JP6895261B2 - 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台 - Google Patents

多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台 Download PDF

Info

Publication number
JP6895261B2
JP6895261B2 JP2017001357A JP2017001357A JP6895261B2 JP 6895261 B2 JP6895261 B2 JP 6895261B2 JP 2017001357 A JP2017001357 A JP 2017001357A JP 2017001357 A JP2017001357 A JP 2017001357A JP 6895261 B2 JP6895261 B2 JP 6895261B2
Authority
JP
Japan
Prior art keywords
ring portion
bearing
robot arm
articulated robot
output member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001357A
Other languages
English (en)
Other versions
JP2018111139A (ja
Inventor
和則 須賀
和則 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medicaroid Corp
Original Assignee
Medicaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medicaroid Corp filed Critical Medicaroid Corp
Priority to JP2017001357A priority Critical patent/JP6895261B2/ja
Publication of JP2018111139A publication Critical patent/JP2018111139A/ja
Application granted granted Critical
Publication of JP6895261B2 publication Critical patent/JP6895261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Rolling Contact Bearings (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Description

この発明は、多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台に関する。
従来、ロボットアームによって患者を載置したテーブルを移動させるとともに、治療のための放射線源に対して患者の位置を位置決めする患者位置決めアセンブリが知られている(たとえば、特許文献1参照)。
また、従来では、手術室において、患者が載置されたテーブルを、周辺機器との干渉を抑制しつつ、容易に移動させることが可能な手術台が望まれている。そこで、上記特許文献1の患者位置決めアセンブリを、手術室における手術台に適用して、患者が載置されたテーブルをロボットアームを用いて移動させることが考えられる。これにより、キャスタを用いて手術台を移動させる場合と異なり、患者が載置されたテーブルを、周辺機器との干渉を抑制しつつ、容易に移動させることが可能となる。
特開2009−131718号公報
しかしながら、上記特許文献1のような患者位置決めアセンブリでは、治療のための放射線を照射することを目的としているため、患者が載置されたテーブルの周囲に複数の作業者が長時間作業することを考慮する必要がなく、大型のロボットアームが用いられているのが一般的である。このため、特許文献1のロボットアームを手術台に適用した場合、手術台周りのスペースが狭くなり、手術を行う際の医療従事者の妨げとなる。手術の邪魔にならないように複数の関節を含むロボットアームを小型化した場合、関節の大きさも小さくなるため、負荷に対する関節の耐性が低下し易い。特に、大きな体重を有する患者を載置した状態でロボットアームを最も伸ばした姿勢をとった場合、関節に大きな負荷がかかる場合がある。このため、大きな負荷に備えて、関節の駆動する部分を支持する軸受の耐性を確保する必要がある。
この発明は、多関節ロボットアームの関節の小型化を図りながら、多関節ロボットアームの関節の駆動する部分を支持する軸受の耐性を確保することが可能な多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台を提供するものである。
この発明の第1の局面による多関節ロボットアームの関節駆動機構は、モータと、モータに接続され、出力軸が関節の回転軸線と一致する減速機と、減速機の出力軸に接続された出力部材と、出力部材を回転可能に支持する第1軸受と、外輪部と、内輪部と、外輪部に設けられた複数のニードルとを含むニードルベアリングとを備え、外輪部および内輪部のうち一方は、出力部材に接続されており、内輪部と、外輪部に設けられた複数のニードルの各々とは、所定の間隔を隔てて離間して配置されており、関節にかかる負荷により内輪部がニードルに接触した場合に、ニードルベアリングは、出力部材を回転可能に支持する第2軸受として機能するように構成されている。
この発明の第1の局面による多関節ロボットアームの関節駆動機構では、上記のように、出力部材を回転可能に支持する第1軸受と、外輪部と内輪部と外輪部に設けられた複数のニードルとを含むニードルベアリングとを設け、内輪部と外輪部に設けられたニードルとを、所定の間隔を隔てて離間して配置する。これにより、通常の場合、すなわち関節にかかる負荷が第1軸受で支持可能な負荷の場合には、第1軸受により出力部材を支持するとともに、関節にかかる負荷が第1軸受で支持可能な負荷よりも大きくなった場合には、第1軸受とニードルベアリングとにより出力部材を支持することができる。その結果、多関節ロボットアームの関節の小型化を図りながら、多関節ロボットアームの駆動する部分を支持する軸受の耐性(耐荷重性)を確保することができる。これにより、関節の小型化を図ることができるので、多関節ロボットアームの小型化を図ることができる。また、関節にかかる負荷が大きくなった場合に、第2軸受としてのニードルベアリングにより出力部材を支持することができるので、負荷が大きい場合でも安定して出力部材を支持することができる。
上記第1の局面による多関節ロボットアームの関節駆動機構において、好ましくは、回転軸線の延びる方向において、ニードルベアリングは、第1軸受に対して出力部材側に配置されている
上記第1の局面による多関節ロボットアームの関節駆動機構において、好ましくは、ニードルベアリングは、内輪部が固定配置されており、外輪部が出力部材と一体化されている。このように構成すれば、出力部材とともにニードルベアリングの外輪部を内輪部に対して回動させて、関節を駆動させることができる。
この場合、好ましくは、第1軸受は、外輪が固定配置されており、内輪が出力部材と一体化されている。このように構成すれば、第1軸受および第2軸受により固定配置される部分を挟み込むことができる。通常は、第1軸受により出力部材を支持するので、第1軸受および第2軸受の両方により出力部材を支持する場合と異なり、常に第1軸受および第2軸受に余計な応力がかかるのを抑制することができる。
上記第1の局面による多関節ロボットアームの関節駆動機構において、好ましくは、第1軸受が、クロスローラベアリングである。このように構成すれば、クロスローラベアリングにより、第1軸受の小型化を行うとともに第1軸受の回動軸線方向および半径方向の耐性(耐荷重性)を効果的に高めることができる。
上記第1の局面による多関節ロボットアームの関節駆動機構において、好ましくは、減速機が、波動歯車減速機または偏心揺動型遊星歯車減速機である。このように構成すれば、波動歯車減速機または偏心揺動型遊星歯車減速機を用いて、減速機の小型化を図りながら、効果的に減速を行うことができる。
この発明の第2の局面による多関節ロボットアームは、複数の関節を備え、複数の関節のうちの少なくとも1つの関節を駆動する駆動機構が、第1の局面による多関節ロボットアームの関節駆動機構である。
この発明の第2の局面による多関節ロボットアームでは、上記のように、第1の局面による関節駆動機構を用いることにより、多関節ロボットアームの関節の小型化を図りながら、多関節ロボットアームの関節の駆動する部分を支持する軸受の耐性を確保することができる。
この発明の第3の局面によるロボット手術台は、患者載置用のテーブルと、一方端がベースに支持され、他方端がテーブルを支持する多関節ロボットアームと、を備え、多関節ロボットアームは、複数の関節と、複数の関節をそれぞれ駆動する複数の関節駆動機構を含み、複数の関節駆動機構のうちの少なくとも1つの関節駆動機構は、モータと、モータに接続され、出力軸が関節の回転軸線と一致する第1減速機と、第1減速機の出力軸に接続された出力部材と、出力部材を回転可能に支持する第1軸受と、外輪部と、内輪部と、外輪部に設けられた複数のニードルとを含むニードルベアリングとを含み、外輪部および内輪部のうち一方は、出力部材に接続されており、内輪部と、外輪部に設けられた複数のニードルの各々とは、所定の間隔を隔てて離間して配置されており、関節にかかる負荷により内輪部がニードルに接触した場合に、ニードルベアリングは、出力部材を回転可能に支持する第2軸受として機能するように構成されている。
この発明の第3の局面によるロボット手術台では、上記のように、テーブルを支持する多関節ロボットアームに、出力部材を回転可能に支持する第1軸受と、外輪部と内輪部と外輪部に設けられた複数のニードルとを含むニードルベアリングとを設け、内輪部と外輪部に設けられたニードルとを、所定の間隔を隔てて離間して配置する。これにより、関節にかかる負荷が第1軸受で支持可能な負荷である場合には、第1軸受により出力部材を支持するとともに、関節にかかる負荷が第1軸受で支持可能な負荷よりも大きくなった場合には、第1軸受とニードルベアリングとにより出力部材を支持することができる。その結果、多関節ロボットアームの関節の小型化を図りながら、多関節ロボットアームの駆動する部分を支持する軸受の耐性を確保することができる。これにより、関節の小型化を図ることができるので、多関節ロボットアームの小型化を図ることができる。その結果、テーブルに載置された患者に対して手術などを行う際に、多関節ロボットアームが医療従事者の作業の妨げとなるのを抑制することができる。また、関節にかかる負荷が大きくなった場合に、第2軸受としてのニードルベアリングにより出力部材を支持することができるので、負荷が大きい場合でも安定して出力部材を支持することができる。
上記第3の局面によるロボット手術台において、好ましくは、回転軸線の延びる方向において、ニードルベアリングは、第1軸受に対して出力部材側に配置されている
上記第3の局面によるロボット手術台において、好ましくは、ニードルベアリングは、内輪部が固定配置されており、外輪部が出力部材と一体化されており、第1軸受は、外輪が固定配置されており、内輪が出力部材と一体化されている。このように構成すれば、第1軸受および第2軸受により固定配置される部分を挟み込むことができる。通常は、第1軸受により出力部材を支持するので、第1軸受および第2軸受の両方により出力部材を支持する場合と異なり、常に第1軸受および第2軸受に余計な応力がかかるのを抑制することができる。
上記第3の局面によるロボット手術台において、好ましくは、多関節ロボットアームは、ベースが設置される設置面に対して略垂直なベース回転軸回りに回転可能にベースに支持されており、第1減速機の出力軸が、ベース回転軸に略直交する方向に配置されている。このように構成すれば、水平方向に回動軸を有する関節の負荷に対する耐性を確保することができるので、大きな体重を有する患者がテーブルに載置された場合でも、テーブルを上下方向に安定して移動させることができる。
上記第3の局面によるロボット手術台において、好ましくは、関節駆動機構は、モータの回転が伝達され、伝達された回転を減速して第1減速機に出力する第2減速機をさらに含む。このように構成すれば、第1減速機および第2減速機により2段階で減速を行うことができるので、大きな出力トルクを得ることができる。これにより、大径の減速機を使用することなく大きな出力トルクを得ることができるので、関節の大径化を防止することができる。また、モータの最大出力を小さくすることができるので、モータを小さくすることができる。その結果、関節の小型化を図ることができる。
上記第3の局面によるロボット手術台において、好ましくは、モータは、第1電磁ブレーキを内蔵しており、関節駆動機構は、モータの出力回転軸に取り付けられた第2電磁ブレーキをさらに含む。このように構成すれば、第1電磁ブレーキおよび第2電磁ブレーキの2段階のブレーキにより関節を制動することができるので、電力停止時に一方の電磁ブレーキが故障した場合であってもテーブルが急に下降するのを確実に抑制することができる。
本発明によれば、多関節ロボットアームの関節の小型化を図りながら、関節の負荷に対する耐性を確保することができる。
一実施形態によるロボット手術台を備えたハイブリッド手術室の概略を示した図である。 一実施形態によるロボット手術台を示した平面図である。 一実施形態によるロボット手術台の多関節ロボットアームの関節駆動機構を示した模式図である。 一実施形態による関節駆動機構のニードルベアリングを説明するための図である。 図4の部分拡大図である。 一実施形態によるロボット手術台の最大撮像可能範囲を説明するための側面図である。 一実施形態によるロボット手術台の最小撮像可能範囲を説明するための側面図である。 一実施形態によるロボット手術台のロール回動を説明するための正面図である。 一実施形態によるロボット手術台のピッチ回動を説明するための側面図である。
以下、実施形態を図面に基づいて説明する。
(ロボット手術台の構成)
図1〜図9を参照して、本実施形態によるロボット手術台100の概要について説明する。
図1に示すように、ロボット手術台100は、ハイブリッド手術室200に設けられている。ハイブリッド手術室200には、患者10のX線投影画像を撮像するX線撮像装置300が設けられている。ロボット手術台100は、たとえば、外科、内科などで行われる手術台として用いられる。ロボット手術台100は、テーブル1に患者10を載置する載置位置に移動するとともに、テーブル1に患者10を載置した状態で、麻酔位置、手術位置、検査位置、処置位置、X線撮像位置などに患者10を移動させることが可能である。また、ロボット手術台100は、テーブル1に患者10を載置した状態で、患者10を傾けることが可能である。
ロボット手術台100は、患者載置用のテーブル1と、多関節ロボットアーム2と、制御部3とを備えている。テーブル1は、X線透過部11と、X線透過部11を支持する支持部12とを含んでいる。多関節ロボットアーム2は、ベース21と、水平多関節アセンブリ22と、垂直多関節アセンブリ23と、ピッチ回動機構24とを備えている。水平多関節アセンブリ22は、水平関節221、222および223を含んでいる。垂直多関節アセンブリ23は、垂直関節231、232および233を含んでいる。X線撮像装置300は、X線照射部301と、X線検出部302と、Cアーム303とを含んでいる。なお、水平関節221〜223および垂直関節231〜233は、それぞれ、特許請求の範囲の「関節」の一例である。
テーブル1は、図1および図2に示すように、略矩形形状の平板状に形成されている。また、テーブル1の上面は、略平坦に形成されている。テーブル1は、X方向に長手方向を有し、Y方向に短手方向を有している。なお、テーブル1は、上下方向(Z方向)の軸線回りに回転可能であるが、ここでは、テーブル1の長手方向に沿った水平方向をX方向とし、テーブル1の短手方向に沿った水平方向をY方向とする。つまり、X方向およびY方向は、テーブル1を基準とした方向を示している。
図1に示すように、テーブル1のX線透過部11には、患者10が載置される。X線透過部11は、X1方向に配置されている。X線透過部11は、略矩形形状に形成されている。X線透過部11は、X線を透過しやすい材料により形成されている。X線透過部11は、たとえば、カーボン材料(グラファイト)により形成されている。X線透過部11は、たとえば、炭素繊維強化プラスチック(CFRP)により形成されている。これにより、X線透過部11に患者10を載置した状態で、患者10のX線画像を撮像することが可能である。
テーブル1の支持部12は、多関節ロボットアーム2に接続されている。支持部12は、X2方向に配置されている。支持部12は、略矩形形状に形成されている。支持部12は、X線透過部11を支持している。支持部12は、X線透過部11よりもX線の透過率が小さい材料により形成されている。支持部12は、たとえば、金属により形成されている。支持部12は、たとえば、鉄材やアルミニウム材により形成されている。
テーブル1は、多関節ロボットアーム2により、移動されるように構成されている。具体的には、テーブル1は、水平方向のX方向、X方向と直交する水平方向のY方向、および、X方向およびY方向に直交し、上下方向であるZ方向に移動可能に構成されている。また、テーブル1は、X方向の軸線回りに回動(ロール)可能に構成されている。また、テーブル1は、Y方向の軸線回りに回動(ピッチ)可能に構成されている。また、テーブル1は、Z方向の軸線回りに回転(ヨー)可能に構成されている。
多関節ロボットアーム2は、テーブル1を移動させるように構成されている。図1に示すように、多関節ロボットアーム2は、一方端が床に固定されたベース21に支持され、他方端がテーブル1を移動可能に支持している。具体的には、多関節ロボットアーム2は、ベース21が設置される設置面に対して略垂直なベース回転軸(回動軸線A1)回りに回動可能にベース21に支持されている。また、多関節ロボットアーム2は、テーブル1の長手方向(X方向)のX2方向側の一端近傍を支持するように構成されている。言い換えると、多関節ロボットアーム2の他方端は、テーブル1の一端近傍の支持部12を支持している。
多関節ロボットアーム2は、7の自由度によりテーブル1を移動させるように構成されている。具体的には、多関節ロボットアーム2は、水平多関節アセンブリ22により、鉛直方向の回動軸線A1回りの回動、鉛直方向の回動軸線A2回りの回動、および、鉛直方向の回動軸線A3回りの回動の3の自由度を有している。また、多関節ロボットアーム2は、垂直多関節アセンブリ23により、水平方向の回動軸線B1回りの回動、水平方向の回動軸線B2回りの回動、および、水平方向の回動軸線B3回りの回動の3の自由度を有している。また、多関節ロボットアーム2は、ピッチ回動機構24により、テーブル1を短手方向(Y方向)の回動軸線回りにピッチ回動(図9参照)させる1の自由度を有している。
ベース21は、床に埋設されて固定されている。ベース21は、平面視(Z方向に見て)において、テーブル1の移動範囲の略中央近傍に設けられている。
水平多関節アセンブリ22は、一方端がベース21に支持されている。また、水平多関節アセンブリ22は、他方端が垂直多関節アセンブリ23の一方端を支持している。水平多関節アセンブリ22の水平関節221は、Z方向の回動軸線A1回りに回転するように構成されている。水平多関節アセンブリ22の水平関節222は、Z方向の回動軸線A2回りに回転するように構成されている。水平多関節アセンブリ22の水平関節223は、Z方向の回動軸線A3回りに回転するように構成されている。
垂直多関節アセンブリ23は、一方端が水平多関節アセンブリ22に支持されている。また、垂直多関節アセンブリ23は、他方端がピッチ回動機構24を支持している。垂直多関節アセンブリ23の垂直関節231は、X方向の回動軸線B1回りに回動するように構成されている。垂直多関節アセンブリ23の垂直関節232は、X方向の回動軸線B2回りに回動するように構成されている。垂直多関節アセンブリ23の垂直関節233は、X方向の回動軸線B3回りに回動するように構成されている。
隣接する関節同士の間隔は、それぞれ、テーブル1の短手方向(Y方向)の長さよりも小さい長さを有している。つまり、回動軸線A1および回動軸線A2の間隔と、回動軸線A2および回動軸線A3の間隔と、回動軸線A3および回動軸線B1の間隔と、回動軸線B1および回動軸線B2の間隔と、回動軸線B2および回動軸線B3の間隔とは、それぞれ、テーブル1の短手方向の長さよりも小さい長さを有している。
図3に示すように、水平関節221〜223および垂直関節231〜233は、それぞれ、関節駆動機構4が設けられている。水平関節221〜223および垂直関節231〜233は、それぞれに設けられた関節駆動機構4により駆動されるように構成されている。関節駆動機構4は、モータ41と、減速機42と、減速機43と、電磁ブレーキ44とを含んでいる。モータ41には、エンコーダ41aと、内蔵の電磁ブレーキ41bとが設けられている。水平関節221〜223および垂直関節231〜233は、各々のモータ41の駆動により、回動軸線回りに回動される。なお、関節駆動機構4は、特許請求の範囲の「多関節ロボットアームの関節駆動機構」の一例である。また、電磁ブレーキ41bおよび電磁ブレーキ44は、それぞれ、特許請求の範囲の「第1電磁ブレーキ」および「第2電磁ブレーキ」の一例である。また、減速機42および減速機43は、それぞれ、特許請求の範囲の「第2減速機」および「第1減速機」の一例である。
ここで、本実施形態では、図4に示すように、関節駆動機構4には、固定部5と、出力部材6と、ニードルベアリング7とが設けられている。固定部5は、固定的に配置されている。出力部材6は、固定部5に対して回動軸線回りに回動するように構成されている。固定部5に対する出力部材6の回動により、関節(水平関節221〜223、垂直関節231〜233)が回動される。
図3に示すように、モータ41は、サーボモータを含んでいる。モータ41は、制御部3の制御により駆動されるように構成されている。モータ41の出力回転軸には、電磁ブレーキ44を介して減速機42が取り付けられている。電磁ブレーキ41bおよび電磁ブレーキ44は、関節(水平関節221〜223、垂直関節231〜233)を制動させるように構成されている。エンコーダ41aは、モータ41の駆動量を検知して、検知結果を制御部3に送信するように構成されている。電磁ブレーキ41bおよび44は、関節(水平関節221〜223、垂直関節231〜233)の駆動を制動させるように構成されている。電磁ブレーキ44は、モータ41の出力回転軸に取り付けられている。
減速機42および43は、波動歯車減速機により構成されている。また、減速機42と、減速機43とは、直列に接続されている。つまり、モータ41の回転出力は、減速機42と、減速機43とにより2段階に減速される。減速機42は、モータ41の回転が伝達され、伝達された回転を減速して減速機43に出力するように構成されている。減速機43は、減速機42を介してモータ41に接続されている。減速機43は、出力軸が関節(水平関節221〜223、垂直関節231〜233)の回転軸線と一致するように配置されている。
減速機43(波動歯車減速機)は、図4に示すように、環状の剛性内歯歯車433と、剛性内歯歯車433の内側に配置された環状の可撓性外歯歯車432と、可撓性外歯歯車432を撓ませて剛性内歯歯車433に対して2箇所で部分的に噛み合わせるとともに、剛性内歯歯車433と可撓性外歯歯車432との噛み合い位置を周方向に移動させる波動発生器431と、を含んでいる。波動発生器431は、波動歯車減速機の入力回転軸C1に同軸状態で取り付けられている。可撓性外歯歯車432は、固定部5に接続され、固定配置されている。剛性内歯歯車433は、波動歯車減速機の出力回転軸C2に連結固定されている。
減速機43(波動歯車減速機)では、波動発生器431に回転が入力されて、減速された回転が、剛性内歯歯車433から出力される。言い換えると、減速機43の入力軸は、軸431aを介して動力側(モータ41側)に接続され、減速機43の出力軸は、出力部材6に接続されている。水平関節221〜223に設けられた減速機43の出力軸線は、鉛直方向(Z方向)と平行に配置されている。垂直関節231〜233に設けられた減速機43の出力軸線は、水平方向(X方向)と平行に配置されている。
減速機43には、1つのクロスローラベアリング434と、2つのボールベアリング435とが設けられている。クロスローラベアリング434は、出力部材6(剛性内歯歯車433)を回動可能に支持する第1軸受として機能する。第1軸受としてのクロスローラベアリング434は、外輪が固定配置されており、内輪が出力部材6と一体化されている。具体的には、クロスローラベアリング434は、外輪が固定部5に接続されており、内輪が出力部材6に接続されている。ボールベアリング435は、波動発生器431を回転可能に支持している。また、固定部5は、可撓性外歯歯車432に接続されており、出力部材6は、剛性内歯歯車433に接続されている。
ニードルベアリング7は、外輪部71と、内輪部72と、外輪部71の周方向に沿って複数設けられたニードル73とを含んでいる。外輪部71および内輪部72は、円環状に形成されている。また、外輪部71および内輪部72の中心軸線は、減速機43の回転軸線と略一致するように配置されている。外輪部71は、半径方向において、内輪部72の外側に対向するように配置されている。複数のニードル73は、外輪部71の中心軸線と略平行な方向に延びるように配置されている。また、複数のニードル73は、外輪部71の中心軸線と略平行な方向の回転軸線回りに回転可能に構成されている。
ここで、本実施形態では、ニードルベアリング7の外輪部71は、出力部材6に接続されている。また、ニードルベアリング7の内輪部72は、固定部5に接続されている。つまり、ニードルベアリング7は、内輪部72が固定配置され、外輪部71が出力部材6と一体化されている。また、本実施形態では、内輪部72と、外輪部71に設けられたニードル73とは、所定の間隔を隔てて離間して配置されている。
具体的には、図5に示すように、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷が小さい場合、内輪部72およびニードル73は、間隔G1だけ離間している。なお、間隔G1は、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷が大きい場合に、内輪部72およびニードル73が接触可能な距離である。つまり、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷により内輪部72がニードル73に接触した場合に、ニードルベアリング7は、出力部材6を回転可能に支持する第2軸受として機能するように構成されている。本実施形態において、間隔G1は、たとえば、約0.07mmである。間隔G1は0.05mm以上0.5mm以下の範囲内で設定可能であり、0.05mm以上0.2mm以下の範囲内で設定することが好ましい。
図2に示すように、多関節ロボットアーム2は、平面視(Z方向に見て)において、テーブル1の下方に全て隠れるように配置されている。たとえば、多関節ロボットアーム2は、テーブル1が手術位置に位置している場合に、テーブル1の下の空間である収容空間内に収容されるように構成されている。つまり、多関節ロボットアーム2は、テーブル1に載置された患者10に対して手術や処置を行う位置にテーブル1を移動させた場合に、折り畳まれて、平面視において(Z方向に見て)、テーブル1の下方に完全に隠れるように構成されている。また、折り畳まれた姿勢の多関節ロボットアーム2は、テーブル1の長手方向と平行な方向における長さがテーブル1の長手方向の長さの1/2以下である。
また、多関節ロボットアーム2は、テーブル1の高さを500mmまで下げることが可能である。これにより椅子に座って行う手術に対応することが可能である。また、多関節ロボットアーム2は、テーブル1の高さを1100mmまで上げることが可能である。
図6に示すように、本実施形態では、多関節ロボットアーム2を、テーブル1のX2側に寄せて配置した場合、最大撮像可能範囲としてX方向において距離D1分だけ、X線撮像装置300により撮像が可能である。つまり、多関節ロボットアーム2を、テーブル1のX2側に寄せて配置した場合、X方向において、テーブル1の下方に距離D1分空間が確保される。距離D1は、たとえば、X線透過部11のX方向の長さと略等しい。つまり、本実施形態のロボット手術台100では、患者10の略全身をX線撮像装置300により撮像することが可能である。
図7に示すように、本実施形態では、多関節ロボットアーム2を、水平方向のX2方向に最大限伸ばした場合、最少撮像可能範囲としてX方向において距離D2分だけ、X線撮像装置300により撮像が可能である。つまり、多関節ロボットアーム2を、水平方向のX2方向に最大限伸ばした場合、X方向において、テーブル1の下方に距離D2分空間が確保される。距離D2は、たとえば、X線透過部11のX方向の長さの1/2以上である。つまり、本実施形態のロボット手術台100では、最少でも患者10の全身の半分以上をX線撮像装置300により撮像することが可能である。本実施形態において、たとえば、D1は1800mm、D2は1540mmである。
また、多関節ロボットアーム2は、少なくとも1つの水平関節(221、222および223のうち少なくとも1つ)により、テーブル1を鉛直方向(Z方向)の軸線回りにヨー回転させるように構成されている。たとえば、多関節ロボットアーム2は、一番下の水平関節221、または、一番上の水平関節223により、テーブル1をヨー回転させるように構成されている。あるいは、多関節ロボットアーム2は、複数の水平関節を連動して駆動して、テーブル1をヨー回転させるように構成されている。
また、図8に示すように、多関節ロボットアーム2は、少なくとも1つの垂直関節(231、232および233のうち少なくとも1つ)により、テーブル1を長手方向(X方向)の軸線回りにロール回動させるように構成されている。たとえば、多関節ロボットアーム2は、一番下の垂直関節231、または、一番上の垂直関節233により、テーブル1をロール回動させるように構成されている。あるいは、多関節ロボットアーム2は、複数の垂直関節を連動して駆動して、テーブル1をロール回動させるように構成されている。多関節ロボットアーム2は、テーブル1をX方向に見て、水平方向に対して時計回りに角度θ1の範囲でロール回動可能であるとともに、水平方向に対して反時計回りに角度θ1の範囲でロール回動可能である。たとえば、θ1は、30度である。
また、多関節ロボットアーム2は、図9に示すように、ピッチ回動機構24により、テーブル1を短手方向(Y方向)の軸線回りにピッチ回動させるように構成されている。ピッチ回動機構24は、第1支持部材241と、第2支持部材242とを含んでいる。ピッチ回動機構24は、垂直多関節アセンブリ23の他方端に支持されている。ピッチ回動機構24は、テーブル1に接続され、テーブル1をピッチ回動可能に支持している。具体的には、ピッチ回動機構24は、第1支持部材241および第2支持部材242により、テーブル1をピッチ回動可能に支持している。第1支持部材241および第2支持部材242は、テーブル1の長手方向と平行な方向(X方向)に沿って所定の距離を隔てて配置されている。第1支持部材241は、X1方向側に配置されている。第2支持部材242は、X2方向側に配置されている。また、ピッチ回動機構24は、テーブル1の短手方向(Y方向)の片方側近傍に配置されている。具体的には、ピッチ回動機構24は、テーブル1のY1方向の端部近傍に配置されている。
第1支持部材241および第2支持部材242は、それぞれ、上下方向(Z方向)に移動可能に構成されている。第1支持部材241が第2支持部材242よりも低い位置に移動されると、テーブル1は、X1側が低くなるようにピッチ回動される。一方、第1支持部材241が第2支持部材242よりも高い位置に移動されると、テーブル1は、X1側が高くなるようにピッチ回動される。また、第1支持部材241および第2支持部材242が同じ高さ位置に移動されると、テーブル1は、ピッチ回動において水平となる。
多関節ロボットアーム2は、図9に示すように、テーブル1をY方向に見て、水平方向に対して時計回りに角度θ2の範囲でピッチ回動可能であるとともに、水平方向に対して反時計回りに角度θ2の範囲でピッチ回動可能である。たとえば、θ2は、15度である。
制御部3は、ベース21内に設置され、多関節ロボットアーム2によるテーブル1の移動を制御するように構成されている。具体的には、制御部3は、医療従事者(操作者)による操作に基づいて、多関節ロボットアーム2の駆動を制御して、テーブル1を移動させるように構成されている。
X線撮像装置300は、テーブル1に載置された患者10のX線投影画像を撮像可能に構成されている。X線照射部301およびX線検出部302は、Cアーム303により支持されている。X線照射部301およびX線検出部302は、Cアーム303の移動に伴って移動され、X線撮像時に、患者10の撮像位置を挟み込むように対向して配置される。たとえば、X線照射部301およびX線検出部302のうち一方がテーブル1の上方の空間に配置され、他方がテーブル1の下方の空間に配置される。また、X線撮像時には、X線照射部301およびX線検出部302を支持するCアーム303もテーブル1の上方および下方の空間に配置される。
X線照射部301は、図1に示すように、X線検出部302と対向するように配置されている。また、X線照射部301は、X線検出部302に向けてX線を照射可能に構成されている。X線検出部302は、X線照射部301により照射されたX線を検出するように構成されている。X線検出部302は、フラットパネルディテクタ(FPD)を含んでいる。X線検出部302は、検出したX線に基づいてX線画像を撮像するように構成されている。具体的には、X線検出部302は、検出したX線を電気信号に変換し、画像処理部(図示せず)に送信する。
Cアーム303は、一方端にX線照射部301が接続され、他方端にX線検出部302が接続されている。Cアーム303は、略C字形状を有している。これにより、X線撮像時に、テーブル1や患者10に干渉しないように回り込んで、X線照射部301およびX線検出部302を支持することが可能である。Cアーム303は、テーブル1に対して相対移動可能に構成されている。具体的には、Cアーム303は、X線照射部301およびX線検出部302を、テーブル1に載置された患者10に対して所望の位置に配置するように、水平方向、鉛直方向に移動可能であるとともに、水平方向の回動軸線および鉛直方向の回動軸線を中心に回動可能に構成されている。Cアーム303は、医療従事者(操作者)による操作に基づいて、駆動部(図示せず)により、移動される。また、Cアーム303は、医療従事者(操作者)の手動により移動可能に構成されている。
(本実施形態の効果)
本実施形態では、以下のような効果を得ることができる。
本実施形態では、上記のように、出力部材6を回転可能に支持するクロスローラベアリング434と、外輪部71と内輪部72と外輪部71に設けられた複数のニードル73とを含むニードルベアリング7とを設け、内輪部72と外輪部71に設けられたニードル73とを、所定の間隔を隔てて離間して配置する。これにより、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷が大きくない場合には、小型で高い耐荷重性を有するクロスローラベアリング434により出力部材6を支持するとともに、負荷がクロスローラベアリング434で支持可能な負荷より大きくなった場合には、さらにニードルベアリング7により出力部材6を支持することができる。その結果、多関節ロボットアーム2の関節の小型化を図りながら、多関節ロボットアーム2の駆動する部分を支持する軸受の耐性を確保することができる。これにより、関節の小型化を図ることができるので、多関節ロボットアーム2の小型化を図ることができる。
また、本実施形態では、上記のように、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷により内輪部72がニードル73に接触した場合に、ニードルベアリング7が、出力部材6を回転可能に支持する第2軸受として機能するように構成する。これにより、関節(水平関節221〜223、垂直関節231〜233)にかかる負荷が大きくなった場合に、第2軸受としてのニードルベアリング7により出力部材6を支持することができるので、負荷が大きい場合でも安定して出力部材6を支持することができる。
また、本実施形態では、上記のように、ニードルベアリング7を、内輪部72が固定配置され、外輪部71が出力部材6と一体化されるように構成する。これにより、出力部材6とともにニードルベアリング7の外輪部71を内輪部72に対して回動させて、関節(水平関節221〜223、垂直関節231〜233)を駆動させることができる。
また、本実施形態では、上記のように、第1軸受としてのクロスローラベアリング434を、外輪が固定配置され、内輪が出力部材6と一体化されるように構成する。これにより、第1軸受としてのクロスローラベアリング434および第2軸受としてのニードルベアリング7により固定配置される部分を挟み込むことができる。通常は、クロスローラベアリング434により出力部材6を支持するので、クロスローラベアリング434およびニードルベアリング7の両方により出力部材6を支持する場合と異なり、常にクロスローラベアリング434およびニードルベアリング7に余計な応力がかかるのを抑制することができる。
また、本実施形態では、上記のように、減速機42および43を、波動歯車減速機により構成する。これにより、波動歯車減速機を用いて、減速機42および43の小型化を図りながら、効果的に減速を行うことができる。
また、本実施形態では、上記のように、多関節ロボットアーム2を、ベース21が設置される設置面に対して略垂直なベース回転軸回りに回転可能にベース21に支持され、減速機42の出力軸が、ベース回転軸に略直交する方向に配置されるように構成する。これにより、水平方向に回動軸を有する垂直関節231〜233の負荷に対する耐性を確保することができるので、大きな体重を有する患者10がテーブル1に載置された場合でも、テーブル1を上下方向(Z方向)に安定して移動させることができる。
また、本実施形態では、上記のように、関節駆動機構4に、モータ41の回転が伝達され、伝達された回転を減速して減速機43に出力する減速機42を設ける。これにより、減速機42および43により2段階で減速を行うことができるので、大きな出力トルクを得ることができる。その結果、大径の減速機を使わなくても大きな出力トルクを得ることができるので、関節の大径化を抑制することができる。また、モータ41の最大出力を小さくすることができるので、モータ41を小さくすることができる。その結果、関節(水平関節221〜223、垂直関節231〜233)の小型化を図ることができる。
また、本実施形態では、上記のように、モータ41に、電磁ブレーキ41bを内蔵し、関節駆動機構4に、モータ41の出力回転軸に取り付けられた電磁ブレーキ44を設ける。これにより、電磁ブレーキ41bおよび44の2段階のブレーキにより関節を制動することができるので、電力停止時に一方の電磁ブレーキが故障した場合であってもテーブル1が急に下降するのを確実に抑制することができる。
(変形例)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記実施形態では、ハイブリッド手術室にX線撮像装置が設けられている構成の例を示したが、本発明はこれに限られない。本発明では、ハイブリッド手術室に患者の磁気共鳴画像を撮像する磁気共鳴イメージング装置が設けられていてもよい。なお、ハイブリッド手術室に、X線撮像装置および磁気共鳴イメージング装置の両方が設けられていてもよい。
また、上記実施形態では、ロボット手術台をハイブリッド手術室に設ける構成の例を示したが、本発明はこれに限られない。本発明では、ロボット手術台をハイブリッド手術室以外の手術室に設けてもよい。
また、上記実施形態では、本発明の関節駆動機構をロボット手術台の多関節ロボットアームに設ける構成の例を示したが、本発明はこれに限られない。本発明の関節駆動機構をロボット手術台以外の多関節ロボットアームに設けてもよい。たとえば、本発明の関節駆動機構を、産業用、医療用、家庭用などのロボットの多関節ロボットアームに設けてもよい。
また、上記実施形態では、減速機を波動歯車減速機により構成する例を示したが、本発明はこれに限られない。本発明では、たとえば、減速機を、偏心揺動型遊星歯車減速機により構成してもよい。この場合、偏心揺動型遊星歯車減速機は、第1段減速部と、第2段減速部と、を含み、第1段減速部は、入力ギアと、入力ギアよりも多い歯数を有するスパーギアと、を有し、第2段減速部は、偏心部を有しスパーギアに連結された回転軸と、内歯歯車と、偏心部に係合して偏心回転し、内歯歯車に内接して噛み合い位置を移動させながら自転する外歯遊星歯車と、を有し、偏心揺動型遊星歯車減速機は、入力ギアに回転が伝達され、出力回転軸が外歯遊星歯車の自転に伴い回転するように構成してもよい。
また、上記実施形態では、ニードルベアリングの内輪部が固定配置されており、外輪部が出力部材と一体化されている構成の例を示したが、本発明はこれに限られない。本発明では、ニードルベアリングの外輪部を固定配置し、内輪部を出力部材と一体化してもよい。
また、上記実施形態では、第1軸受としてのクロスローラベアリングの外輪が固定配置されており、内輪が出力部材と一体化されている構成の例を示したが、本発明はこれに限られない。本発明では、第1軸受の内輪を固定配置し、外輪を出力部材と一体化してもよい。
また、上記実施形態では、水平多関節アセンブリが3つの水平関節を有する構成の例を示したが、本発明はこれに限られない。本発明では、水平多関節アセンブリが2つの水平関節を有していてもよいし、4つ以上の水平関節を有していてもよい。
また、上記実施形態では、垂直多関節アセンブリが3つの垂直関節を有する構成の例を示したが、本発明はこれに限られない。本発明では、垂直多関節アセンブリが2つの垂直関節を有していてもよいし、4つ以上の垂直関節を有していてもよい。
また、上記実施形態では、多関節ロボットアームに、3つ連続して水平関節を設けるとともに、3つ連続して垂直関節を設ける構成の例を示したが、本発明はこれに限られない。本発明では、たとえば、多関節ロボットアームとして、互いに隣接する関節の回動軸が直交する部分を複数有する垂直多関節ロボットを用いてもよい。
また、上記実施形態では、3つの水平関節および3つの垂直関節に、ニードルベアリングを設ける構成の例を示したが、本発明はこれに限られない。本発明では、たとえば、複数の関節のうち少なくとも1つの関節にニードルベアリングを設けてもよい。たとえば、垂直関節のみにニードルベアリングを設けてもよい。
また、上記実施形態では、多関節ロボットアームが7の自由度を有する構成の例を示したが、本発明はこれに限られない。本発明では、多関節ロボットアームが6以下の自由度を有していてもよいし、8以上の自由度を有していてもよい。
また、上記実施形態では、1つの関節に2つの減速機を設ける構成の例を示したが、本発明はこれに限られない。本発明では、1つの関節に1つの減速機を設けてもよいし、3つ以上の減速機を設けてもよい。
また、上記実施形態では、1つの関節に2つの電磁ブレーキを設ける構成の例を示したが、本発明はこれに限られない。本発明では、1つの関節に1つの電磁ブレーキを設けてもよいし、3つ以上の電磁ブレーキを設けてもよい。
また、上記実施形態では、ベースが床に埋設されて固定されている構成の例を示したが、本発明はこれに限られない。本発明では、ベースが床の上に固定されていてもよい。
1:テーブル、2:多関節ロボットアーム、4:関節駆動機構(多関節ロボットアームの関節駆動機構)、6:出力部材、7:ニードルベアリング(第2軸受)、21:ベース、41:モータ、41b:電磁ブレーキ(第1電磁ブレーキ)、42:減速機(第2減速機)、43:減速機(第1減速機)、44:電磁ブレーキ(第2電磁ブレーキ)、71:外輪部、72:内輪部、73:ニードル、100:ロボット手術台、221、222、223:水平関節(関節)、231、232、233:垂直関節(関節)、434:クロスローラベアリング(第1軸受)

Claims (13)

  1. モータと、
    前記モータに接続され、出力軸が関節の回転軸線と一致する減速機と、
    前記減速機の前記出力軸に接続された出力部材と、
    前記出力部材を回転可能に支持する第1軸受と、
    外輪部と、内輪部と、前記外輪部に設けられた複数のニードルとを含むニードルベアリングとを備え、
    前記外輪部および前記内輪部のうち一方は、前記出力部材に接続されており、
    前記内輪部と、前記外輪部に設けられた前記複数のニードルの各々とは、所定の間隔を隔てて離間して配置されており、
    前記関節にかかる負荷により前記内輪部が前記ニードルに接触した場合に、前記ニードルベアリングは、前記出力部材を回転可能に支持する第2軸受として機能するように構成されている、多関節ロボットアームの関節駆動機構。
  2. 前記回転軸線の延びる方向において、前記ニードルベアリングは、前記第1軸受に対して前記出力部材側に配置されている、請求項1に記載の多関節ロボットアームの関節駆動機構。
  3. 前記ニードルベアリングは、前記内輪部が固定配置されており、前記外輪部が前記出力部材と一体化されている、請求項1または2に記載の多関節ロボットアームの関節駆動機構。
  4. 前記第1軸受は、外輪が固定配置されており、内輪が前記出力部材と一体化されている、請求項3に記載の多関節ロボットアームの関節駆動機構。
  5. 前記第1軸受が、クロスローラベアリングである、請求項1〜4のいずれか1項に記載の多関節ロボットアームの関節駆動機構。
  6. 前記減速機が、波動歯車減速機または偏心揺動型遊星歯車減速機である、請求項1〜5のいずれか1項に記載の多関節ロボットアームの関節駆動機構。
  7. 複数の前記関節を備え、
    複数の前記関節のうちの少なくとも1つの前記関節を駆動する駆動機構が、請求項1〜6のいずれか1項に記載された多関節ロボットアームの関節駆動機構である、多関節ロボットアーム。
  8. 患者載置用のテーブルと、
    一方端がベースに支持され、他方端が前記テーブルを支持する多関節ロボットアームと、を備え、
    前記多関節ロボットアームは、複数の関節と、複数の前記関節をそれぞれ駆動する複数の関節駆動機構を含み、
    複数の前記関節駆動機構のうちの少なくとも1つの前記関節駆動機構は、
    モータと、
    前記モータに接続され、出力軸が前記関節の回転軸線と一致する第1減速機と、
    前記第1減速機の前記出力軸に接続された出力部材と、
    前記出力部材を回転可能に支持する第1軸受と、
    外輪部と、内輪部と、前記外輪部に設けられた複数のニードルとを含むニードルベアリングとを含み、
    前記外輪部および前記内輪部のうち一方は、前記出力部材に接続されており、
    前記内輪部と、前記外輪部に設けられた前記複数のニードルの各々とは、所定の間隔を隔てて離間して配置されており、
    前記関節にかかる負荷により前記内輪部が前記ニードルに接触した場合に、前記ニードルベアリングは、前記出力部材を回転可能に支持する第2軸受として機能するように構成されている、ロボット手術台。
  9. 前記回転軸線の延びる方向において、前記ニードルベアリングは、前記第1軸受に対して前記出力部材側に配置されている、請求項8に記載のロボット手術台。
  10. 前記ニードルベアリングは、前記内輪部が固定配置されており、前記外輪部が前記出力部材と一体化されており、
    前記第1軸受は、外輪が固定配置されており、内輪が前記出力部材と一体化されている、請求項8または9に記載のロボット手術台。
  11. 前記多関節ロボットアームは、前記ベースが設置される設置面に対して略垂直なベース回転軸回りに回転可能に前記ベースに支持されており、
    前記第1減速機の前記出力軸が、前記ベース回転軸に略直交する方向に配置されている、請求項8〜10のいずれか1項に記載のロボット手術台。
  12. 前記関節駆動機構は、前記モータの回転が伝達され、伝達された回転を減速して前記第1減速機に出力する第2減速機をさらに含む、請求項8〜11のいずれか1項に記載のロボット手術台。
  13. 前記モータは、第1電磁ブレーキを内蔵しており、
    前記関節駆動機構は、前記モータの出力回転軸に取り付けられた第2電磁ブレーキをさらに含む、請求項8〜12のいずれか1項に記載のロボット手術台。
JP2017001357A 2017-01-06 2017-01-06 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台 Active JP6895261B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001357A JP6895261B2 (ja) 2017-01-06 2017-01-06 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001357A JP6895261B2 (ja) 2017-01-06 2017-01-06 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台

Publications (2)

Publication Number Publication Date
JP2018111139A JP2018111139A (ja) 2018-07-19
JP6895261B2 true JP6895261B2 (ja) 2021-06-30

Family

ID=62911597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001357A Active JP6895261B2 (ja) 2017-01-06 2017-01-06 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台

Country Status (1)

Country Link
JP (1) JP6895261B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109015745A (zh) * 2018-08-30 2018-12-18 遨博(北京)智能科技有限公司 一种机器人关节臂及机器人
CN112228451B (zh) * 2020-10-23 2024-06-21 埃夫特智能装备股份有限公司 四关节工业机器人小臂部分与手腕部分之间的连接结构
CN116130393B (zh) * 2022-12-14 2023-12-15 弥费科技(上海)股份有限公司 晶圆盒移载机构及方法、***、存储库

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567085B2 (ja) * 1989-03-09 1996-12-25 ファナック株式会社 産業用ロボットのアーム支持構造
JPH074791B2 (ja) * 1989-03-10 1995-01-25 株式会社神戸製鋼所 産業用ロボット
US8160205B2 (en) * 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
JP5375778B2 (ja) * 2010-09-09 2013-12-25 株式会社安川電機 ロボットおよび2台以上のロボットの組み立て方法
JP5447451B2 (ja) * 2011-08-08 2014-03-19 株式会社安川電機 ロボット
JP2013110874A (ja) * 2011-11-22 2013-06-06 Nidec-Shimpo Corp 回転駆動装置及びロボット装置
JP2016109253A (ja) * 2014-12-09 2016-06-20 日本精工株式会社 転がり軸受

Also Published As

Publication number Publication date
JP2018111139A (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
CN108245357B (zh) 机械手术台以及混合手术室***
US20220047234A1 (en) Portable medical imaging system
JP6449958B2 (ja) ロボット手術台
US10405812B2 (en) Extremity imaging apparatus for cone beam computed tomography
JP6563891B2 (ja) ロボット手術台およびハイブリッド手術室
JP5623415B2 (ja) 患者を放射線に対して位置決めするためのデバイス
JP6895261B2 (ja) 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台
US10548540B2 (en) Extremity imaging apparatus for cone beam computed tomography
CN108720853B (zh) 具有多个自动化的独立旋转轴的c形臂成像***
JP2018068493A (ja) ロボット手術台
JP6114409B2 (ja) 放射線治療装置
JP6457994B2 (ja) ロボット手術台
JP6586444B2 (ja) ロボット手術台およびハイブリッド手術室システム
JP6270957B1 (ja) ロボット手術台
JP6675019B2 (ja) ロボット治療台
JP6708768B2 (ja) ロボット手術台およびハイブリッド手術室
JP6363860B2 (ja) 放射線発生用装置及び放射線撮影システム
JP6449957B2 (ja) ロボット手術台
JP2010158261A (ja) X線診断装置
JP2021074261A (ja) 放射線撮影装置
JP2006109892A (ja) X線診断装置
KR20140104569A (ko) 이동형 x선 투시촬영장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6895261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150