JP2015196102A - Adsorbent element for deodorization and production method thereof - Google Patents

Adsorbent element for deodorization and production method thereof Download PDF

Info

Publication number
JP2015196102A
JP2015196102A JP2014073617A JP2014073617A JP2015196102A JP 2015196102 A JP2015196102 A JP 2015196102A JP 2014073617 A JP2014073617 A JP 2014073617A JP 2014073617 A JP2014073617 A JP 2014073617A JP 2015196102 A JP2015196102 A JP 2015196102A
Authority
JP
Japan
Prior art keywords
acf
adsorbent element
treated
heat
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014073617A
Other languages
Japanese (ja)
Inventor
一也 篠原
Kazuya Shinohara
一也 篠原
大滝 昭仁
Akihito Otaki
昭仁 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Engineering and Construction Co Ltd
Original Assignee
Toho Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Engineering and Construction Co Ltd filed Critical Toho Chemical Engineering and Construction Co Ltd
Priority to JP2014073617A priority Critical patent/JP2015196102A/en
Publication of JP2015196102A publication Critical patent/JP2015196102A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent element for deodorization which can adsorb and remove odorous components comprising basic gases, e.g. ammonia, over a long period and its production method.SOLUTION: An adsorbent element for deodorization is formed by heat-treating a rayon-based active carbon fiber, e.g. at 300-500°C in an oxygen-containing atmosphere for 0.5-5 h while blowing air, to introduce a specified functional group into the active fiber and has a total amount of acid groups of 2-20 meq/g, an amount of the carboxyl group of 0.5-10 meq/g and an amount of the hydroxyl group of 0.5-8 meq/g.

Description

本発明は、空気中の臭気成分、特にアンモニアや各種アミン類等の塩基性ガス成分を効率良く吸着除去する脱臭用吸着材素子及びその製造方法に関する。   The present invention relates to a deodorizing adsorbent element that efficiently adsorbs and removes odor components in air, particularly basic gas components such as ammonia and various amines, and a method for producing the same.

従来、各種空気清浄機等において、煙草の副流煙等に含まれる臭気成分であるアンモニアや各種アミン類等の塩基性ガスは、粒状活性炭、シリカゲル、ゼオライト等を吸着材素子とする脱臭フィルターに流通させて吸着除去されている。しかし、これらの吸着材素子は吸着速度が低いため、脱臭フィルターに1回流通させるだけでは臭気成分を十分に吸着除去することができない。そのため、臭気成分の除去率を向上させるためには、被処理ガスを脱臭フィルターに繰り返し流通させる必要があり、室内空間の脱臭に長時間を要している。また、これらの吸着材素子は、アンモニアや各種アミン類等の塩基性ガスに対する吸着容量が低く、吸着材素子を頻繁に交換する必要がある。   Conventionally, in various air cleaners, etc., basic gases such as ammonia and various amines, which are odorous components contained in sidestream smoke of cigarettes, are applied to deodorizing filters that use granular activated carbon, silica gel, zeolite, etc. as adsorbent elements. It is removed by adsorption through circulation. However, since these adsorbent elements have a low adsorption rate, the odor components cannot be sufficiently adsorbed and removed only by circulating them once through the deodorizing filter. Therefore, in order to improve the removal rate of odor components, it is necessary to repeatedly distribute the gas to be treated through the deodorizing filter, and it takes a long time to deodorize the indoor space. Further, these adsorbent elements have a low adsorption capacity for basic gases such as ammonia and various amines, and the adsorbent elements need to be frequently replaced.

活性炭素繊維(以下、「ACF」と記す)は、細孔が繊維の表面に存在するため、吸着速度が高い吸着材素子として知られている。また、ACFは、粒状活性炭等と比較して表面積が大きいため、吸着能が優れる。繊維状のACFは、紙、織物、不織布等の形態に容易に加工できるため、様々な分野で活用されている。   Activated carbon fiber (hereinafter referred to as “ACF”) is known as an adsorbent element having a high adsorption rate because pores are present on the surface of the fiber. Moreover, since ACF has a large surface area compared to granular activated carbon or the like, the adsorption capacity is excellent. Fibrous ACF can be easily processed into forms such as paper, woven fabric, and non-woven fabric, and thus is utilized in various fields.

特許文献1には、酸素含有量が3質量%以上であって表面に酸素官能基を有するピッチ系ACFが開示されているが、アンモニアや各種アミン類等の塩基性ガスに対する吸着容量が十分ではない。   Patent Document 1 discloses a pitch-based ACF having an oxygen content of 3% by mass or more and having an oxygen functional group on the surface. However, the adsorption capacity for basic gases such as ammonia and various amines is not sufficient. Absent.

特開平2−118121号公報Japanese Patent Laid-Open No. 2-118121

本発明の課題は、臭気成分、特にアンモニアや各種アミン類等の塩基性ガスを長期間にわたって吸着除去することができる脱臭用吸着材素子及びその製造方法を提供することである。   An object of the present invention is to provide an adsorbent element for deodorization capable of adsorbing and removing odor components, particularly basic gases such as ammonia and various amines over a long period of time, and a method for producing the same.

本発明者らは、特にアンモニアや各種アミン類等の塩基性ガスを効率良く吸着除去できる吸着材素子について検討した。その結果、ACFを所定条件で熱処理して該ACFに所定の官能基を導入することにより、アンモニアや各種アミン類等の塩基性ガスの吸着能が飛躍的に向上することを見出し、本発明を完成するに至った。   The present inventors have studied an adsorbent element that can efficiently adsorb and remove basic gases such as ammonia and various amines. As a result, it has been found that the ability to adsorb basic gases such as ammonia and various amines is drastically improved by heat-treating ACF under predetermined conditions and introducing predetermined functional groups into the ACF. It came to be completed.

上記課題を解決する本発明は以下に記載するとおりである。   The present invention for solving the above problems is as described below.

〔1〕 酸塩基滴定法により測定される全酸性基量が2〜20meq/g、カルボキシル基量が0.5〜10meq/g、水酸基量が0.5〜8meq/gである活性炭素繊維から成ることを特徴とする脱臭用吸着材素子。   [1] From activated carbon fibers having a total acid group amount of 2 to 20 meq / g, a carboxyl group amount of 0.5 to 10 meq / g, and a hydroxyl group amount of 0.5 to 8 meq / g measured by acid-base titration. An adsorbent element for deodorization characterized by comprising.

〔2〕 前記活性炭素繊維が、レーヨン系活性炭素繊維である〔1〕に記載の脱臭用吸着材素子。   [2] The deodorizing adsorbent element according to [1], wherein the activated carbon fiber is a rayon-based activated carbon fiber.

〔3〕 前記活性炭素繊維が、酸素含有雰囲気下、300〜500℃で0.5〜5時間熱処理して得られる熱処理活性炭素繊維である〔1〕に記載の脱臭用吸着材素子。   [3] The deodorizing adsorbent element according to [1], wherein the activated carbon fiber is a heat-treated activated carbon fiber obtained by heat treatment at 300 to 500 ° C. for 0.5 to 5 hours in an oxygen-containing atmosphere.

〔4〕 活性炭素繊維を酸素含有雰囲気下、300〜500℃で0.5〜5時間熱処理することを特徴とする〔1〕に記載の脱臭用吸着材素子の製造方法。   [4] The method for producing an adsorbent element for deodorization according to [1], wherein the activated carbon fiber is heat-treated at 300 to 500 ° C. for 0.5 to 5 hours in an oxygen-containing atmosphere.

本発明の脱臭吸着材素子は、ACFを原料とする。ACFは繊維表面に10〜20Å程度のミクロポアを有しており、100Å以上のマクロポアを有さない。吸着に寄与するミクロポアが繊維表面に形成されているため、吸着速度が高い。したがって、低濃度の被処理ガスに対する吸着能が高く、脱臭用吸着材素子に被処理ガスを1回流通させるだけで臭気成分を高い除去率で除去できる。また、本発明の脱臭用吸着材素子は、ACFが熱処理されて所定の官能基が導入されている。この熱処理ACFは、塩基性ガス、特にアンモニアや各種アミン類等の吸着能が特異的に高い。さらに、熱処理ACFの吸着容量は、未処理のACFや粒状活性炭と比較して大きい。そのため、脱臭用吸着材をコンパクトに設計できる。   The deodorizing adsorbent element of the present invention uses ACF as a raw material. ACF has a micropore of about 10 to 20 cm on the fiber surface and does not have a macropore of 100 cm or more. Since the micropores contributing to the adsorption are formed on the fiber surface, the adsorption rate is high. Therefore, the adsorption ability with respect to the low concentration of the gas to be treated is high, and the odorous component can be removed with a high removal rate by only passing the gas to be treated once through the deodorizing adsorbent element. In the deodorizing adsorbent element of the present invention, ACF is heat-treated and a predetermined functional group is introduced. This heat-treated ACF has a particularly high adsorbability for basic gases, particularly ammonia and various amines. Furthermore, the adsorption capacity of the heat-treated ACF is larger than that of untreated ACF or granular activated carbon. Therefore, the deodorizing adsorbent can be designed in a compact manner.

図1は、吸着破過試験に用いる試験装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing the configuration of a test apparatus used for the adsorption breakthrough test. 図2は、脱臭用吸着材素子のアンモニアガス吸着能を示す破過曲線である。FIG. 2 is a breakthrough curve showing the ammonia gas adsorption ability of the deodorizing adsorbent element. 図3は、全酸性基量とアンモニア吸着率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the total amount of acidic groups and the ammonia adsorption rate. 図4は、カルボキシル基量とアンモニア吸着率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the amount of carboxyl groups and the ammonia adsorption rate.

以下、本発明の脱臭用吸着材素子、その製造方法及び使用方法について詳細に説明する。   The deodorizing adsorbent element of the present invention, its production method and use method will be described in detail below.

(1)脱臭用吸着材素子
本発明の脱臭用吸着材素子は、ACFを熱処理して得られる熱処理ACFを主成分とする。この熱処理ACFは、表面官能基量が所定範囲に制御されている。なお、本明細書において、表面官能基量は酸塩基滴定法(Boehm法)により測定される値である。
(1) Adsorbent element for deodorization The adsorbent element for deodorization of this invention has as a main component heat-treated ACF obtained by heat-treating ACF. In this heat treatment ACF, the amount of surface functional groups is controlled within a predetermined range. In the present specification, the surface functional group amount is a value measured by an acid-base titration method (Boehm method).

熱処理ACFの全酸性基量は2〜20meq/gであり、5〜17.5meq/gであることが好ましく、7.5〜15meq/gであることがより好ましい。2meq/g未満である場合、塩基性ガスに対する吸着能が向上し難い。   The total amount of acidic groups in the heat-treated ACF is 2 to 20 meq / g, preferably 5 to 17.5 meq / g, and more preferably 7.5 to 15 meq / g. When it is less than 2 meq / g, it is difficult to improve the adsorption capacity for basic gas.

熱処理ACFのカルボキシル基量は0.5〜10meq/gであり、2〜8.5meq/gであることが好ましく、3〜7meq/gであることがより好ましい。0.5meq/g未満である場合、塩基性ガスに対する吸着能が向上し難い。   The amount of carboxyl groups in the heat-treated ACF is 0.5 to 10 meq / g, preferably 2 to 8.5 meq / g, and more preferably 3 to 7 meq / g. When it is less than 0.5 meq / g, it is difficult to improve the adsorption capacity for basic gas.

熱処理ACFのフェノール系水酸基量は0.5〜8meq/gであり、2.5〜7meq/gであることが好ましく、3〜6meq/gであることがより好ましい。0.5meq/g未満である場合、塩基性ガスに対する吸着能が向上し難い。   The amount of phenolic hydroxyl group in the heat-treated ACF is 0.5 to 8 meq / g, preferably 2.5 to 7 meq / g, and more preferably 3 to 6 meq / g. When it is less than 0.5 meq / g, it is difficult to improve the adsorption capacity for basic gas.

熱処理ACFの比表面積は100〜2000m/gであることが好ましく、500〜1500m/gであることがより好ましい。100m/g未満である場合、臭気成分の吸着能力が低い。2000m/gを超える場合、収率が大きく低下し経済的に不利である。 Preferably the specific surface area of the heat treatment ACF is 100-2000 m 2 / g, more preferably 500 to 1500 2 / g. When it is less than 100 m 2 / g, the adsorption capacity of odor components is low. When it exceeds 2000 m < 2 > / g, a yield will fall large and it is economically disadvantageous.

熱処理ACFの全細孔容積は0.3〜1.2cc/gであることが好ましく、0.5〜1.0cc/gであることがより好ましい。0.3cc/g未満である場合、吸着材素子の吸着容量が小さい。そのため、吸着材素子の交換又は再生の頻度が高くなる。1.2cc/gを超える場合、収率が大きく低下し経済的に不利である。   The total pore volume of the heat-treated ACF is preferably 0.3 to 1.2 cc / g, and more preferably 0.5 to 1.0 cc / g. When it is less than 0.3 cc / g, the adsorption capacity of the adsorbent element is small. Therefore, the frequency of replacement or regeneration of the adsorbent element is increased. If it exceeds 1.2 cc / g, the yield is greatly reduced, which is economically disadvantageous.

熱処理ACFの繊維直径は特に限定されないが、通常1〜50μmであり、5〜30μmであることが好ましい。   The fiber diameter of the heat-treated ACF is not particularly limited, but is usually 1 to 50 μm and preferably 5 to 30 μm.

ACFの形態はトウ、カットファイバー、織物、不織布、フェルト、紙等の任意の形態を採用できる。   Arbitrary forms, such as a tow, a cut fiber, a textile fabric, a nonwoven fabric, felt, paper, can be employ | adopted for the form of ACF.

熱処理ACFは、従来公知のACFを熱処理することにより得られる。ACFとしては、フェノール系ACF、ポリアクリロニトリル系ACF、ピッチ系ACF、レーヨン系ACFが例示される。これらの中でもレーヨン系ACFは他のACFと比較して特に好ましい。図3は、全酸性基量とアンモニア吸着率との関係を示すグラフである。これによれば、レーヨン系の熱処理ACFは、同一の全酸性基量であってもアンモニアの吸着率が、その他の熱処理ACFと比べて特異的に高い。図4は、カルボキシル基量とアンモニア吸着率との関係を示すグラフである。同様に、レーヨン系の熱処理ACFは、同一のカルボキシル基量であってもアンモニアの吸着率が、その他の熱処理ACFと比べて特異的に高い。その理由は定かではないが、レーヨン系ACFの特異的な吸着能は、他のACFと比較して繊維表面に深い溝が形成されており官能基の導入態様が異なっている可能性があることや、灰分に由来する極性部分が少なく水分吸着の影響を受けにくいこと等に起因するのではないかと推察される。   The heat treatment ACF is obtained by heat treating a conventionally known ACF. Examples of the ACF include phenol ACF, polyacrylonitrile ACF, pitch ACF, and rayon ACF. Among these, rayon-based ACF is particularly preferable compared to other ACFs. FIG. 3 is a graph showing the relationship between the total amount of acidic groups and the ammonia adsorption rate. According to this, in the rayon-based heat treatment ACF, even when the total amount of acidic groups is the same, the ammonia adsorption rate is specifically higher than other heat treatment ACFs. FIG. 4 is a graph showing the relationship between the amount of carboxyl groups and the ammonia adsorption rate. Similarly, rayon-based heat-treated ACF has an ammonia adsorption rate that is specifically higher than other heat-treated ACFs even with the same amount of carboxyl groups. The reason for this is not clear, but the specific adsorption ability of rayon-based ACF is that deep grooves are formed on the fiber surface compared to other ACFs, and the mode of functional group introduction may be different. It is speculated that this may be caused by the fact that the polar part derived from ash is small and is not easily affected by moisture adsorption.

(2)脱臭用吸着材素子の製造方法
本発明の脱臭用吸着材素子は、主として上記の熱処理ACFから構成される。熱処理ACFは、ACFを酸素含有雰囲気下、300〜500℃で0.5〜5時間熱処理することにより製造される。この熱処理により、表面官能基量が上記所定範囲に制御される。
(2) Manufacturing method of adsorbent element for deodorization The adsorbent element for deodorization of this invention is mainly comprised from said heat processing ACF. The heat-treated ACF is produced by heat-treating ACF in an oxygen-containing atmosphere at 300 to 500 ° C. for 0.5 to 5 hours. By this heat treatment, the amount of surface functional groups is controlled within the predetermined range.

酸素含有雰囲気としては、酸素を5容量%以上含有していればよい。このような酸素含有雰囲気としては空気が例示される。   As an oxygen-containing atmosphere, it is sufficient that oxygen is contained by 5% by volume or more. An example of such an oxygen-containing atmosphere is air.

熱処理温度は、300〜500℃であり、350〜480℃が好ましく、400〜450℃がより好ましい。300℃未満の場合、ACFへの表面官能基の導入が不十分であり、アンモニアや各種アミン類等のような塩基性ガスの吸着能が十分に向上しない。500℃を超える場合、ACFが燃焼したり、ACFに形成されているミクロポアが消失したりする。   The heat treatment temperature is 300 to 500 ° C, preferably 350 to 480 ° C, and more preferably 400 to 450 ° C. When the temperature is lower than 300 ° C., the surface functional groups are not sufficiently introduced into the ACF, and the adsorption ability of basic gases such as ammonia and various amines is not sufficiently improved. When the temperature exceeds 500 ° C., ACF burns or micropores formed in ACF disappear.

熱処理時間は0.5〜5時間であり、1〜3時間が好ましい。0.5時間未満である場合、表面官能基の導入が不十分となる。5時間を超える場合、経済的に不利である。また、熱処理温度によってはACFに形成されているミクロポアが消失する場合がある。   The heat treatment time is 0.5 to 5 hours, preferably 1 to 3 hours. When the time is less than 0.5 hour, the introduction of the surface functional group becomes insufficient. If it exceeds 5 hours, it is economically disadvantageous. Further, depending on the heat treatment temperature, the micropores formed in the ACF may disappear.

熱処理は公知の加熱装置を用いて行えばよい。例えば、連続管状炉やロータリーキルン型熱処理装置、高温オーブン等が例示される。   The heat treatment may be performed using a known heating device. For example, a continuous tubular furnace, a rotary kiln type heat treatment apparatus, a high temperature oven, etc. are illustrated.

(3)脱臭用吸着材素子の使用方法
本発明の脱臭用吸着材素子は、臭気成分を含む被処理ガスと接触させることにより使用される。即ち、被処理ガスを吸着材素子に導いて被処理ガス中の臭気成分を吸着除去する。接触時間や被処理ガスの流量、吸着材素子の量は、被処理ガスの種類や濃度により適宜設定される。
(3) Method of using the deodorizing adsorbent element The deodorizing adsorbent element of the present invention is used by bringing it into contact with a gas to be treated containing an odor component. That is, the gas to be processed is guided to the adsorbent element, and the odor component in the gas to be processed is adsorbed and removed. The contact time, the flow rate of the gas to be processed, and the amount of the adsorbent element are appropriately set according to the type and concentration of the gas to be processed.

この熱処理ACFは、そのまま用いてもよいし、任意の形態に加工してもよい。また、他の吸着材素子と組み合わせても良く、触媒等を付加しても良い。   This heat treatment ACF may be used as it is or may be processed into an arbitrary form. Moreover, you may combine with another adsorbent element and you may add a catalyst etc.

本発明の脱臭用吸着材素子を構成する熱処理ACFは、ACFのミクロポア内に各種ガスを吸着させることができる。また、熱処理ACFは、熱処理によって表面官能基の量が所定範囲に制御されているので塩基性ガスの吸着能が特に優れている。そのため、被処理ガス中の臭気成分のうち、塩基性成分の吸着量が特に高くなる。塩基性ガスとしては、メチルアミン、エチルアミン、プロピルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン等の各種アミン類やアンモニアが例示される。その中でもアンモニアの吸着能が特に優れている。   The heat treatment ACF constituting the deodorizing adsorbent element of the present invention can adsorb various gases in the micropores of the ACF. The heat-treated ACF is particularly excellent in basic gas adsorption ability because the amount of surface functional groups is controlled within a predetermined range by heat treatment. Therefore, among the odor components in the gas to be treated, the adsorption amount of the basic component is particularly high. Examples of the basic gas include various amines such as methylamine, ethylamine, propylamine, diethylamine, trimethylamine, and triethylamine, and ammonia. Among them, ammonia adsorption ability is particularly excellent.

以下、実施例によって本発明をさらに具体的に説明する。本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

以下の実施例において、「破過曲線」とは、吸着材素子に一定濃度の臭気成分を含む被処理ガスをワンパスで流通させた場合の、流通時間に対する臭気成分の出口濃度を示す曲線をいう。また、「保持時間」とは、被処理ガスの流通を開始してから、被処理ガス中の臭気成分が吸着材素子に吸着されている時間をいう。「10%破過時間」とは、カラム出口における臭気成分の濃度が、カラム入口における臭気成分の濃度の10%を超えるまでに要する時間をいう。吸着率は、吸着前後における吸着材素子の質量変化から計算した。即ち、下記式(1)
吸着率(%)=100×(吸着後の吸着材素子の質量−吸着前の吸着材素子の質量)/吸着前の吸着材素子の質量 ・・・式(1)
により計算した。
In the following examples, the “breakthrough curve” refers to a curve indicating the outlet concentration of the odor component with respect to the circulation time when the gas to be treated containing the odor component having a constant concentration is circulated through the adsorbent element in one pass. . The “holding time” refers to the time during which the odor component in the gas to be treated is adsorbed by the adsorbent element after the gas to be treated has started to flow. “10% breakthrough time” refers to the time required for the concentration of the odorous component at the column outlet to exceed 10% of the concentration of the odorous component at the column inlet. The adsorption rate was calculated from the mass change of the adsorbent element before and after adsorption. That is, the following formula (1)
Adsorption rate (%) = 100 × (mass of adsorbent element after adsorption−mass of adsorbent element before adsorption) / mass of adsorbent element before adsorption (1)
Calculated by

以下の実施例において、被処理ガスの吸着試験は次のとおり行った。図1は、吸着試験に用いる試験装置の構成を示す説明図である。図1中、100は試験装置である。11はテドラーバッグであり、内部に被処理ガスが充填されている。テドラーバッグ11には、送気管12、給気ポンプ13及び送気管14を順に介して流量計15の入口側に接続されている。流量計15の出口側は、送気管16を介してカラム17の一端(入口側)に接続されている。カラム17内には吸着材素子18が充填されている。カラム17の他端(出口側)には、送気管19が接続されている。テドラーバッグ11内に充填された被処理ガスは、給気ポンプ13を用いてカラム17に導入され、吸着材素子18と接触した後、送気管19を通って大気中に放出される。   In the following examples, the adsorption test of the gas to be treated was performed as follows. FIG. 1 is an explanatory diagram showing a configuration of a test apparatus used for an adsorption test. In FIG. 1, 100 is a test apparatus. Reference numeral 11 denotes a tedlar bag, which is filled with a gas to be processed. The tedlar bag 11 is connected to the inlet side of the flow meter 15 through an air supply pipe 12, an air supply pump 13, and an air supply pipe 14 in this order. The outlet side of the flow meter 15 is connected to one end (inlet side) of the column 17 through an air supply pipe 16. The column 17 is filled with adsorbent elements 18. An air supply pipe 19 is connected to the other end (exit side) of the column 17. The gas to be treated filled in the tedlar bag 11 is introduced into the column 17 using the air supply pump 13, contacts with the adsorbent element 18, and then released into the atmosphere through the air supply pipe 19.

以下の実施例で用いた原料ACFの物性等は以下のとおりである。
・レーヨン系ACF:比表面積は1130m/g、目付は180g/mのフェルト状ACF
・フェノール系ACF:比表面積は1240m/g、目付は170g/mのフェルト状ACF
・ピッチ系ACF:比表面積は1020m/g、目付は390g/mのフェルト状ACF
・PAN系ACF:比表面積は940m/g、目付は180g/mのフェルト状ACF
The physical properties of the raw material ACF used in the following examples are as follows.
Rayon ACF: Felt-shaped ACF with a specific surface area of 1130 m 2 / g and a basis weight of 180 g / m 2
Phenol-based ACF: Felt-shaped ACF with a specific surface area of 1240 m 2 / g and a basis weight of 170 g / m 2
Pitch-based ACF: Felt-shaped ACF having a specific surface area of 1020 m 2 / g and a basis weight of 390 g / m 2
PAN-based ACF: Felt-shaped ACF having a specific surface area of 940 m 2 / g and a basis weight of 180 g / m 2

(実施例1)
レーヨン系ACF 50gをロータリーキルン型熱処理装置(株式会社タナカテック製)を用いて常圧下、空気を1L/min.で送風しながら、450℃で2時間加熱処理してレーヨン系の熱処理ACFを得た。この熱処理ACFの比表面積は1260m/g、熱処理後におけるACFの全酸性基量、カルボキシル基量及びフェノール系水酸基量は表1に記載した。
(Example 1)
Using a rotary kiln-type heat treatment apparatus (manufactured by Tanaka Tech Co., Ltd.), 50 g of rayon-based ACF was added at 1 L / min. And heated at 450 ° C. for 2 hours to obtain a rayon-based heat treatment ACF. The specific surface area of this heat-treated ACF is 1260 m 2 / g, and the total acid group amount, carboxyl group amount, and phenolic hydroxyl group amount of ACF after heat treatment are shown in Table 1.

この熱処理ACFを1.0g計り取り、図1に示す試験装置のカラム内に充填して吸着試験を行った。被処理ガスとしては、アンモニアガスを300ppm含有させた空気を用いた。被処理ガスの温度は20℃、湿度は50%である。被処理ガスの流量は0.3L/min.とした。被処理ガスのカラム出口濃度はガス検知管を用いて測定した。破過曲線は図2の符号E1に示した。その他の結果は表1に示した。   1.0 g of this heat-treated ACF was weighed and packed in the column of the test apparatus shown in FIG. As the gas to be treated, air containing 300 ppm of ammonia gas was used. The temperature of the gas to be treated is 20 ° C. and the humidity is 50%. The flow rate of the gas to be treated is 0.3 L / min. It was. The column outlet concentration of the gas to be treated was measured using a gas detector tube. The breakthrough curve is indicated by E1 in FIG. The other results are shown in Table 1.

(実施例2〜4)
原料として用いるACFを表1に記載するとおり変更した他は、実施例1と同様に製造して各熱処理ACFを得た。また、実施例1と同様に吸着試験を行った。破過曲線は図2の符号E2〜4に示した。なお、図2中、符号E2及び符号E4の破過曲線は重なっている。その他の結果は表1に示した。
(Examples 2 to 4)
Each heat treatment ACF was obtained in the same manner as in Example 1 except that the ACF used as a raw material was changed as shown in Table 1. Further, an adsorption test was conducted in the same manner as in Example 1. The breakthrough curves are indicated by reference numerals E2 to E4 in FIG. In FIG. 2, the breakthrough curves of the symbols E2 and E4 overlap. The other results are shown in Table 1.

(実施例5〜6)
レーヨン系ACFを用いて、熱処理時間を表1に記載するとおり変更した他は、実施例1と同様に製造して各熱処理ACFを得た。また、実施例1と同様に吸着試験を行った。破過曲線は図2の符号E5及び6に示した。なお、その他の結果は表1に示した。
(Examples 5-6)
Each heat treatment ACF was obtained in the same manner as in Example 1 except that the heat treatment time was changed as described in Table 1 using rayon-based ACF. Further, an adsorption test was conducted in the same manner as in Example 1. The breakthrough curve is indicated by reference numerals E5 and E6 in FIG. Other results are shown in Table 1.

(実施例7)
レーヨン系ACFを用いて、加熱処理の温度を350℃、処理時間を1時間と変更した他は、実施例1と同様に製造して熱処理ACFを得た。その結果を表1に示した。
(Example 7)
A heat-treated ACF was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 350 ° C. and the treatment time was changed to 1 hour using rayon-based ACF. The results are shown in Table 1.

(比較例1)
熱処理を行わないレーヨン系ACFを用いて実施例1と同様に吸着試験を行った。破過曲線は図2の符号C1に示した。その他の結果は表1に示した。
(Comparative Example 1)
An adsorption test was conducted in the same manner as in Example 1 using rayon-based ACF that was not heat-treated. The breakthrough curve is shown as C1 in FIG. The other results are shown in Table 1.

(比較例2)
熱処理ACFに変えて粒状活性炭A(クラレケミカル株式会社製、製品名クラレコール3T‐B)を用いて実施例1と同様に吸着試験を行った。破過曲線は図2の符号C2に示した。その他の結果は表1に示した。
(Comparative Example 2)
An adsorption test was conducted in the same manner as in Example 1 using granular activated carbon A (Kuraray Chemical Co., Ltd., product name Kuraray Coal 3T-B) instead of heat treatment ACF. The breakthrough curve is indicated by symbol C2 in FIG. The other results are shown in Table 1.

(比較例3)
熱処理ACFに変えて粒状活性炭B(フタムラ化学株式会社製、製品名 太閤IA)を用いて実施例1と同様に吸着試験を行った。破過曲線は図2の符号C3に示した。その他の結果は表1に示した。
(Comparative Example 3)
An adsorption test was conducted in the same manner as in Example 1 using granular activated carbon B (product name: Dazai IA, manufactured by Futamura Chemical Co., Ltd.) instead of the heat treatment ACF. The breakthrough curve is indicated by symbol C3 in FIG. The other results are shown in Table 1.

(比較例4)
レーヨン系ACFを用いて、加熱処理の温度を250℃、処理時間を0.5時間と変更した他は、実施例1と同様に製造して熱処理ACFを得た。その結果を表1に示した。
(Comparative Example 4)
A heat-treated ACF was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 250 ° C. and the treatment time was changed to 0.5 hour using rayon-based ACF. The results are shown in Table 1.

(比較例5)
レーヨン系ACFを用いて、加熱処理の温度を550℃、処理時間を3時間と変更した他は、実施例1と同様に製造して熱処理ACFを得た。その結果、熱処理前の比表面積が1,130m/gであったのに対して、熱処理後には330m/gと大幅に低減し、かつ収率が10%となり、性能面、及び経済面から不利である。
(Comparative Example 5)
A heat-treated ACF was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 550 ° C. and the treatment time was changed to 3 hours using rayon-based ACF. As a result, the specific surface area before heat treatment was 1,130 m 2 / g, but after heat treatment it was significantly reduced to 330 m 2 / g, and the yield was 10%. Is disadvantageous.

図2は、実施例及び比較例の吸着試験結果を示す破過曲線である。ACFを用いる実施例1〜4及び比較例1の破過曲線は、10%破過直前に急激に立ち上がる。即ち、ACFは吸着速度が高いため、アンモニアの吸着漏れが少ない。そのため、被処理ガスを脱臭用吸着材素子に1回流通させるだけ(ワンパス)でアンモニアを完全に除去できる。一方、粒状活性炭を用いる比較例2及び3の破過曲線は、吸着試験開始直後からアンモニアの吸着漏れが見られる。そのため、アンモニアを完全に除去するためには、被処理ガスを脱臭用吸着材素子に複数回流通させなければならない。   FIG. 2 is a breakthrough curve showing the adsorption test results of Examples and Comparative Examples. The breakthrough curves of Examples 1 to 4 and Comparative Example 1 using ACF rise sharply just before 10% breakthrough. That is, since ACF has a high adsorption rate, there is little adsorption leakage of ammonia. Therefore, ammonia can be completely removed by only passing the gas to be treated through the deodorizing adsorbent element once (one pass). On the other hand, the breakthrough curves of Comparative Examples 2 and 3 using granular activated carbon show ammonia adsorption leakage immediately after the start of the adsorption test. Therefore, in order to completely remove ammonia, the gas to be treated must be circulated through the deodorizing adsorbent element a plurality of times.

熱処理を施した実施例1のACFは、熱処理を施していない比較例1のACFと比較し、保持時間が極めて長い。即ち、熱処理を施すことにより、ACFの塩基性ガス吸着量が向上する。   The ACF of Example 1 subjected to heat treatment has an extremely long holding time as compared with the ACF of Comparative Example 1 that was not subjected to heat treatment. That is, by performing the heat treatment, the basic gas adsorption amount of ACF is improved.

レーヨン系ACFに熱処理を施した実施例1の吸着材素子は、他のACFに熱処理を施した実施例2〜4の吸着材素子と比較して保持時間は約2倍、飽和吸着量は約1.7倍になった。したがって、レーヨン系熱処理ACFは、アンモニアのような塩基性ガスの吸着能が特異的に向上している。

The adsorbent element of Example 1 in which the heat treatment was applied to the rayon-based ACF was about twice as long as the adsorbent element in Examples 2 to 4 in which heat treatment was applied to the other ACFs, and the saturated adsorption amount was about 1.7 times. Therefore, the rayon-based heat treatment ACF has a specifically improved ability to adsorb a basic gas such as ammonia.

Figure 2015196102
Figure 2015196102

100・・・試験装置
11・・・テドラーバッグ
12、14、16、19・・・送気管
13・・・給気ポンプ
15・・・流量計
17・・・カラム
18・・・吸着材素子
E1・・・実施例1の破過曲線
E2・・・実施例2の破過曲線
E3・・・実施例3の破過曲線
E4・・・実施例4の破過曲線
E5・・・実施例5の破過曲線
E6・・・実施例6の破過曲線
C1・・・比較例1の破過曲線
C2・・・比較例2の破過曲線
C3・・・比較例3の破過曲線
DESCRIPTION OF SYMBOLS 100 ... Test apparatus 11 ... Tedlar bag 12, 14, 16, 19 ... Air supply pipe 13 ... Air supply pump 15 ... Flow meter 17 ... Column 18 ... Adsorbent element E1. .. Breakthrough curve of Example 1 E2: Breakthrough curve of Example 2 E3: Breakthrough curve of Example 3 E4: Breakthrough curve of Example 4 E5: Breakdown curve of Example 5 Breakthrough Curve E6 Breakthrough Curve of Example 6 C1 Breakthrough Curve of Comparative Example 1 C2 Breakthrough Curve of Comparative Example 2 C3 Breakthrough Curve of Comparative Example 3

Claims (4)

酸塩基滴定法による全酸性基量が2〜20meq/g、カルボキシル基量が0.5〜10meq/g、水酸基量が0.5〜8meq/gである活性炭素繊維から成ることを特徴とする脱臭用吸着材素子。   It is characterized by comprising activated carbon fibers having a total acid group amount of 2 to 20 meq / g, an acid group amount of 0.5 to 10 meq / g, and a hydroxyl group amount of 0.5 to 8 meq / g by an acid-base titration method. Adsorbent element for deodorization. 前記活性炭素繊維が、レーヨン系活性炭素繊維である請求項1に記載の脱臭用吸着材素子。   The adsorbent element for deodorization according to claim 1, wherein the activated carbon fiber is a rayon-based activated carbon fiber. 前記活性炭素繊維が、酸素含有雰囲気下、300〜500℃で0.5〜5時間熱処理して得られる熱処理活性炭素繊維である請求項1に記載の脱臭用吸着材素子。   2. The deodorizing adsorbent element according to claim 1, wherein the activated carbon fiber is a heat-treated activated carbon fiber obtained by heat treatment at 300 to 500 ° C. for 0.5 to 5 hours in an oxygen-containing atmosphere. 活性炭素繊維を酸素含有雰囲気下、300〜500℃で0.5〜5時間熱処理することを特徴とする請求項1に記載の脱臭用吸着材素子の製造方法。
The method for producing an adsorbent element for deodorization according to claim 1, wherein the activated carbon fiber is heat-treated at 300 to 500 ° C for 0.5 to 5 hours in an oxygen-containing atmosphere.
JP2014073617A 2014-03-31 2014-03-31 Adsorbent element for deodorization and production method thereof Pending JP2015196102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073617A JP2015196102A (en) 2014-03-31 2014-03-31 Adsorbent element for deodorization and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073617A JP2015196102A (en) 2014-03-31 2014-03-31 Adsorbent element for deodorization and production method thereof

Publications (1)

Publication Number Publication Date
JP2015196102A true JP2015196102A (en) 2015-11-09

Family

ID=54546185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073617A Pending JP2015196102A (en) 2014-03-31 2014-03-31 Adsorbent element for deodorization and production method thereof

Country Status (1)

Country Link
JP (1) JP2015196102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098324A (en) * 2017-11-30 2019-06-24 フタムラ化学株式会社 Polar substance adsorption active carbon
WO2021106364A1 (en) * 2019-11-25 2021-06-03 関西熱化学株式会社 Molecular polar substance-adsorbing charcoal
CN113862822A (en) * 2021-10-19 2021-12-31 连云港杜钟新奥神氨纶有限公司 Deodorizing spandex and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098324A (en) * 2017-11-30 2019-06-24 フタムラ化学株式会社 Polar substance adsorption active carbon
WO2021106364A1 (en) * 2019-11-25 2021-06-03 関西熱化学株式会社 Molecular polar substance-adsorbing charcoal
JPWO2021106364A1 (en) * 2019-11-25 2021-06-03
JP7397093B2 (en) 2019-11-25 2023-12-12 関西熱化学株式会社 Molecular polar substance adsorption carbon
CN113862822A (en) * 2021-10-19 2021-12-31 连云港杜钟新奥神氨纶有限公司 Deodorizing spandex and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6212174B2 (en) Porous carbon and method for producing the same
Yue et al. Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds
US10105680B2 (en) Activated carbon with excellent adsorption performance and process for producing same
CN106040174B (en) Adsorbent for adsorbing viruses and/or bacteria, carbon/polymer composite, and adsorption plate
MX2017003934A (en) Filtration device for air purification appliance.
JP2015196102A (en) Adsorbent element for deodorization and production method thereof
JP5948822B2 (en) Water treatment system
CN108430929B (en) Water treatment device, adsorption element and water treatment method
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
JP6463204B2 (en) Phosphate-adsorbed adsorbent element and method for producing the same
JP6311342B2 (en) Wastewater treatment system
JP2008188493A (en) Water treatment apparatus
JP2014217833A (en) Wastewater treatment system
JP2008149267A (en) Organic halide based compound removal filter
JP2013111552A (en) Device for processing organic solvent-containing gas
JP6616597B2 (en) 1,4-dioxane treatment method
JP5929130B2 (en) Water treatment equipment
KR102622510B1 (en) Porous carbon and organic halogen compound removal device using the same
JP6862700B2 (en) Water treatment system
JP2006315903A (en) Fibrous active carbon
JP6922165B2 (en) Water treatment equipment
KR102496791B1 (en) Activated carbon and method for manufacturing the same
JP2003251132A (en) Gas treatment apparatus and treatment method used for the same
JP2010193718A (en) Activated carbon for cigarette filter and cigarette with filter
JP2013158763A (en) Exhaust gas treatment method