JP6847433B1 - Flow velocity measuring device and flow velocity measuring method - Google Patents

Flow velocity measuring device and flow velocity measuring method Download PDF

Info

Publication number
JP6847433B1
JP6847433B1 JP2019216480A JP2019216480A JP6847433B1 JP 6847433 B1 JP6847433 B1 JP 6847433B1 JP 2019216480 A JP2019216480 A JP 2019216480A JP 2019216480 A JP2019216480 A JP 2019216480A JP 6847433 B1 JP6847433 B1 JP 6847433B1
Authority
JP
Japan
Prior art keywords
resistor
flow velocity
water pressure
water
pressure value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019216480A
Other languages
Japanese (ja)
Other versions
JP2021085817A (en
Inventor
修嗣 小幡
修嗣 小幡
尚隆 村上
尚隆 村上
雅昭 和田
雅昭 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Future University Hakodate
Original Assignee
Future University Hakodate
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Future University Hakodate filed Critical Future University Hakodate
Priority to JP2019216480A priority Critical patent/JP6847433B1/en
Application granted granted Critical
Publication of JP6847433B1 publication Critical patent/JP6847433B1/en
Publication of JP2021085817A publication Critical patent/JP2021085817A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】超音波や電磁波を利用せずに所定の水深の流速値を精度よく測定することができ、かつ、安価で取り扱いが容易である流速測定装置及び流速測定方法を提供する。【解決手段】水面上に浮遊するブイ10から垂下された水圧を測定する水圧測定部20と、水圧値に基づいて流速値を演算する演算部と、流速値を外部のサーバー装置に送信する通信部と、を備え、水圧測定部は、潮流によって移動する抵抗体21と、水深位置の水圧値を測定するための圧力センサ22と、を有し、演算部は、潮流によって抵抗体が移動したときの変動水圧値と水圧値と水深位置の比例式とに基づいて抵抗体の鉛直方向の移動距離yを算出すること、移動距離と抵抗体及び索体に掛かる力のモーメントの釣合式とに基づいて流速値を算出すること、を特徴とする流速測定装置及び流速測定方法。【選択図】図3PROBLEM TO BE SOLVED: To provide a flow velocity measuring device and a flow velocity measuring method which can accurately measure a flow velocity value at a predetermined water depth without using ultrasonic waves or electromagnetic waves, and are inexpensive and easy to handle. SOLUTION: A water pressure measuring unit 20 for measuring a water pressure hanging from a buoy 10 floating on a water surface, a calculation unit for calculating a flow velocity value based on the water pressure value, and a communication for transmitting the flow velocity value to an external server device. The water pressure measuring unit has a resistor 21 that moves by the tidal current and a pressure sensor 22 for measuring the water pressure value at the water depth position, and the calculation unit has the resistor that moves by the tidal current. To calculate the vertical movement distance y of the resistor based on the fluctuation water pressure value, the water pressure value, and the proportional formula of the water depth position, and to balance the movement distance with the moment of force applied to the resistor and the cord. A flow pressure measuring device and a flow pressure measuring method, which comprises calculating a flow pressure value based on the above. [Selection diagram] Fig. 3

Description

本発明は、水域における潮流の流速測定装置及び流速測定方法に関する。 The present invention relates to a tidal current flow velocity measuring device and a flow velocity measuring method in a water area.

従来、海洋の潮流などの水域の流速を測定する方法及び装置として、実際の流速を精度よく測定するものとして超音波や電磁波を利用した流速計が用いられている。それらの流速計は、精度よく流速・流向を測定することが可能であるが、高価であるとともに取り扱いが難しいため、海洋の沖合や沿岸で実施される定置網漁や水産養殖等の水産業において充分に普及していない。 Conventionally, as a method and device for measuring the flow velocity in a water area such as a tidal current in the ocean, a current meter using ultrasonic waves or electromagnetic waves has been used to accurately measure the actual flow velocity. These current meters can measure the flow velocity and flow direction with high accuracy, but they are expensive and difficult to handle, so they are sufficient for the fisheries industry such as set net fishing and aquaculture carried out offshore or along the coast. Not widespread in.

そのため、例えば特許文献1には、水面に浮かべたブイと、ブイを基準姿勢に維持するための姿勢維持手段と、水中に配置された受流体と、ブイの基準姿勢に対する傾斜角度を計測する角度計測手段と、ブイの基準姿勢に対する傾斜角度に基づいて潮流の流速を算出する演算手段と、を主体としてなり、超音波や電磁波を利用せずに簡便な構造で流速の計測可能なブイ式潮流計測装置及び潮流計測方法が提案されている。 Therefore, for example, Patent Document 1 describes a buoy floating on the water surface, a posture maintaining means for maintaining the buoy in a reference posture, a receiving fluid arranged in water, and an angle for measuring an inclination angle of the buoy with respect to the reference posture. A buoy-type tidal current that can measure the flow velocity with a simple structure without using ultrasonic waves or electromagnetic waves, mainly consisting of a measuring means and a calculation means that calculates the flow velocity of the tidal current based on the inclination angle with respect to the reference posture of the buoy. A measuring device and a flow velocity measuring method have been proposed.

特開2019―35672号公報Japanese Unexamined Patent Publication No. 2019-35672

しかしながら、上述したブイ式潮流計測装置及び潮流計測方法は、水面上に設置された角度計測手段によって受流体の傾斜角度を測定するため、海の波浪等の水面の変化によって生じるブイの不規則な揺動運動に影響されやすく、受流体の傾斜角度の測定にも誤差が生じるおそれがある。そのため、受流体の傾斜角度に基づいて演算手段で算出した潮流の流速と、実際の潮流の流速とのズレが発生してしまう。また、ブイの不規則な揺動運動をなるべく減らすために錘を配置する必要があるが、重量の増加に抗して水面上に浮遊するための浮力を有するようにするためにブイを大型化させなければならず、運搬や設置等の取り扱いが難しくなってしまうおそれがある。また、ブイ自体を球形でセンサを内蔵する等の構造を備えた特殊な形状であり、一般的な固定式のブイや固定構造物等では利用することができない欠点を有するものである。 However, since the buoy type tidal current measuring device and the tidal current measuring method described above measure the inclination angle of the receiving fluid by the angle measuring means installed on the water surface, the buoy is irregular due to changes in the water surface such as sea waves. It is easily affected by rocking motion, and there is a risk that an error will occur in the measurement of the tilt angle of the receiving fluid. Therefore, there is a discrepancy between the flow velocity of the tidal current calculated by the calculation means based on the inclination angle of the receiving fluid and the actual flow velocity of the tidal current. In addition, it is necessary to arrange a weight to reduce the irregular rocking motion of the buoy as much as possible, but the buoy is enlarged to have buoyancy to float on the water surface against the increase in weight. It may be difficult to handle such as transportation and installation. Further, the buoy itself has a special shape having a spherical structure and a built-in sensor, and has a drawback that it cannot be used with a general fixed buoy or a fixed structure.

したがって、本発明は、超音波や電磁波を利用せずに所定の水深の流速値を精度よく測定することができ、かつ、安価で取り扱いが容易である流速測定装置及び流速測定方法を提供することを目的とするものである。 Therefore, the present invention provides a flow velocity measuring device and a flow velocity measuring method that can accurately measure a flow velocity value at a predetermined water depth without using ultrasonic waves or electromagnetic waves, and are inexpensive and easy to handle. Is the purpose.

上記課題に鑑み、本発明の流速測定装置は、水面上に浮遊するブイと、前記ブイ周辺の水域における所定の水深位置の水圧値を測定する水圧測定部と、前記水圧値に基づいて流速値を演算する演算部と、前記流速値を外部のサーバー装置に送信する通信部と、を備えてなり、
前記水圧測定部は、潮流によって移動する抵抗体と、前記抵抗体を前記ブイから所定の水深位置まで垂下させる索体と、前記水深位置の水圧値を測定するための圧力センサと、を有し、
前記演算部は、前記圧力センサの測定した変動水圧値と、水圧値と水深位置の比例式と、に基づいて前記抵抗体の鉛直方向の移動距離を算出すること、前記移動距離と、前記抵抗体及び前記索体に掛かる重力、浮力、抗力、揚力からなる力のモーメントの釣合式と、に基づいて流速値を算出すること、を特徴とするものである。
In view of the above problems, the flow velocity measuring device of the present invention includes a buoy floating on the water surface, a water pressure measuring unit for measuring a water pressure value at a predetermined water depth position in the water area around the buoy, and a flow velocity value based on the water pressure value. A calculation unit that calculates the above and a communication unit that transmits the flow velocity value to an external server device.
The water pressure measuring unit includes a resistor that moves by a tidal current, a cord that hangs the resistor from the buoy to a predetermined water depth position, and a pressure sensor for measuring the water pressure value at the water depth position. ,
The calculation unit calculates the vertical movement distance of the resistor based on the fluctuating water pressure value measured by the pressure sensor and the proportional expression between the water pressure value and the water depth position, the movement distance and the resistance. It is characterized in that the flow velocity value is calculated based on the balance equation of the moment of force consisting of gravity, buoyancy, drag and lift applied to the body and the cord.

また、上述した構成に加え、抵抗体は、潮流を受けると最も抵抗を受ける向きに前記抵抗体を回転させるために、潮流から抵抗を受けるための略長方形状の受流面を備えた長板部と、前記長板部の受流面が潮流の流速方向に対して常に垂直方向から入射するように調整する短板部と、を略十字状に配置して形成されることが好ましい。 Further, in addition to the above-described configuration, the resistor is a long plate provided with a substantially rectangular receiving surface for receiving resistance from the tidal current in order to rotate the resistor in the direction in which the resistor receives the most resistance when receiving the tidal current. It is preferable that the portion and the short plate portion that adjusts so that the receiving surface of the long plate portion is always incident from the direction perpendicular to the flow velocity direction of the tidal current are arranged in a substantially cross shape.

また、上述した構成に加え、抵抗体は、前記抵抗体の中心において、圧力センサを内包するため角筒で形成された空間からなる格納部を有することが好ましい。 Further, in addition to the above-described configuration, it is preferable that the resistor has a storage portion formed of a space formed by a square tube in order to include the pressure sensor at the center of the resistor.

また、上述した構成に加え、通信部は、特定小電力無線局、携帯通信網、衛星通信網の無線通信技術を利用した無線通信装置を有することが好ましい。 Further, in addition to the above-described configuration, it is preferable that the communication unit has a wireless communication device using wireless communication technology of a specific low power wireless station, a mobile communication network, or a satellite communication network.

また、本発明の流速測定方法は、ブイから所定の水深位置まで圧力センサ及び抵抗体を垂下して水圧値を測定する水圧測定手段と、前記水圧値から流速値を算出する演算手段と、を備えてなり、
前記水圧測定手段は、前記抵抗体が潮流を受けていない状態での水深位置の基準水圧値を測定すること、前記抵抗体が潮流を受けて前記抵抗体が上昇移動したときの水深位置の変動水圧値を測定すること、を有し、
前記演算手段は、前記基準水圧値及び前記変動水圧値と、水圧値と水深位置との比例式と、に基づいて前記抵抗体及び前記圧力センサの鉛直方向の移動距離を算出すること、前記移動距離と、前記抵抗体及び索体に掛かる重力、浮力、抗力、揚力からなる力のモーメントの釣合式と、に基づいて流速値を算出すること、を特徴とする。
Further, the flow velocity measuring method of the present invention includes a water pressure measuring means for measuring a water pressure value by hanging a pressure sensor and a resistor from a buoy to a predetermined water depth position, and a calculation means for calculating a flow velocity value from the water pressure value. Be prepared
The water pressure measuring means measures a reference water pressure value at a water depth position when the resistor is not receiving a tidal current, and changes in the water depth position when the resistor receives a tidal current and the resistor moves upward. Having to measure the water pressure value,
The calculation means calculates the vertical movement distance of the resistor and the pressure sensor based on the reference water pressure value, the fluctuating water pressure value, and the proportional expression between the water pressure value and the water depth position, and the movement. It is characterized in that a flow velocity value is calculated based on a balance formula of a distance and a moment of force consisting of gravity, buoyancy, drag, and lift applied to the resistor and the cord.

請求項1―5記載の発明によれば、超音波や電磁波を利用せずに所定の水深の流速値を精度よく測定することができ、かつ、安価で取り扱いが容易である流速測定装置及び流速測定方法を提供することが可能である。 According to the invention according to claim 1-5, a flow velocity measuring device and a flow velocity that can accurately measure a flow velocity value at a predetermined water depth without using ultrasonic waves or electromagnetic waves, and are inexpensive and easy to handle. It is possible to provide a measuring method.

本発明の流速測定装置の一例を示す正面図である。It is a front view which shows an example of the flow velocity measuring apparatus of this invention. 図1の流速測定装置の水圧測定部の拡大斜視図である。It is an enlarged perspective view of the water pressure measuring part of the flow velocity measuring apparatus of FIG. 本発明の流速測定方法を示す概念図である。It is a conceptual diagram which shows the flow velocity measuring method of this invention.

(実施形態)
本発明の実施形態に係る流速測定方法及び流速測定装置の一例について図1−2に基づいて詳細に説明する。
(Embodiment)
An example of the flow velocity measuring method and the flow velocity measuring device according to the embodiment of the present invention will be described in detail with reference to FIG. 1-2.

流速測定装置は、水面上に浮遊するブイ10と、ブイ10から所定の水深まで垂下されて水圧値を測定する水圧測定部20と、水圧値に基づいて流速値Uを演算する演算部32と、流速値Uを受信して保存するための外部のサーバー装置に送信する通信部30と、を主体として構成されるものである。 The flow velocity measuring device includes a buoy 10 floating on the water surface, a water pressure measuring unit 20 that hangs down from the buoy 10 to a predetermined water depth to measure the water pressure value, and a calculation unit 32 that calculates the flow velocity value U based on the water pressure value. The communication unit 30 for receiving and storing the flow velocity value U and transmitting the flow velocity value U to an external server device is mainly composed of the communication unit 30.

ブイ10は、水面上に浮遊するための上下ほぼ対称の略円錐状の浮力体11と、浮力体11の下端に水圧測定部20の索体23を任意の角度で揺動するように係留するための環状の係留環12と、を有するものである。また、ブイ10は、水面上に位置する浮力体11の上部から上方に設けられた支柱13において、後述する演算手段の数値計算プログラム等が組み込まれたコンピュータ等からなる演算部32と、流速値Uを外部のサーバー装置に送信する送信アンテナ等を備えた特定小電力無線局、携帯通信網、衛星通信網等の無線通信技術を利用した無線通信装置からなる通信部30と、LEDライトを備えた電灯部33と、これらの通信部30、電灯部33、演算部32、及び、水圧測定部20を動作させるための電源部31と、が備え付けられているものである。 The buoy 10 anchors a substantially symmetrical substantially conical buoyancy body 11 for floating on the water surface and a cord 23 of the water pressure measuring unit 20 at the lower end of the buoyancy body 11 so as to swing at an arbitrary angle. It has an annular mooring ring 12 for the purpose. Further, the buoy 10 is a support column 13 provided above the buoyant body 11 located on the water surface, and has a calculation unit 32 including a computer or the like in which a numerical calculation program or the like of a calculation means described later is incorporated, and a flow velocity value. It is equipped with a communication unit 30 consisting of a specific low-power wireless station equipped with a transmitting antenna for transmitting U to an external server device, a mobile communication network, a communication unit consisting of a wireless communication device using wireless communication technology such as a satellite communication network, and an LED light. The lamp unit 33, the communication unit 30, the lamp unit 33, the calculation unit 32, and the power supply unit 31 for operating the water pressure measurement unit 20 are provided.

水圧測定部20は、潮流Cによって移動する抵抗体21と、抵抗体21を所定の水深位置まで垂下させる索体23と、所定の水深位置の水圧値を測定するための圧力センサ22と、からなるものである。なお、この圧力センサ22は、一般的な水圧を測定することが可能なものであればよく、本実施形態ではハネウェル社製(型式:PX2AN1XX100PSACX)のものを用いる。 The water pressure measuring unit 20 is composed of a resistor 21 that moves by the tidal current C, a cord 23 that hangs the resistor 21 to a predetermined water depth position, and a pressure sensor 22 for measuring a water pressure value at a predetermined water depth position. It will be. The pressure sensor 22 may be any one capable of measuring a general water pressure, and in the present embodiment, a pressure sensor manufactured by Honeywell (model: PX2AN1XX100PSACX) is used.

抵抗体21は、潮流を受けると最も抵抗を受ける向きに抵抗体21を回転させるために、潮流から抵抗を受けるための略長方形状の受流面を備えた長板部21a、21aと、長板部21a、21aの受流面が潮流の流速方向に対して常に垂直方向から入射するように調整する短板部21b、21bと、を略十字状に配置して形成されたものである。また、この抵抗体21は、この長板部21a、21aの両端付近をやや内側方向に折り曲げてなる折曲部21c、21cと、抵抗体21の中心において、圧力センサ22及びそれらをつなぐ接続ケーブルを内包するための略菱形状の角筒で形成された空間からなる格納部21dと、を有するものである。なお、この長板部21a、21a及び短板部21b、21bは、アルミニウム合金等の金属材を主体として形成されるものである。 The resistor 21 has long plate portions 21a and 21a provided with a substantially rectangular receiving surface for receiving resistance from the tidal current in order to rotate the resistor 21 in the direction in which the resistor 21 receives the most resistance when the tidal current is received. The short plate portions 21b and 21b, which are adjusted so that the receiving surfaces of the plate portions 21a and 21a are always incident from the direction perpendicular to the flow velocity direction of the tidal current, are arranged in a substantially cross shape. Further, the resistor 21 is a bent portion 21c, 21c formed by bending both ends of the elongated plate portions 21a, 21a inward slightly, and a pressure sensor 22 and a connecting cable connecting them at the center of the resistor 21. It has a storage portion 21d formed of a space formed by a substantially rhombic square cylinder for containing the above. The long plate portions 21a and 21a and the short plate portions 21b and 21b are formed mainly of a metal material such as an aluminum alloy.

索体23は、所定の水深まで圧力センサ22を沈水して垂下し得る程度の長さを少なくとも有し、その長さは測定したい水深位置に応じて調整可能なものであり、圧力センサ22で測定した水圧値を演算部32まで送信する接続ケーブルと、接続ケーブルを被覆する被覆管と、からなるものである。 The cord 23 has at least a length that allows the pressure sensor 22 to be submerged and hung down to a predetermined water depth, and the length can be adjusted according to the water depth position to be measured. It includes a connecting cable that transmits the measured water pressure value to the calculation unit 32, and a cladding tube that covers the connecting cable.

また、図示しないが、上述したサーバー装置に蓄積された流速値Uは、時刻毎の流速値Uの表やグラフ化したものなどに解析された後、利用者は、流速測定装置の付近にいなくとも、コンピュータやスマートフォン等の情報端末からインターネットを介して閲覧することが可能である。 Further, although not shown, the flow velocity value U accumulated in the above-mentioned server device is analyzed in a table or graph of the flow velocity value U for each time, and then the user is in the vicinity of the flow velocity measuring device. Even if it is not, it can be browsed via the Internet from an information terminal such as a computer or a smartphone.

次に、上述した流速測定装置を用いて所定の水深における流速値Uを測定する流速測定方法について図3に基づいて詳細に説明する。 Next, a flow velocity measuring method for measuring the flow velocity value U at a predetermined water depth using the above-mentioned flow velocity measuring device will be described in detail with reference to FIG.

(流速測定方法)
流速測定方法は、ブイ10から所定の水深位置まで垂下させた圧力センサ22によって水圧値を測定する水圧測定手段と、水圧値から流速値Uを演算する演算手段と、を主体として有することを特徴とする。
(Flow velocity measurement method)
The flow velocity measuring method is characterized in that it mainly includes a water pressure measuring means for measuring a water pressure value by a pressure sensor 22 hanging from a buoy 10 to a predetermined water depth position, and a calculation means for calculating a flow velocity value U from the water pressure value. And.

水圧測定手段は、水圧測定部20に設けられた圧力センサ22によって、抵抗体21の水深位置の水圧値を測定する。より具体的には、抵抗体21及び索体23が潮流を受けていない状態での水深位置の基準水圧値を測定する。また、抵抗体21及び索体23が潮流を受けて抵抗体21が傾斜角θで傾斜するように上昇移動したときの水深位置の変動水圧値を測定する。なお、この変動水圧値は、水深が浅くなるにつれて基準水圧値より減少するものである。 The water pressure measuring means measures the water pressure value at the water depth position of the resistor 21 by the pressure sensor 22 provided in the water pressure measuring unit 20. More specifically, the reference water pressure value at the water depth position when the resistor 21 and the cord 23 are not subjected to the tidal current is measured. Further, the fluctuation water pressure value of the water depth position when the resistor 21 and the cord 23 receive the tidal current and move up so that the resistor 21 inclines at the inclination angle θ is measured. The fluctuating water pressure value decreases from the reference water pressure value as the water depth becomes shallower.

演算手段は、次の演算工程(S1、S2、S3)を経て水深位置の移動距離yから傾斜角θを算出した後、当該傾斜角θから流速値Uを算出するものである。
(S1)上記水圧測定手段によって測定された基準水圧値から変動水圧値の差分と、予め演算部に記憶された水圧値と水深位置との比例式と、に基づいて抵抗体21及び圧力センサ22の鉛直方向の水深位置の移動距離yを算出する。この水圧値と水深位置との比例式は、水圧値の減少に比例して水深位置が水面方向に上昇するものであり、その比例定数は、所定の水域を想定した水槽実験等から算出されたものを用いる。
(S2)水深位置の移動距離y及び抵抗体中心の長さRに基づいて、係留環12の位置を中心点とする傾斜角θを算出する。
(S3)この傾斜角θに基づいて、抵抗体21に作用する力のモーメントの釣合式を抵抗体21固有の重力と浮力、及び、潮流によって抵抗体21及び索体23に生じる抗力と揚力による力のモーメントの釣合式に基づいて、抵抗体21の水深位置における流速値Uを算出する。
The calculation means calculates the inclination angle θ from the movement distance y at the water depth position through the following calculation steps (S1, S2, S3), and then calculates the flow velocity value U from the inclination angle θ.
(S1) The resistor 21 and the pressure sensor 22 are based on the difference between the fluctuation water pressure value from the reference water pressure value measured by the water pressure measuring means and the proportional expression between the water pressure value and the water depth position stored in the calculation unit in advance. The moving distance y at the water depth position in the vertical direction is calculated. The proportional formula between the water pressure value and the water depth position is that the water depth position rises in the direction of the water surface in proportion to the decrease in the water pressure value, and the proportionality constant was calculated from a water tank experiment assuming a predetermined water area. Use things.
(S2) The inclination angle θ with the position of the mooring ring 12 as the center point is calculated based on the moving distance y at the water depth position and the length R at the center of the resistor.
(S3) Based on this inclination angle θ, the equilibrium formula of the moment of force acting on the resistor 21 is based on the gravity and buoyancy peculiar to the resistor 21 and the drag and lift generated on the resistor 21 and the cord 23 by the tidal current. Based on the force moment balance equation, the flow velocity value U at the water depth position of the resistor 21 is calculated.

この力のモーメントの釣合式は、より具体的には、次の数式1のように与えられるものであり、主として流速によって生じる抗力、揚力の垂直成分が抵抗体21及び索体23の重力、浮力との力の釣合を示したものであり、抗力及び揚力は潮流の流速値Uに依存するものである。 More specifically, the balance equation of the moment of force is given as in the following equation 1, and the vertical components of drag and lift mainly generated by the flow velocity are the gravity and buoyancy of the resistor 21 and the cord 23. The drag force and lift depend on the flow velocity value U of the tidal current.

Figure 0006847433
Figure 0006847433

上記数式1の力のモーメントMp、Mpw、Mr、Mrw、Mlは、それぞれ抵抗体へ作用する流圧による抗力のモーメント(Mp)、抵抗体及び圧力センサの水中重量によるモーメント(Mpw)、抵抗体へ作用する揚力のモーメント(Ml)、索体へ作用する流速による抗力のモーメント(Mr)、索体の水中重量によるモーメント(Mrw)であり、より具体的には、次の数式2のように定義する。なお、抵抗体21にかかる重力と浮力との影響を考慮した抵抗体21及び圧力センサ22の合計した水中重量W、索体23の水中重量Vとし、抵抗体21中心の長さRは索体の長さLに抵抗体21の高さhの半分を足したものとする。

Figure 0006847433

また、この抵抗体21の揚力係数CLは、次の数式3によって定義される。
Figure 0006847433
Moment M p of the power of the equation 1, M pw, M r, M rw, M l is the moment of force by flow pressure acting on the respective resistors (M p), the moment due to underwater weight of the resistor and the pressure sensor (M pw ), the moment of lift acting on the resistor (M l ), the moment of drag acting on the cord due to the flow velocity (M r ), and the moment due to the weight of the cord in water (M rw ), which are more specific. Is defined as the following equation 2. The total underwater weight W of the resistor 21 and the pressure sensor 22 in consideration of the influence of gravity and buoyancy on the resistor 21 and the underwater weight V of the cord 23 are set, and the length R at the center of the resistor 21 is the cord. It is assumed that half of the height h of the resistor 21 is added to the length L of.
Figure 0006847433

Further, the lift coefficient C L of the resistor 21 is defined by the following mathematical formula 3.
Figure 0006847433

この比例定数C1、C2、C3、C4は、予め水槽実験における既知の流速値Uに対する抵抗体21の傾斜角θを測定した測定結果に対して、数式1に数式2代入した式を用いて、フィッティングすることで得られるものであり、本実施形態における抵抗体21を用いて水槽実験をしたところ、比例定数は、C1:22.115、C2:-47.358、C3:32.756、C4:-6.8385となった。なお、上記数式1、2、3、において、抵抗体21及び索体23の固有のパラメータは以下のものを使用している。
U: 流速値(m/s)
a: 抵抗体の幅(m)
h: 抵抗体の高さ(m)
W: 抵抗体及び圧力センサの水中重量(kg)
L: 索体の長さ(m)
d: 索体の外径(m)
V: 索体の水中重量(kg)
L: 揚力係数
ρ: 海水の密度(例えば1025kg/m3
g: 重力定数(9.8m/s2
The proportionality constants C 1 , C 2 , C 3 , and C 4 are equations in which Equation 2 is substituted into Equation 1 for the measurement result obtained by previously measuring the inclination angle θ of the resistor 21 with respect to the known flow velocity value U in the water tank experiment. It is obtained by fitting using the above, and when a water tank experiment was conducted using the resistor 21 in this embodiment, the proportionality constants were C 1 : 22.115, C 2 : -47.358, C 3 : 32.756, C 4 : It became -6.8385. In the above formulas 1, 2, and 3, the following parameters are used as the unique parameters of the resistor 21 and the cord 23.
U: Flow velocity value (m / s)
a: Width of resistor (m)
h: Resistor height (m)
W: Underwater weight of resistor and pressure sensor (kg)
L: Length of cord (m)
d: Outer diameter of the cord (m)
V: Underwater weight of cord (kg)
C L: lift coefficient [rho: the density of sea water (e.g. 1025kg / m 3)
g: Gravitational constant (9.8m / s 2 )

したがって、上述した数式1に数式2、3を代入することで、抵抗体21に掛かる揚力による影響を考慮した抵抗体21の水深位置の流速値Uを傾斜角度θと変数とすることができ、上述する水圧測定手段によって得られた変動水圧値と、水圧値と水深位置の関係式と、に基づいて算出された傾斜角θを代入することで、潮流の流速値Uを算出することが可能である。 Therefore, by substituting Equations 2 and 3 into Equation 1 described above, the flow velocity value U at the water depth position of the resistor 21 in consideration of the influence of the lift applied to the resistor 21 can be made a variable with the inclination angle θ. The flow velocity value U of the tidal current can be calculated by substituting the inclination angle θ calculated based on the fluctuating water pressure value obtained by the water pressure measuring means described above and the relational expression between the water pressure value and the water depth position. Is.

上記の実施形態では本発明の好ましい実施形態を例示したが、本発明は上記の実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内で改善や変更が可能である。例えば、水圧測定部で測定した水圧値を通信部で外部のサーバー装置に送信した後、サーバー装置上に併設された演算部によって流速値を算出するようにしてもよい。 Although preferred embodiments of the present invention have been illustrated in the above embodiments, the present invention is not limited to the above embodiments, and improvements and changes can be made within the scope of the claims. For example, after the water pressure value measured by the water pressure measuring unit is transmitted to an external server device by the communication unit, the flow velocity value may be calculated by the calculation unit provided on the server device.

10…ブイ、11…浮力体、12…係留環、13…支柱、
20…水圧測定部、21…抵抗体、21a…長板部、21b…短板部、21c…折曲部、21d…格納部、22…圧力センサ、23…索体、
30…通信部、31…電源部、32…演算部、33…電灯部、
θ…傾斜角、y…水深の移動距離、C…潮流、R…抵抗体中心までの長さ。
10 ... buoy, 11 ... buoyant body, 12 ... mooring ring, 13 ... prop,
20 ... water pressure measuring unit, 21 ... resistor, 21a ... long plate, 21b ... short plate, 21c ... bent, 21d ... retracting, 22 ... pressure sensor, 23 ... cord,
30 ... Communication unit, 31 ... Power supply unit, 32 ... Calculation unit, 33 ... Electric light unit,
θ: tilt angle, y: distance traveled by water depth, C: tidal current, R: length to the center of the resistor.

Claims (5)

水面上に浮遊するブイと、前記ブイ周辺の水域における所定の水深位置の水圧値を測定する水圧測定部と、前記水圧値に基づいて流速値を演算する演算部と、前記流速値を外部のサーバー装置に送信する通信部と、を備えてなり、
前記水圧測定部は、潮流によって移動する抵抗体と、前記抵抗体を前記ブイから所定の水深位置まで垂下させる索体と、前記水深位置の水圧値を測定するための圧力センサと、を有し、
前記演算部は、前記圧力センサの測定した変動水圧値と、水圧値と水深位置の比例式と、に基づいて前記抵抗体の鉛直方向の移動距離を算出すること、前記移動距離と、前記抵抗体及び前記索体に掛かる重力、浮力、抗力、揚力からなる力のモーメントの釣合式と、に基づいて流速値を算出すること、を特徴とする流速測定装置。
A buoy floating on the water surface, a water pressure measuring unit that measures the water pressure value at a predetermined water depth position in the water area around the buoy, a calculation unit that calculates the flow velocity value based on the water pressure value, and an external flow velocity value. It is equipped with a communication unit that sends to the server device.
The water pressure measuring unit includes a resistor that moves by a tidal current, a cord that hangs the resistor from the buoy to a predetermined water depth position, and a pressure sensor for measuring the water pressure value at the water depth position. ,
The calculation unit calculates the vertical movement distance of the resistor based on the fluctuating water pressure value measured by the pressure sensor and the proportional expression between the water pressure value and the water depth position, the movement distance and the resistance. A flow velocity measuring device characterized in that a flow velocity value is calculated based on a balance equation of a force moment consisting of gravity, buoyancy, drag, and lift applied to a body and the cord.
抵抗体は、潮流を受けると最も抵抗を受けるように回転させることができるように、潮流から抵抗を受けるための略長方形状の受流面を備えた長板部と、前記長板部の受流面が潮流の流速方向に対して常に垂直方向から入射するように調整する短板部と、を略十字状に配置して形成されることを特徴とする請求項1記載の流速測定装置。 The resistor has a long plate portion having a substantially rectangular receiving surface for receiving resistance from the tidal current and a receiving portion of the long plate portion so that the resistor can be rotated so as to receive the most resistance when receiving the tidal current. The flow velocity measuring device according to claim 1, wherein a short plate portion that adjusts the flow surface so that it is always incident from a direction perpendicular to the flow velocity direction of the tidal current is formed by arranging them in a substantially cross shape. 抵抗体は、前記抵抗体の中心において、圧力センサを内包するため角筒で形成された空間からなる格納部を有することを特徴とする請求項1又は2のいずれか一項に記載の流速測定装置。 The flow velocity measurement according to any one of claims 1 or 2, wherein the resistor has a storage portion formed of a space formed by a square tube in order to include a pressure sensor at the center of the resistor. apparatus. 通信部は、特定小電力無線局、携帯通信網、衛星通信網の無線通信技術を利用した無線通信装置を有することを特徴とする請求項1記載の流速測定装置。 The flow velocity measuring device according to claim 1, wherein the communication unit includes a wireless communication device using wireless communication technology of a specific low power radio station, a mobile communication network, or a satellite communication network. 流速測定方法は、ブイから所定の水深位置まで圧力センサ及び抵抗体を垂下して水圧値を測定する水圧測定手段と、前記水圧値から流速値を算出する演算手段と、を備えてなり、
前記水圧測定手段は、前記抵抗体が潮流を受けていない状態での水深位置の基準水圧値を測定すること、前記抵抗体が潮流を受けて前記抵抗体が上昇移動したときの水深位置の変動水圧値を測定すること、を有し、
前記演算手段は、前記基準水圧値及び前記変動水圧値と、水圧値と水深位置との比例式と、に基づいて前記抵抗体及び前記圧力センサの鉛直方向の移動距離を算出すること、前記移動距離と、前記抵抗体及び索体に掛かる重力、浮力、抗力、揚力からなる力のモーメントの釣合式と、に基づいて流速値を算出すること、を特徴とする流速測定方法。
The flow velocity measuring method includes a water pressure measuring means for measuring the water pressure value by hanging a pressure sensor and a resistor from the buoy to a predetermined water depth position, and a calculation means for calculating the flow velocity value from the water pressure value.
The water pressure measuring means measures a reference water pressure value at a water depth position when the resistor is not receiving a tidal current, and changes in the water depth position when the resistor receives a tidal current and the resistor moves upward. Having to measure the water pressure value,
The calculation means calculates the vertical movement distance of the resistor and the pressure sensor based on the reference water pressure value, the fluctuating water pressure value, and the proportional expression between the water pressure value and the water depth position, and the movement. distance and gravity applied to the resistor及beauty rigging, buoyancy, drag, and the balance equation of the moment of the force consisting of lift, flow rate measurement method to calculate the flow rate value, and wherein based on.
JP2019216480A 2019-11-29 2019-11-29 Flow velocity measuring device and flow velocity measuring method Active JP6847433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019216480A JP6847433B1 (en) 2019-11-29 2019-11-29 Flow velocity measuring device and flow velocity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216480A JP6847433B1 (en) 2019-11-29 2019-11-29 Flow velocity measuring device and flow velocity measuring method

Publications (2)

Publication Number Publication Date
JP6847433B1 true JP6847433B1 (en) 2021-03-24
JP2021085817A JP2021085817A (en) 2021-06-03

Family

ID=74879238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216480A Active JP6847433B1 (en) 2019-11-29 2019-11-29 Flow velocity measuring device and flow velocity measuring method

Country Status (1)

Country Link
JP (1) JP6847433B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116413474A (en) * 2023-06-12 2023-07-11 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Pulling force type flow velocity and flow direction detection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116413474A (en) * 2023-06-12 2023-07-11 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Pulling force type flow velocity and flow direction detection device and method
CN116413474B (en) * 2023-06-12 2023-09-01 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Pulling force type flow velocity and flow direction detection device and method

Also Published As

Publication number Publication date
JP2021085817A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US7874886B2 (en) Communication float
JP2014196067A (en) Vessel load weight calculation system and vessel load weight calculation method
KR101979228B1 (en) Wireless underwater sound sensing apparatus
JP6847433B1 (en) Flow velocity measuring device and flow velocity measuring method
JP4672605B2 (en) Sea state measurement method by super buoy
CN100584690C (en) Floating body carrier platform
CN110470386A (en) A kind of optics buoy applied to water spectral measurement
KR101223551B1 (en) Underwater measurement device for vertical profiling of water column
KR101378958B1 (en) Apparatus for measuring water level
JPH03501407A (en) Asymmetric displacement flow meter
JP2010210350A (en) System and method for measuring underwater position
CN108344407B (en) Deepwater steel casing perpendicularity detection device
CN110207765A (en) A kind of method of river bottom blind area flow velocity measurement
US3367181A (en) Directional wave spectra measuring devices
CN113758471A (en) Bracket type water depth measuring device
CN204881622U (en) Depth of water anchored -position observation current self -interacting support
US3670572A (en) Air-sea interface temperature measuring apparatus
Duda et al. The Cartesian Diver: A self-profiling Lagrangian velocity recorder
US20210310806A1 (en) System and method of tilt sensor tide and inland water level gauge
US5308272A (en) Ascent rate indicator
Ostrovskii et al. Automatic profiling system for underice measurements
CN112097855A (en) Laser measuring tube for measuring water gauge
Surendran et al. Design and modelling of cable suspended sonde for water quality monitoring
CN206311480U (en) A kind of laddering test device of reinforcing steel corrosion rate
Silveira et al. Sources of errors in the measurements of underwater profiling radiometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6847433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250