JP6809958B2 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
JP6809958B2
JP6809958B2 JP2017065580A JP2017065580A JP6809958B2 JP 6809958 B2 JP6809958 B2 JP 6809958B2 JP 2017065580 A JP2017065580 A JP 2017065580A JP 2017065580 A JP2017065580 A JP 2017065580A JP 6809958 B2 JP6809958 B2 JP 6809958B2
Authority
JP
Japan
Prior art keywords
pulsation
compensation voltage
value
speed
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065580A
Other languages
English (en)
Other versions
JP2017192294A (ja
Inventor
宏明 河合
宏明 河合
貴士 徳山
貴士 徳山
敏章 下田
敏章 下田
西田 吉晴
吉晴 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2017192294A publication Critical patent/JP2017192294A/ja
Application granted granted Critical
Publication of JP6809958B2 publication Critical patent/JP6809958B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、電動機を制御する電動機の制御装置に関するものである。
電動機を駆動させる際、負荷の周期的な変動による外乱トルクや、電動機自身のマグネットトルク及びコギングトルク等の外乱トルクにより、回転速度に脈動が生じる。この脈動は、電動機自身及び電動機を駆動源としている機械装置の振動や騒音を引き起こす原因となる。このような脈動は、特に、低速駆動時に顕著に発生し、機械装置の滑らか且つ高精度な駆動を実現する際の障壁となる。
これらの課題解決を目的とする従来技術として以下に挙げる特許文献が公知である。特許文献1は、電動機と負荷との間にトルク検出器を設け、トルク検出器が検出したトルク検出値をフーリエ変換してトルク脈動成分を検出し、検出したトルク脈動成分に基づいてトルク脈動補償電流を学習することで、脈動を抑制する技術を開示する。
特許文献2は、電動機の出力軸にトルク検出器を設け、トルク検出器が検出したトルクからm次元高調波成分を演算し、演算したm次元高調波成分を時間積分することで、m次元高調波成分を補正するための補正値を学習する。そして、学習した補正値をもとに、電動機への電流指令を出力し、トルク脈動を抑制する技術を開示する。
特許文献3は、加速度センサによって検出されたモータの振動から特定周波数の振動成分を抽出し、この振動成分を当該特定周波数の主振動成分と脈動振動成分とに分解し、得られた主振動成分と脈動振動成分との全てを同時に抑制する補償信号を生成することで、モータの脈動を抑制する技術を開示する。
国際公開第2010/024194号 特開2013−198221号公報 特開2012−80614号公報
上記いずれの技術も、脈動や振動を抑制するためにトルク検出器や加速度検出器といった、専用の検出器が追加されているが、このような専用の検出器は、大規模且つ高価であるので、システムのコストアップを招来すると同時に、部品点数が増大し、システムの信頼性が低下するという問題がある。
特に、トルク検出器は、検出対象となるトルクが増大するにつれて、コスト及びサイズが増大するので、機械装置への搭載性という面で課題がある。
更に、特許文献1、2は、学習制御が用いられているが、学習には一定の時間が必要であると共に、学習は装置が稼働される度に行う必要があるので、装置の使用開始から脈動が十分に抑制されるまで、毎回タイムラグが発生するという問題がある。特に、特許文献1、2の技術をオペレータが操作する作業機械に適用した場合、毎回、脈動が発生するので、オペレータに煩わしさを与えるという問題がある。また、タイムラグの経過後には脈動が抑制されるので、タイムラグの経過の前後で異なる操作感をオペレータに与えてしまうという問題も発生する。
本発明の目的は、大規模な検出器を用いなくても、稼働開始から直ぐに回転速度の脈動を抑制することができる電動機の制御装置を提供することである。
本発明の一態様に係る電動機の制御装置は、電動機の回転速度を目標速度にするための電圧指令値を算出する電圧指令値算出部と、
前記電圧指令値算出部により算出された電圧指令値に基づいて前記電動機を駆動させる駆動部と、
前記電動機の回転速度を検出する速度検出部と、
前記速度検出部により検出された回転速度から特定の周波数の脈動成分を抽出する脈動抽出部と、
前記脈動抽出部により抽出された脈動成分から、前記脈動成分の加速度である脈動加速度を算出し、前記算出した脈動加速度に、前記脈動成分に仮想的な慣性負荷を与えるための所定の係数を乗算し、乗算結果を電圧に変換することで補償電圧値を算出する補償電圧算出部と、
前記補償電圧算出部により算出された補償電圧値を前記電圧指令値に加算する加算器と、
前記目標速度から前記特定の周波数の脈動成分を抽出する第1脈動抽出部と、
前記第1脈動抽出部により抽出された脈動成分から、第1脈動加速度を算出し、前記算出した第1脈動加速度に前記所定の係数を乗算し、乗算結果を電圧に変換することで応答補償電圧値を算出する第1補償電圧算出部と、
前記補償電圧算出部により算出された補償電圧値から前記応答補償電圧値を減算する第1減算器とを備え、
前記加算器は、前記応答補償電圧値が減算された補償電圧値を前記電圧指令値に加算する。
本態様によれば、検出された回転速度から脈動成分が抽出され、抽出された脈動成分から脈動加速度が算出され、算出された脈動加速度に所定の係数が乗算され、乗算結果が電圧に変換されることで補償電圧値が算出され、この補償電圧値が電圧指令値に加算される。これにより、電圧指令値において脈動成分の電圧値が増大し、脈動成分にのみ仮想的な慣性負荷を与えることができる。その結果、脈動成分を抑制するような電圧指令値を用いて、電動機を制御することができ、回転速度の脈動を抑制することができる。
特定の周波数の脈動成分に仮想的な慣性負荷を与えるだけでは、目標速度が変化したときに過剰な慣性負荷が加わってしまい、目標速度の変化に対する回転速度の応答性が悪化してしまう。本態様では、目標速度から抽出された脈動成分に基づいて応答補償電圧値が算出され、この応答補償電圧値が補償電圧算出部で算出された補償電圧値から減じられている。そのため、補償電圧値を脈動の抑制にのみに作用させることができ、速度制御に対する応答性の悪化を回避することができる。
このように、本態様では、学習によらなくても、脈動成分が抑制できるので、電動機の稼働開始時から直ぐに脈動成分を抑制できる。
また、本態様では、高コスト且つ大規模なトルク検出器や加速度センサが用いられていないので、低コスト且つ小規模に装置を構成できる。
また、上記態様において、前記脈動成分は、周波数が異なる第1及び第2脈動成分を含み、
前記脈動抽出部は、前記第1及び第2脈動成分に対応する第1及び第2脈動抽出部を含み、
前記補償電圧算出部は、前記第1及び第2脈動成分に対応する第1及び第2補償電圧算出部を含み、
前記第1及び第2補償電圧算出部により算出された第1及び第2補償電圧値を加算する積分器を更に備え、
前記加算器は、前記加算された前記第1及び第2補償電圧値を前記電圧指令値に加算してもよい。
本態様によれば、脈動抽出部及び補償電圧算出部のセットが、周波数の異なる複数の脈動成分に対応して並列的に複数設けられているので、複数の脈動成分を同時に抑制できる。
上記態様において、前記電圧指令値算出部は、前記速度検出部により検出された前記電動機の回転速度と前記目標速度との速度偏差を0にするための目標電流値を算出し、前記目標電流値と前記電動機に供給される電流値との電流偏差を0にするための電圧指令値を算出し、
前記脈動抽出部により抽出された脈動成分から、前記第脈動抽出部により抽出された脈動成分を減算する第2減算器と、
前記第2減算器による減算結果を、前記目標速度と前記速度検出部により検出された前記電動機の回転速度との速度偏差から減算する第3減算器とを更に備えてもよい。
応答補償電圧値が減じられた補償電圧値を電圧指令値に加算した場合、前記減じられた補償電圧値に含まれる目標速度の脈動成分と回転速度の脈動成分との差分項が、電流フィードバック制御により算出される電圧指令値と干渉し、制御の開始時に大きな脈動が発生する可能性がある。
本態様によれば、脈動抽出部により抽出された脈動成分から、第脈動抽出部により抽出された脈動成分が減算され、その減算結果が目標速度と速度検出部により検出された回転速度との速度偏差から減算されている。
そのため、前記減じられた補償電圧値に含まれる目標速度の脈動成分と回転速度の脈動成分との差分項が、前記減算結果によって弱められ、前記干渉の影響を弱めることができ、制御の開始時に表れる大きな脈動を抑制することができる。
また、上記態様において、前記目標速度は周期的に変化してもよい。
本態様によれば、目標速度が周期的に変化する場合においても、速度制御に対する応答性の悪化を回避できる。
また、前記脈動抽出部は、前記特定の周波数を通過周波数とするバンドパスフィルタを用いて前記脈動成分を抽出してもよい。
本態様によれば、特定の周波数を通過周波数とするバンドパスフィルタが用いられているので、脈動成分を正確に抽出できる。
また、上記態様において、前記電圧指令値算出部は、d軸及びq軸の電圧指令値を算出し、
前記加算器は、前記q軸の電圧指令値に前記補償電圧値を加算してもよい。
補償電圧値は、脈動加速度に係数を乗じ、電圧に変換することで算出されているので、仮想的な慣性負荷の慣性トルクに相当する電圧指令値を示す。本態様では、補償電圧値は、電圧指令値のトルク成分であるq軸の電圧指令値に加算されているので、慣性トルクをモータに正確に付与できる。
本発明によれば、トルク検出器や加速度検出器といった専用の検出器を用いなくても、稼働開始から直ぐに回転速度の脈動を抑制することができる。
本発明の実施の形態に係るモータの制御装置の構成を示すブロック図である。 図1に示す補償電圧値による電圧補償を説明する図である。 図1に示す脈動抽出部と、補償電圧算出部との詳細を示すブロック図である。 式(1)に示すバンドパスフィルタのボード線図である。 実施の形態1における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフである。 本発明の実施の形態2に係る制御装置のブロック図である。 目標速度が変化した場合に、慣性負荷をモータに付与したことによる応答性の低下を説明する図である。 本発明の実施の形態3に係る制御装置の構成を示すブロック図である。 図8に示す脈動抽出部と、補償電圧算出部との詳細を示すブロック図である。 実施の形態3における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフである。 本発明の実施の形態4に係るモータの制御装置の構成を示すブロック図である。 実施の形態4における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフである。 実施の形態4における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフである。
以下、本発明の実施の形態に係る電動機(以下、「モータ」と記述する。)の制御装置について図面を参照しながら説明する。永久磁石同期電動機をはじめとした3相ブラシレスモータの速度制御は、近年、ベクトル制御が用いられることが一般的である。したがって、本実施の形態においても、モータの速度制御として、ベクトル制御を採用する。
[実施の形態1]
図1は、本発明の実施の形態に係るモータMの制御装置1の構成を示すブロック図である。制御装置1は、減算器5、電圧指令値算出部10、駆動部20、脈動抽出部30、補償電圧算出部40、加算器50、uvw/dq変換器60、角度検出器70(速度検出部に相当)、速度算出器80(速度検出部に相当)、及び電流センサ81,82,83を備える。
角度検出器70は、例えば、レゾルバやエンコーダ等で構成され、モータMの回転角度を検出し、検出した回転角度を角度検出値として速度算出器80に出力する。ここで、角度検出値としては、例えば、基準回転位置に対する回転子の回転角度が採用できる。なお、速度検出値(回転速度の一例)は、例えば、回転子が所定の第1方向(例えば、右回りの方向)に回転している場合、プラスの値を持ち、回転子が第1方向とは反対の第2方向(例えば、左回りの方向)に回転した場合は、マイナスの値を持つようにして、回転方向を区別可能に構成してもよい。
速度算出器80は、角度検出器70で検出された角度検出値を微分し、モータMの回転速度を算出し、速度検出値として出力する。
減算器5は、目標速度から速度検出値を減算し、速度偏差を算出する。目標速度は、モータMが適用される装置に応じて異なる。例えば、モータMが建設機械のウィンチドラムや上部旋回体や下部走行体の駆動に用いられるのであれば、操作レバーの操作量に応じた値に目標速度は設定される。また、モータMが電気自動車やハイブリッド自動車の走行モータに適用されるのであれば、アクセルの操作量に応じた値に目標速度は設定される。
電圧指令値算出部10は、速度算出器80により算出されたモータMの回転速度と目標速度との速度偏差を0にするための目標電流値を算出し、目標電流値とモータMに供給される電流値との電流偏差を0にするための電圧指令値を算出する。具体的には、電圧指令値算出部10は、速度制御器11、電流指令生成器12、電流制御器13、及び減算器14,15を備える。
速度制御器11は、減算器5から速度偏差が入力され、この速度偏差を0にするためのトルク指令値を算出する。ここで、速度制御器11は、例えばPI(比例・積分)制御を用いてトルク指令値を算出すればよい。なお、これは一例であり、速度制御器11は、PID(比例・積分・微分)制御を用いてトルク指令値を算出してもよい。
電流指令生成器12は、トルク指令値に基づいて、d軸の目標電流値Id_refとq軸の目標電流値Iq_refとを算出する。ここで、電流指令生成器12は、例えば、トルク指令値に対して予め定められた値を目標電流値Id_ref,Iq_refとして生成すればよい。
減算器14は、目標電流値Id_refからd軸の実電流値Idを減算し、d軸の電流偏差を算出する。減算器15は、目標電流値Iq_refからq軸の実電流値Iqを減算し、q軸の電流偏差を算出する。
電流制御器13は、減算器14からのd軸の電流偏差を0にするためのd軸の電圧指令値を算出すると共に、減算器15からのq軸の電流偏差を0にするためのq軸の電圧指令値を算出する。d軸の電圧指令値はモータMに出力する電圧の界磁成分を制御する指令値であり、q軸の電圧指令値はモータMに出力する電圧のトルク成分を制御するための指令値である。ここで、電流制御器13は、例えば、PI制御を用いてd,q軸の電圧指令値を算出すればよい。但し、これは一例であり、電流制御器13は、PID制御を用いてd,q軸の電圧指令値を算出してもよい。
駆動部20は、dq/uvw変換器21及びインバータ22を備え、電流制御器13により生成されたd,q軸の電圧指令値に基づいてモータMを駆動させる。
dq/uvw変換器21は、d,q軸の電圧指令値を座標変換し、uvw相の3相からなるPWM信号を生成し、インバータ22に出力する。
インバータ22は、例えば、3相のインバータで構成され、3相のPWM信号からUVWの3相の交流電力を生成し、モータMに出力する。
モータMは、例えば、3相のブラシレスモータで構成され、インバータ22から出力されるUVWの3相の交流電力に従って駆動される。例えば、制御装置1がクレーンやショベルカーといった建設機械に適用されるのであれば、モータMは、上部旋回体を旋回させたり、ウィンチドラムを回転させたりする。また、制御装置1が電気自動車に適用されるのであれば、電気自動車を走行させる。
電流センサ81,82,83は、それぞれ、例えば、ホール素子を利用したホール式の電流センサで構成され、U,V,W相の交流電流を検出する。
uvw/dq変換器60は、電流センサ81,82,83で検出されたU,V,W相の交流電流を座標変換し、d,q軸の実電流値Id,Iqを算出し、減算器14,15に出力する。
以上が制御装置1の基本構成であり、速度検出値が目標速度に追従するように、モータMがフィードバック制御される。
脈動抽出部30は、速度算出器80が算出した速度検出値から、特定の周波数の脈動成分の速度である脈動速度を抽出する。ここで、脈動抽出部30は、例えば、式(1)の伝達関数で表される2次のバンドパスフィルタを用いて脈動速度を抽出すれば良い。
Figure 0006809958
s:ラプラス演算子 f0:通過周波数 ζ:減衰比
補償電圧算出部40は、脈動加速度算出器41、乗算器42、及び変換器43を備える。脈動加速度算出器41は、脈動抽出部30により抽出された脈動速度から、脈動成分の加速度である脈動加速度を算出する。ここで、脈動加速度算出器41は、脈動抽出部30により抽出された脈動速度に対して微分処理を行うことで、脈動加速度を算出する。
本実施例では、脈動加速度算出器41は、この微分処理を数値的に行うため、式(2)の伝達関数で表される近似微分処理を行う。
Figure 0006809958
s:ラプラス演算子 T:時定数
なお、時定数Tは、例えば、T<<1を満たす十分小さい値であるものとする。
乗算器42は、脈動加速度に所定の係数kを乗じることで、慣性トルクを算出する。ここで、係数kは、特定の脈動成分に仮想的な慣性負荷を与えるための係数である。
変換器43は、乗算器42が算出した慣性トルクを電圧に変換する所定の演算を行うことで、補償電圧値を算出する。所定の演算については後述する。
加算器50は、電流制御器13により算出されたq軸の電圧指令値に、補償電圧値を加算することで、q軸の電圧指令値を補正し、補正したq軸の電圧指令値をdq/uvw変換器21に出力する。これにより、モータMの回転速度に含まれる脈動成分が抑制され、滑らかなモータMの駆動が実現される。
図2は、図1に示す補償電圧値による電圧補償を説明する図である。モータMは、駆動対象となる物体の慣性負荷が大きくなるにつれて、その物体の加減速時に大きなトルク(慣性トルク)を付与する必要がある。この慣性トルクの大きさは、慣性負荷の大きさを示す慣性モーメントに角加速度を乗じた値を持つ。
したがって、脈動加速度に係数kを乗じた乗算結果は、係数kの慣性モーメントを持つ慣性負荷200がモータMに接続されている場合の慣性トルクを表すことになる。そこで、本実施の形態では、この慣性トルクを電圧に変換することで、補償電圧値を算出し、算出した補償電圧値をq軸の電圧指令値に加算している。
これにより、脈動成分の周波数においてのみ有効な慣性負荷200が、あたかもモータMに接続されているかのようなトルク制御をモータMに対して行うことができる。その結果、脈動成分に対するモータMの回転速度の応答性が低下して脈動成分が抑制され、滑らかなモータMの駆動を実現できる。ここで、外乱トルクとしては、モータMに接続された負荷の周期的な変動やコギングトルクによってモータMに加わるトルクが該当する。また、外乱トルクをもたらす負荷としては、例えば、減速器が該当する。
次に、変換器43による所定の演算について説明する。乗算器42が算出するのは、慣性トルクであり、電圧のディメンションを持っていないので、そのまま、q軸の電圧指令値に加算することはできない。そこで、本実施の形態は、変換器43を設け、慣性トルクに相当する電圧値である補償電圧値を算出する。
具体的には、変換器43は、式(3)又は式(4)を用いて補償電圧値を算出する。
Figure 0006809958
Δvq:q軸の電圧指令値の変化量 Ra:巻線抵抗 ΔTq:慣性トルクの変化量 Pn:極対数 Ψa:永久磁石の鎖交磁束 Lq:q軸のインダクタンス Ld:d軸インダクタンス iq:q軸の実電流値 id:d軸の実電流値 ΔT:演算周期
なお、式(3)、(4)において、Ra、Pn、Ψa、Lq、Ld、ΔTは既知であり、id,iqは、uvw/dq変換器60が算出する実電流値Id,Iqである。
トルクと電流指令値との関係は、下記の式(5)で表される。また、巻線抵抗Raのみを考慮した場合、Δiqだけ電流指令値を追加する場合に必要な電圧指令値は、下記の式(6)で表される。
Figure 0006809958
更に、巻線抵抗Raに加えて、q軸のインダクタンスLqも考慮した場合、Δiqだけ電流指令値を追加する場合に必要な電圧指令値は、上記の式(7)で表される。
式(5)をiqについて解き、式(6)に代入すると、式(3)が得られる。また、式(5)をiqについて解き、式(7)に代入すると、式(3)が得られる。したがって、乗算器42が慣性トルクの変化量(ΔTq)出力するとすると、変換器43は、式(3)又は式(4)を用いて電圧指令値の変化量(Δvq)を求め、算出した電圧指令値の変化量(Δvq)を補償電圧値の変化量として出力すればよい。
図3は、図1に示す脈動抽出部30と、補償電圧算出部40との詳細を示すブロック図である。以下、外乱トルクとしてコギングトルクを採用し、コギングトルクを抑制対象とした場合を例に挙げて説明する。脈動抽出部30は、上述したように、式(1)のバンドパスフィルタが用いられている。ここで、コギングトルクの周波数は、モータMの極数及びスロット数から事前に求めることができる。また、脈動加速度算出器41は、式(2)の伝達関数が用いられている。
図4は、式(1)に示すバンドパスフィルタG401のボード線図であり、縦軸はゲイン、横軸は周波数を示している。図4に示すように、バンドパスフィルタG401は、ピークに対応する通過周波数f0を中心にゲインが一定の傾きで減少する左右対称な形状を持っている。バンドパスフィルタG401は、通過周波数f0がコギングトルクの周波数に一致されている。また、通過周波数f0を中心とする通過帯域Bは、ピークに対してゲインが一定の比率以上となる帯域である。一定の比率としては、例えば80%や90%とといった値が採用できる。ここでは、通過帯域Bの幅が一定の幅を確保できるように、減衰比ζが設定されている。
このように通過帯域Bを設定することで、モータMの極数及びスロット数から求められたコギングトルクの周波数に対して、実際のコギングトルクの周波数が多少ずれていたとしても、バンドパスフィルタG401は、脈動成分を抽出できる。
図5は、実施の形態1における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフであり、縦軸はモータMの回転速度を示し、横軸は時間を示している。図5のグラフでは、時刻T1になるまでは、脈動抽出部30及び補償電圧算出部40による脈動抑制制御は作動されておらず、時刻T1以降に脈動抑制制御が作動されている。また、このシミュレーションでは、モータMは一定の目標速度V0となるように制御されている。
脈動抑制制御を作動させるまでは、回転速度Vは、目標速度V0を中心に上下に大きく変動しており、コギングトルクにより生じる脈動が発生していることが分かる。一方、脈動抑制制御を作動させると、脈動成分の振幅が時刻T1より前の脈動成分の振幅に比べて約10%以下にまで低下されており、脈動が十分に抑制されていることが分かる。
なお、係数kが過大であると、慣性負荷200による慣性トルクが過大となり、応答性が悪化する。一方、係数kが過小であると、慣性負荷200による慣性トルクが過小となり、脈動成分を十分に抑制できなくなる。
そこで、係数kとしては、例えば、脈動成分を十分に抑制でき、且つ、一定以上の応答性を保つことができる値が採用される。具体的には、係数kは、モータMの慣性モーメントの2倍や3倍といったオーダーの値が採用されるが、これは一例である。
このように、制御装置1は、補償電圧値をq軸の電圧指令値に加算しているので、脈動成分にのみ仮想的な慣性トルクを与えることができ、脈動成分を抑制できる。また、制御装置1は、ロータリーエンコーダといった小規模な角度検出器70が検出する角度検出値に基づいて、トルクに相当する補償電圧値を算出しているので、トルク検出器や加速度検出器のような、大規模且つ高価なセンサを用いることなく補償電圧値を算出できる。更に、制御装置1は、学習制御を採用することなく補償電圧値を算出しているので、稼働開始時から速やかに脈動を抑制できる。
なお、コギングトルクといった周期的な外乱トルクは、モータMを、定格速度よりも遅い速度で駆動させた場合に発生する可能性が高い。例えば、クレーンにおける吊荷の上げ下げのような、微妙な位置決め操作が行われるシーンにおいて、モータMを用いて位置決め制御が行われる場合、モータMが定格速度よりも低い速度で駆動されることが頻発する。したがって、制御装置1はこのようなシーンにおいて有効となる。つまり、目標速度がモータMの定格速度域よりも低速の速度域に設定された場合に、制御装置1による制御手法が有効となる。
[実施の形態2]
実施の形態1では、1種類の外乱トルクを抑制対象としたが、実施の形態2では、複数種類の外乱トルクを抑制対象とすることを特徴とする。なお、本実施の形態において、実施の形態1と同一の構成要素には、同一の符号を付し、説明を省く。このことは、実施の形態3も同じである。
モータMには、上述したように、コギングトルクや、モータMに接続されている負荷の周期的な脈動が、外乱トルクとなってモータMに付与されることで、回転速度が脈動する。このように、周期的な外乱トルクは、複数存在しており、これら複数の外乱トルクによる脈動を同時に抑制したいケースも存在する。この課題を解決するのが実施の形態2である。
図6は、本発明の実施の形態2に係る制御装置1のブロック図である。図1との相違点は、抑制対象の脈動成分の周波数毎に、脈動抽出部30及び補償電圧算出部40が設けられている点、並びに積分器51が設けられている点にある。図6の例では、周波数の異なるn(nは2以上の整数)種類の脈動成分に対応してn種類の脈動抽出部30_1(30),・・・,30_n(30)及び補償電圧算出部40_1(40),・・・,40_n(40)が設けられている。なお、脈動抽出部30_1は第脈動抽出部に相当し、脈動抽出部30_2,・・・,30_nは第脈動抽出部に相当する。また、補償電圧算出部40_1は、第補償電圧算出部に相当し、補償電圧算出部40_2,・・・,40_nは第補償電圧算出部に相当する。
具体的には、脈動抽出部30_1,・・・,30_nは、それぞれ、対応する脈動成分の周波数に合わせて、バンドパスフィルタG401の通過周波数f0が設定されている。これにより、脈動抽出部30_1,・・・,30_nは、それぞれ、速度算出器80で検出された速度検出値から対応する脈動成分を抽出する。
補償電圧算出部40_1,・・・,40_nは、それぞれ、脈動加速度算出器41、乗算器42、及び変換器43を備える。本実施の形態では、乗算器42の係数kは、対応する脈動成分を問わず一律に同じ値が採用されてもよいし、対応する脈動成分毎に異なる値が採用されてもよい。
積分器51は、補償電圧算出部40_1,・・・,40_nで算出された、n個の補償電圧値を加算して、加算補償電圧値を算出し、加算器50に出力する。
加算器50は、電流制御器13から出力されたq軸の電圧指令値に、積分器51から出力された加算補償電圧値を加算して、dq/uvw変換器21に出力する。
以上により、電流制御器13から出力されるq軸の電圧指令値には抑制対象となるn種類の脈動成分に対応する補償電圧値が加算されることになる。その結果、n種類の脈動成分の周波数においてのみ有効な、係数kの慣性モーメントを持った仮想的なn種類の慣性負荷200が、あたかもモータMに接続されているかのようなトルク制御を、モータMに対して行うことができる。これにより、複数の種類の脈動成分を、同時に抑制することができる。
[実施の形態3]
図7は、目標速度が変化した場合に、慣性負荷200をモータMに付与したことによる応答性の低下を説明する図である。
実施の形態1では、図7のセクション(a)に示すように、補償電圧値をq軸の電圧指令値に加算して、外乱トルクの周波数においてのみ有効な慣性負荷200をモータMに付与することで、回転速度の脈動を抑制した。しかし、目標速度が変化すると、慣性負荷200をモータMに付与した分、モータMの応答性が悪化するので、図7のセクション(b)に示すように、目標速度に対する実際の回転速度の追従性が低下する可能性がある。
そこで、実施の形態3では、図8に示す構成を採用した。図8は、本発明の実施の形態3に係る制御装置1の構成を示すブロック図である。図8において、図1との相違点は、脈動抽出部300(第脈動抽出部に相当)及び補償電圧算出部400(第補償電圧算出部に相当)が更に設けられている点にある。
脈動抽出部300は、目標速度から特定の周波数の脈動成分を抽出する。ここで、脈動抽出部300は、脈動抽出部30が脈動成分の抽出に用いるバンドパスフィルタと同じバンドパスフィルタを用いて脈動成分を抽出している。しかし、脈動抽出部300は、速度検出値ではなく目標速度から脈動成分を抽出している点が、脈動抽出部30と異なる。
補償電圧算出部400は、脈動加速度算出器401、乗算器402、及び変換器403を備える。脈動加速度算出器401は、脈動抽出部300により抽出された脈動成分から脈動加速度を算出する。乗算器402は、脈動加速度算出器401により抽出された脈動成分に係数kを乗算し、慣性トルクを算出する。変換器403は、乗算器402が算出した慣性トルクを、上述の式(3)又は式(4)を用いて変換し、応答補償電圧値を算出する。ここで、脈動加速度算出器401、乗算器402、及び変換器403の構成は、脈動加速度算出器41、乗算器42、及び変換器43と同じである。
減算器52(第1減算器の一例)は、変換器43から出力された補償電圧値から変換器403から出力された応答補償電圧値を減じることで、補償電圧値を補正し、補正した補償電圧値を加算器50に出力する。
これにより、q軸の電圧指令値には、応答補償電圧値が減じられた補償電圧値が加算されることになる。変換器43が出力する補償電圧値は、速度検出値から脈動成分を抽出することで算出された電圧値なので、目標速度の脈動成分の影響と、速度検出値の脈動成分の影響とが含まれる。
一方、変換器403が出力する応答補償電圧値は、目標速度の脈動成分を抽出することで算出された電圧値なので、目標速度の脈動成分の影響のみが含まれている。したがって、変換器43が出力した補償電圧値から応答補償電圧値を減じることで、補償電圧値に含まれる目標速度の脈動の影響を除去することがでる。その結果、目標速度が周期的に変動した場合において、モータMの回転速度の応答性が悪化することを抑制できる。
図9は、図8に示す脈動抽出部30,300と、補償電圧算出部40,400との詳細を示すブロック図である。図9に示すように、脈動抽出部300は、脈動抽出部30と同様、式(1)で表されるバンドパスフィルタが採用されている。ここで、脈動抽出部300が採用するバンドパスフィルタの各種パラメータ(f0:通過周波数 ζ:減衰比)も、脈動抽出部30と同じである。
また、脈動加速度算出器401も、脈動加速度算出器41と同様、式(2)で表される伝達関数が採用されている。ここで、脈動加速度算出器401の伝達関数が採用する各種パラメータ(T:時定数)も、脈動加速度算出器41と同じである。更に、乗算器402が採用する係数kも乗算器42と同じである。
図10は、実施の形態3における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフであり、縦軸はモータMの回転速度を示し、横軸は時間を示している。
なお、図10において、セクション(a)は脈動抽出部30及び補償電圧算出部40による脈動抑制制御が作動されていない場合のシミュレーションの結果を示し、セクション(b)は脈動抑制制御のみ作動させた場合のシミュレーションの結果を示し、セクション(c)は脈動抑制制御に加えて、脈動抽出部300及び補償電圧算出部400による応答改善制御を作動させた場合のシミュレーションの結果を示している。
また、このシミュレーションでは、周波数が一定のサイン波で目標速度を変化させ、この目標速度に追従するように制御装置1にモータMを制御させた。但し、これは一例であり、目標速度は一定の周期を持つパルス波のような、サイン波以外の周期的な波形で変化されてもよい。また、このシミュレーションでは、外乱トルクとしてコギングトルクを採用した。
図10のセクション(a)に示すように、脈動抑制制御及び応答改善制御を行わない通常のベクトル制御では、回転速度Vは、目標速度V0に追従しているが、目標速度V0を中心に大きく変動し、脈動が発生していることが分かる。これは、図5のシミュレーションと同様、モータMのコギングトルクによる影響であり、極数、スロット数に応じた周波数で、脈動が発生している。
一方、脈動抑制制御のみを作動させた場合、図10のセクション(b)に示すように、セクション(a)に見られていたコギングトルクによる脈動が十分抑制されていることが分かる。
しかし、目標速度V0に対する追従性については、目標速度V0に追従しようとするモータMの回転速度Vの変化に対し、それを妨げようとする仮想的な慣性負荷がモータMに付与され、目標速度V0に追従できていない領域が発生していることが分かる。具体的には、目標速度V0が大きく切り替わるサイン波のピークの箇所(山及び谷の箇所)で、回転速度Vが目標速度V0を大きく超えており、この箇所で回転速度Vが目標速度V0に追従できていないことが分かる。
これに対し、脈動抑制制御に加えて応答改善制御を作動させると、目標速度V0に追従するための回転速度Vの変化に対して、慣性負荷200が過度に作用することが回避される。そのため、図10のセクション(c)に示すように、セクション(a)で見られた脈動や、セクション(b)で見られたような追従性が悪化した箇所が発生することを抑制できる。その結果、コギングトルクによる脈動を抑制すると同時に、目標速度V0に対する回転速度Vの追従性の低下も抑制できる。
[実施の形態4]
実施の形態3に係る制御装置1は、上述したように応答性を改善するが、脈動抑制制御及び応答改善制御の開始時に大きな脈動が発生する可能性がある。以下、図8を用いて説明する。図8において、脈動抽出部30及び補償電圧算出部40は脈動抑制制御に関するブロックであり、脈動抽出部300及び補償電圧算出部400は応答改善制御に関するブロックである。これら以外のブロックはモータMに対する通常の電流フィードバック制御に関するブロックである。
電流制御器13は、PI制御を実行する制御器であるとする。この場合、電流制御器13は、目標電流値Iq_ref(以下、iq*の符号を付して表す。)と実電流値iqとの電流偏差に対し、比例項と積分項とを合わせた式(8)の演算により、q軸の電圧指令値(vq*)を算出する。なお、d軸については説明を省略する。
Figure 0006809958
K_cq:電流フィードバック制御の比例ゲイン T_cq:電流フィードバック制御の積分時間 vq*:は電流制御器13により決定されるq軸の電圧指令値 iq*:q軸の目標電流値Id_ref iq:q軸の実電流値
また、電流指令生成器12も同様にPI制御を行う制御器であるとする。この場合、電流指令生成器12は、式(9)の演算を行い、q軸の目標電流値(iq*)を算出する。
Figure 0006809958
Ksp:速度制御の比例ゲイン Ksi:速度制御の積分ゲイン V0:目標速度 V:モータMの回転速度
式(8)、(9)から目標速度V0とモータの回転速度Vとの速度偏差に対し、電圧指令値(vq*)は下記の式(10)で決定される。式(10)に示す電圧指令値(vq*)は通常の電流フィードバック制御で得られる電圧指令値(vq*)である。
Figure 0006809958
一方、脈動抽出部30が抽出する回転速度Vの脈動成分をV’、脈動抽出部300が抽出する目標速度V0の脈動成分をV0’とすると、補償電圧算出部40、400、及び減算器52により、補償電圧値(Δvq)は式(11)で決定される。
Figure 0006809958
脈動抑制制御及び応答改善制御の制御器があると、結果として式(10)の電圧指令値(vq*)に式(11)の補償電圧値(Δvq)が加わるため、式(11)に示す(V’−V0’)の項が式(10)に示す(V−V0)の項と干渉する。これにより、式(11)で示す補償電圧値(Δvq)が、式(10)に示す通常の電流フィードバック制御により算出される電圧指令値(vq*)と干渉し、制御の開始時に大きな脈動が生じる可能性がある。特に積分制御(I動作)を行った場合、制御の開始時にオーバーシュートやハンチングが生じやすいため、この脈動が大きくなる。
そこで、実施の形態4では、式(11)で表される、干渉項となる脈動成分(V’)のと脈動成分(V0’)との差分(V’−V0’)の項の0影響を弱めるために、図11に示す構成を採用する。
図11は、本発明の実施の形態4に係る制御装置1の構成を示すブロック図である。図11の制御装置1は、図8の制御装置1に対して、減算器111(第2減算器の一例)と、減算器112(第3減算器の一例)とを更に備える。
減算器111は、脈動抽出部30で抽出された脈動成分(V’)から脈動抽出部300で抽出された脈動成分(V0’)を減算する。減算器112は、減算器111による減算結果(V’−V0’)を目標速度V0と回転速度Vとの速度偏差(V−V0)から減算する。
こうすることで、補償電圧値(Δvq)における干渉項である脈動成分(V’)及び脈動成分(V0’)の差分(V’−V0)の項が、減算結果(V’−V0’)によって弱められ、補償電圧値(Δvq)が通常の電流フィードバック制御に与える影響を弱めることができる。
図12、図13は、実施の形態4における脈動成分の抑制効果を確認するために行ったシミュレーションの結果を示すグラフであり、縦軸はモータMの回転速度を示し、横軸は時間を示している。
図12は実施の形態4で示した干渉抑制制御及び応答改善制御を適用していない場合のシミュレーション結果を示し、図13は干渉抑制制御及び応答改善制御を適用した場合のシミュレーション結果を示している。図12、図13のグラフでは、時刻T1になるまでは、脈動抑制制御及び応答改善制御が作動されておらず、通常の電流フィードバック制御のみが作動されており、時刻T1以降に脈動抑制制御及び応答改善制御が作動されている。また、このシミュレーションでは、モータMは一定の目標速度V0となるように制御されている。また、このシミュレーションでは、周波数が一定のサイン波で外乱トルクが与えられている。なお、目標速度V0は一定速度ではなく、周期的に変化する波形が採用されてもよく、外乱トルクはサイン波以外の周期的な波形が採用されてもよい。
図12と図13とでは同じ振幅及び周波数の外乱トルクが加えられている。図12と図13とを比較すると、図13の方が図12に比べ、脈動抑制制御及び応答改善制御を作動させる前において、波形の振幅が小さく、脈動が抑制されている。そのため、図13の方が図12に比べ、脈動抑制制御及び応答改善制御を作動させた後においても、波形の振幅が小さく、脈動が抑制されていることが分かる。特に、脈動抑制制御及び応答改善制御を開始直後において図12に表れていたハンチングが図13では大幅に改善されている。
このように実施の形態4では、干渉抑制制御を実行しているので、脈動抑制制御及び応答改善制御の動作開始時の脈動を抑制することができる。
[変形例]
(1)図8では、脈動抽出部30及び補償電圧算出部40は1つずつ設けられていたが、これは一例であり、実施の形態2のように抑制対象となる複数の脈動成分に応じて複数個ずつ設けられてもよい。この場合、脈動抽出部300及び補償電圧算出部400は、複数の脈動抽出部30及び補償電圧算出部40に対応して、複数個ずつ設けられればよい。更に、この場合、脈動抽出部300は、対応する脈動抽出部30に対して通過周波数f0が同じバンドパスフィルタを採用すればよい。
(2)上記説明では、外乱トルクは周期性を持つとして説明したが、周期性を持たなくても良い。例えば、外乱トルクが非周期のインパルス波やパルス波である場合、これらの波形は急峻な立ち上がり及び立ち下がりを持つので、複数の周波数成分を含んでいる。したがって、通過周波数f0を持つバンドパスフィルタを用いたとしても、このバンドパスフィルタは、これらの波形に含まれるいずれかの周波数成分を脈動成分として抽出できる。よって、この脈動成分において慣性負荷200を付与し、脈動を抑制できる。
Id,Iq 実電流値
Id_ref,Iq_ref 目標電流値
M モータ
V0 目標速度
1 制御装置
5,52,111,112 減算器
10 電圧指令値算出部
11 速度制御器
12 電流指令生成器
13 電流制御器
14,15 減算器
20 駆動部
21 dq/uvw変換器
22 インバータ
30,30_1,・・・,30_n,300 脈動抽出部
40,40_1,・・・,40_n,400 補償電圧算出部
41,401 脈動加速度算出器
42,402 乗算器
50 加算器
51 積分器
60 uvw/dq変換器
70 角度検出器
80 速度算出器
200 慣性負荷

Claims (6)

  1. 電動機の回転速度を目標速度にするための電圧指令値を算出する電圧指令値算出部と、
    前記電圧指令値算出部により算出された電圧指令値に基づいて前記電動機を駆動させる駆動部と、
    前記電動機の回転速度を検出する速度検出部と、
    前記速度検出部により検出された回転速度から特定の周波数の脈動成分を抽出する脈動抽出部と、
    前記脈動抽出部により抽出された脈動成分から、前記脈動成分の加速度である脈動加速度を算出し、前記算出した脈動加速度に、前記脈動成分に仮想的な慣性負荷を与えるための所定の係数を乗算し、乗算結果を電圧に変換することで補償電圧値を算出する補償電圧算出部と、
    前記補償電圧算出部により算出された補償電圧値を前記電圧指令値に加算する加算器と、
    前記目標速度から前記特定の周波数の脈動成分を抽出する第1脈動抽出部と、
    前記第1脈動抽出部により抽出された脈動成分から、第1脈動加速度を算出し、前記算出した第1脈動加速度に前記所定の係数を乗算し、乗算結果を電圧に変換することで応答補償電圧値を算出する第1補償電圧算出部と、
    前記補償電圧算出部により算出された補償電圧値から前記応答補償電圧値を減算する第1減算器とを備え、
    前記加算器は、前記応答補償電圧値が減算された補償電圧値を前記電圧指令値に加算する電動機の制御装置。
  2. 前記脈動成分は、周波数が異なる第及び第脈動成分を含み、
    前記脈動抽出部は、前記第及び第脈動成分に対応する第及び第脈動抽出部を含み、
    前記補償電圧算出部は、前記第及び第脈動成分に対応する第及び第補償電圧算出部を含み、
    前記第及び第補償電圧算出部により算出された第及び第補償電圧値を加算する積分器を更に備え、
    前記加算器は、前記加算された前記第及び第補償電圧値を前記電圧指令値に加算する請求項1記載の電動機の制御装置。
  3. 前記電圧指令値算出部は、前記速度検出部により検出された前記電動機の回転速度と前記目標速度との速度偏差を0にするための目標電流値を算出し、前記目標電流値と前記電動機に供給される電流値との電流偏差を0にするための電圧指令値を算出し、
    前記脈動抽出部により抽出された脈動成分から、前記第脈動抽出部により抽出された脈動成分を減算する第2減算器と、
    前記第2減算器による減算結果を、前記目標速度と前記速度検出部により検出された前記電動機の回転速度との速度偏差から減算する第3減算器とを更に備える請求項1又は2記載の電動機の制御装置。
  4. 前記目標速度は周期的に変化する請求項1〜3のいずれかに記載の電動機の制御装置。
  5. 前記脈動抽出部は、前記特定の周波数を通過周波数とするバンドパスフィルタを用いて前記脈動成分を抽出する請求項1〜のいずれかに記載の電動機の制御装置。
  6. 前記電圧指令値算出部は、d軸及びq軸の電圧指令値を算出し、
    前記加算器は、前記q軸の電圧指令値に前記補償電圧値を加算する請求項1〜のいずれかに記載の電動機の制御装置。
JP2017065580A 2016-04-07 2017-03-29 電動機の制御装置 Active JP6809958B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076925 2016-04-07
JP2016076925 2016-04-07

Publications (2)

Publication Number Publication Date
JP2017192294A JP2017192294A (ja) 2017-10-19
JP6809958B2 true JP6809958B2 (ja) 2021-01-06

Family

ID=60086109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065580A Active JP6809958B2 (ja) 2016-04-07 2017-03-29 電動機の制御装置

Country Status (1)

Country Link
JP (1) JP6809958B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021032290A1 (en) * 2019-08-20 2021-02-25 Halodi Robotics As Method and a medium for cogging compensating a motor driving signal
CN112737447B (zh) * 2020-12-28 2023-01-31 广东美芝制冷设备有限公司 压缩机组件、制冷设备和可读存储介质
CN112787558B (zh) * 2020-12-28 2022-11-25 广东美芝制冷设备有限公司 压缩机组件的控制方法、压缩机组件和制冷设备
CN113949325B (zh) * 2021-10-29 2024-04-09 歌尔股份有限公司 线性马达的控制方法、控制装置、设备以及介质

Also Published As

Publication number Publication date
JP2017192294A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
KR100655702B1 (ko) 영구자석 동기 모터 제어방법
JP6809958B2 (ja) 電動機の制御装置
JP5633551B2 (ja) 交流電動機の制御装置
JP5800108B2 (ja) 周期外乱自動抑制装置
JP2011176953A (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP5939316B2 (ja) 誘導モータ制御装置および誘導モータ制御方法
JP2011211815A (ja) 永久磁石モータの制御装置
WO2015025356A1 (ja) モータ駆動システムおよびモータ制御装置
JP5936770B2 (ja) 回転機制御装置
WO2015019495A1 (ja) モータ駆動システムおよびモータ制御装置
JP5948266B2 (ja) インバータ装置、建設機械、電動機制御方法
JP6730377B2 (ja) モータ制御装置
JP6183554B2 (ja) 周期外乱自動抑制装置
JP5515885B2 (ja) 電気車制御装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
WO2017081977A1 (ja) モータ制御装置およびこれを用いたエレベータ
JP6241331B2 (ja) 電動機の制御装置
CN111418144B (zh) 电动机的控制方法以及电动机的控制装置
JP6060778B2 (ja) 回転機の制御装置
JP2007143276A (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP6032047B2 (ja) モータ制御装置
JP5996485B2 (ja) モータの駆動制御装置
JP2020202643A (ja) 回転機の制御装置
WO2016067721A1 (ja) 電力変換装置および電力変換装置の制御方法
JP6092020B2 (ja) 電気車制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R150 Certificate of patent or registration of utility model

Ref document number: 6809958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150