JP6842423B2 - 窒素除去方法、水処理用硝化反応促進剤及び水処理方法 - Google Patents

窒素除去方法、水処理用硝化反応促進剤及び水処理方法 Download PDF

Info

Publication number
JP6842423B2
JP6842423B2 JP2017547713A JP2017547713A JP6842423B2 JP 6842423 B2 JP6842423 B2 JP 6842423B2 JP 2017547713 A JP2017547713 A JP 2017547713A JP 2017547713 A JP2017547713 A JP 2017547713A JP 6842423 B2 JP6842423 B2 JP 6842423B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrification
biodegradable resin
water
nitrification reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017547713A
Other languages
English (en)
Other versions
JPWO2017073304A1 (ja
Inventor
昌輝 滝田
昌輝 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2017073304A1 publication Critical patent/JPWO2017073304A1/ja
Application granted granted Critical
Publication of JP6842423B2 publication Critical patent/JP6842423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

本発明は、窒素を含有する汚染水から窒素を除去する方法、水処理用硝化反応促進剤及び水処理方法に関する。
人間活動と環境の調和を図るためには、人間活動によって発生する汚濁物質をできるだけ減らすこと、発生した汚濁物質を無害化処理することが必要である。そこで従来は、工業廃水などに含まれるアンモニア態窒素を、生物処理による好気状態の硝化工程で亜硝酸態・硝酸態まで酸化させ、次いで嫌気状態の脱窒工程で窒素ガスまで還元させることで水処理を行っている。通常、硝化(酸化反応)と脱窒(還元反応)は、逆の反応であるため、1つの反応槽内でそれらの反応を両立させることは困難である。
そこで、反応槽を硝化槽と脱窒槽の2槽に分けて順番に処理することが一般的である(非特許文献1)。例えば、硝化槽(好気処理槽)→脱窒槽(嫌気処理槽)の順に槽を配置すると、水中からの窒素除去能が高くなり最終処理水の水質は向上する。しかし、脱窒に必要な炭素源として例えばメタノールなどを添加する必要があり、この炭素源の必要量は水中の窒素量によって決まるため、炭素源の供給に厳密なコントロールが必要となる。よって、工業的には、過剰量の炭素源を添加して脱窒を行った後、最終的に余剰の炭素源を処理する設備を付与することが多い。
このような炭素源の供給をコンロトールする設備や炭素源の後処理設備を省略する方法としては、脱窒槽(嫌気処理槽)→硝化槽(好気処理槽)の順に槽を配置し、後段で得られた硝化液を前段の脱窒槽(嫌気処理槽)に循環返送することで炭素源の供給のコントロールを容易にする方法(非特許文献1)や、嫌気処理槽及び/又は好気処理槽において、炭素源として生分解性プラスチックを存在させる方法(特許文献1)が知られている。しかしこれらの方法では、循環設備が必要なことと、滞留時間を確保するために槽の大型化を招いてしまい、また、最終処理水の水質が硝化槽→脱窒槽型と比較して低くなるという問題があった。
また、硝化反応で生成される亜硝酸態窒素(N−NO)は、硝化反応を阻害し、系内に蓄積されると硝化速度を低下させるため、硝化反応が十分に進行しないという結果を招く(非特許文献2を参照)。
これを回避すべく、浄化対象水を事前に希釈しておくことで、処理水中のアンモニア態窒素の濃度を下げてから水処理を行う方法が提案されている。しかし、この方法によると、アンモニア態窒素濃度の高い排水を処理する場合には、処理水の体積が増大するため槽の大型化を招き設備費が高くなるという問題がある。
一方、物理化学的処理方法として、アンモニアストリッピング法が知られている。この方法は生物学的処理方法と比較して安定的に稼動できるものの、蒸気を使用するためエネルギーコストが高く、また処理水をアルカリ性に調整して実施する必要があるため、アルカリ剤の添加が必須になるという問題がある。
特開2000−153293号公報
生活衛生,vol43,No.2,1999,p49-64 Water Science & Technology,Vol 67,No 11,pp 2587-2594
第一の本発明の目的は、炭素源の供給をコンロトールする設備や炭素源の後処理設備、循環設備の設置を省略することが可能であり、また、装置の大型化を抑制することが可能な、水から窒素を除去する方法を提供することである。
第二の本発明の目的は、アンモニア態窒素を高濃度に含む処理水に対して、これを希釈しなくとも、簡便に低コストで生物学的水処理が適用できるようにするための水処理用硝化反応促進剤及び該促進剤を用いた水処理方法を提供することである。
本発明者らは上記課題を解決するために鋭意研究を重ねた結果、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している水系に、生分解性樹脂を含む水素供与体を添加することで、本来共存することが難しい硝化反応と脱窒反応を1つの水槽内で共存させることができ、これにより、最終処理水質の向上にも繋がり、従来困難であった設備コストの圧縮と高度水処理の両立が可能であることを見出し、第一の本発明を完成するに至った。
さらに本発明者らは、アンモニア態窒素を含む水に、特定量の生分解性樹脂を含み、特定の比重を有する物質を添加すると、たとえ処理水にアンモニア態窒素が高濃度で含まれていても、アンモニア態窒素の硝化反応を促進することができ、結果、高濃度でアンモニア態窒素を含む水の生物学的処理を、処理水を希釈することなく、すなわち処理槽の容量を増大させることなく実施できることを見出し、第二の本発明を完成するに至った。
即ち、第一の本発明は下記(1)−(7)に関する。
(1)水素供与体として生分解性樹脂を含む固形物を、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している一つの水系に添加し、当該水系で硝化反応と脱窒反応を共存させることを特徴とする窒素除去方法。
(2)水系中の溶存酸素濃度が少なくとも1.5ppm以上である上記記載の窒素除去方法。
(3)生分解性樹脂が生分解性ポリエステルである上記記載の窒素除去方法。
(4)生分解性ポリエステルが生分解性脂肪族ポリエステルである上記記載の窒素除去方法。
(5)生分解性脂肪族ポリエステルがポリ−3−ヒドロキシアルカノエートである上記記載の窒素除去方法。
(6)ポリ−3−ヒドロキシアルカノエートがポリ−3−ヒドロキシブチレート単独重合体または共重合体である上記記載の窒素除去方法。
(7)水系中の溶解性炭素量/溶解性窒素量(重量比)が10以下である上記記載の窒素除去方法。
第二の本発明は下記(8)−(12)に関する。
(8)生分解性樹脂を20重量%以上含み、比重が1g/cmより大きいことを特徴とする、水処理用硝化反応促進剤。
(9)生分解性樹脂が、ポリ−3−ヒドロキシアルカノエート、ポリブチレンサクシネート、及びポリ乳酸からなる群より選ばれる少なくとも1種である上記記載の水処理用硝化反応促進剤。
(10)上記記載の水処理用硝化反応促進剤を、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している水系に添加することを特徴とする水処理方法。
(11)水系中の溶存酸素濃度が1.5ppm以上である上記記載の水処理方法。(12)水系中の溶解性炭素量/溶解性窒素量(重量比)が10以下である上記記載の水処理方法。
第一の本発明に従えば、従来の硝化槽→脱窒槽型の窒素除去を実施する際に必要であった炭素源の供給をコンロトールする設備および炭素源の後処理設備、さらには、従来の脱窒槽→硝化槽型の窒素除去に必要であった循環設備の設置を省略することが可能となり、装置の大型化を抑制することも可能な、水から窒素を除去する方法を提供することができる。第一の本発明によると、硝化反応と脱窒反応を1つの水槽内で共存させることができると共に、最終処理水質の向上にも繋がり、従来困難であった設備コストの圧縮と高度水処理の両立が可能となる。
第二の本発明に従えば、アンモニア態窒素を含む水の生物学的処理において硝化反応を促進することができ、特に、アンモニア態窒素を高濃度で含む水においても硝化反応を促進することができるため、処理水を予め希釈する必要がない。そのため、簡便に低コストで生物学的処理を実施することができる。また、硝化反応に加え、次の脱窒反応も速やかに進行し、硝化反応と脱窒反応を1つの系中で共存させることができ、効率よく、アンモニア態窒素を窒素ガスまで変換することができる。
実施例1及び比較例1に関し、系中のアンモニア態窒素濃度(N−NH)、亜硝酸態窒素濃度と硝酸態窒素濃度の和(N−NOx)、及び、全窒素濃度(T−N)の経時変化を示すグラフである。 実施例1−4及び比較例1に関し、系中の窒素除去速度を示すグラフである。 実施例5に関し、溶存酸素濃度と窒素除去速度の関係を示すグラフである。 実施例1−4及び比較例1に関して、系中の硝化速度を示すグラフである。
以下、本発明につき、さらに詳細に説明する。
(第一の本発明)
第一の本発明の窒素除去方法は、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している一つの水系に、水素供与体として、生分解性樹脂を含む固形物を添加することを特徴とする。
本発明で浄化対象となる水系としては、アンモニア態窒素を含む水系を使用できる。このような水系としては、微生物に対し実質的な悪影響を及ぼさない水系である限り好適に適用できる。この水系の組成に関しては特に限定されないが、水系中の溶解性炭素量/溶解性窒素量(重量比)が10以下であることが好ましく、5以下であることがより好ましく、1以下であることがさらに好ましい。前記比が10を超えると、アンモニア態窒素の菌体への取り込みが優先され、硝化反応が十分に進行しない場合がある。
溶解性炭素量の測定には、例えば燃焼酸化方式による炭素量測定を用いることが有効である。そのような方式の測定装置としては、東レエンジニアリング製TOC−150などが使用できる。一方、溶解性窒素量の測定にあたっては、例えばJIS K 0102.45.2の方法に準拠した測定法を用いることが有効である。その他、溶解性炭素量や溶解性窒素量に関して、簡易的にはHACH社製の試薬など簡便な方法で測定を代用してもよい。
本発明で用いる水系は、アンモニア態窒素を50mg/L以上含んでいると、好適に本発明の効果を得ることができる。このような水系に生分解性樹脂を含む水素供与体が添加されると、1つの水系中で硝化反応と脱窒反応を共存させることが可能となる。さらには、脱窒反応が進行するために、硝化反応を阻害する亜硝酸態窒素の蓄積が低減し、結果、硝化反応を促進することができる。そのため、非特許文献1や特許文献1に記載のように嫌気処理槽と好気処理槽とを併用する必要がなく、1つの水槽内でアンモニア態窒素を窒素ガスまで変化させることができる。
本発明に用いる生分解性樹脂は、生分解性を有していれば適用可能であるが、好ましくは生分解性ポリエステル、より好ましくは生分解性脂肪族ポリエステルである。生分解性脂肪族ポリエステルとしては、例えば、ポリヒドロキシアルカノエート(以降PHAと略す)、およびポリアルキレンジカルボキシレートなどが挙げられ、生分解性脂肪族ポリエステル以外の生分解性ポリエステルとしては、例えば、ポリブチレンアジペート−co−テレフタレートが挙げられる。生分解性樹脂は、1種類のみを使用してもよいし、複種類を併用してもよい。
前記PHAとは、ヒドロキシアルカン酸をモノマーユニットとするポリエステルを指す。具体的には、ポリグリコール酸、ポリ乳酸(以降PLAと略す)、ポリ−3−ヒドロキシアルカノエート(以降P3HAと略す)、ポリ−4−ヒドロキシアルカノエート等が挙げられる。このうち、窒素除去速度が速いため、PLA、P3HAが好ましく、P3HAがより好ましい。
前記ポリアルキレンジカルボキシレートとは、脂肪族ジオール(又はその誘導体)と脂肪族ジカルボン酸(又はその誘導体)との重縮合体を指す。具体的には、ポリブチレンサクシネート(以降PBSと略す)、ポリエチレンサクシネート、ポリ(ブチレンサクシネート−co−ブチレンアジペート)等が挙げられる。
前記P3HAとは、3−ヒドロキシアルカン酸を主要モノマーユニットとする重合体である。3−ヒドロキシアルカン酸としては特に限定されないが、例えば、3−ヒドロキシブチレート、3−ヒドロキシプロピオネート、3−ヒドロキシバレレート、3−ヒドロキシヘキサノエート、3−ヒドロキシヘプタノエート、3−ヒドロキシオクタノエートなどが挙げられる。また、これらの重合体は、単独重合体でも、2種以上のモノマーユニットを含む共重合体でも良い。P3HAが共重合体の場合には、2種類以上の3−ヒドロキシアルカン酸を共重合させたものであってもよいし、1種又は2種以上の3−ヒドロキシアルカン酸に対し、4−ヒドロキシブチレート等の4−ヒドロキシアルカン酸を共重合させたものであってもよい。P3HAの具体例としては、ポリ−3−ヒドロキシブチレート単独重合体や、ポリ−3−ヒドロキシブチレート共重合体であるポリ−3−ヒドロキシブチレート−co−3−ヒドロキシヘキサノエート(PHBH)やポリ−3−ヒドロキシブチレート−co−3−ヒドロキシバレレート(PHBV)、ポリ−3−ヒドロキシブチレート−co−4−ヒドロキシブチレートなどが挙げられる。P3HAを使用する場合、1種類のP3HAのみを使用してもよいし、複種類のP3HAを併用してもよい。
本発明で用いる生分解性樹脂としては、窒素除去速度の観点から、P3HA、PBS、PLAがより好ましく、P3HA、PBSがさらに好ましく、P3HAが特に好ましい。
第一の本発明で用いる生分解性樹脂を含む固形物とは、実質的に生分解性樹脂のみからなる固形物であってもよいし、生分解性樹脂に加えて、他の水素供与体を含む固形物であってもよい。他の水素供与体としては特に限定されないが、例えば、スターチ等が挙げられる。また、ポリエチレンやポリプロピレンなどの非生分解性樹脂、固体脂、木粉などをさらに含む固形物であってもよい。
第一の本発明を実施するためには、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共存している一つの水系に、生分解性樹脂を含む固形物を添加する必要がある。本発明に関与する菌体としては、環境中に常在する微生物を利用することも可能であるが、窒素除去の効率を上げるためには、関与する微生物が濃縮されている水系を利用することが好ましい。例えば本発明の窒素除去方法を排水処理に適用する場合は、通常の活性汚泥の処理槽(曝気槽)内に、生分解性樹脂を含む固形物を添加することが好ましい。通常の活性汚泥には上記の微生物群が濃縮された状態で存在するため、活性汚泥の処理槽(曝気槽)に生分解性樹脂を含む固形物を添加することで本発明を好適に実施できる。また、前記活性汚泥の処理槽から活性汚泥を採取し、これを、浄化対象の水系に添加し、さらに生分解性樹脂を含む固形物を添加することでも本発明を好適に実施できる。
第一の本発明は、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共存している一つの水系に、生分解性樹脂を含む固形物を添加することで、嫌気処理槽と好気処理槽とを分離して設けることなく、当該一つの水系内で、硝化反応と脱窒反応の双方を生起させることができる。
本発明により窒素を除去するにあたっては、浄化対象の水系に酸素が溶存している状態を維持することが好ましい。このため、当該水系に酸素を供給することが好ましく、当該水系中の溶存酸素濃度を一定以上に保つことがより好ましい。水系中の溶存酸素濃度は、窒素除去速度の観点から、1.5ppm以上が好ましく、2ppm以上がより好ましい。溶存酸素濃度の上限値は特に限定されないが、強制的に酸素を供給することを考慮するとコストの観点から、必要最低限に留める方が望ましい。具体的には、4ppm以下が好ましく、2.5ppm以下が好ましい。酸素を供給する場合には、オンラインでモニターしながら酸素供給量をコントロールすることが好ましい。強制的に酸素を供給する方法としては、当業者が考えうる方法であれば好適に利用できる。例えば、通常の活性汚泥処理に用いられる酸素供給システムを好適に利用でき、系中に酸素を供給するために空気を利用しても良いし、純酸素を用いても良い。
以上のように本発明は好気条件下で実施することが好ましく、好気条件下でも還元反応である脱窒反応が効率よく進行する。これは、生分解性樹脂が生分解性樹脂分解能を有する菌体によって分解されることで、当該樹脂の周囲が部分的に嫌気状態となり、当該樹脂が脱窒能を有する菌体に対して水素供与体として作用するため、好気条件下にもかかわらず脱窒反応が効率よく進行するものと考えられる。
本発明を実施する際の水系の温度は特に限定されないが、関与する微生物の生育温度に適した温度条件が好ましい。至適温度範囲の下限は、一般的には摂氏10度以上が好ましく、より好ましくは摂氏15度以上、さらに好ましくは摂氏20度以上であり、また上限の温度としては、摂氏60度以下が好ましく、より好ましくは摂氏55度以下、さらに好ましくは摂氏50度以下であるが、関与する微生物に依存するため、その限りではない。また、硝化反応や脱窒反応は温度依存性が高いため、至適温度に水系の温度をコントロールしつつ本発明を実施することが好ましい。
本発明を実施する際の水系のpHは特に限定されないが、温度同様、関与する微生物の生育pHに適したpH条件が好ましい。至適pH範囲の下限は、一般的には3以上が好ましく、より好ましくは4以上、さらに好ましくは5以上であり、また至適pH範囲の上限は、10以下が好ましく、より好ましくは9以下、さらに好ましくは8以下であるが、関与する微生物に依存するため、その限りではない。また、硝化反応や脱窒反応はpH依存性が高いため、至適pHに水系のpHをコントロールしつつ本発明を実施することが好ましい。なお、pHを調整するのに用いる試剤は、特に限定されず、例えば水酸化ナトリウムや硫酸など当業者の考えうる試剤であれば好適に利用できる。
(第二の本発明)
第二の本発明の水処理用硝化反応促進剤は、アンモニア態窒素を含む水の生物学的処理を実施する際に、当該水に対して添加して使用することで、微生物がアンモニア態窒素を亜硝酸態・硝酸態まで酸化させる硝化反応を促進することができる。当該硝化反応は、生成物の1つである亜硝酸態窒素によって阻害されるため、従来、硝化反応が進むにつれて硝化速度が低下するという問題があった。この問題はアンモニア態窒素を高濃度で含む水を処理する際に特に顕著であった。しかし、第二の本発明の水処理用硝化反応促進剤は、アンモニア態窒素を高濃度で含む水においても硝化反応を促進できるため、アンモニア態窒素を高濃度で含む水を処理するために使用する硝化反応促進剤として好適に利用できる。
また、第二の本発明の水処理用硝化反応促進剤は生分解性樹脂を含み、当該生分解性樹脂が、生物学的処理中に、生分解性樹脂分解能を有する菌体によって分解されることで、当該樹脂の周囲が部分的に嫌気状態となって、当該樹脂が水素供与体として作用するために脱窒反応を促進することができる。そのため、硝化反応を阻害する亜硝酸態窒素の蓄積を抑制でき、硝化反応を促進できると考えられる。結果、硝化反応と脱窒反応の双方が速やかに、ほぼ同時に進行するため、本発明の硝化反応促進剤は、硝化反応と脱窒反応を1つの系中で実施する際の水処理で用いられる硝化反応促進剤として利用することができる。
第二の本発明の水処理用硝化反応促進剤の形状は特に限定されないが、反応に関与する微生物との接触面を広くする観点から、粉末状、顆粒状、ペレット状等の形状が好ましい。
第二の本発明の水処理用硝化反応促進剤は、工場や家庭から排出される排水の処理の他、水棲生物の養殖や鑑賞魚等の育成において残餌による汚染水の処理、農業における施肥により汚染された地下水の処理等に用いることができる。
第二の本発明の水処理用硝化反応促進剤は、生分解性樹脂を20重量%以上含むことが好ましく、30重量%以上含むことがより好ましく、40重量%以上含むことがより好ましい。生分解性樹脂の含量が20重量%未満であると、それ以外の成分が反応に関与する微生物に悪影響を及ぼしたり、浮遊成分として残存することで処理水の水質悪化を招く場合がある。また、生分解性樹脂の割合の上限については比重を満足する限りにおいて100重量%でもよい。
前記生分解性樹脂としては、第一の本発明における生分解性樹脂と同じものを例示できる。硝化速度が速いため、P3HA、PBS、PLAがより好ましく、P3HA、PBSがさらに好ましく、P3HAが特に好ましい。
前記水処理用硝化反応促進剤は、80重量%未満の範囲で、生分解性樹脂以外の材料を含んでいてもよい。そのような材料の具体例としては、スターチ、ポリエチレンやポリプロピレンなどの非生分解性樹脂、固体脂、木粉などが挙げられる。これらの材料を配合することで、水処理用硝化反応促進剤の比重を調整することができる。
前記水処理用硝化反応促進剤の比重は、好ましくは1g/cmより大きく、より好ましくは1.1g/cm以上、さらに好ましくは1.2g/cm以上である。比重が1g/cm以下であると、水処理用硝化反応促進剤が水に浮いてしまい、反応に関与する微生物との接触が悪くなり、反応効率が落ちてしまう場合がある。また、処理水に通気し撹拌することで前記硝化反応促進剤はある程度、処理水中で分散されることが好ましいため、本発明の水処理用硝化反応促進剤の比重は、好ましくは3g/cm以下、より好ましくは2.5g/cm以下、さらに好ましくは2g/cm以下である。比重が3g/cmを超えると、水中で硝化反応促進剤が沈殿してしまい、反応に関与する微生物との接触が悪くなり、反応効率が落ちてしまう場合がある。
本発明で水処理の対象となる水系は、アンモニア態窒素を50mg/L以上含んでいることが好ましく、さらに、生分解性樹脂分解能を有する菌体(BOD(有機物)酸化菌体)、硝化能を有する菌体及び脱窒能を有する菌体を含んでいることが好ましい。このような水系に、前記水処理用硝化反応促進剤が添加されると、硝化反応が促進され、また、1つの系中で硝化反応と脱窒反応を共存させることが可能となるため、嫌気処理槽と好気処理槽とを併用する必要がなく、1つの系中でアンモニア態窒素を窒素ガスまで変化させることができる。
本発明の水処理用硝化反応促進剤を排水処理に適用する場合は、当該水処理用硝化反応促進剤を活性汚泥の処理槽(曝気槽)に添加することが好ましく、硝化反応槽に添加することがより好ましい。
第二の本発明で水処理の対象となる水系は、第一の本発明と同様、溶解性炭素量/溶解性窒素量(重量比)が10以下であることが好ましく、5以下であることがより好ましく、1以下であることがさらに好ましい。
第二の本発明の水処理用硝化反応促進剤を用いて水処理を実施するにあたっては、第一の本発明と同様、水処理の対象となる水系に酸素が溶存していることが好ましい。水系中の溶存酸素濃度は、硝化反応促進の観点から、1.5ppm以上が好ましく、2ppm以上がより好ましい。溶存酸素濃度の上限値は特に限定されないが、4ppm以下が好ましく、2.5ppm以下が好ましい。
第二の本発明において、水処理の対象となる水系の温度及びpHは第一の本発明と同様である。
以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例において「%」は重量基準である。
(実施例1)PHBH顆粒体を用いた窒素除去速度の検証
まず、クエン酸1mM、リン酸二水素カリウム2mM、硫酸マグネシウム・7水和物0.5mM、塩化ナトリウム20mM、塩化カルシウム2水和物0.02mM、硫酸亜鉛・7水和物0.01mM、硫酸鉄(II)7水和物0.03mM、硫酸銅5水和物0.01mM、EDTA 5mg/L、塩化アンモニウム20mMを蒸留水に溶解した。得られた溶液のpHが8.5になるように30%濃度の水酸化ナトリウムを添加してpH調整を行ったものを模擬排水として以下の実験で使用した。なお、この模擬排水中の溶解性炭素量/溶解性窒素量(重量比)は0.25であった。
次いで、株式会社カネカ工場内の総合排水処理設備の曝気槽、硝化槽、脱窒槽から汚泥を混合採取し、この汚泥を3000Gで10分間遠心分離を行い、上清を廃棄して沈殿汚泥を分離した。この沈殿汚泥に、廃棄した上清と同量の蒸留水を混合して懸濁した。この懸濁汚泥を再度3000Gで10分間遠心分離を行い、ふたたび上清を廃棄して洗浄汚泥を得た。この洗浄汚泥に対して、上記で作製した模擬排水を混合して当初の採取汚泥と同濃度になるように再懸濁して汚泥懸濁液を得た。本汚泥懸濁液上清に含まれるアンモニア態窒素濃度を測定した結果、280mg/Lであった。
この汚泥懸濁液に対して、3%のPHBH顆粒体(純度99重量%以上、比重1.1g/cm)を添加し、30±2℃の環境下で曝気を行った。この際、汚泥懸濁液のpHが8〜8.5の範囲に収まるように30%濃度の水酸化ナトリウムを用いてpH調整を行いながら、かつ、汚泥懸濁液の溶存酸素濃度(DO)が5ppm以上になるように通気量を調整しながら曝気を行った。
曝気開始後所定時間が経過した後に、汚泥懸濁液からサンプルを採取し、当該サンプルを9000Gで10分間遠心分離を行い、得られた上清についてアンモニア態窒素、亜硝酸態窒素、および硝酸態窒素の濃度を測定した。なお、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素の濃度の測定には、HACH社製 DR6000および対応試薬(TNT832、TNT835、TNT840)を用いた。結果を図1中の実線で示す。図1中、N−NHはアンモニア態窒素の濃度を示し、N−NOxは亜硝酸態窒素(N−NO)濃度と硝酸態窒素(N−NO)濃度の和を示し、T−N(全窒素)はアンモニア態窒素濃度、亜硝酸態窒素濃度、硝酸態窒素濃度の総和を示す。
また、T−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図2に示した。
以上の結果より、PHBH顆粒体を添加することで、硝化反応と脱窒反応が同時に起こり、窒素除去速度が大きく、また、経時的に系中の窒素濃度が大きく低下しており、系中から窒素を効率よく除去できることが分かった。
(実施例2)PHBHペレットを用いた窒素除去速度の検証
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに、PHBH顆粒体の代わりにPHBHペレット(純度99重量%以上、比重1.2g/cm)を添加して曝気を行い、経時的に各窒素濃度を測定した。なお、その他の実験条件および分析条件は実施例1記載の方法に従った。得られたT−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図2に示す。
この結果より、PHBHペレットを用いても、窒素除去速度が大きく、系中から窒素を効率よく除去できることが明らかとなった。
(実施例3)PBSペレットを用いた窒素除去速度の検証
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに、PHBH顆粒体の代わりにPBSペレット(純度99重量%以上、比重1.1g/cm)を添加して曝気を行い、経時的に各窒素濃度を測定した。なお、その他の実験条件および分析条件は実施例1記載の方法に従った。得られたT−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図2に示す。
この結果より、PBSペレットを用いても、窒素除去速度が大きく、系中から窒素を効率よく除去できることが明らかとなった。
(実施例4)PLAペレットを用いた窒素除去速度の検証
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに、PHBH顆粒体の代わりにPLAペレット(純度99重量%以上、比重1.1g/cm)を添加して曝気を行い、経時的に各窒素濃度を測定した。なお、その他の実験条件および分析条件は実施例1記載の方法に従った。得られたT−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図2に示す。
この結果より、PLAペレットを用いても、窒素除去速度が大きく、系中から窒素を効率よく除去できることが明らかとなった。
(実施例5)窒素除去速度に対する溶存酸素濃度(DO)の影響
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに3%のPHBH顆粒体を添加し、30±2℃の環境下で曝気を行った。この際、汚泥懸濁液のpHが8〜8.5の範囲に収まるように30%濃度の水酸化ナトリウムを用いてpH調整を行いながら、かつ、汚濁懸濁液の溶存酸素濃度(DO)が0ppm、0.8ppm、1.8ppm、4ppm、5.5ppm、又は6.5ppmになるように通気量を調整しながら曝気を行った。
曝気開始後所定時間が経過した後に、汚泥懸濁液からサンプルを採取し、当該サンプルを9000Gで10分間遠心分離を行い、得られた上清についてアンモニア態窒素、亜硝酸態窒素、および硝酸態窒素の濃度を実施例1と同様に測定した。
T−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図3に示した。
この結果より、水系中の溶存酸素濃度が0ppmより高ければ、窒素除去速度が大きく、系中から窒素を効率よく除去できることが分かった。特に、窒素除去速度の観点から、水系中の溶存酸素濃度は1.5ppm以上が好ましく、2ppm以上がより好ましいことが分かった。また、窒素除去速度が頭打ちになるため、水系中の溶存酸素濃度は4ppm以下が好ましく、2.5ppm以下が好ましいことが分かった。
(比較例1)
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに、PHBH顆粒体などの生分解性樹脂を添加せずに曝気を行い、経時的に各窒素濃度を測定した。なお、その他の実験条件および分析条件は実施例1記載の方法に従った。結果を図1中の破線で示す。
また、T−N(全窒素)の経時変化から窒素除去速度を算出し、得られた結果を図2に示した。
この結果より、生分解性樹脂を添加しない場合、窒素除去速度が低く、また、時間が経過しても系中の窒素濃度が十分に低下せず、系中から窒素を効率よく除去できないことが分かった。
(比較例2)
実施例1の記載に従い、模擬排水で懸濁した汚泥懸濁液を準備し、これに、PHBH顆粒体の代わりに酢酸を添加して実験を行った。酢酸を添加した溶液中の溶解性炭素量/溶解性窒素量(重量比)は11であった。なお、その他の実験条件および分析条件は実施例1記載の方法に従った。
上清中のアンモニア態窒素はN−NOxを介さずに急速に減少したことから、アンモニア態窒素は急速に菌体に取り込まれ、硝化反応は起きなかったことがわかった。そして、その後、系中のアンモニア態窒素濃度が上昇に転じ、結果として系中の窒素を除去することができなかった。おそらくN−NOxを介していないことから硝化反応が起きていないと考えられる。また、アンモニア態窒素濃度が上昇に転じたことについては、菌体からの溶出と推定される。
(実施例6)PHBH顆粒体添加系の硝化速度の検証
まず、クエン酸1mM、リン酸二水素カリウム2mM、硫酸マグネシウム・7水和物0.5mM、塩化ナトリウム20mM、塩化カルシウム2水和物0.02mM、硫酸亜鉛・7水和物0.01mM、硫酸鉄(II)7水和物0.03mM、硫酸銅5水和物0.01mM、EDTA 5mg/L、塩化アンモニウム9mM,18mM,44mM,又は86mMを蒸留水に溶解した。得られた溶液のpHが8.5になるように30%濃度の水酸化ナトリウムを添加してpH調整を行ったものを模擬排水として以下の実験で使用した。なお、この模擬排水中の溶解性炭素量/溶解性窒素量(重量比)は0.06〜0.59であった。
次いで、実施例1と同様にして汚泥懸濁液を得た後、本汚泥懸濁液上清に含まれるアンモニア態窒素濃度を測定した結果、表1の通りであった。
この汚泥懸濁液に対して、3%のPHBH顆粒体(純度99重量%以上、比重1.1g/cm)を添加し、30±2℃の環境下で曝気を行った。この際、汚泥懸濁液のpHが8〜8.5の範囲に収まるように30%濃度の水酸化ナトリウムを用いてpH調整を行いながら、かつ、汚泥懸濁液の溶存酸素濃度(DO)が5ppm以上になるように通気量を調整しながら曝気を行った。
曝気開始後所定時間が経過した後に、汚泥懸濁液からサンプルを採取し、当該サンプルを9000Gで10分間遠心分離を行い、得られた上清のアンモニア態窒素濃度を測定した。なお、アンモニア態窒素(N−NH)の濃度の測定には、HACH社製 DR6000および対応試薬(TNT832)を用いた。このN−NH濃度の経時変化から硝化速度を算出し、得られた結果を表1に示す。
(比較例3)生分解性樹脂非添加系の検証
塩化アンモニウム濃度を9mM,18mM,35mM,44mM,又は86mMに変更した模擬排水を調製し、PHBH顆粒体を添加しなかった以外は、実施例6と同様にして実験を行い、硝化速度を算出し、得られた結果を表1に示す。
Figure 0006842423
実施例6と比較例3の結果より、PHBH添加系では、非添加系と比較して硝化速度が約1.5〜1.9倍増加しており、PHBHの添加によってアンモニア態窒素の硝化反応が促進されることが分かった。また、アンモニア態窒素が高濃度で含まれる水においても、PHBHの添加によって硝化反応が促進されることが分かった。
さらに、実施例1−4及び比較例1について、実施例6と同様に硝化速度を算出した。得られた結果を図4に示す。これより、PHBH顆粒体、PHBHペレット、PBSペレット又はPLAペレットを添加することにより、アンモニア態窒素を含む水を生物学的に処理する際における硝化反応が促進されることが分かる。また、生分解性樹脂の代わりに酢酸を添加した比較例2では、上述したとおり、アンモニア態窒素は急速に菌体に取り込まれ、硝化反応は起きなかった。

Claims (9)

  1. 水素供与体として生分解性樹脂を含む固形物を、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している一つの水系に添加し、嫌気処理系と好気処理系を分離して設けることなく、前記一つの水系内で硝化反応と脱窒反応の双方を生起させることを特徴とする窒素除去方法であって、
    前記窒素除去方法は、排水処理に適用され、前記生分解性樹脂が、ポリ−3−ヒドロキシアルカノエート、又はポリブチレンサクシネートである、窒素除去方法
  2. 水系中の溶存酸素濃度が少なくとも1.5ppm以上である請求項1に記載の窒素除去方法。
  3. 前記生分解性樹脂がポリ−3−ヒドロキシアルカノエートである請求項1又は2記載の窒素除去方法。
  4. ポリ−3−ヒドロキシアルカノエートがポリ−3−ヒドロキシブチレート単独重合体または共重合体である請求項記載の窒素除去方法。
  5. 水系中の溶解性炭素量/溶解性窒素量(重量比)が10以下である請求項1〜何れかに記載の窒素除去方法。
  6. 生分解性樹脂を20重量%以上含み、比重が1g/cmより大きいことを特徴とする、排水処理用硝化反応促進剤であって、
    前記硝化反応促進剤は、アンモニア態窒素を含む水の生物学的処理において使用され、
    前記生分解性樹脂が、ポリ−3−ヒドロキシアルカノエート、又はポリブチレンサクシネートである、排水処理用硝化反応促進剤
  7. 請求項に記載の排水処理用硝化反応促進剤を、生分解性樹脂分解能を有する菌体、硝化能を有する菌体及び脱窒能を有する菌体が共生している一つの水系に添加し、嫌気処理系と好気処理系を分離して設けることなく、前記一つの水系内で硝化反応と脱窒反応の双方を生起させることを特徴とする排水処理方法であって、
    前記生分解性樹脂が、ポリ−3−ヒドロキシアルカノエート、又はポリブチレンサクシネートである、排水処理方法
  8. 水系中の溶存酸素濃度が1.5ppm以上である請求項に記載の排水処理方法。
  9. 水系中の溶解性炭素量/溶解性窒素量(重量比)が10以下である請求項7又は8に記載の排水処理方法。

JP2017547713A 2015-10-28 2016-10-07 窒素除去方法、水処理用硝化反応促進剤及び水処理方法 Active JP6842423B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015211587 2015-10-28
JP2015211586 2015-10-28
JP2015211587 2015-10-28
JP2015211586 2015-10-28
PCT/JP2016/080007 WO2017073304A1 (ja) 2015-10-28 2016-10-07 窒素除去方法、水処理用硝化反応促進剤及び水処理方法

Publications (2)

Publication Number Publication Date
JPWO2017073304A1 JPWO2017073304A1 (ja) 2018-08-16
JP6842423B2 true JP6842423B2 (ja) 2021-03-17

Family

ID=58632017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547713A Active JP6842423B2 (ja) 2015-10-28 2016-10-07 窒素除去方法、水処理用硝化反応促進剤及び水処理方法

Country Status (4)

Country Link
US (2) US10584046B2 (ja)
EP (1) EP3369713B1 (ja)
JP (1) JP6842423B2 (ja)
WO (1) WO2017073304A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221755A1 (ja) * 2016-06-23 2017-12-28 株式会社カネカ ポリヒドロキシアルカン酸の製造方法
WO2018155436A1 (ja) * 2017-02-24 2018-08-30 株式会社カネカ 脱窒処理方法および脱窒処理装置
CN107915969A (zh) * 2017-11-17 2018-04-17 北京大学 包含淀粉、聚乳酸和稻壳的共混物及其制备方法和用途
EP3721707A4 (en) * 2017-12-07 2020-11-25 Mitsubishi Chemical Corporation WATER CLEANING PROCEDURES, WATER CLEANING DEVICE AND USING THE CLEANING DEVICE AT LOW WATER TEMPERATURE
WO2020004635A1 (ja) * 2018-06-29 2020-01-02 三菱ケミカル株式会社 水浄化装置、養殖水浄化システム、水の浄化方法及び水生生物の生産方法
JP7272906B2 (ja) * 2019-08-29 2023-05-12 神畑養魚株式会社 水棲微小生物の培養方法
WO2021253144A1 (zh) * 2020-06-15 2021-12-23 温州蓝宝科技有限公司 一种新型固态碳源及其制备方法
CN113754057A (zh) * 2021-10-25 2021-12-07 金风环保有限公司 复合碳源组合物及其制备方法和应用
CN117585812A (zh) * 2023-12-08 2024-02-23 内蒙古科技大学 一种污水处理碳源添加剂及污水脱氮方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100189468B1 (ko) * 1991-04-09 1999-06-01 양갑석 폴리-베타-하이드록시알카노에이트(pha)공중합체및그제조방법,이를생산하는미생물과pha공중합체의고분자블렌드
JP2000153293A (ja) 1998-11-17 2000-06-06 Hitachi Chemical Techno-Plant Co Ltd 有機物及び窒素化合物を含有する排水の処理方法及びそれを用いた排水処理装置
JP2004105802A (ja) * 2002-09-13 2004-04-08 Toyota Auto Body Co Ltd 汚水浄化装置
JP4600817B2 (ja) * 2005-03-14 2010-12-22 株式会社日立プラントテクノロジー アンモニア含有水の処理方法
CN101591575A (zh) * 2008-05-30 2009-12-02 汕头大学 羟基脂肪酸衍生物作为燃料添加剂的应用
US8747671B2 (en) * 2010-09-20 2014-06-10 American Water Works Company, Inc. Simultaneous anoxic biological phosphorus and nitrogen removal
JP2014132831A (ja) * 2011-04-29 2014-07-24 Kaneka Corp 水浄化方法および水浄化用液
US9919940B2 (en) * 2013-11-13 2018-03-20 The Hong Kong University Of Science And Technology Sulphur cycle-associated denitrifying enhanced biological phosphorus removal (SD-EBPR) utilizing sulphur compounds as electron carriers for biological nutrient removal of wastewater treatment
CN104118943B (zh) * 2014-08-06 2016-02-10 南京大学 一种菹草发酵液在人工湿地脱氮中的应用
EP3271297B1 (en) * 2015-03-16 2022-11-23 Environmental Operating Solutions, Inc. Control system and process for nitrogen and phosphorus removal
CN105060615B (zh) 2015-07-17 2017-11-17 中国环境科学研究院 一种污染河道旁路修复人工湿地***

Also Published As

Publication number Publication date
WO2017073304A1 (ja) 2017-05-04
JPWO2017073304A1 (ja) 2018-08-16
US20200095147A1 (en) 2020-03-26
US10584046B2 (en) 2020-03-10
EP3369713A4 (en) 2019-05-22
EP3369713B1 (en) 2024-04-10
US20180305233A1 (en) 2018-10-25
EP3369713A1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6842423B2 (ja) 窒素除去方法、水処理用硝化反応促進剤及び水処理方法
Ren et al. Comparing young landfill leachate treatment efficiency and process stability using aerobic granular sludge and suspended growth activated sludge
JP5890374B2 (ja) 生物学的窒素除去装置及び水処理システム
JP4649911B2 (ja) 有機物及び窒素含有排水の処理方法
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
AU2008244181A1 (en) Method and equipment for processing waste water containing sulphides and ammonium
JP2011056383A (ja) 窒素含有水の処理方法及び窒素含有水の処理装置
JP4106203B2 (ja) 安水からの窒素の除去方法
JP2024050967A (ja) 脱窒処理方法および脱窒処理装置
JP2006136820A (ja) 下水からのリン及び/または窒素の除去方法
JP2002011495A (ja) 排水からの窒素・リンの除去方法
JP5869208B2 (ja) 排水の処理方法及び排水の処理装置
Qureshi et al. Real-time treatment of dairy manure: Implications of oxidation reduction potential regimes to nutrient management strategies
Leick et al. Effect of aeration and recirculation in the removal of nitrogen and chemical oxygen demand from sanitary sewage in a structured bed reactor
JP7229190B2 (ja) アンモニア性窒素含有排水の処理方法及び処理装置
Belmonte et al. Effect of free ammonia, free nitrous acid, and alkalinity on the partial nitrification of pretreated pig slurry, using an alternating oxic/anoxic SBR
WO2018061742A1 (ja) 脱窒処理方法、複合微生物群集及びその製造方法
Lim et al. Alternative solid carbon source from dried attached-growth biomass for nitrogen removal enhancement in intermittently aerated moving bed sequencing batch reactor
Sui et al. Nitrogen behavior during sludge ozonation: a long-term observation by pilot experiments
JP7416335B1 (ja) 微生物担体及び水処理方法
Guerrero et al. Denitrification via Nitrite in a Modified UASB reactor using Chilean zeolite as Microbial Support
JP2014205096A (ja) 固形状の生体由来物質を利用した化学的脱窒処理方法
JP2019217482A (ja) 水処理方法および水処理装置
JP7332501B2 (ja) アンモニア性窒素含有排水の処理方法及び処理装置
JP2007319835A (ja) 排水処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250