を吸着する。水処理装置100では、第1処理槽10に被処理水を被処理水導入ラインL1から供給することで有機物質が吸着素子11に吸着され、これにより被処理水が清浄化されて処理水排出ラインL2を通して処理水として排出される。同様に、第1処理槽20に被処理水を被処理水導入ラインL1から供給することで有機物質が吸着素子12に吸着され、これにより被処理水が清浄化されて処理水排出ラインL2を通して処理水として排出される。 The adsorption elements 11 and 12 adsorb organic substances contained in the water to be treated by bringing them into contact with the raw water (water to be treated). In the water treatment apparatus 100, by supplying the water to be treated to the first treatment tank 10 from the water introduction line L1 to be treated, the organic substance is adsorbed on the adsorption element 11, whereby the water to be treated is purified and the treated water is discharged. It is discharged as treated water through line L2. Similarly, by supplying the water to be treated to the first treatment tank 20 from the water treatment water introduction line L1, the organic substance is adsorbed on the adsorption element 12, whereby the water to be treated is purified and passed through the treatment water discharge line L2. It is discharged as treated water.

水処理装置100は、吸着工程後に吸着素子11,12に付着した付着水をガスの通流により除去する脱水工程を実施する。第1処理槽10および第2処理槽20には、ガス供給ラインL5よりガスの通流が流通される。付着水をガスの通流により除去することにより、その後の加熱ガスによる有機化合物の脱着が容易になる。 The water treatment apparatus 100 carries out a dehydration step of removing the adhering water adhering to the adsorption elements 11 and 12 by the flow of gas after the adsorption step. Gas flow flows through the gas supply line L5 to the first treatment tank 10 and the second treatment tank 20. By removing the adhering water by passing the gas, the subsequent desorption of the organic compound by the heating gas becomes easy.

脱水工程で供給するガスは、空気、窒素、不活性ガス、水蒸気などが挙げられるが、特に限定しない。脱水工程で排出される付着水は、外部に放出してもよいが、本実施形態では、戻水返却ラインL6より水処理装置100入口の有機化合物を含有する被処理水に戻す。このように戻すことで、外部放出した際の工程数を省略でき、効率的である。 Examples of the gas supplied in the dehydration step include air, nitrogen, an inert gas, and water vapor, but the gas is not particularly limited. The adhering water discharged in the dehydration step may be discharged to the outside, but in the present embodiment, it is returned to the water to be treated containing the organic compound at the inlet of the water treatment device 100 from the return water return line L6. By returning in this way, the number of steps at the time of external release can be omitted, which is efficient.

水処理装置100は、脱水工程後に吸着素子11,12に付着した有機化合物を加熱ガスの通流により脱着する脱着工程を実施する。第1処理槽10および第2処理槽20には、加熱ガス供給ラインL3より加熱ガスの通流が流通される。 The water treatment apparatus 100 carries out a desorption step of desorbing the organic compounds adhering to the adsorption elements 11 and 12 by the flow of heating gas after the dehydration step. A flow of heating gas is circulated from the heating gas supply line L3 to the first treatment tank 10 and the second treatment tank 20.

脱着工程で供給される加熱ガスは、加熱された、空気、窒素、不活性ガスもしくは水蒸気などが挙げられるが、特に限定しない。脱着工程にて脱着された有機化合物は加熱ガスと混合されて脱着ガスとして脱着ガス排出ラインL4を通じて水処理装置100外へ排出される。 Examples of the heating gas supplied in the desorption step include heated air, nitrogen, an inert gas, steam, and the like, but the heating gas is not particularly limited. The organic compound desorbed in the desorption step is mixed with the heating gas and discharged as the desorption gas to the outside of the water treatment apparatus 100 through the desorption gas discharge line L4.

水処理装置100において脱着工程で排出される脱着ガスは、例えば、直接燃焼装置、触媒酸化装置、蓄熱燃焼装置などの燃焼装置や溶剤回収装置や冷却凝縮装置等の一般的に用いられるガス処理装置を適宜選定し、二次処理すればよい。 The desorbed gas discharged in the desorption step in the water treatment device 100 is, for example, a combustion device such as a direct combustion device, a catalytic oxidation device, a heat storage combustion device, or a commonly used gas treatment device such as a solvent recovery device or a cooling / condensing device. Appropriately selected and secondary treatment may be performed.

水処理装置100では、吸着素子が複数(ここでは2つ)の処理槽に分割して充填され、吸着工程を行う処理槽(吸着槽)と脱水および脱着工程を行う処理槽(脱着槽)とを交互に切替える構成となっている。しかし、例えば、処理槽を単槽とし、脱水および脱着工程中は原水を一時的にタンクなどに貯水し、次の吸着工程に一時貯水された原水も併せて吸着処理する構成であってもよい。 In the water treatment apparatus 100, the adsorption element is divided into a plurality of (here, two) treatment tanks and filled, and the treatment tank (adsorption tank) for performing the adsorption step and the treatment tank (desorption tank) for performing the dehydration and desorption steps. Is configured to be switched alternately. However, for example, the treatment tank may be a single tank, the raw water may be temporarily stored in a tank or the like during the dehydration and desorption steps, and the raw water temporarily stored in the next adsorption step may also be adsorbed. ..

吸着素子11,12は、繊維束から成る活性炭素繊維の構造体を有する。吸着素子11,12は、性能面から活性炭素繊維を用いる。つまり、活性炭素繊維は表面にミクロ孔を有する構造であることで、水との接触効率が高く、特に水中の有機化合物の吸着速度が速くなり、他の吸着材に比べて、極めて高い除去効率を発現できる。 The adsorption elements 11 and 12 have a structure of activated carbon fibers composed of fiber bundles. Activated carbon fibers are used for the adsorption elements 11 and 12 from the viewpoint of performance. That is, since the activated carbon fiber has a structure having micropores on the surface, the contact efficiency with water is high, and the adsorption rate of organic compounds in water is particularly high, and the removal efficiency is extremely high as compared with other adsorbents. Can be expressed.

吸着素子11,12に用いる活性炭素繊維の構造体は、原料である繊維を、後述する構造体に加工し、炭化・賦活して得ることができる。 The structure of the activated carbon fibers used for the adsorption elements 11 and 12 can be obtained by processing the fibers as a raw material into a structure described later, carbonizing and activating the fibers.

吸着素子11,12に用いる活性炭素繊維の構造体の原料となる繊維は、特に限定されるものではないが、フェノール系繊維、セルロース系繊維、アクリロニトリル系繊維、ピッチ系繊維が好ましい。中でもフェノール系繊維がさらに好ましい。炭化・賦活後の活性炭素繊維の収率が高く、繊維強度が強いからである。 The fiber used as a raw material for the structure of the activated carbon fiber used for the adsorption elements 11 and 12 is not particularly limited, but a phenol-based fiber, a cellulosic-based fiber, an acrylonitrile-based fiber, and a pitch-based fiber are preferable. Among them, phenolic fibers are more preferable. This is because the yield of activated carbon fiber after carbonization and activation is high and the fiber strength is strong.

前記フェノール系繊維としては、フェノール樹脂に脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物(配合物)を混合した混合物を紡糸して得られるフェノール系繊維を原糸としても良い。さらに繊維強度が高まるからである。 The phenolic fiber is a phenolic fiber obtained by spinning a mixture of a phenol resin mixed with at least one compound (composite) selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. May be used as the raw yarn. This is because the fiber strength is further increased.

繊維束とは、繊維が束状になっているものであればよく、紡糸、紡績糸、撚糸、フィラメントいずれであってもよい。また、繊維束はどのように製造され
てもよい。繊維束から成る活性炭素繊維の組織構造体は、編物もしくは織物であるのが好ましい。好ましい理由としては、均一に繊維が交絡された不織布と比較して、糸で形成された組織構造のため、吸着素子内の活性炭素繊維の適度に粗密構造を取り、なおかつ、規則正しく活性炭素繊維が配列する構造をとるので、低圧損となり、結果として脱水効率が高くなるからである。編物がより好ましい。同じ長さの経糸と緯糸の交錯によって格子状の組織構造が形成される織物と比較して、縦もしくは横方向に糸を編んで組織構造を形成する編物の方が、上述した粗密構造をとりやすいので、より低圧損で脱水効率が高くなるからである。なお、繊維束から成る活性炭素繊維の構造体は、上記に限定されず、例えば、糸を固めてシート状にしたものであってもよい。
The fiber bundle may be any of spun, spun yarn, twisted yarn, and filament as long as the fiber is bundled. Moreover, the fiber bundle may be produced in any way. The tissue structure of the activated carbon fiber composed of the fiber bundle is preferably a knitted fabric or a woven fabric. The preferred reason is that, as compared with the non-woven fabric in which the fibers are uniformly entangled, the structure structure formed by the threads allows the activated carbon fibers in the adsorbing element to have an appropriately coarse and dense structure, and the activated carbon fibers are regularly arranged. This is because the structure is arranged so that a low pressure loss occurs, and as a result, the dehydration efficiency becomes high. Knitting is more preferred. Compared to a woven fabric in which a grid-like structure is formed by interlacing warp and weft threads of the same length, a knitted fabric in which threads are knitted in the vertical or horizontal direction to form a structure has the above-mentioned coarse and dense structure. This is because it is easy, and the dehydration efficiency becomes higher due to the lower pressure loss. The structure of the activated carbon fiber composed of the fiber bundle is not limited to the above, and may be, for example, a sheet formed by hardening the yarn.

繊維束から成る活性炭素繊維の構造体が織物である場合、織物の組織は、一重組織、重ね組織、添毛組織、からみ組織など挙げられ、特に限定されるものではない。織物の組織構造の例を図2の(b)に示す。 When the structure of the activated carbon fiber composed of the fiber bundle is a woven fabric, the structure of the woven fabric includes, and is not particularly limited, a single structure, a layered structure, a hair-attached structure, and an entangled structure. An example of the structure of the woven fabric is shown in FIG. 2 (b).

繊維束から成る活性炭素繊維の構造体が編物である場合、編物の組織構造は、フライス編(ゴム編)、天竺編(平編)、両面編(パール編)に分類されるニットの他、タック、ウェルトも含むよこ編、デンビー編、コード編、アトラス編などを含むたて編、またこれらの編組織を複合した編物(例えば、フライスとタック編を複合した両畦編など、が挙げられる。特に限定されるものではないが、フライス編が好ましい。フライス編みが好ましいのは、適度な粗密構造を取り、脱水に適していると考えられるからである。編物の組織構造の例を図2の(a)に示す。 When the structure of activated carbon fiber composed of fiber bundles is a knit, the structure of the knit is classified into milling (rubber), tenjiku (flat), double-sided (pearl), and other knits. Examples include horizontal knits including tack and welt, vertical knits including chords, atlases, and knits that combine these knitting structures (for example, double ridges that combine milling and tuck). Although not particularly limited, milling knitting is preferable. Milling knitting is preferable because it has an appropriate coarse and dense structure and is considered to be suitable for dehydration. An example of the structure of the knitted fabric is shown in FIG. (A).

吸着素子11,12に用いる活性炭素繊維の構造体における繊維束の直径(太さ)は、100〜600μmが好ましい。100μm以上であると、繊維束の強度が保たれ、吸着材として組織構造を保持できる。また、600μm以下であると、より粗密構造にはならず、吸着工程時に被処理水のショートパスが生じるなどの吸着性能の低下を抑制できる。ここで、繊維束の太さは、活性炭素繊維の構造体のSEM画像を用いて、繊維束の複数個所の直径の測定から求めることができる。繊維束の直径は、他の方法にて計測してもよい。 The diameter (thickness) of the fiber bundle in the structure of the activated carbon fibers used for the adsorption elements 11 and 12 is preferably 100 to 600 μm. When it is 100 μm or more, the strength of the fiber bundle is maintained, and the tissue structure can be maintained as an adsorbent. Further, when it is 600 μm or less, the structure does not become more coarse and dense, and deterioration of adsorption performance such as short path of water to be treated occurs during the adsorption step can be suppressed. Here, the thickness of the fiber bundle can be determined by measuring the diameters of a plurality of locations of the fiber bundle using an SEM image of the structure of the activated carbon fiber. The diameter of the fiber bundle may be measured by another method.

また、繊維束として糸を用いる場合、糸は所定の番手の一本の糸で形成される単糸や、二本以上の単糸を撚って形成される撚糸などが挙げられるが、上記の繊維束から成る活性炭素繊維の構造体における繊維束の直径に収まれば、特に限定しない。また、原料の糸の繊度は、綿繊度で40番手単糸〜5番手単糸、またその繊度に相当する撚糸(20番手双糸など)が想定されるが、炭化・賦活によって、糸径が収縮するため、原料の繊度は、活性炭素繊維の構造体として適した糸径の範囲であればよい。 Further, when a yarn is used as a fiber bundle, the yarn includes a single yarn formed by one yarn having a predetermined count, a twisted yarn formed by twisting two or more single yarns, and the like. It is not particularly limited as long as it fits within the diameter of the fiber bundle in the structure of the activated carbon fiber composed of the fiber bundle. The fineness of the raw material yarn is assumed to be 40th to 5th single yarn in cotton fineness, and twisted yarn (20th twin yarn, etc.) corresponding to the fineness, but the yarn diameter is increased by carbonization and activation. Since it shrinks, the fineness of the raw material may be in the range of the yarn diameter suitable for the structure of the activated carbon fiber.

吸着素子11,12に用いる活性炭素繊維の構造体の上記以外の物性は、特に限定されるものではないが、BET比表面積が900〜2500m/gで、細孔容積が0.4〜0.9cm/gで平均細孔経が14〜18Åのものが好ましい。BET比表面積が900m/g以上、細孔容積が0.4cm/g異常、細孔径が14Å以上であると、有機化合物の吸着量が高くなる。また、BET比表面積が2500m/g以下、細孔容積が0.9cm/g以下、細孔径が18Å以下であると、細孔径が大きくなり過ぎず、有機化合物の吸着能力の低下を防ぐことができる。また、吸着素子の強度の低下を防ぐことができる。また、素材のコストを抑えることができ経済的である。 The physical properties of the activated carbon fiber structure used for the adsorption elements 11 and 12 other than the above are not particularly limited, but the BET specific surface area is 900 to 2500 m 2 / g and the pore volume is 0.4 to 0. It is preferably 9.9 cm 3 / g and has an average pore diameter of 14-18 Å. When the BET specific surface area is 900 m 2 / g or more, the pore volume is 0.4 cm 3 / g abnormal, and the pore diameter is 14 Å or more, the adsorption amount of the organic compound becomes high. Further, when the BET specific surface area is 2500 m 2 / g or less, the pore volume is 0.9 cm 3 / g or less, and the pore diameter is 18 Å or less, the pore diameter does not become too large and the adsorption capacity of the organic compound is prevented from being lowered. be able to. In addition, it is possible to prevent a decrease in the strength of the adsorption element. In addition, the cost of materials can be suppressed, which is economical.

水処理装置100が処理する被処理水に含まれる有機化合物は、特に限定されないが、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレインなどのアルデヒド類、メチルエチルケトン、ジアセチル、メチルイソブチルケトン、アセトンなどのケトン類、1,4−ジオキサン、2−メチル−1,3−ジオキソラン、1,3−ジオキソラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール類、酢酸、プロピオン酸などの有機酸、フェノール類、トルエン、キシレン、シクロヘキサンなどの芳香族有機化合物、ジエチルエーテル、アリルグリシジルエーテルなどのエーテル類、アクリロニトリルなどの二トリル類、ジクロロメタン、1,2−ジクロロエタン、トリクロロエチレン、エピクロロヒドリンなどの塩素有機化合物、N−メチル−2−ピロリドン、ジメチルアセトアミド、N,N−ジメチルホルムアミドの有機化合物、ポリ塩化ジベンゾパラジオキシン(PCDD)、ポリ塩化ジベンゾフラン(PCDF)、ダイオキシン様ポリ塩化ビフェニル(DL−PCB)などのダイオキシン類、テトラサイクリン、オセルタミビル、リン酸オセルタミビル、ベザフィブラート、トリクロサンなどの抗生物質、ベザフィブラート、フェノフィブラートなどの抗脂血症剤成分、ジクロフェナク、サリチル酸、アセトアミノフェンなどの解熱鎮痛剤成分、カルバマゼピンなどの抗てんかん剤成分、フミン酸、フルボ酸などのフミン物質、ヘキサメチレンテトラミン、ジオスミン、2−メチルイソボルネオールなどが、一例として挙げられる。本実施形態の水処理装置100が処理する被処理水に含まれる有機化合物は、これらのうちの1種類あるいは複数種類であってもよい。 The organic compound contained in the water to be treated by the water treatment apparatus 100 is not particularly limited, but is not limited to aldehydes such as formaldehyde, acetaldehyde, propionaldehyde and achlorein, and ketones such as methyl ethyl ketone, diacetyl, methyl isobutyl ketone and acetone, 1. , 4-Dioxin, 2-Methyl-1,3-dioxolane, 1,3-Dioxolan, tetrahydrofuran, Methyl acetate, Ethyl acetate, propyl acetate, butyl acetate and other esters, ethanol, n-propyl alcohol, isopropyl alcohol, butanol Alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, organic acids such as acetic acid and propionic acid, phenols, aromatic organic compounds such as toluene, xylene and cyclohexane, diethyl ether and allyl glycidyl. Ethers such as ethers, ditolyls such as acrylonitrile, chlorine organic compounds such as dichloromethane, 1,2-dichloroethane, trichloroethylene, epichlorohydrin, N-methyl-2-pyrrolidone, dimethylacetamide, N, N-dimethylformamide Organic compounds, dioxins such as polydibenzoparadioxin (PCDD), polydibenzofuran (PCDF), dioxin-like polychloride biphenyl (DL-PCB), and antibiotics such as tetracycline, oseltamivir, oseltamivir phosphate, bezafibrate, triclosan. , Antilipidemia components such as bezafibrate and phenofibrate, antipyretic and analgesic components such as diclofenac, salicylic acid and acetaminophen, antiepileptic components such as carbamazepine, fumin substances such as fumic acid and fluboic acid, hexamethylenetetramine, Diosmin, 2-methylisoborneol and the like are examples. The organic compound contained in the water to be treated by the water treatment apparatus 100 of the present embodiment may be one or more of these.

図1を用いて説明した以上の本実施形態では、説明の簡略のため、ポンプやファン等の流体搬送手段やストレージタンク等の流体貯留手段などの構成要素を示していないが、これら構成要素は必要に応じて適宜の位置に配置すればよい。 In the above embodiment described with reference to FIG. 1, components such as a fluid transport means such as a pump and a fan and a fluid storage means such as a storage tank are not shown for the sake of brevity, but these components are not shown. It may be arranged at an appropriate position as needed.

このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 As described above, each of the above-described embodiments disclosed this time is an example in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of claims and includes all modifications within the meaning and scope equivalent to the description of the scope of claims.

以下に実施例を示し、本発明をより具体的に説明する。上記に説明した図1に示す水処理装置100を用いた水処理を実施した。後段で説明する実施例および比較例についての各測定は、下記の方法により行った。 Examples will be shown below, and the present invention will be described in more detail. Water treatment was carried out using the water treatment apparatus 100 shown in FIG. 1 described above. Each measurement of the example and the comparative example described later was carried out by the following method.

(繊維束の直径) 繊維束の直径(太さ)は、活性炭素繊維シートを走査型電子顕微鏡(SEM)にて撮影し、SEM画像に映し出された多数の繊維束からランダムに100本の繊維束を選び、画像上で繊維束表面での直径の値を測定し、その平均を繊維束の直径とした。ここで測定した直径の値とは、SEM画像に映し出された繊維束において、図2の(a)に示すDを測定したものである。活性炭素繊維シートのSEMを撮影したことからわかるように、繊維束の直径は、炭化・賦活処理した後の値である。 (Diameter of fiber bundle) The diameter (thickness) of the fiber bundle is 100 fibers randomly selected from a large number of fiber bundles projected on the SEM image by photographing the activated carbon fiber sheet with a scanning electron microscope (SEM). A bundle was selected, the value of the diameter on the surface of the fiber bundle was measured on the image, and the average was taken as the diameter of the fiber bundle. The diameter value measured here is a measurement of D shown in FIG. 2A in the fiber bundle projected on the SEM image. As can be seen from the photograph of the SEM of the activated carbon fiber sheet, the diameter of the fiber bundle is a value after carbonization / activation treatment.

(BET比表面積) BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。 (BET specific surface area) The BET specific surface area is the amount of nitrogen adsorbed on the sample when the relative pressure is increased in the range of 0.0 to 0.15 under the boiling point (-195.8 ° C) atmosphere of liquid nitrogen. The surface area (m 2 / g) per unit mass of the sample was determined by the measurement and the BET plot.

(細孔容積) 細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。 (Pore volume) The pore volume was measured by a gas adsorption method of nitrogen gas at a relative pressure of 0.95.

(平均細孔径) 平均細孔径は、以下の式で求めた。 dp=40000Vp/S(ただし、dp:平均細孔径(Å)) Vp:細孔容積(cc/g) S:BET比表面積(m/g) (Average pore diameter) The average pore diameter was calculated by the following formula. dp = 40,000 Vp / S (where dp: average pore diameter (Å)) Vp: pore volume (cc / g) S: BET specific surface area (m 2 / g)

(空間速度) 空間速度(SV)は、以下の式で求めた。 SV=V1/V2(SV:h−1) V1:処理水量(L/h) V2:吸着素子の体積(L) (Spatial velocity) The spatial velocity (SV) was calculated by the following formula. SV = V1 / V2 (SV: h -1 ) V1: Treated water volume (L / h) V2: Volume of adsorption element (L)

(有機化合物濃度) 装置入口・出口の水中の有機化合物濃度は、ガスクロマトグラフ法により分析し測定した。 (Organic compound concentration) The concentration of organic compounds in the water at the inlet and outlet of the device was analyzed and measured by gas chromatography.

(付着水量) 付着水量は、脱水操作後の吸着材の重量を測定し、以下の式で求めた。 付着水量(g/g)=脱水操作後の吸着材重量(g)/絶乾時の吸着材重量(g) (Amount of adhering water) The amount of adhering water was calculated by the following formula by measuring the weight of the adsorbent after the dehydration operation. Amount of adsorbed water (g / g) = Weight of adsorbent after dehydration operation (g) / Weight of adsorbent when absolutely dry (g)

(吸着材の平均圧力損失) 吸着材の平均圧力損失は、脱水及び脱着操作中の装置入口・出口の圧力を圧力計にて測定し、装置入口・出口の圧力の平均値より以下の式で求めた。 吸着材の平均圧力損失(kPa)=装置入口の圧力(kPa)−装置出口の圧力(kPa) (Average pressure loss of adsorbent) The average pressure loss of adsorbent is calculated by measuring the pressure at the inlet and outlet of the device during dehydration and desorption operation with a pressure gauge, and using the following formula from the average value of the pressure at the inlet and outlet of the device. I asked. Average pressure loss of adsorbent (kPa) = Pressure at device inlet (kPa) -Pressure at device outlet (kPa)

[実施例1] フェノール系繊維を用いた綿繊度20番手の糸を使用したフライス編を炭化および賦活処理して、繊維束の直径250μm、比表面積1500m/gの活性炭素繊維シート(繊維束から成る活性炭素繊維の構造体)を作製した。この活性炭素繊維シート200gを積層した吸着素子を作製し、図1に示す水処理装置100に設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm/gであり、平均細孔径15Åであった。 [Example 1] An activated carbon fiber sheet (fiber bundle) having a fiber bundle diameter of 250 μm and a specific surface area of 1500 m 2 / g by carbonizing and activating a milled knit using a yarn having a cotton fineness of 20 counts using phenolic fibers. (Structure of activated carbon fiber composed of) was prepared. An adsorption element in which 200 g of this activated carbon fiber sheet was laminated was produced and installed in the water treatment apparatus 100 shown in FIG. The pore volume of the activated carbon fiber sheet was 0.60 cm 3 / g, and the average pore diameter was 15 Å.

吸着工程では、700mg/lの1,4−ジオキサンを含む原水をSV=20h−1で導入した。その際の出口1,4−ジオキサン濃度は、0.5mg/L以下であり、99%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 700 mg / l of 1,4-dioxane was introduced at SV = 20h-1. At that time, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a good result that 99% or more could be removed.

次に、脱水工程では、空気をブロワーで風速75cm/sで1min供給し、吸着素子に付着する水分(付着水)を脱水除去した。その際の水分量である付着水量は、後段の表1に示す通り1.0g/gであった。 Next, in the dehydration step, air was supplied by a blower at a wind speed of 75 cm / s for 1 min, and the moisture (adhered water) adhering to the adsorption element was dehydrated and removed. The amount of adhering water, which is the amount of water at that time, was 1.0 g / g as shown in Table 1 in the latter part.

次に、脱着工程では、空気を蒸気ヒーターで130℃に加熱した加熱空気をブロワーで風速75cm/sで14min供給した。その際の吸着材の平均圧力損失は7kPaであった。脱着された1,4−ジオキサンと加熱空気は脱着ガスとして排出され、適切に二次処理された。 Next, in the desorption step, heated air heated to 130 ° C. with a steam heater was supplied for 14 minutes at a wind speed of 75 cm / s with a blower. The average pressure loss of the adsorbent at that time was 7 kPa. The desorbed 1,4-dioxane and heated air were discharged as desorbed gas and appropriately secondary treated.

脱着工程が完了した後、再び吸着工程へ移行し、一連の処理工程を、100サイクル回繰返した。100サイクル目においても出口1,4−ジオキサン濃度は、0.5mg/L以下であり、安定して除去できる結果であった。後段の表1に示す通り、脱着工程に使用したブロワー電力は82W、空気の加熱に必要な蒸気量は1.2kg/hであった。 After the desorption step was completed, the process shifted to the adsorption step again, and a series of treatment steps was repeated 100 cycles. Even at the 100th cycle, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a result of stable removal. As shown in Table 1 of the latter stage, the blower power used in the desorption step was 82 W, and the amount of steam required for heating the air was 1.2 kg / h.

[実施例2] フェノール系繊維を用いた綿繊度20番手の糸を使用したフライス編を炭化・賦活処理して、繊維束の直径250μm、比表面積1500m2/gの活性炭素繊維シート(繊維束から成る活性炭素繊維の構造体)を作製した。この活性炭素繊維シートを200g積層した吸着素子を作製し、図1の水処理装置100に設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm/gであり、平均細孔径15Åであった。 [Example 2] An activated carbon fiber sheet (from a fiber bundle) having a fiber bundle diameter of 250 μm and a specific surface area of 1500 m 2 / g by carbonizing and activating a milled knit using a yarn having a cotton fineness of 20 counts using phenolic fibers. (Structure of activated carbon fiber) was prepared. An adsorption element in which 200 g of this activated carbon fiber sheet was laminated was produced and installed in the water treatment apparatus 100 of FIG. The pore volume of the activated carbon fiber sheet was 0.60 cm 3 / g, and the average pore diameter was 15 Å.

吸着工程では、700mg/lの1,4−ジオキサンを含む原水をSV=20h−1で導入した。その際の出口1,4−ジオキサン濃度は、0.5mg/L以下であり、99%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 700 mg / l of 1,4-dioxane was introduced at SV = 20h-1. At that time, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a good result that 99% or more could be removed.

次に、脱水工程では、0.1MPaの水蒸気を35cm/sで1min供給し、吸着素子に付着する水分を脱水除去した。その際の付着水量は、後段の表1に示す通り1.8g/gであった。 Next, in the dehydration step, water vapor of 0.1 MPa was supplied at 35 cm / s for 1 min to dehydrate and remove the water adhering to the adsorption element. The amount of adhering water at that time was 1.8 g / g as shown in Table 1 in the latter part.

次に、脱着工程では、0.1MPaの水蒸気を35cm/sで6min供給した。その際の吸着材の平均圧力損失は12kPaであった。脱着された1,4−ジオキサンと水蒸気は冷却凝縮器にて液化凝縮され濃縮水として回収された後、適切に二次処理された。 Next, in the desorption step, water vapor of 0.1 MPa was supplied at 35 cm / s for 6 min. The average pressure loss of the adsorbent at that time was 12 kPa. The desorbed 1,4-dioxane and water vapor were liquefied and condensed in a cooling condenser, recovered as concentrated water, and then appropriately subjected to secondary treatment.

脱着工程が完了した後、再び吸着工程へ移行し、一連の処理工程を、100サイクル回繰返した。100サイクル目においても出口1,4−ジオキサン濃度は、0.5mg/L以下であり、安定して除去できる結果であった。後段の表1に示す通り、脱着工程に使用した水蒸気量は、1.3kg/hであった。 After the desorption step was completed, the process shifted to the adsorption step again, and a series of treatment steps was repeated 100 cycles. Even at the 100th cycle, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a result of stable removal. As shown in Table 1 in the latter stage, the amount of water vapor used in the desorption step was 1.3 kg / h.

[比較例1] フェノール系繊維であり、繊維径20μm、比表面積1500m/gの不織布である活性炭素繊維シート200gを積層した吸着素子を作成し、図1と同様のダンパー切替方式の
水処理装置に設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm/gであり、平均細孔径15Åであった。
[Comparative Example 1] An adsorption element in which 200 g of activated carbon fiber sheet, which is a phenolic fiber and is a non-woven fabric having a fiber diameter of 20 μm and a specific surface area of 1500 m 2 / g, is laminated is produced, and water treatment is performed by a damper switching method similar to that in FIG. Installed in the device. The pore volume of the activated carbon fiber sheet was 0.60 cm 3 / g, and the average pore diameter was 15 Å.

吸着工程では、700mg/lの1,4−ジオキサンを含む原水をSV=20h−1で導入した。その際の出口1,4−ジオキサン濃度は、0.5mg/L以下であり、99%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 700 mg / l of 1,4-dioxane was introduced at SV = 20h-1. At that time, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a good result that 99% or more could be removed.

次に、脱水工程では、空気を風速75cm/sで1min供給し、吸着素子に付着する水分を脱水除去した。その際の付着水量は、後段の表1に示す通り2.0g/gであり、実施例1と比較して2倍の付着水量であった。 Next, in the dehydration step, air was supplied for 1 min at a wind speed of 75 cm / s to dehydrate and remove the water adhering to the adsorption element. The amount of adhering water at that time was 2.0 g / g as shown in Table 1 in the latter part, which was twice the amount of adhering water as compared with Example 1.

次に、脱着工程では、空気を蒸気ヒーターで130℃に加熱した加熱空気をブロワーで風速75cm/sで19min供給した。その際の吸着材の平均圧力損失は15kPaであった。脱着された1,4−ジオキサンと加熱空気は脱着ガスとして排出され、適切に二次処理された。 Next, in the desorption step, heated air heated to 130 ° C. with a steam heater was supplied for 19 minutes at a wind speed of 75 cm / s with a blower. The average pressure loss of the adsorbent at that time was 15 kPa. The desorbed 1,4-dioxane and heated air were discharged as desorbed gas and appropriately secondary treated.

脱着工程が完了した後、再び吸着工程へ移行し、一連の処理工程を、100サイクル回繰返した。100サイクル目においても出口1,4−ジオキサン濃度は、0.5mg/L以下であり、安定して除去できる結果であった。しかし、比較例1は、後段の表1に示す通り、脱着工程に使用したブロワー電力は126W、空気の加熱に必要な蒸気量は1.8kg/hであり、実施例1に対してブロワー動力は1.5倍以上、水蒸気量は1.5倍以上必要であった。 After the desorption step was completed, the process shifted to the adsorption step again, and a series of treatment steps was repeated 100 cycles. Even at the 100th cycle, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a result of stable removal. However, in Comparative Example 1, as shown in Table 1 in the latter stage, the blower power used in the desorption step was 126 W, the amount of steam required for heating the air was 1.8 kg / h, and the blower power was higher than that in Example 1. Was required to be 1.5 times or more, and the amount of water vapor was required to be 1.5 times or more.

[比較例2] フェノール系繊維であり、繊維径20μm、比表面積1500m/gの不織布である活性炭素繊維シート200gを積層した吸着素子を作成し、図1と同様のダンパー切替方式の水処理装置に設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm/gであり、平均細孔径15Åであった。 [Comparative Example 2] An adsorption element in which 200 g of activated carbon fiber sheet, which is a phenolic fiber and is a non-woven fabric having a fiber diameter of 20 μm and a specific surface area of 1500 m 2 / g, is laminated is produced, and water treatment is performed by a damper switching method similar to that in FIG. Installed in the device. The pore volume of the activated carbon fiber sheet was 0.60 cm 3 / g, and the average pore diameter was 15 Å.

吸着工程では、700mg/lの1,4−ジオキサンを含む原水をSV=20h−1で導入した。その際の出口1,4−ジオキサン濃度は、0.5mg/L以下であり、99%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 700 mg / l of 1,4-dioxane was introduced at SV = 20h-1. At that time, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a good result that 99% or more could be removed.

次に、脱水工程では、0.1MPaの水蒸気を35cm/sで1min供給し、吸着素子に付着する水分を脱水除去した。その際の付着水量は、後段の表1に示す通り2.4g/gであり、実施例2と比較して1.3倍以上の付着水量であった。 Next, in the dehydration step, water vapor of 0.1 MPa was supplied at 35 cm / s for 1 min to dehydrate and remove the water adhering to the adsorption element. The amount of adhering water at that time was 2.4 g / g as shown in Table 1 in the latter part, which was 1.3 times or more the amount of adhering water as compared with Example 2.

次に、脱着工程では、0.1MPaの水蒸気を35cm/sで6min供給した。その際の吸着材の平均圧力損失は22kPaであった。脱着された1,4−ジオキサンと水蒸気は冷却凝縮器にて液化凝縮され濃縮水として回収された後、適切に二次処理された。 Next, in the desorption step, water vapor of 0.1 MPa was supplied at 35 cm / s for 6 minutes. The average pressure loss of the adsorbent at that time was 22 kPa. The desorbed 1,4-dioxane and water vapor were liquefied and condensed in a cooling condenser, recovered as concentrated water, and then appropriately subjected to secondary treatment.

脱着工程が完了した後、再び吸着工程へ移行し、一連の処理工程を、100サイクル回繰返した。100サイクル目においても出口1,4−ジオキサン濃度は、0.5mg/L以下であり、安定して除去できる結果であった。しかし、比較例2は、後段の表1に示す通り、脱着工程に使用した水蒸気量は、2.1kg/hであり、実施例2に対して水蒸気量は1.6倍以上必要であった。 After the desorption step was completed, the process shifted to the adsorption step again, and a series of treatment steps was repeated 100 cycles. Even at the 100th cycle, the outlet 1,4-dioxane concentration was 0.5 mg / L or less, which was a result of stable removal. However, in Comparative Example 2, as shown in Table 1 in the latter stage, the amount of water vapor used in the desorption step was 2.1 kg / h, and the amount of water vapor required was 1.6 times or more that of Example 2. ..

Figure 0006897572
Figure 0006897572

なお、上記開示した実施形態および各実施例はすべて例示であり制限的なものではない。本発明の技術的範囲は、特許請求の範囲によって有効であり、特許請求の範囲の記載と均等の意味および範囲内のすべての変更・修正・置き換え等を含むものである。 It should be noted that the above-disclosed embodiments and examples are all examples and are not restrictive. The technical scope of the present invention is valid depending on the scope of claims, and includes the description of the claims and the meaning equivalent to the description and all changes, modifications, replacements, etc. within the scope.

本発明による水処理装置は、各種工場や研究施設の排水、最終処分場の浸出水、地下水等から有機溶剤等の有機化合物を除去する装置に好適に利用することができ、産業界に大いに寄与できる。 The water treatment apparatus according to the present invention can be suitably used for an apparatus for removing organic compounds such as organic solvents from wastewater of various factories and research facilities, leachate of final disposal sites, groundwater, etc., and greatly contributes to the industrial world. it can.

10、20 処理槽 11、12 吸着素子 L1 被処理水導入ライン(被処理水流通部) L2 処理水排出ライン L3 加熱ガス供給ライン(加熱ガス通気部) L4 脱着ガス排出ライン L5 ガス供給ライン(ガス通気部) L6 戻水返却ライン V1〜V12 バルブ 10, 20 Treatment tank 11, 12 Adsorption element L1 Treatment water introduction line (treatment water flow section) L2 Treatment water discharge line L3 Heating gas supply line (heating gas ventilation section) L4 Desorption gas discharge line L5 Gas supply line (gas) Ventilation part) L6 return water return line V1 to V12 valve

Claims (6)

有機化合物を含有する水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させる吸着処理と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水処理と、前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された前記有機化合物を脱着する脱着処理と、を繰返し実行する水処理装置であり、
前記構造体は織物または編物であり、
前記構造体における繊維束の直径は100〜600μmであり、
前記構造体は、BET比表面積が900〜2500m /gであり、細孔容積が0.4〜0.9cm /gであり、平均細孔経が14〜18Åである、
ことを特徴とする水処理装置。
Water containing an organic compound is passed through an adsorption element containing an activated carbon fiber structure composed of a fiber bundle to adsorb the organic compound on the adsorption element, and gas is aerated through the adsorption element. A water treatment apparatus that repeatedly executes a dehydration treatment for removing the adsorbed water on the adsorption element and a desorption treatment for desorbing the organic compound adsorbed on the adsorption element by aerating a heating gas through the adsorption element. Yes,
The structure is a woven or knitted fabric
The diameter of the fiber bundle in the structure is 100 to 600 μm.
The structure has a BET specific surface area of 900-2500 m 2 / g, a pore volume of 0.4-0.9 cm 3 / g, and an average pore diameter of 14-18 Å.
A water treatment device characterized by that.
吸着素子が充填された処理槽と、該吸着素子に有機化合物を吸着させるため前記処理槽に有機化合物を含有する水を通流させる被処理水通流部と、前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、前記吸着素子から有機化合物を脱着するために前記処理槽に加熱ガスを通気させる加熱ガス通気部と、を備えた水処理装置であり、前記吸着素子は、繊維束から成る活性炭素繊維の構造体を含み、
前記構造体は織物または編物であり、
前記繊維束の直径は100〜600μmであり、
前記構造体は、BET比表面積が900〜2500m /gであり、細孔容積が0.4〜0.9cm /gであり、平均細孔経が14〜18Åである、
ことを特徴とする水処理装置。
A treatment tank filled with an adsorption element, a water flow portion to be treated that allows water containing the organic compound to flow through the treatment tank in order to adsorb the organic compound to the adsorption element, and a water adsorbent is removed from the adsorption element. It is a water treatment apparatus including a gas aeration unit for aerating gas to the treatment tank for the purpose of ventilating the gas, and a heating gas aeration unit for aeration of the heating gas to the treatment tank for desorbing an organic compound from the adsorption element. , The adsorption element includes a structure of activated carbon fibers composed of a fiber bundle.
The structure is a woven or knitted fabric
The diameter of the fiber bundle is 100 to 600 μm.
The structure has a BET specific surface area of 900-2500 m 2 / g, a pore volume of 0.4-0.9 cm 3 / g, and an average pore diameter of 14-18 Å.
A water treatment device characterized by that.
前記除去した付着水を、再度、前記吸着素子に吸着させる返送ルートを備えたことを特徴とする請求項1または2に記載の水処理装置。 The water treatment apparatus according to claim 1 or 2 , further comprising a return route for adsorbing the removed adhering water to the adsorption element again. 前記構造体が、編物である場合フライス編による編物であることを特徴とする請求項1からのいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 3 , wherein when the structure is a knit, it is a knit by milling. 請求項1から4のいずれか1項に記載の水処理装置に用いられる繊維束から成る活性炭素繊維の構造体を含む吸着素子。 An adsorption element including a structure of activated carbon fibers composed of a fiber bundle used in the water treatment apparatus according to any one of claims 1 to 4. 有機化合物を含有する水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させる吸着工程と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水工程と、前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された前記有機化合物を脱着する脱着工程と、を繰返し実行する水処理方法であり、
前記構造体は織物または編物であり、
前記繊維束の直径は100〜600μmであり、
前記構造体は、BET比表面積が900〜2500m /gであり、細孔容積が0.4〜0.9cm /gであり、平均細孔経が14〜18Åである、
ことを特徴とする水処理方法。
A adsorption step in which water containing an organic compound is passed through an adsorption element containing an activated carbon fiber structure composed of a fiber bundle to adsorb the organic compound on the adsorption element, and a gas is aerated through the adsorption element. A water treatment method in which the dehydration step of removing the adsorbed water of the adsorbent element and the desorption step of aerating the adsorbing element with a heating gas to desorb the organic compound adsorbed on the adsorbent element are repeatedly executed. Yes,
The structure is a woven or knitted fabric
The diameter of the fiber bundle is 100 to 600 μm.
The structure has a BET specific surface area of 900-2500 m 2 / g, a pore volume of 0.4-0.9 cm 3 / g, and an average pore diameter of 14-18 Å.
A water treatment method characterized by that.
JP2017560402A 2016-01-08 2017-01-05 Water treatment equipment, adsorption elements, and water treatment methods Active JP6897572B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016002466 2016-01-08
JP2016002466 2016-01-08
JP2016077990 2016-04-08
JP2016077990 2016-04-08
PCT/JP2017/000114 WO2017119441A1 (en) 2016-01-08 2017-01-05 Water treatment apparatus, adsorption element, and water treatment method

Publications (2)

Publication Number Publication Date
JPWO2017119441A1 JPWO2017119441A1 (en) 2018-11-01
JP6897572B2 true JP6897572B2 (en) 2021-06-30

Family

ID=59274114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017560402A Active JP6897572B2 (en) 2016-01-08 2017-01-05 Water treatment equipment, adsorption elements, and water treatment methods

Country Status (3)

Country Link
JP (1) JP6897572B2 (en)
CN (1) CN108430929B (en)
WO (1) WO2017119441A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568328B1 (en) * 2018-06-19 2019-08-28 日本製紙株式会社 Activated carbon fiber sheet for automobile canister
CN109320000A (en) * 2018-12-04 2019-02-12 佛山科学技术学院 A kind of groundwater remediation solar energy combined type withdrawing device
CN110479221A (en) * 2019-08-30 2019-11-22 天津大学 A kind of preparation method and application of red mud/polypyrrole composite adsorbing material
JP7365299B2 (en) * 2020-07-15 2023-10-19 株式会社オメガ Wastewater treatment method
CN113526722A (en) * 2021-06-29 2021-10-22 上海化工研究院有限公司 Penicillin production wastewater treatment method based on activated carbon fiber adsorption

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792242A (en) * 1996-02-26 1998-08-11 Minnesota Mining And Manufacturing Co. Electrostatic fibrous filter web
JPH10180249A (en) * 1996-11-05 1998-07-07 Sanden Corp Water purification and sterilization device
JPH1110195A (en) * 1997-06-18 1999-01-19 Sanden Corp Drink feed machine
JPH11319812A (en) * 1998-05-08 1999-11-24 Nikkiso Co Ltd Active carbon filter
US6139739A (en) * 1998-10-08 2000-10-31 Cuno Incorporated Composite filter element
US6155432A (en) * 1999-02-05 2000-12-05 Hitco Carbon Composites, Inc. High performance filters based on inorganic fibers and inorganic fiber whiskers
JP2001079537A (en) * 1999-09-14 2001-03-27 Shigehisa Ishihara Method for removing contaminant and removing system
JP3879901B2 (en) * 2000-09-12 2007-02-14 東洋紡績株式会社 Low pressure loss nonwoven activated carbon fiber and method for producing the same
JP3988110B2 (en) * 2000-09-12 2007-10-10 東洋紡績株式会社 Low pressure loss nonwoven activated carbon fiber and method for producing the same
JP2003093818A (en) * 2001-09-25 2003-04-02 Toray Ind Inc Air filter material
US6872311B2 (en) * 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
JP2004223368A (en) * 2003-01-21 2004-08-12 Osaka Gas Co Ltd Cyan component removing method
DE10318054B3 (en) * 2003-04-17 2004-12-23 BLüCHER GMBH Air filter unit with several filter elements and their use
JP2005185915A (en) * 2003-12-25 2005-07-14 Toyobo Co Ltd Fibrous photocatalyst and its production method
KR100747024B1 (en) * 2004-08-16 2007-08-07 (주) 정수엔지니어링 Purifying methods using activated carbon fiber structures
JP4512993B2 (en) * 2004-08-18 2010-07-28 東洋紡績株式会社 Water treatment equipment
JP2007277433A (en) * 2006-04-07 2007-10-25 Ueda Holdings:Kk Functional masterbatch, functional molded product of the functional masterbatch, functional fiber material, functional fiber product and functional filter processed by using the functional fiber material
JP2008249177A (en) * 2007-03-29 2008-10-16 Duskin Co Ltd Silane-supported fiber filter
US8691201B2 (en) * 2008-02-15 2014-04-08 Toray Opelontex Co., Ltd. Deodorant material
TWI377978B (en) * 2008-05-21 2012-12-01 Mitsubishi Rayon Co Hollow porous film and manufacturing method thereof
US7854848B2 (en) * 2008-09-18 2010-12-21 3M Innovative Properties Company Portable water treatment apparatus and methods
TWI515035B (en) * 2009-03-02 2016-01-01 科邁實業有限公司 Regenerable pleated filter medium
GB201110585D0 (en) * 2011-06-22 2011-08-03 Acal Energy Ltd Cathode electrode modification
TWI541400B (en) * 2011-11-30 2016-07-11 東洋紡股份有限公司 Activated carbon fiber nonwoven fabric and element using the nonwoven fabric
JP5929130B2 (en) * 2011-11-30 2016-06-01 東洋紡株式会社 Water treatment equipment
DE202012003802U1 (en) * 2012-03-28 2013-04-02 BLüCHER GMBH Adsorptive filter medium
CN103721695A (en) * 2012-10-12 2014-04-16 上海则轶实业有限公司 Preparation method of titanium oxide active carbon
CN102912648B (en) * 2012-11-02 2015-04-22 东华大学 Preparation method for fiber-based activate core-shell micro-nano structure environment purifying material
CN103437028A (en) * 2013-08-16 2013-12-11 昆山市周市镇吉盛服装厂 Fabric with strong adsorption capacity
JP6311342B2 (en) * 2014-02-17 2018-04-18 東洋紡株式会社 Wastewater treatment system

Also Published As

Publication number Publication date
JPWO2017119441A1 (en) 2018-11-01
CN108430929A (en) 2018-08-21
WO2017119441A1 (en) 2017-07-13
CN108430929B (en) 2021-12-03

Similar Documents

Publication Publication Date Title
JP6897572B2 (en) Water treatment equipment, adsorption elements, and water treatment methods
TWI552957B (en) Co2 adsorption and recovery system and method
KR20140009270A (en) Method for removing organic solvent, and removal device
JP2013111553A (en) Water treatment system
JP5029590B2 (en) Wastewater treatment system
JP5982796B2 (en) Gas processing equipment containing organic solvent
JP2017205684A (en) Water treatment system
JP2015134319A (en) Water treatment system
JP6922165B2 (en) Water treatment equipment
JP6332586B2 (en) Water treatment device and water treatment system
JP6862700B2 (en) Water treatment system
JP5929130B2 (en) Water treatment equipment
JP5482134B2 (en) Activated carbon fiber
JP2002211911A (en) Carbonized material containing hydroxyl group derived from hydrophilic polymer and method for producing the same
JP5978808B2 (en) Wastewater treatment system
JP2011092870A (en) Organic solvent recovery system
JP6834512B2 (en) Fluid processing equipment
JP6765921B2 (en) Water treatment equipment, water treatment system and water treatment method
KR101572967B1 (en) Polyvinylidene Fluoride-based Carbon Nanofiber for Carbon Dioxide Adsorption and Preparation Method for Preparing the Same
JP2015196102A (en) Adsorbent element for deodorization and production method thereof
WO2020203779A1 (en) Water treatment system
JP2011251232A (en) Waste water treatment apparatus
JP5510110B2 (en) Organic solvent recovery system
JP6414470B2 (en) Water treatment equipment
JP2018034109A (en) Organic solvent recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350