JP6855882B2 - Positive electrode and lithium ion secondary battery - Google Patents

Positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP6855882B2
JP6855882B2 JP2017072974A JP2017072974A JP6855882B2 JP 6855882 B2 JP6855882 B2 JP 6855882B2 JP 2017072974 A JP2017072974 A JP 2017072974A JP 2017072974 A JP2017072974 A JP 2017072974A JP 6855882 B2 JP6855882 B2 JP 6855882B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
electrode active
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072974A
Other languages
Japanese (ja)
Other versions
JP2018174107A (en
Inventor
佐々木 孝
孝 佐々木
秀明 関
秀明 関
宏郁 角田
宏郁 角田
昭信 野島
昭信 野島
慎 藤田
慎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017072974A priority Critical patent/JP6855882B2/en
Publication of JP2018174107A publication Critical patent/JP2018174107A/en
Application granted granted Critical
Publication of JP6855882B2 publication Critical patent/JP6855882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、正極及びリチウムイオン二次電池に関し、特に除熱性に優れたリチウムイオン二次電池用の正極、及びその正極を含むリチウムイオン二次電池に関する。 The present invention relates to a positive electrode and a lithium ion secondary battery, and particularly to a positive electrode for a lithium ion secondary battery having excellent heat removing properties, and a lithium ion secondary battery including the positive electrode.

リチウムイオン二次電池は、鉛電池やニッケル水素電池等と比べて起電力が大きく、エネルギー密度が高く、しかも充放電効率に優れていることから、携帯電子機器用の小型電池から車載用、電力貯蔵用の大型電池に至るまで、幅広い用途において期待が寄せられている。 Lithium-ion secondary batteries have a higher electromotive force, higher energy density, and better charge / discharge efficiency than lead batteries and nickel-hydrogen batteries. Expectations are high for a wide range of applications, including large batteries for storage.

ところで、リチウムイオン二次電池は、充放電時の電池反応や電池の内部抵抗に依って発熱することが知られている。特に出力の大きな電池では内部が高温となり、その状態が長く続くと電池寿命が短くなったり、内部要素の性能が劣化したりする点が指摘されている。 By the way, it is known that a lithium ion secondary battery generates heat due to a battery reaction during charging / discharging and an internal resistance of the battery. In particular, it has been pointed out that a battery with a large output has a high temperature inside, and if the state continues for a long time, the battery life will be shortened and the performance of internal elements will deteriorate.

そのような指摘に対し、例えば特許文献1には、電池缶の内部に、缶に接するように放熱板を設け、電池内部の発熱を外に逃がして電池内部の温度上昇を抑える仕組みが提案されている。
また、例えば特許文献2には、正極と負極とを隔離するセパレータの厚さ方向の熱伝導率を高くし(0.5W/(m・k)以上)、除熱性を高めることで、電池内部の温度上昇を抑える仕組みが提案されている。
In response to such an indication, for example, Patent Document 1 proposes a mechanism in which a heat radiating plate is provided inside a battery can so as to be in contact with the can, and heat generated inside the battery is released to the outside to suppress a temperature rise inside the battery. ing.
Further, for example, in Patent Document 2, the thermal conductivity in the thickness direction of the separator that separates the positive electrode and the negative electrode is increased (0.5 W / (m · k) or more), and the heat removing property is enhanced to improve the heat removal property inside the battery. A mechanism to suppress the temperature rise has been proposed.

ところで、比較的大型のリチウムイオン二次電池においては、過充電時の安全性を高めるために、セパレータとして多孔質ポリエチレン製フィルム等を用いることが知られている。この多孔質セパレータは、通常の充放電時にはリチウムイオンが通過可能であり、正極と負極との間の短絡を防止している。一方、過充電時には、非水電解質液と活物質との化学反応に伴う発熱でポリエチレンが軟化溶融してシャットダウンする(すなわち、溶融したポリエチレンが多孔を閉塞してリチウムイオンの通過を遮断する)。これにより、充放電が遮断されるので、電池温度の急激な上昇を未然に防ぐことができる。 By the way, in a relatively large lithium ion secondary battery, it is known to use a porous polyethylene film or the like as a separator in order to enhance safety at the time of overcharging. This porous separator allows lithium ions to pass through during normal charging and discharging, and prevents a short circuit between the positive electrode and the negative electrode. On the other hand, during overcharging, the heat generated by the chemical reaction between the non-aqueous electrolyte solution and the active material softens and melts the polyethylene and shuts it down (that is, the molten polyethylene blocks the porosity and blocks the passage of lithium ions). As a result, charging / discharging is cut off, so that a sudden rise in battery temperature can be prevented.

例えば特許文献3には、多孔質セパレータを挟んで正極板と負極板とが捲回された電極群の中心に、正極又は負極と同じ材料からなる金属製軸芯が配置され、その軸芯の一端部が正極又は負極の接続部材のいずれか一方に接合されているリチウムイオン二次電池が提案されている。この発明によれば、正極又は負極と同じ材料からなる金属製軸芯を設けることで、電極群全体の温度分布の偏りが小さくなり、過充電時における多孔質セパレータのシャットダウンがほぼ一様に進行するので、電池の安全性が確保される。 For example, in Patent Document 3, a metal shaft core made of the same material as the positive electrode or the negative electrode is arranged at the center of an electrode group in which a positive electrode plate and a negative electrode plate are wound with a porous separator interposed therebetween. A lithium ion secondary battery in which one end is bonded to either a positive electrode or a negative electrode connecting member has been proposed. According to the present invention, by providing a metal shaft core made of the same material as the positive electrode or the negative electrode, the bias of the temperature distribution in the entire electrode group is reduced, and the shutdown of the porous separator during overcharging proceeds almost uniformly. Therefore, the safety of the battery is ensured.

特開2011−113895号公報Japanese Unexamined Patent Publication No. 2011-113895 特開2006−269358号公報Japanese Unexamined Patent Publication No. 2006-269358 特開2006−40772号公報Japanese Unexamined Patent Publication No. 2006-40772

しかしながら、従前のリチウムイオン二次電池では、セパレータ等の工夫により電極板の厚さ方向への除熱性を高めるなどの提案がなされているものの、電極板の面方向への除熱性については十分な検討がなされておらず、電池の熱膨張により電極板の厚さ方向への除熱性が低下した場合に、電極群の温度分布に偏りが生じることを回避出来ない可能性があり、その結果としてセパレータの温度が均一ではなくなりシャットダウンを一様に進行させることが難しくなる点が指摘されており、改善の余地が認められる。 However, in the conventional lithium ion secondary battery, although it has been proposed to improve the heat removing property in the thickness direction of the electrode plate by devising a separator or the like, the heat removing property in the surface direction of the electrode plate is sufficient. It has not been studied, and when the heat removing property of the electrode plate in the thickness direction is lowered due to the thermal expansion of the battery, it may be unavoidable that the temperature distribution of the electrode group is biased, and as a result, it may not be possible to avoid it. It has been pointed out that the temperature of the separator becomes uneven and it becomes difficult to proceed with the shutdown uniformly, and there is room for improvement.

本発明は上記の課題に鑑みてなされたものであり、その目的は、電池反応により内部に生じた熱を効率良く電池の外に逃がし、電池内部の温度上昇を防ぐことにある。また、過充電時には、熱を効率的に逃がすことに伴い、セパレータの温度を均一にすることにし、セパレータのシャットダウンを一様に進行させることで、リチウムイオン二次電池の構造を大幅に変えることなく、安全性を向上させることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to efficiently release the heat generated inside by the battery reaction to the outside of the battery and prevent the temperature inside the battery from rising. In addition, at the time of overcharging, the temperature of the separator is made uniform as the heat is efficiently dissipated, and the shutdown of the separator is made to proceed uniformly, so that the structure of the lithium ion secondary battery can be significantly changed. It is not to improve safety.

本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の第1の態様にかかる正極は、正極集電体と、前記正極集電体上の主面に形成された正極層と、前記正極層を構成する活物質粒子の表面の少なくとも一部を被覆する熱伝導性材料とを有する。前記正極層内における、前記熱伝導性材料に被覆された前記活物質粒子の体積含有率は65パーセント以上である。
The present invention provides the following means for solving the above problems.
(1) The positive electrode according to the first aspect of the present invention is a positive electrode current collector, a positive electrode layer formed on a main surface of the positive electrode current collector, and a surface of active material particles constituting the positive electrode layer. It has a thermally conductive material that covers at least a part thereof. The volume content of the active material particles coated on the heat conductive material in the positive electrode layer is 65% or more.

(2)上記第1の態様にかかる正極は、前記熱伝導性材料として、カーボンナノチューブ、グラフェン、窒化アルミニウム、炭化ケイ素、ベリリア、窒化ケイ素、六方晶窒化ホウ素のいずれかを少なくとも一種含んでもよい。 (2) The positive electrode according to the first aspect may contain at least one of carbon nanotubes, graphene, aluminum nitride, silicon carbide, beryllium oxide, silicon nitride, and hexagonal boron nitride as the heat conductive material.

(3)上記第1の態様にかかる正極において、前記活物質粒子は、単体の一次粒子と、複数の前記一次粒子が集って結合した二次粒子とを含み、前記二次粒子の表面の少なくとも一部が、前記熱伝導性材料により被覆されてもよい。 (3) In the positive electrode according to the first aspect, the active material particles include a single primary particle and a secondary particle in which a plurality of the primary particles are gathered and bonded to each other, and are on the surface of the secondary particle. At least a part may be coated with the heat conductive material.

(4)上記第1の態様にかかる正極において、前記正極層内における前記熱伝導性材料の体積含有率が10パーセント以下であってもよい。 (4) In the positive electrode according to the first aspect, the volume content of the heat conductive material in the positive electrode layer may be 10% or less.

(5)本発明の第2の態様にかかるリチウムイオン二次電池は、上記(1)から(4)のいずれか一つの正極と、負極集電体と、前記負極集電体上の主面に形成された負極層とを有する負極と、前記正極と前記負極との間に介在して双方を隔てるセパレータと、非水電解液とを備える。 (5) The lithium ion secondary battery according to the second aspect of the present invention includes the positive electrode, the negative electrode current collector, and the main surface on the negative electrode current collector according to any one of (1) to (4) above. It is provided with a negative electrode having a negative electrode layer formed in, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolytic solution.

本発明によれば、表面に熱伝導性材料を被覆された活物質粒子を含む正極層が、正極集電体の主面に形成される。正極層には、熱伝導性材料によりパーコレーションが形成され、そのパーコレーションを介して熱伝導の経路が形成されるので、正極層の面内方向に高い熱伝導性が得られる。これにより、もし電池の熱膨張により電極板の厚さ方向への除熱性が低下したとしても、熱は正極の面内方向に伝達するので、電極の除熱性は大きく低下することなく維持される。その結果、電極群全体の温度分布の偏りが小さくなり、過充電時における多孔質セパレータのシャットダウンがほぼ一様に進行するので、電池の安全性を確保することができる。 According to the present invention, a positive electrode layer containing active material particles whose surface is coated with a heat conductive material is formed on the main surface of a positive electrode current collector. Percolation is formed in the positive electrode layer by the heat conductive material, and a heat conduction path is formed through the percolation, so that high heat conductivity can be obtained in the in-plane direction of the positive electrode layer. As a result, even if the thermal expansion of the battery reduces the heat-removing property in the thickness direction of the electrode plate, the heat is transferred in the in-plane direction of the positive electrode, so that the heat-removing property of the electrode is maintained without being significantly reduced. .. As a result, the bias of the temperature distribution in the entire electrode group is reduced, and the shutdown of the porous separator during overcharging proceeds almost uniformly, so that the safety of the battery can be ensured.

本実施形態にかかるリチウムイオン二次電池を示す断面模式図である。It is sectional drawing which shows the lithium ion secondary battery which concerns on this embodiment. 正極活物質層内に存在する一次及び二次粒子の状態を示す断面模式図である。It is sectional drawing which shows the state of the primary and secondary particles existing in a positive electrode active material layer.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be shown by enlarging the featured portions for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of each component may differ from the actual ones. is there. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

[リチウムイオン二次電池]
図1は、本実施形態にかかるリチウムイオン二次電池の断面模式図である。図1に示すリチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容するケース50、及び積層体40に接続された一対のリード60、62を備えている。
また図示されていないが、積層体40とともに電解液が、ケース50内に収容されている。
[Lithium-ion secondary battery]
FIG. 1 is a schematic cross-sectional view of the lithium ion secondary battery according to the present embodiment. The lithium ion secondary battery 100 shown in FIG. 1 mainly includes a laminate 40, a case 50 that houses the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40.
Further, although not shown, the electrolytic solution is housed in the case 50 together with the laminated body 40.

積層体40は、セパレータ10に隔てられた正極20と負極30とが、セパレータ10を挟んで対向配置されたものである。正極20は、板状又は膜状の正極集電体22上に、正極活物質層(正極層)24が設けられたものである。負極30は、板状又は膜状の負極集電体32上に、負極活物質層(負極層)34が設けられたものである。 In the laminated body 40, the positive electrode 20 and the negative electrode 30 separated by the separator 10 are arranged so as to face each other with the separator 10 interposed therebetween. The positive electrode 20 is a plate-shaped or film-shaped positive electrode current collector 22 provided with a positive electrode active material layer (positive electrode layer) 24. The negative electrode 30 has a negative electrode active material layer (negative electrode layer) 34 provided on a plate-shaped or film-shaped negative electrode current collector 32.

正極活物質層24及び負極活物質層34は、セパレータ10の両側にそれぞれ接触している。正極集電体22及び負極集電体32の端部にはタブ22a、32aがそれぞれ形成されており、これらタブ22a、32aは、それぞれリード60、62が接続されており、リード60、62の端部はケース50の外部にまで延びている。なお、図1には、ケース50内に積層体40が一つの場合を例示したが、複数積層されていてもよい。 The positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10, respectively. Tabs 22a and 32a are formed at the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively. Leads 60 and 62 are connected to the tabs 22a and 32a, respectively, and the leads 60 and 62 The end extends to the outside of the case 50. Although FIG. 1 illustrates a case where one laminated body 40 is contained in the case 50, a plurality of laminated bodies 40 may be laminated.

「セパレータ」
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
"Separator"
The separator 10 may be formed of an electrically insulating porous structure, for example, a monolayer of a film made of polyethylene, polypropylene or polyolefin, a laminate or a stretched film of a mixture of the above resins, or cellulose, polyester and Examples thereof include fibrous nonwoven fabrics made of at least one constituent material selected from the group consisting of polypropylene.

「正極」
正極20は、正極集電体22と、正極集電体22の上に設けられた正極活物質層24とを有する。
"Positive electrode"
The positive electrode 20 has a positive electrode current collector 22 and a positive electrode active material layer 24 provided on the positive electrode current collector 22.

(正極集電体)
正極集電体22には、導電性の板材であればよく、例えばアルミニウム、銅、ニッケル箔等の金属薄板を用いることができる。
(Positive current collector)
The positive electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate such as aluminum, copper, or nickel foil can be used.

(正極活物質層)
正極活物質層24は、正極を構成する活物質の粒子と、該粒子の表面の少なくとも一部を被覆する熱伝導性材料と、正極バインダーとを有し、必要に応じて正極導電材を有する。
(Positive electrode active material layer)
The positive electrode active material layer 24 has particles of the active material constituting the positive electrode, a heat conductive material that covers at least a part of the surface of the particles, a positive electrode binder, and if necessary, a positive electrode conductive material. ..

(正極活物質)
正極活物質には、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとリチウムイオンのカウンターアニオン(例えば、PF6−)とのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等が挙げられる。
上記各種の正極活物質の粒子は、単体の一次粒子が複数個集まって結合した二次粒子を形成していてもよい。これにより、正極活物質層24の内部は、一次粒子と二次粒子とが混在した状態となるが、一次粒子の表面だけでなく、二次粒子の表面の少なくとも一部が熱伝導性材料により被覆されている。なお、正極活物質層24に、二次粒子に対して一次粒子が多く存在していると、一次粒子の表面を被覆している熱伝導性材料の量が多くなり、正極活物質層24内に必要十分な量の正極活物質を確保できないことが予想される。したがって、正極活物質層24内には適切な量の二次粒子が存在していることが好ましい。
(Positive electrode active material)
The positive electrode active material is occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and lithium ion counter anions (for example, PF 6-). An electrode active material capable of reversibly advancing can be used. As the positive electrode active material, for example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), lithium manganese spinel (LiMn 2 O 4), and the general formula: LiNi x Co y Mn z M a O 2 (x + y + z + a = 1, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ a <1, M is Al, Mg, Nb, Ti, Cu, Zn, A composite metal oxide represented by one or more elements selected from Cr), a lithium vanadium compound (LiV 2 O 5 ), and an olivine type LiMPO 4 (where M is Co, Ni, Mn, Fe, Mg, Nb). , Ti, Al, showing one or more elements or VO selected from Zr), LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) mixed metal oxide such as polyacetylene, polyaniline, Examples thereof include polypyrrole, polythiophene, and polyacene.
The particles of the various positive electrode active materials may form secondary particles in which a plurality of single primary particles are gathered and bonded. As a result, the inside of the positive electrode active material layer 24 becomes a state in which primary particles and secondary particles are mixed, but not only the surface of the primary particles but also at least a part of the surface of the secondary particles is made of a thermally conductive material. It is covered. If a large number of primary particles are present in the positive electrode active material layer 24 with respect to the secondary particles, the amount of the thermally conductive material covering the surface of the primary particles increases, and the inside of the positive electrode active material layer 24 It is expected that the necessary and sufficient amount of positive electrode active material cannot be secured. Therefore, it is preferable that an appropriate amount of secondary particles are present in the positive electrode active material layer 24.

(熱伝導性材料)
熱伝導性材料としては、カーボンナノチューブ、グラフェン、窒化アルミニウム、炭化ケイ素、ベリリア、窒化ケイ素、六方晶窒化ホウ素が挙げられる。活物質粒子の表面は、これら各種の熱伝導性材料の少なくとも一種により被覆されている。正極活物質層24の内部においては、図2に示すように、表面を熱伝導性材料26に被覆された活物質粒子(一次粒子27、二次粒子28を含む)が、正極集電体22の主面に平面的に広がりつつ相互に繋がりを維持しており、一次、二次の粒子間には電解液及び樹脂が充填されている。正極活物質層24には、活物質粒子の表面を被覆する熱伝導性材料が連鎖的に接続することによってパーコレーション(percolation)が形成され、そのパーコレーションを介して熱伝導の経路がランダムに形成される。なお、パーコレーションが正極活物質層24の全域にほぼ均一な状態で形成され、正極活物質層24の面内方向に高い熱伝導性を得るには、熱伝導性材料に被覆された活物質粒子が、正極活物質層24に適量に含有されている必要がある。
(Thermal conductive material)
Examples of the thermally conductive material include carbon nanotubes, graphene, aluminum nitride, silicon carbide, beryllium oxide, silicon nitride, and hexagonal boron nitride. The surface of the active material particles is coated with at least one of these various thermally conductive materials. Inside the positive electrode active material layer 24, as shown in FIG. 2, the active material particles (including the primary particles 27 and the secondary particles 28) whose surface is coated with the heat conductive material 26 are the positive electrode current collector 22. While spreading in a plane on the main surface of the particles, they maintain their mutual connection, and the primary and secondary particles are filled with an electrolytic solution and a resin. Percolation is formed in the positive electrode active material layer 24 by chain-linking the heat conductive materials covering the surface of the active material particles, and the heat conduction path is randomly formed through the percolation. To. The percoration is formed in a substantially uniform state over the entire positive electrode active material layer 24, and in order to obtain high thermal conductivity in the in-plane direction of the positive electrode active material layer 24, the active material particles coated with the heat conductive material However, it is necessary that the positive electrode active material layer 24 contains an appropriate amount.

その一方で、例えば熱伝導性材料の被膜が厚く形成されると、正極活物質層24内の熱伝導性材料の量が多くなり、正極活物質層24内に必要十分な量の正極活物質を確保できたとしても、層内の空孔率が低下してしまうことが予想される。したがって、正極活物質層24内には、適切な量の正極活物質が存在するだけでなく、適切な量の熱伝導性材料が存在すべきである。すなわち、正極活物質層24内における熱伝導性材料の体積含有率は1%以上、10%以下であることが好ましい。熱伝導性材料の体積含有率が1%を下回ると、活物質粒子表面に付着する熱伝導性材料が少なすぎてパーコレーションが形成されない可能性がある。一方、熱伝導性材料の体積含有率が10%を上回ると、活物質の含有率が低下するため容量密度が低下してしまう。 On the other hand, for example, when a thick film of the heat conductive material is formed, the amount of the heat conductive material in the positive electrode active material layer 24 increases, and a necessary and sufficient amount of the positive electrode active material is formed in the positive electrode active material layer 24. Even if it can be secured, it is expected that the porosity in the layer will decrease. Therefore, not only an appropriate amount of the positive electrode active material should be present in the positive electrode active material layer 24, but also an appropriate amount of the heat conductive material should be present. That is, the volume content of the heat conductive material in the positive electrode active material layer 24 is preferably 1% or more and 10% or less. If the volume content of the thermally conductive material is less than 1%, the amount of the thermally conductive material adhering to the surface of the active material particles may be too small to form percolation. On the other hand, if the volume content of the heat conductive material exceeds 10%, the content of the active material decreases, so that the volume density decreases.

(正極導電材)
正極導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。なお、正極活物質のみで十分な導電性を確保できる場合は、正極活物質層24は導電材を含んでいなくてもよい。
(Positive electrode conductive material)
Examples of the positive electrode conductive material include carbon powder such as carbon black, carbon nanotubes, carbon material, metal fine powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and metal fine powder, and conductive oxide such as ITO. Can be mentioned. If sufficient conductivity can be ensured only by the positive electrode active material, the positive electrode active material layer 24 does not have to contain the conductive material.

(正極バインダー)
正極に用いるバインダーは、熱伝導性材料に被覆された活物質の粒子同士を結合すると共に、活物質と正極集電体22とを結合する。バインダーとして使用される材料は、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
(Positive binder)
The binder used for the positive electrode binds the particles of the active material coated on the heat conductive material to each other, and also binds the active material and the positive electrode current collector 22. The material used as the binder may be any material capable of the above-mentioned bonds, for example, polyvinyl fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). , Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), Fluororesin such as polyvinyl fluoride (PVF) can be mentioned.

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。 In addition to the above, as binders, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-) TFE-based fluororubber), vinylidene fluoride-pentafluoropropylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluororubber (VDF-PFMVE-TFE fluoropolymer), vinylidene fluoride-chlorotrifluoroethylene fluororubber (VDF-CTFE fluororubber), etc. A fluororubber may be used.

また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 Further, an electron conductive conductive polymer or an ionic conductive polymer may be used as the binder. Examples of the electron-conducting conductive polymer include polyacetylene and the like. In this case, since the binder also functions as a conductive material, it is not necessary to add the conductive material. Examples of the ionic conductive polymer include monomers of polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide, polyphosphazene, etc.), LiClO 4 , LiBF 4 , LiPF 6, and the like. Examples thereof include a composite of a lithium salt or an alkali metal salt mainly composed of lithium. Examples of the polymerization initiator used for the compounding include a photopolymerization initiator or a thermal polymerization initiator compatible with the above-mentioned monomers.

この他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等を用いてもよい。 In addition, as the binder, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamide-imide resin, acrylic resin or the like may be used.

「負極」
負極30は、負極集電体32と、負極集電体32の上に設けられた負極活物質層34とを有する。
"Negative"
The negative electrode 30 has a negative electrode current collector 32 and a negative electrode active material layer 34 provided on the negative electrode current collector 32.

(負極集電体)
負極集電体32も、導電性の板材であればよく、正極集電体22と同様に、例えばアルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 32 may also be a conductive plate material, and like the positive electrode current collector 22, for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(負極活物質層)
負極活物質層34は、負極を構成する活物質の粒子と、負極バインダーとを有し、必要に応じて負極導電材を有する。
(Negative electrode active material layer)
The negative electrode active material layer 34 has particles of the active material constituting the negative electrode, a negative electrode binder, and, if necessary, a negative electrode conductive material.

(負極活物質)
負極活物質には、リチウムイオンを吸蔵・放出可能な、公知のリチウムイオン二次電池用の負極活物質を用いることができる。負極活物質としては、例えば、金属リチウム、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(Negative electrode active material)
As the negative electrode active material, a known negative electrode active material for a lithium ion secondary battery capable of storing and releasing lithium ions can be used. Examples of the negative electrode active material include carbon materials such as metallic lithium, graphite capable of storing and releasing lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitized carbon, and low-temperature calcined carbon. Metals that can be combined with lithium such as aluminum, silicon, and tin, SiO x (0 <x <2), amorphous compounds mainly composed of oxides such as tin dioxide, lithium titanate (Li 4 Ti 5) Examples include particles containing O 12 ) and the like.

(負極導電材)
負極に用いる同電材としては、正極と同じものを使用できる。なお、負極活物質のみで十分な導電性を確保できる場合は、負極活物質層34は導電材を含んでいなくてもよい。
(Negative electrode conductive material)
As the electric material used for the negative electrode, the same material as that for the positive electrode can be used. If sufficient conductivity can be ensured only by the negative electrode active material, the negative electrode active material layer 34 does not have to contain the conductive material.

(負極バインダー)
負極に用いるバインダーとしても、正極と同じものを使用できる。
(Negative electrode binder)
As the binder used for the negative electrode, the same binder as that for the positive electrode can be used.

「電解液」
電解液には、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いため、充電時の耐用電圧が低く制限される。そのため、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。
"Electrolytic solution"
As the electrolytic solution, an electrolyte solution containing a lithium salt (an aqueous electrolyte solution, an electrolyte solution using an organic solvent) can be used. However, since the decomposition voltage of the aqueous electrolyte solution is electrochemically low, the withstand voltage during charging is low and limited. Therefore, it is preferable that the electrolyte solution uses an organic solvent (non-aqueous electrolyte solution).

非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。 The non-aqueous electrolyte solution has an electrolyte dissolved in a non-aqueous solvent, and may contain a cyclic carbonate and a chain carbonate as the non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネート等を用いることができる。 As the cyclic carbonate, one capable of solvating an electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン等を混合して使用してもよい。 The chain carbonate can reduce the viscosity of the cyclic carbonate. For example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate can be mentioned. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。 The ratio of cyclic carbonate to chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 in volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , and LiN (CF 3 CF). 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB and other lithium salts can be used. One of these lithium salts may be used alone, or two or more thereof may be used in combination. In particular, from the viewpoint of the degree of ionization, it is preferable to contain LiPF 6.

LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When dissolving LiPF 6 in a non-aqueous solvent, it is preferable to adjust the concentration of the electrolyte in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the non-aqueous electrolyte solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging / discharging. Further, by suppressing the concentration of the electrolyte to 2.0 mol / L or less, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte solution, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It will be easier.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with other electrolytes, it is preferable to adjust the lithium ion concentration in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol% thereof. It is more preferable that the above is included.

「ケース」
ケース50は、その内部に積層体40及び電解液を密封する。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。
"Case"
The case 50 seals the laminate 40 and the electrolytic solution inside. The case 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and invasion of water or the like into the inside of the lithium ion secondary battery 100 from the outside.

例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。外側の高分子膜54の材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等の融点の高い高分子材料が好ましく、内側の高分子膜54の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。 For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the polymer film 54. The material of the outer polymer film 54 is preferably a polymer material having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). ) Etc. are preferable.

「リード」
リード60、62は、アルミ等の導電材料から形成されている。リード60、62を正極集電体22のタブ22a、負極集電体32の32aにそれぞれ溶接し、正極20の正極活物質層24と負極30の負極活物質層34との間にセパレータ10を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールする。
"Lead"
The leads 60 and 62 are formed of a conductive material such as aluminum. Leads 60 and 62 are welded to the tab 22a of the positive electrode current collector 22 and 32a of the negative electrode current collector 32, respectively, and a separator 10 is placed between the positive electrode active material layer 24 of the positive electrode 20 and the negative electrode active material layer 34 of the negative electrode 30. In the sandwiched state, it is inserted into the case 50 together with the electrolytic solution to seal the entrance of the case 50.

[リチウムイオン二次電池の製造方法]
リチウムイオン二次電池100を製造する方法について具体的に説明する。
まず、正極の活物質粒子(一次粒子、二次粒子を含む)の表面を、熱伝導性材料により被覆する。次に、表面を熱伝導性材料に被覆された活物質粒子、バインダー及び溶媒を混合して正極用の塗料を作製する。必要に応じ導電材を更に加えても良いし、分散剤を加えても良い。分散剤を添加することで、表面を熱伝導性材料に被覆された活物質粒子が均等に塗料内に分散するので、正極活物質層内にパーコレーションを効果的に形成することが可能である。溶媒としては例えば、水、N−メチル−2−ピロリドン等を用いることができる。正極活物質、導電材、バインダーの構成比率は、質量比で80wt%〜98wt%:0wt%〜10.0wt%:2.0wt%〜10.0wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。
[Manufacturing method of lithium ion secondary battery]
A method for manufacturing the lithium ion secondary battery 100 will be specifically described.
First, the surface of the active material particles (including primary particles and secondary particles) of the positive electrode is coated with a heat conductive material. Next, active material particles whose surface is coated with a heat conductive material, a binder, and a solvent are mixed to prepare a coating material for a positive electrode. If necessary, a conductive material may be further added, or a dispersant may be added. By adding the dispersant, the active material particles whose surface is coated with the heat conductive material are evenly dispersed in the coating material, so that percolation can be effectively formed in the positive electrode active material layer. As the solvent, for example, water, N-methyl-2-pyrrolidone and the like can be used. The composition ratio of the positive electrode active material, the conductive material, and the binder is preferably 80 wt% to 98 wt%: 0 wt% to 10.0 wt%: 2.0 wt% to 10.0 wt% in terms of mass ratio. These mass ratios are adjusted to be 100 wt% as a whole.

塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、正極集電体22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。負極についても、同様に負極集電体32上に負極用の塗料を塗布する。なお、負極用の塗料に含まれる活物質粒子には、熱伝導性材料の被膜は形成しないでよい。 The method of mixing these components constituting the paint is not particularly limited, and the mixing order is also not particularly limited. The above paint is applied to the positive electrode current collector 22. The coating method is not particularly limited, and a method usually adopted when producing an electrode can be used. For example, the slit die coat method and the doctor blade method can be mentioned. Similarly, for the negative electrode, a paint for the negative electrode is applied on the negative electrode current collector 32. The active material particles contained in the paint for the negative electrode may not be formed with a film of a heat conductive material.

続いて、正極集電体22及び負極集電体32上に塗布された塗料中の溶媒を除去する。
除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22及び負極集電体32を、80℃〜150℃の雰囲気下で乾燥させればよい。
Subsequently, the solvent in the paint applied on the positive electrode current collector 22 and the negative electrode current collector 32 is removed.
The removal method is not particularly limited. For example, the positive electrode current collector 22 and the negative electrode current collector 32 coated with the paint may be dried in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。 Then, the electrodes on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way are pressed by a roll press device or the like, if necessary.

次いで、正極活物質層24を有する正極20と、負極活物質層34を有する負極30と、正極と負極との間に介在するセパレータ10と、電解液と、をケース50内に封入する。 Next, the positive electrode 20 having the positive electrode active material layer 24, the negative electrode 30 having the negative electrode active material layer 34, the separator 10 interposed between the positive electrode and the negative electrode, and the electrolytic solution are sealed in the case 50.

例えば、正極20と、負極30と、セパレータ10とを積層し、正極20及び負極30を、積層方向に対して垂直な方向から、プレス器具で加熱加圧し、正極20、セパレータ10、及び負極30を密着させる。そして、例えば、予め作製した袋状のケース50に、積層体40を入れる。 For example, the positive electrode 20, the negative electrode 30, and the separator 10 are laminated, and the positive electrode 20 and the negative electrode 30 are heated and pressed with a press instrument from a direction perpendicular to the stacking direction, and the positive electrode 20, the separator 10, and the negative electrode 30 are heated and pressed. Adhere. Then, for example, the laminated body 40 is put into a bag-shaped case 50 prepared in advance.

最後に電解液をケース50内に注入することにより、リチウムイオン二次電池が作製される。なお、ケースに電解液を注入するのではなく、積層体40を電解液に含浸させてもよい。 Finally, the lithium ion secondary battery is manufactured by injecting the electrolytic solution into the case 50. Instead of injecting the electrolytic solution into the case, the laminate 40 may be impregnated with the electrolytic solution.

本実施形態によれば、表面に熱伝導性材料を被覆された活物質粒子を含む正極活物質層24が、正極集電体22の主面に形成される。正極活物質層24には、熱伝導性材料によりパーコレーションが形成され、そのパーコレーションを介して熱伝導の経路が形成されるので、正極活物質層24の面内方向に高い熱伝導性が得られる。これにより、もし電池の熱膨張により電極板の厚さ方向への除熱性が低下したとしても、正極のタブ22aに向かう方向への除熱性は維持されるため、電極の除熱性は大きく低下することなく維持される。その結果、電極群全体の温度分布の偏りが小さくなり、過充電時における多孔質セパレータのシャットダウンがほぼ一様に進行する。このため、本実施形態にかかる集電体を含むリチウムイオン二次電池によれば、新たな構成要素を追加したり、電池の構造を大幅に変えたりすることなく、安全性を確保することができる。 According to the present embodiment, the positive electrode active material layer 24 containing the active material particles whose surface is coated with a heat conductive material is formed on the main surface of the positive electrode current collector 22. Percolation is formed in the positive electrode active material layer 24 by a heat conductive material, and a heat conduction path is formed through the percolation, so that high heat conductivity can be obtained in the in-plane direction of the positive electrode active material layer 24. .. As a result, even if the thermal expansion of the battery reduces the heat-removing property in the thickness direction of the electrode plate, the heat-removing property in the direction toward the tab 22a of the positive electrode is maintained, so that the heat-removing property of the electrode is greatly reduced. It is maintained without. As a result, the bias of the temperature distribution in the entire electrode group becomes small, and the shutdown of the porous separator during overcharging proceeds almost uniformly. Therefore, according to the lithium ion secondary battery including the current collector according to the present embodiment, safety can be ensured without adding new components or significantly changing the structure of the battery. it can.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in the respective embodiments are examples, and the configurations are added or omitted within a range not deviating from the gist of the present invention. , Replacement, and other changes are possible.

本発明を評価するにあたり、4つの試料を以下の手順に従って作製し、それぞれの試料について下記の状態値を測定した。
(A)正極活物質層内の空孔率(空孔が占める割合)
(B)正極活物質層内の活物質二次粒子が占める割合
(C)正極活物質層内のグラフェンが占める割合
(D)正極活物質層内におけるパーコレーション形成の有無
(E)正極層の厚さ(μm)
ここで、上記(A)、(B)及び(C)については、正極活物質層の断面資料を層状に取得し、SEM(走査電子顕微鏡)を使って観察し、その層状の断面資料に含まれる各状態値を元に積分して求めた。上記(D)については、正極活物質層の断面資料を取得し、その断面資料のいくつかの箇所をSEMを使って観察し、パーコレーションが形成されているか否かを判断した。上記(E)については、正極活物質層の断面資料を取得し、その断面資料をSEMを使って観察して求めた。
In evaluating the present invention, four samples were prepared according to the following procedure, and the following state values were measured for each sample.
(A) Pore ratio in the positive electrode active material layer (ratio occupied by vacancies)
(B) Ratio of active material secondary particles in the positive electrode active material layer (C) Ratio of graphene in the positive electrode active material layer (D) Presence or absence of percoration formation in the positive electrode active material layer (E) Thickness of the positive electrode layer (Μm)
Here, with respect to the above (A), (B) and (C), the cross-sectional data of the positive electrode active material layer is obtained in layers, observed using an SEM (scanning electron microscope), and included in the layered cross-sectional data. It was obtained by integrating based on each state value. Regarding (D) above, the cross-sectional data of the positive electrode active material layer was obtained, and some parts of the cross-sectional data were observed using SEM to determine whether or not percolation was formed. Regarding (E) above, the cross-sectional data of the positive electrode active material layer was obtained, and the cross-sectional data was obtained by observing the cross-sectional data using SEM.

[試料1]
正極集電体としてアルミニウムの薄板を用意するとともに、正極活物質としてLiNi0.8Co0.15Al0.05O (以下、「NCA」という。)を85重量%、熱伝導性材料としてグラフェンを5重量%、バインダーとしてPVDF(ポリフッ化ビニリデン)を9.5重量%、分散剤としてメチルセルロースを0.5重量%それぞれ用意した。次に、これらをN−メチルピロリドン(NMP)溶液と混合して正極用スラリーを調製した。この正極用スラリーを、アルミニウムの薄板上にドクターブレード法により塗布した後、線圧1000kgf・cmで加圧ロールに通すことで活物質層の膜厚55.0μmの正極を作製した。この正極活物質層内のグラフェンの量は7.3体積%、表面をグラフェンに被覆された活物質二次粒子の量は66体積%、空孔率は15体積%であった。
[Sample 1]
A thin aluminum plate is prepared as the positive electrode current collector, LiNi0.8Co0.15Al0.05O 2 (hereinafter referred to as "NCA") is 85% by weight as the positive electrode active material, and graphene is 5% by weight as the thermal conductive material. PVDF (polyvinylidene fluoride) was prepared in an amount of 9.5% by weight as a binder, and methylcellulose was prepared in an amount of 0.5% by weight as a dispersant. Next, these were mixed with an N-methylpyrrolidone (NMP) solution to prepare a slurry for a positive electrode. This slurry for positive electrodes was applied onto a thin aluminum plate by the doctor blade method and then passed through a pressure roll at a linear pressure of 1000 kgf · cm to prepare a positive electrode having a film thickness of 55.0 μm as an active material layer. The amount of graphene in the positive electrode active material layer was 7.3% by volume, the amount of active material secondary particles whose surface was coated with graphene was 66% by volume, and the porosity was 15% by volume.

上記正極の中央、及び別途作製した負極の中央にエチレン−メタアクリル酸の共重合体を点付けし、負極と正極との間にセパレータを配置した上で負極と正極とを交互に配置した。樹脂を加熱溶融しながら、正極、セパレータ、及び負極を繰り返し積層して積層体を得た。 A copolymer of ethylene-methacrylic acid was spotted in the center of the positive electrode and in the center of a separately prepared negative electrode, a separator was placed between the negative electrode and the positive electrode, and then the negative electrode and the positive electrode were alternately arranged. While heating and melting the resin, the positive electrode, the separator, and the negative electrode were repeatedly laminated to obtain a laminate.

得られた積層体に電流取り出し用のリードを付け、所定の電解液、一定量とともにこれらをアルミラミネートパックに封入し、真空シールを行った。その後、熱プレスを行ってパック内の積層体を一体化し、リチウムイオン二次電池を作製した。 A lead for taking out a current was attached to the obtained laminate, and a predetermined electrolytic solution and a certain amount were sealed in an aluminum laminate pack and vacuum-sealed. Then, a hot press was performed to integrate the laminates in the pack to prepare a lithium ion secondary battery.

[試料2]
試料1と同じ手順でリチウムイオン二次電池を作製した。ただし、試料1と異なるのは、正極用スラリーに、正極活物質としてNCAを80重量%、熱伝導性材料としてグラフェンを10重量%それぞれ使用した点と、容量を共通にするために正極活物質の含有割合に応じて電極塗布量を増大させた点である。このリチウムイオン二次電池において、正極活物質層内のグラフェンの量は14.0体積%、表面をグラフェンに被覆された活物質二次粒子の量は67体積%、空孔率は15体積%、正極活物質層の膜厚は61.09μmであった。
[Sample 2]
A lithium ion secondary battery was prepared in the same procedure as in Sample 1. However, the difference from Sample 1 is that the positive electrode slurry uses 80% by weight of NCA as the positive electrode active material and 10% by weight of graphene as the heat conductive material, and the positive electrode active material has a common capacity. The point is that the electrode coating amount is increased according to the content ratio of. In this lithium ion secondary battery, the amount of graphene in the positive electrode active material layer is 14.0% by volume, the amount of active material secondary particles whose surface is coated with graphene is 67% by volume, and the porosity is 15% by volume. The thickness of the positive electrode active material layer was 61.09 μm.

[試料3]
試料1と同じ手順でリチウムイオン二次電池を作製した。ただし、容量を共通にするために正極活物質の含有割合に応じて電極塗布量を増大させ、ロールプレスの線圧を500kgf・cmに変更したため、このリチウムイオン二次電池において、正極活物質層内の空孔率は25体積%、正極活物質層の膜厚は69.23μmであった。
[Sample 3]
A lithium ion secondary battery was prepared in the same procedure as in Sample 1. However, in order to make the capacity common, the electrode coating amount was increased according to the content ratio of the positive electrode active material, and the linear pressure of the roll press was changed to 500 kgf · cm. Therefore, in this lithium ion secondary battery, the positive electrode active material layer The pore ratio inside was 25% by volume, and the thickness of the positive electrode active material layer was 69.23 μm.

[試料4]
試料1と同じ手順でリチウムイオン二次電池を作製した。ただし、試料1と異なるのは、正極用スラリーに、正極活物質としてNCAを80重量%、熱伝導性材料としてグラフェンを10重量%それぞれ使用した点と、容量を共通にするために正極活物質の含有割合に応じて電極塗布量を増大させ、ロールプレスの線圧を500kgf・cmに変更した点である。このリチウムイオン二次電池において、正極活物質層内の空孔率は25体積%、正極活物質層の膜厚は87.15μmであった。
[Sample 4]
A lithium ion secondary battery was prepared in the same procedure as in Sample 1. However, the difference from Sample 1 is that the positive electrode slurry uses 80% by weight of NCA as the positive electrode active material and 10% by weight of graphene as the heat conductive material, and the positive electrode active material has a common capacity. The electrode coating amount was increased according to the content ratio of the roll press, and the linear pressure of the roll press was changed to 500 kgf · cm. In this lithium ion secondary battery, the porosity in the positive electrode active material layer was 25% by volume, and the film thickness of the positive electrode active material layer was 87.15 μm.

上記の試料1から4について、3C、10Vの条件で過充電試験を行い、熱電対を使って電池表面の温度を測定した。その測定結果を、各試料を作製するにあたり用意したスラリーに含まれる成分、及び各試料の状態量と共に表1に示す。

Figure 0006855882
The above samples 1 to 4 were subjected to an overcharge test under the conditions of 3C and 10V, and the temperature of the battery surface was measured using a thermocouple. The measurement results are shown in Table 1 together with the components contained in the slurry prepared for preparing each sample and the state quantity of each sample.
Figure 0006855882

表1に示す測定結果から、表面をグラフェンに被覆された活物質二次粒子が正極活物質層内に占める割合が66.2体積%であった試料1においては、正極活物質層内にパーコレーションの形成が確認されており、過充電試験後の電池表面温度は81.1℃であった。これに対し、グラフェンに被覆された活物質二次粒子が正極活物質層内に占める割合が58.4体積%であった試料3においては、空孔率を除くその他の条件は試料1と同じであったにもかかわらず、層内にパーコレーションの形成は確認されず、過充電試験後の電池表面温度は96.8℃であった。 From the measurement results shown in Table 1, in Sample 1, in which the ratio of the active material secondary particles whose surface was coated with graphene was 66.2% by volume in the positive electrode active material layer, percoration was performed in the positive electrode active material layer. The formation of the battery was confirmed, and the battery surface temperature after the overcharge test was 81.1 ° C. On the other hand, in the sample 3 in which the ratio of the active material secondary particles coated with graphene in the positive electrode active material layer was 58.4% by volume, the other conditions except the pore ratio were the same as those in the sample 1. However, no formation of percolation was confirmed in the layer, and the battery surface temperature after the overcharge test was 96.8 ° C.

また、表面をグラフェンに被覆された活物質二次粒子が正極活物質層内に占める割合が67.0体積%であった試料2においては、正極活物質層内にパーコレーションの形成が確認されており、過充電試験後の電池表面温度は81.1℃であった。ただし、グラフェンが正極活物質層内に占める割合が14.0%と高いことから、同じ容量を発現するために必要な電極厚みが試料1の1.11倍に厚くなっているので、容量密度が低下してしまっている。これに対し、グラフェンに被覆された活物質二次粒子が正極活物質層内に占める割合が59.1体積%であった試料4においては、空孔率を除くその他の条件が同じであったにもかかわらず、層内にパーコレーションの形成は確認されず、過充電試験後の電池表面温度は92.9℃であった。また、グラフェンが正極活物質層内に占める割合が12.4%と高いことから、同じ容量を発現するために必要な電極厚みが試料1の1.58倍に厚くなっているので、容量密度が低下してしまっている。 Further, in Sample 2, in which the ratio of the active material secondary particles whose surface was coated with graphene was 67.0% by volume in the positive electrode active material layer, the formation of percoration was confirmed in the positive electrode active material layer. The battery surface temperature after the overcharge test was 81.1 ° C. However, since the ratio of graphene in the positive electrode active material layer is as high as 14.0%, the electrode thickness required to develop the same volume is 1.11 times thicker than that of sample 1, so that the volume density is high. Has decreased. On the other hand, in Sample 4, in which the ratio of the secondary particles of the active material coated with graphene in the positive electrode active material layer was 59.1% by volume, the other conditions except for the porosity were the same. Nevertheless, no formation of percolation was confirmed in the layer, and the battery surface temperature after the overcharge test was 92.9 ° C. Further, since graphene occupies a high ratio of 12.4% in the positive electrode active material layer, the electrode thickness required to develop the same volume is 1.58 times thicker than that of sample 1, so that the volume density is increased. Has decreased.

このことから、正極活物質層内の活物質二次粒子が占める割合が65.0体積%以上でないと正極活物質層内にパーコレーションが形成され難く、よって正極活物質層内に熱伝導の経路が有効に確保されないので、正極活物質層24には、面内方向に高い熱伝導性が得られない。その結果、過充電試験後の表面温度に上記のような差が生じたものと推察される。また、グラフェンが正極活物質層内に占める割合を10%以下に抑えることにより、容量密度の低下を抑制できることが分かる。 From this, it is difficult for percoration to be formed in the positive electrode active material layer unless the ratio of the active material secondary particles in the positive electrode active material layer is 65.0% by volume or more, and therefore, the heat conduction path in the positive electrode active material layer. Is not effectively secured, so that the positive electrode active material layer 24 cannot obtain high thermal conductivity in the in-plane direction. As a result, it is presumed that the above difference occurred in the surface temperature after the overcharge test. Further, it can be seen that the decrease in volume density can be suppressed by suppressing the ratio of graphene in the positive electrode active material layer to 10% or less.

10…セパレータ、20…正極、22…正極集電体、22a…タブ、24…正極活物質層(正極層)、26…熱伝導性材料、27…正極活物質の一次粒子、28…正極活物質の二次粒子、30…負極、32…負極集電体、32a…タブ、34…負極活物質層(負極層)、40…積層体、50…ケース、52…金属箔、54…高分子膜、60、62…リード、100…リチウムイオン二次電池 10 ... Separator, 20 ... Positive electrode, 22 ... Positive electrode current collector, 22a ... Tab, 24 ... Positive electrode active material layer (positive electrode layer), 26 ... Thermal conductive material, 27 ... Primary particles of positive electrode active material, 28 ... Positive electrode activity Secondary particles of material, 30 ... Negative electrode, 32 ... Negative electrode current collector, 32a ... Tab, 34 ... Negative electrode active material layer (negative electrode layer), 40 ... Laminated body, 50 ... Case, 52 ... Metal foil, 54 ... Polymer Membrane, 60, 62 ... Reed, 100 ... Lithium ion secondary battery

Claims (5)

正極集電体と、
前記正極集電体上の主面に形成された正極層と、
前記正極層を構成する活物質粒子の表面の少なくとも一部を被覆する熱伝導性材料と
前記正極層内に添加された分散剤と、を有し、
前記正極層内における、前記熱伝導性材料に被覆された前記活物質粒子の体積含有率が65パーセント以上である正極。
Positive electrode current collector and
A positive electrode layer formed on the main surface of the positive electrode current collector and
A thermally conductive material that covers at least a part of the surface of the active material particles constituting the positive electrode layer ,
It has a dispersant added in the positive electrode layer and
A positive electrode having a volume content of 65% or more of the active material particles coated on the heat conductive material in the positive electrode layer.
前記熱伝導性材料として、カーボンナノチューブ、グラフェン、窒化アルミニウム、炭化ケイ素、ベリリア、窒化ケイ素、六方晶窒化ホウ素のいずれかを少なくとも一種含む請求項1に記載の正極。 The positive electrode according to claim 1, further comprising at least one of carbon nanotubes, graphene, aluminum nitride, silicon carbide, beryllium oxide, silicon nitride, and hexagonal boron nitride as the heat conductive material. 前記活物質粒子は、単体の一次粒子と、複数の前記一次粒子が集って結合した二次粒子とを含み、
前記二次粒子の表面の少なくとも一部が、前記熱伝導性材料により被覆されている請求項1又は2に記載の正極。
The active material particles include a single primary particle and a secondary particle in which a plurality of the primary particles are aggregated and bonded.
The positive electrode according to claim 1 or 2, wherein at least a part of the surface of the secondary particles is coated with the heat conductive material.
前記正極層内における前記熱伝導性材料の体積含有率が10パーセント以下である請求項1から3のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein the volume content of the heat conductive material in the positive electrode layer is 10% or less. 請求項1から4のいずれか一項に正極と、
負極集電体と、前記負極集電体上の主面に形成された負極層とを有する負極と、
前記正極と前記負極との間に介在して双方を隔てるセパレータと、
非水電解液とを備えるリチウムイオン二次電池。
A positive electrode and any one of claims 1 to 4
A negative electrode having a negative electrode current collector and a negative electrode layer formed on a main surface of the negative electrode current collector,
A separator that is interposed between the positive electrode and the negative electrode to separate them from each other.
A lithium ion secondary battery with a non-aqueous electrolyte.
JP2017072974A 2017-03-31 2017-03-31 Positive electrode and lithium ion secondary battery Active JP6855882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072974A JP6855882B2 (en) 2017-03-31 2017-03-31 Positive electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072974A JP6855882B2 (en) 2017-03-31 2017-03-31 Positive electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018174107A JP2018174107A (en) 2018-11-08
JP6855882B2 true JP6855882B2 (en) 2021-04-07

Family

ID=64107487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072974A Active JP6855882B2 (en) 2017-03-31 2017-03-31 Positive electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6855882B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660996B (en) * 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 Electrode plate and electrochemical device
CN110660963B (en) * 2018-12-29 2021-04-27 宁德时代新能源科技股份有限公司 Electrode plate and electrochemical device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156939B2 (en) * 2012-04-05 2017-07-05 Necエナジーデバイス株式会社 Lithium ion secondary battery
JP6038593B2 (en) * 2012-10-25 2016-12-07 日立オートモティブシステムズ株式会社 Prismatic secondary battery
WO2014068930A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR20150108378A (en) * 2013-01-23 2015-09-25 도레이 카부시키가이샤 Positive electrode active material/graphene composite particles, and positive electrode material for lithium ion battery
JP6121454B2 (en) * 2013-01-31 2017-04-26 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016189321A (en) * 2015-03-27 2016-11-04 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016189320A (en) * 2015-03-27 2016-11-04 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2016186933A (en) * 2015-03-27 2016-10-27 Tdk株式会社 Positive electrode active material, positive electrode using the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018174107A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
KR101689496B1 (en) Non-aqueous electrolyte secondary battery
KR101903913B1 (en) Non-aqueous secondary battery
JP5382445B2 (en) Lithium ion secondary battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
JP6946694B2 (en) Lithium ion secondary battery
JP2019169376A (en) Positive electrode and lithium ion secondary battery
US10581048B2 (en) Non-aqueous electrolyte battery having first separator layer with total pore volume larger than second separator layer
JP7085432B2 (en) A method for pre-doping a negative electrode active material, and a method for manufacturing electrodes and electric devices for electric devices.
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP7298853B2 (en) secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP2018170113A (en) Positive electrode and lithium ion secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP2017103139A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP2018174110A (en) Current collector and lithium ion secondary battery
JP7107382B2 (en) secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
JP5433600B2 (en) Nonaqueous electrolyte secondary battery
JP2019169307A (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150