JP6807081B2 - 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法 - Google Patents

相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法 Download PDF

Info

Publication number
JP6807081B2
JP6807081B2 JP2017081699A JP2017081699A JP6807081B2 JP 6807081 B2 JP6807081 B2 JP 6807081B2 JP 2017081699 A JP2017081699 A JP 2017081699A JP 2017081699 A JP2017081699 A JP 2017081699A JP 6807081 B2 JP6807081 B2 JP 6807081B2
Authority
JP
Japan
Prior art keywords
meth
group
compound
compatible
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017081699A
Other languages
English (en)
Other versions
JP2018178013A (ja
Inventor
英治 片上
英治 片上
聖 金子
聖 金子
田中 宏幸
宏幸 田中
裕史 田邊
裕史 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP2017081699A priority Critical patent/JP6807081B2/ja
Publication of JP2018178013A publication Critical patent/JP2018178013A/ja
Application granted granted Critical
Publication of JP6807081B2 publication Critical patent/JP6807081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、特定のブロック共重合体化合物と媒質とが相溶してなる相溶組成物、前記相溶組成物を含有する接着剤組成物、前記接着剤組成物が使用されている複合構造物並びに前記複合構造物の製造方法及び解体方法に関する。
液晶表示本体及び光学レンズ等の光学系デバイスの構成部材や、電子ペーパー及び電池等の電子系デバイスの構成部材を接着剤で固定し、場合により、その固定を解除できるようにすることを要請される場合がある。
その要請に対して、従来は、固定部分の硬化した接着剤を、加熱して流動化させたり、溶剤を接触させて膨潤させたり、水に浸漬して硬化した接着剤を部材から剥離する方法がとられていた(例えば、特許文献1)。
特開2010−100831号公報
しかし、特許文献1に開示されているような従来の接着剤の硬化体は、加熱しても十分に粘度が低減せず、溶剤や水に接触させても固体状態で残存するため、部材の結合を解除できても、一度硬化した接着剤を除去することは容易ではなかった。
本発明は、
高温と低温の間で、その状態が液状とゲル状とに可逆的に変化する相溶組成物、
高温下で液状となり容易に部材に塗工でき、低温下でゲル状となり部材同士を接着でき、再度高温にすると液状となって部材同士の接着を容易に解除できる接着剤組成物、
ゲル状となった接着剤組成物で接着された部材を含む複合構造物及びその製造方法、
並びに、
ゲル状となった接着剤組成物を、高温下で液状化して除去する前記複合構造物の解体方法を提供することを課題とする。
本発明は、
〔1〕ブロック共重合体化合物と媒質とが相溶してなる相溶組成物であって、
前記ブロック共重合体化合物は、下記式(1):
(式(1)中、Rは水素原子または炭素数1〜20の炭化水素基を表す)で示される部分構造を含む活性エネルギー線硬化性基を有する(メタ)アクリル系重合体ブロック(a)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とを有する(メタ)アクリル系ブロック共重合体であり、
前記ブロック共重合体化合物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有さず、
前記相溶組成物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有する相溶組成物、
〔2〕前項〔1〕記載の相溶組成物を配合してなる接着剤組成物、
〔3〕部材1及び部材2を含む複合構造物であって、
前記部材1及び前記部材2が前項〔2〕記載の接着剤組成物を介して接着している複合構造物、
〔4〕部材1及び部材2を含む複合構造物の製造方法であって、
前項〔1〕記載の温度Tcよりも高温の温度環境で、
前記部材1と前記部材2を、前記接着剤組成物を介して貼り合わせる工程1と、
前記工程1の後、前記温度環境を前記温度Tcよりも低温にして前項〔3〕記載の複合構造物を得る工程2とを有する複合構造物の製造方法、
〔5〕前記温度環境を前記温度Tcよりも高温にして、前記部材1及び前記部材2の前記接着剤組成物を介しての接着を解除して、前記部材1と前記部材2とを離隔する、前項〔3〕記載の複合構造物の解体方法、
〔6〕部材1及び部材2を含む複合構造物の製造方法であって、
前記製造方法が、
前項〔1〕記載の温度Tcよりも低温の温度環境で、
前記部材1と前記部材2を、ゲル状の前記相溶組成物が粘弾性を有する弾性体で、かつ熱硬化性及び/又は光硬化性を有する相溶組成物を配合してなる前項〔2〕記載の接着剤組成物を介して貼り合わせる工程1’と、
前記工程1’の後、前記接着剤組成物を熱硬化及び/又は光硬化させて前項〔3〕記載の複合構造物を得る工程2’とを有する複合構造物の製造方法、及び、
〔7〕部材1及び部材2を含む複合構造物の製造方法であって、
前記製造方法が、
前項〔1〕記載の相溶組成物であって、ゲル状の前記相溶組成物が粘着性を有する弾性体であり、熱硬化性及び/又は光硬化性からなる群から選ばれる少なくとも1種の硬化性を有する相溶組成物を配合してなる前項〔2〕記載の接着剤組成物を熱硬化及び/又は光硬化させて粘着硬化体を得る工程1”と、
前記部材1と前記部材2を、前記粘着硬化体を介して貼り合わせて前項〔3〕記載の複合構造物を得る工程2”とを有する複合構造物の製造方法である。
なお、温度Tの温度環境とは、相溶組成物の温度が温度Tになるような相溶化合物が存在する環境をいい、例えば、相溶組成物が室温に置かれていても、相溶組成物に接触したヒーターによって加温されて相溶組成物の温度が50℃を超えれば、その場合の温度環境は50℃超ということになる。以下では、「高温環境」及び「高温の温度環境」を「高温」ともいい、「低温環境」及び「低温の温度環境」を「低温」ともいう。
本発明によれば、
高温と低温の間で、その状態が液状とゲル状とに可逆的に変化する相溶組成物、
高温下で液状となり容易に部材に塗工でき、低温下でゲル状となり部材同士を接着でき、再度高温にすると液状となって部材同士の接着を容易に解除できる接着剤組成物、
ゲル状となった接着剤組成物で接着された部材を含む複合構造物及びその製造方法、
並びに、
ゲル状となった接着剤組成物を、高温下で液状化して除去する前記複合構造物の解体方法を提供することができる。
実施例1の相溶組成物の、0〜80℃の範囲における貯蔵剛性率G’と損失剛性率G”の測定結果である。 複合構造物の製造方法1の模式図である。 複合構造物の製造方法2の模式図である。 複合構造物の製造方法3の模式図である。
本明細書において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味し、後述する「(メタ)アクリロイル」は「メタクリロイル」と「アクリロイル」との総称を意味し、後述する「(メタ)アクリレート」は「メタクリレート」と「アクリレート」との総称を意味する。
〔ブロック共重合体化合物〕
(化合物A)
本発明におけるブロック共重合体化合物(以下、化合物Aという)は、下記式(1):
(式(1)中、Rは水素原子または炭素数1〜20の炭化水素基を表す)で示される部分構造(以下「部分構造(1)」という)を含む活性エネルギー線硬化性基を有する(メタ)アクリル系重合体ブロック(a)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とを有する(メタ)アクリル系ブロック共重合体であり、
前記ブロック共重合体化合物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有さない。
相溶組成物が化合物Aを含むことにより、ゲル状の相溶組成物及び硬化時の相溶組成物の弾性と粘着性が向上する。また、化合物Aは、部分構造(1)を含む活性エネルギー線硬化性基を有する結果、化合物Aを含む相溶組成物は例えば活性エネルギー線の照射によって硬化できる。本明細書において活性エネルギー線とは、光線、電磁波、粒子線およびこれらの組み合わせを意味する。光線としては遠紫外線、紫外線(UV)、近紫外線、可視光線、赤外線などが挙げられ、電磁波としてはX線、γ線などが挙げられ、粒子線としては電子線(EB)、プロトン線(α線)、中性子線などが挙げられる。硬化速度、照射装置の入手性、価格等の観点から、これら活性エネルギー線の中でも紫外線、電子線が好ましく、紫外線がより好ましい。
式(1)中、Rが表す炭素数1〜20の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、n−デシル等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基などのアラルキル基が挙げられる。中でも活性エネルギー線硬化性の観点から、メチル基およびエチル基が好ましく、メチル基が最も好ましい。
後述する化合物B及び可塑剤との相溶性の観点から、(メタ)アクリル系重合体ブロック(a)が有する活性エネルギー線硬化性基は、下記式(2):
(式(2)中、Rは水素原子または炭素数1〜20の炭化水素基を表し、RおよびRはそれぞれ独立して水素原子または炭素数1〜6の炭化水素基を表し、XはO、S、またはN(R)(Rは水素原子または炭素数1〜6の炭化水素基を表す)を表し、nは1〜20の整数を表す)で示される活性エネルギー線硬化性基(以下「活性エネルギー線硬化性基(2)」という)であることが好ましい。
式(2)中、Rが表す炭素数1〜20の炭化水素基の具体例および好適例としては、上記式(1)のRと同様の炭化水素基が挙げられる。
式(2)中、RおよびRはそれぞれ独立して水素原子または炭素数1〜6の炭化水素基を表し、後述するジ(メタ)アクリレート(3)を含有する単量体を用いて、容易に直接導入できる観点から、炭素数1〜6の炭化水素基が好ましい。かかる炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基が挙げられる。中でも硬化速度の観点から、メチル基およびエチル基が好ましく、メチル基が最も好ましい。
式(2)中、XはO、SまたはN(R)(Rは水素原子または炭素数1〜6の炭化水素基を表す)を表し、重合制御のしやすさからOであるのが好ましい。XがN(R)である場合、Rが表す炭素数1〜6の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、2−エチルブチル基、3−エチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基などが挙げられる。
式(2)中、nが表す1〜20の整数は、化合物Aの流動性と硬化速度の観点から2〜5であることが好ましい。
(メタ)アクリル系重合体ブロック(a)を形成する全単量体単位に対する部分構造(1)の含有量は0.2〜100mol%の範囲が好ましく、0.5〜90mol%の範囲がより好ましい。
(メタ)アクリル系重合体ブロック(a)は(メタ)アクリル酸エステルを含有する単量体を重合することにより形成される単量体単位を含む。かかる(メタ)アクリル酸エステルとしては、1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル酸エステルおよび/または2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル酸エステルを使用することができる。
(メタ)アクリル系重合体ブロック(a)を形成できる単官能(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2−アミノエチル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸N,N−ジエチルアミノエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸2−(トリメチルシリルオキシ)エチル、(メタ)アクリル酸3−(トリメチルシリルオキシ)プロピル、(メタ)アクリル酸グリシジル、γ−((メタ)アクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチルなどが挙げられる。これらの中でも、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル等の炭素数5以下のアルキル基を有するメタクリル酸アルキルエステルが好ましく、メタクリル酸メチルが最も好ましい。
また、(メタ)アクリル系重合体ブロック(a)を形成できる多官能(メタ)アクリル酸エステルとして、下記式(3):
(式中、R2’およびR3’はそれぞれ独立して炭素数1〜6の炭化水素基を表し、RおよびRはそれぞれ独立して水素原子またはメチル基を表し、nは1〜20の整数を表す)で示される2官能(メタ)アクリル酸エステル(以下、「ジ(メタ)アクリレート(3)」という)を用いると、後述する条件下でリビングアニオン重合することで、一方の(メタ)アクリロイルオキシ基(式(3)中「CH=C(R)C(O)O」で示される(メタ)アクリロイルオキシ基)が選択的に重合して、RがRであり、RがR’であり、RがR’であり、XがOである活性エネルギー線硬化性基(2)を有するメタクリル系重合体ブロック(a)が得られる。
式(3)中、R’およびR’が表す炭素数1〜6の炭化水素基の例としては、上記式(2)のRおよびRと同様の炭化水素基が挙げられる。
重合の選択性を高める観点から、Rはメチル基であることが好ましい。また、ジ(メタ)アクリレート(3)の生産性の観点から、RおよびRは同じであることが好ましい。以上の観点から、RおよびRは共にメチル基であることが最も好ましい。
ジ(メタ)アクリレート(3)の具体例としては、例えば1,1−ジメチルプロパン−1,3−ジオールジ(メタ)アクリレート、1,1−ジメチルブタン−1,4−ジオールジ(メタ)アクリレート、1,1−ジメチルペンタン−1,5−ジオールジ(メタ)アクリレート、1,1−ジメチルヘキサン−1,6−ジオールジ(メタ)アクリレート、1,1−ジエチルプロパン−1,3−ジオールジ(メタ)アクリレート、1,1−ジエチルブタン−1,4−ジオールジ(メタ)アクリレート、1,1−ジエチルペンタン−1,5−ジオールジ(メタ)アクリレート、1,1−ジエチルヘキサン−1,6−ジオールジ(メタ)アクリレートなどが挙げられ、1,1−ジメチルプロパン−1,3−ジオールジメタクリレート、1,1−ジメチルブタン−1,4−ジオールジメタクリレート、1,1−ジメチルペンタン−1,5−ジオールジメタクリレート、1,1−ジメチルヘキサン−1,6−ジオールジメタクリレート、1,1−ジエチルプロパン−1,3−ジオールジメタクリレート、1,1−ジエチルブタン−1,4−ジオールジメタクリレート、1,1−ジエチルペンタン−1,5−ジオールジメタクリレート、および1,1−ジエチルヘキサン−1,6−ジオールジメタクリレートが好ましく、1,1−ジメチルプロパン−1,3−ジオールジメタクリレート、1,1−ジメチルブタン−1,4−ジオールジメタクリレート、1,1−ジメチルペンタン−1,5−ジオールジメタクリレート、および1,1−ジメチルヘキサン−1,6−ジオールジメタクリレートがより好ましい。
これら(メタ)アクリル酸エステルは1種を単独で使用しても、2種以上を併用してもよい。
(メタ)アクリル系重合体ブロック(a)中の(メタ)アクリル酸エステルから形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(a)を形成する全単量体単位に対して90〜100モル%の範囲が好ましく、95〜100モル%の範囲がより好ましく、100モル%であってもよい。また、(メタ)アクリル系重合体ブロック(a)にジ(メタ)アクリレート(3)から形成される単量体単位が含まれる場合には、ジ(メタ)アクリレート(3)から形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(a)を形成する全単量体単位に対して0.2〜100モル%の範囲が好ましく、10〜90モル%の範囲がより好ましく、25〜80モル%の範囲がさらに好ましい。さらに、(メタ)アクリル系重合体ブロック(a)において、メタクリル酸メチルから形成される単量体単位の含有量とジ(メタ)アクリレート(3)から形成される単量体単位の含有量の合計は、(メタ)アクリル酸エステルから形成される全単量体単位に対して80〜100モル%の範囲が好ましく、90〜100モル%の範囲がより好ましく、95〜100モル%の範囲がさらに好ましく、100モル%であってもよい。
(メタ)アクリル系重合体ブロック(a)は、上記(メタ)アクリル酸エステル以外の他の単量体から形成される単量体単位を有していてもよい。該他の単量体としては、例えばα−メトキシアクリル酸メチル、α−エトキシアクリル酸メチルなどのα−アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチルなどのクロトン酸エステル;3−メトキシアクリル酸エステルなどの3−アルコキシアクリル酸エステル;N−イソプロピルアクリルアミド、N−t−ブチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミドなどのアクリルアミド;N−イソプロピルメタクリルアミド、N−t−ブチルメタクリルアミド、N,N−ジメチルメタクリルアミド、N,N−ジエチルメタクリルアミドなどのメタクリルアミド;2−フェニルアクリル酸メチル、2−フェニルアクリル酸エチル、2−ブロモアクリル酸n−ブチル、2−ブロモメチルアクリル酸メチル、2−ブロモメチルアクリル酸エチル、メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これら他の単量体は1種を単独で使用しても、2種以上を併用してもよい。
(メタ)アクリル系重合体ブロック(a)中の上記他の単量体から形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(a)を形成する全単量体単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましい。
(メタ)アクリル系重合体ブロック(a)1個あたりの数平均分子量(Mn)は特に制限されないが、取り扱い性、流動性および得られる硬化物の力学特性等の観点から、500〜1,000,000の範囲が好ましく、1,000〜300,000の範囲がより好ましい。なお、本明細書中において、Mnおよび後述する分子量分布はゲルパーミエーションクロマトグラフィー(GPC)法により測定された標準ポリスチレン換算値を意味する。
化合物Aは上記(メタ)アクリル系重合体ブロック(a)と活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とを有し、好ましい態様としては化合物Aは、(メタ)アクリル系重合体ブロック(a)と(メタ)アクリル系重合体ブロック(b)のみからなる。すなわち化合物Aは、(メタ)アクリル系重合体ブロック(b)を含む。
(メタ)アクリル系重合体ブロック(b)は、(メタ)アクリル酸エステルを含有する単量体を重合することにより形成される単量体単位を含み、活性エネルギー線硬化性基を有さない重合体ブロックである。本明細書において、活性エネルギー線硬化性基とは、上記活性エネルギー線の照射により重合性を示す官能基を意味する。活性エネルギー線硬化性基としては、例えば(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基、ビニルオキシ基、1,3−ジエニル基、スチリル基等のエチレン性二重結合(特に式CH=CR−(式中、Rはアルキル基または水素原子)で示されるエチレン性二重結合)を有する官能基;エポキシ基、オキセタニル基、チオール基、マレイミド基等が挙げられる。
(メタ)アクリル系重合体ブロック(b)を形成できる(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸N,N−ジエチルアミノエチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸2−(トリメチルシリルオキシ)エチル、(メタ)アクリル酸3−(トリメチルシリルオキシ)プロピルなどのモノ(メタ)アクリル酸エステルが挙げられる。中でも、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル等の炭素数4以上のアルキル基を有するアクリル酸アルキルエステル;メタクリル酸2−エチルヘキシル、メタクリル酸ドデシルなどの炭素数6以上のアルキル基を有するメタクリル酸アルキルエステルが好ましい。これら(メタ)アクリル酸エステルは1種を単独で使用しても、2種以上を併用してもよい。
(メタ)アクリル系重合体ブロック(b)中の(メタ)アクリル酸エステルにより形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(b)を形成する全単量体単位に対して90モル%以上であることが好ましく、95モル%以上であることがより好ましく、100モル%であってもよい。
(メタ)アクリル系重合体ブロック(b)は、(メタ)アクリル酸エステル以外の他の単量体から形成される単量体単位を有していてもよい。該他の単量体としては、例えばα−メトキシアクリル酸メチル、α−エトキシアクリル酸メチル等のα−アルコキシアクリル酸エステル;クロトン酸メチル、クロトン酸エチル等のクロトン酸エステル;3−メトキシアクリル酸エステル等の3−アルコキシアクリル酸エステル;N−イソプロピル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド;メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトンなどが挙げられる。これら他の単量体は1種を単独で使用しても、2種以上を併用してもよい。
(メタ)アクリル系重合体ブロック(b)中の上記他の単量体により形成される単量体単位の含有量は、(メタ)アクリル系重合体ブロック(b)を形成する全単量体単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましい。
(メタ)アクリル系重合体ブロック(b)1個あたりのMnは特に制限されないが、得られる化合物Aの取り扱い性、流動性、力学特性等の観点から、3,000〜2,000,000の範囲が好ましく、5,000〜1,000,000の範囲がより好ましい。
化合物Aとしては、少なくとも1個の(メタ)アクリル系重合体ブロック(a)と少なくとも1個の(メタ)アクリル系重合体ブロック(b)が互いに結合したブロック共重合体が挙げられ、各重合体ブロックの数および結合順序に特に制限はないが、活性エネルギー線硬化性の観点から(メタ)アクリル系重合体ブロック(a)が化合物Aの少なくとも1つの末端を形成することが好ましく、化合物Aの製造容易性の観点から、直鎖状の重合体であることがより好ましく、1個の(メタ)アクリル系重合体ブロック(a)と1個の(メタ)アクリル系重合体ブロック(b)が結合したジブロック共重合体および1個の(メタ)アクリル系重合体ブロック(b)の両端に(メタ)アクリル系重合体ブロック(a)各1個がそれぞれ結合したトリブロック共重合体がさらに好ましく、後述する接着剤組成物の硬化後の粘弾性特性の観点から、1個の(メタ)アクリル系重合体ブロック(b)の両端に(メタ)アクリル系重合体ブロック(a)各1個がそれぞれ結合したトリブロック共重合体がよりさらに好ましい。
化合物Aを構成する(メタ)アクリル系重合体ブロック(a)の質量と(メタ)アクリル系重合体ブロック(b)の質量との比率((メタ)アクリル系重合体ブロック(a):(メタ)アクリル系重合体ブロック(b))に特に制限はないが、85:15〜5:95であることが好ましく、80:20〜7:93であることがより好ましく、75:25〜10:90であることがさらに好ましい。(メタ)アクリル系重合体ブロック(a)と(メタ)アクリル系重合体ブロック(b)との合計質量に対する(メタ)アクリル系重合体ブロック(a)の質量が、5%以上であると硬化速度が速くなり、85%以下であると硬化物の靭性が高くなるので好ましい。
本発明の相溶組成物が容易に得られることからなどから、(メタ)アクリル系重合体ブロック(a)のガラス転移温度(Tg)は50℃超180℃以下であることが好ましく、また、(メタ)アクリル系重合体ブロック(b)のTgは、−100℃以上50℃以下であることが好ましい。このようなTgを有する各重合体ブロックが得られるようにこれらを形成する際に使用する単量体の種類や量を適宜調整すればよい。化合物AのTgは、(メタ)アクリル系重合体ブロック(a)および(メタ)アクリル系重合体ブロック(b)の好ましいTgが含まれる温度範囲、即ち、50℃超180℃以下の温度範囲と、−100℃以上50℃以下の温度範囲とにTgを有することが好ましい。
(ガラス転移温度(Tg)の測定条件)
化合物Aについて、200℃に設定した神藤金属工業株式会社製の油圧式熱プレス機を用い、10MPaの圧力で0.5mm厚みにシート成形する。その後、動的粘弾性測定に必要な45mm×10mm×0.5mmの短冊片を切り出す。
セイコーインスツルメンツ社製動的粘弾性装置(DMS6100)を使用し、
引っ張りモードにて、−100℃〜200℃の温度範囲(昇温速度3℃/分)、周波数11Hzの条件で測定して得られたチャートにおける、
tanδのピーク温度を読み取って短冊片を構成する化合物AのTgとする。
化合物Aにおいて、メタクリル酸エステルから形成される単量体単位の含有量は、5〜85質量%であることが好ましく、7〜80質量%であることがより好ましく、10〜75質量%であることがさらに好ましい。また、化合物Aにおいて、アクリル酸エステルから形成される単量体単位の含有量は、15〜95質量%であることが好ましく、20〜93質量%であることがより好ましく、25〜90質量%であることがさらに好ましい。
化合物AのMnは特に制限されないが、流動性の観点から、4,000〜3,000,000の範囲が好ましく、7,000〜2,000,000の範囲がより好ましく、10,000〜1,000,000の範囲がさらに好ましい。
化合物Aの分子量分布、すなわち重量平均分子量/数平均分子量(Mw/Mn)は1.02〜2.00の範囲が好ましく、1.05〜1.80の範囲がより好ましく、1.10〜1.50の範囲がさらに好ましい。
化合物Aにおける部分構造(1)の含有量は、化合物Aを形成する全単量体単位に対して0.1〜20モル%の範囲であることが好ましく、2〜15モル%の範囲であることがより好ましく、3〜10モル%の範囲がさらに好ましい。
化合物Aは(メタ)アクリル系重合体ブロック(a)および(メタ)アクリル系重合体ブロック(b)を所望の順序で形成することで得られる。
化合物Aの製造方法は特に限定されないが、アニオン重合法またはラジカル重合法が好ましく、重合制御の観点からリビングアニオン重合法またはリビングラジカル重合法がより好ましく、リビングアニオン重合法がさらに好ましい。化合物Aの製造に使用する単量体は、重合を円滑に進行させる観点から、不活性ガス雰囲気下であらかじめ乾燥処理しておくことが好ましい。乾燥処理にあたっては、水素化カルシウム、モレキュラーシーブス、活性アルミナ等の脱水剤または乾燥剤が好ましく用いられる。
リビングラジカル重合法としては、ポリスルフィドなどの連鎖移動剤を用いる重合法、コバルトポルフィリン錯体を用いる重合法、ニトロキシドを用いる重合法(国際公開第2004/014926号参照)、有機テルル化合物などの高周期ヘテロ元素化合物を用いる重合法(特許第3839829号公報参照)、可逆的付加脱離連鎖移動重合法(RAFT)(特許第3639859号公報参照)、原子移動ラジカル重合法(ATRP)(特許第3040172号公報、国際公開第2004/013192号参照)などが挙げられる。これらリビングラジカル重合法の中でも、原子移動ラジカル重合法が好ましく、有機ハロゲン化物またはハロゲン化スルホニル化合物を開始剤とし、Fe、Ru、Ni、Cuから選ばれる少なくとも1種類を中心金属とする金属錯体を触媒とする原子移動ラジカル重合法がより好ましい。
リビングアニオン重合法としては、有機希土類金属錯体を重合開始剤としてリビング重合する方法(特開平06−93060号公報参照)、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でリビングアニオン重合する方法(特表平05−507737号公報参照)、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法(特開平11−335432号公報、国際公開2013/141105号参照)などが挙げられる。これらリビングアニオン重合法の中でも、(メタ)アクリル系重合体ブロック(a)を直接、効率よく形成できる点からは、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法が好ましく、有機アルミニウム化合物およびルイス塩基の存在下で、有機リチウム化合物を重合開始剤としリビングアニオン重合する方法がより好ましい。
上記有機リチウム化合物としては、例えばt−ブチルリチウム、1,1−ジメチルプロピルリチウム、1,1−ジフェニルヘキシルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム、エチルα−リチオイソブチレート、ブチルα−リチオイソブチレート、メチルα−リチオイソブチレート、イソプロピルリチウム、sec−ブチルリチウム、1−メチルブチルリチウム、2−エチルプロピルリチウム、1−メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α−メチルベンジルリチウム、メチルリチウム、n−プロピルリチウム、n−ブチルリチウム、n−ペンチルリチウム等が挙げられる。中でも、入手容易性およびアニオン重合開始能の観点から、イソプロピルリチウム、sec−ブチルリチウム、1−メチルブチルリチウム、1−メチルペンチルリチウム、シクロヘキシルリチウム、ジフェニルメチルリチウム、α−メチルベンジルリチウム等の二級炭素原子を陰イオン中心とする化学構造を有する炭素数3〜40の有機リチウム化合物が好ましく、sec−ブチルリチウムが特に好ましい。これら有機リチウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
有機リチウム化合物の使用量は、目的とする化合物AのMnに応じて、用いる単量体の使用量との比率によって決定できる。
上記有機アルミニウム化合物としては、下記式(A−1):
AlR(R)(R) (A−1)
(式中、Rは一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基、アリールオキシ基またはN,N−二置換アミノ基を表し、RおよびRはそれぞれ独立してアリールオキシ基を表すか、あるいはRおよびRは互いに結合してアリーレンジオキシ基を形成している)で示される有機アルミニウム化合物、又は、下記式(A−2):
AlR10(R11)(R12) (A−2
(式中、R10はアリールオキシ基を表し、R11およびR12はそれぞれ独立して一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基またはN,N−二置換アミノ基を表す)で示される有機アルミニウム化合物が挙げられる。
式(A−1)および(A−2)中、R、R、RおよびR10がそれぞれ独立して表すアリールオキシ基としては、例えばフェノキシ基、2−メチルフェノキシ基、4−メチルフェノキシ基、2,6−ジメチルフェノキシ基、2,4−ジ−t−ブチルフェノキシ基、2,6−ジ−t−ブチルフェノキシ基、2,6−ジ−t−ブチル−4−メチルフェノキシ基、2,6−ジ−t−ブチル−4−エチルフェノキシ基、2,6−ジフェニルフェノキシ基、1−ナフトキシ基、2−ナフトキシ基、9−フェナントリルオキシ基、1−ピレニルオキシ基、7−メトキシ−2−ナフトキシ基等が挙げられる。
式(A−1)中、RとRが互いに結合して形成されるアリーレンジオキシ基としては、例えば2,2’−ビフェノール、2,2’−メチレンビスフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、(R)−(+)−1,1’−ビ−2−ナフトール、(S)−(−)−1,1’−ビ−2−ナフトール等の2個のフェノール性水酸基を有する化合物中の該2個のフェノール性水酸基の水素原子を除いた官能基が挙げられる。
なお、上記のアリールオキシ基およびアリーレンジオキシ基において含まれる1個以上の水素原子が、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
式(A−1)および(A−2)中、R、R11およびR12がそれぞれ独立して表す一価の飽和炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、2−メチルブチル基、3−メチルブチル基、n−オクチル基、2−エチルヘキシル基等のアルキル基;シクロヘキシル基等のシクロアルキル基等が挙げられ、一価の芳香族炭化水素基としては、例えばフェニル基等のアリール基;ベンジル基等のアラルキル基等が挙げられ、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等が挙げられ、N,N−二置換アミノ基としては、例えばジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ビス(トリメチルシリル)アミノ基等が挙げられる。上述した一価の飽和炭化水素基、一価の芳香族炭化水素基、アルコキシ基およびN,N−二置換アミノ基において含まれる1個以上の水素原子が、置換基により置換されていてもよく、該置換基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子等が挙げられる。
有機アルミニウム化合物(A−1)としては、例えばエチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、エチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、エチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、イソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、n−オクチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、n−オクチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、n−オクチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、メトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、メトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、メトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、エトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、エトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、エトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、イソプロポキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソプロポキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、t−ブトキシビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、t−ブトキシビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、t−ブトキシ[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム、トリス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、トリス(2,6−ジフェニルフェノキシ)アルミニウム等が挙げられる。中でも、重合開始効率、重合末端アニオンのリビング性、入手および取り扱いの容易さ等の観点から、イソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−t−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−t−ブチルフェノキシ)]アルミニウム等が好ましい。
有機アルミニウム化合物(A−2)としては、例えばジエチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジエチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム、ジn−オクチル(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウム、ジn−オクチル(2,6−ジ−t−ブチルフェノキシ)アルミニウム等が挙げられる。これら有機アルミニウム化合物は1種を単独で使用しても、2種以上を併用してもよい。
上記ルイス塩基としては、分子内にエーテル結合および/または三級アミン構造を有する化合物が挙げられる。
上記ルイス塩基として用いられる、分子内にエーテル結合を有する化合物としてはエーテルが挙げられる。上記エーテルとしては、重合開始効率の高さ、重合末端アニオンのリビング性の観点から、2個以上のエーテル結合を分子内に有する環状エーテルまたは1個以上のエーテル結合を分子内に有する非環状エーテルが好ましい。2個以上のエーテル結合を分子内に有する環状エーテルとしては、例えば12−クラウン−4、15−クラウン−5、18−クラウン−6等のクラウンエーテルが挙げられる。1個以上のエーテル結合を分子中に有する非環状エーテルとしては、例えばジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール等の非環状モノエーテル;1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジイソプロポキシエタン、1,2−ジブトキシエタン、1,2−ジフェノキシエタン、1,2−ジメトキシプロパン、1,2−ジエトキシプロパン、1,2−ジイソプロポキシプロパン、1,2−ジブトキシプロパン、1,2−ジフェノキシプロパン、1,3−ジメトキシプロパン、1,3−ジエトキシプロパン、1,3−ジイソプロポキシプロパン、1,3−ジブトキシプロパン、1,3−ジフェノキシプロパン、1,4−ジメトキシブタン、1,4−ジエトキシブタン、1,4−ジイソプロポキシブタン、1,4−ジブトキシブタン、1,4−ジフェノキシブタン等の非環状ジエーテル;ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジブチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、ジブチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、トリブチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、トリブチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラプロピレングリコールジメチルエーテル、テトラブチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラブチレングリコールジエチルエーテル等の非環状ポリエーテルが挙げられる。中でも、副反応の抑制、入手容易性等の観点から、1〜2個のエーテル結合を分子内に有する非環状エーテルが好ましく、ジエチルエーテルまたは1,2−ジメトキシエタンがより好ましい。
上記ルイス塩基として用いられる、分子内に三級アミン構造を有する化合物としては、三級ポリアミンが挙げられる。三級ポリアミンとは、三級アミン構造を分子中に2個以上有する化合物を意味する。該三級ポリアミンとしては、例えばN,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラエチルエチレンジアミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラアミン、トリス[2−(ジメチルアミノ)エチル]アミン等の鎖状ポリアミン;1,3,5−トリメチルヘキサヒドロ−1,3,5−トリアジン、1,4,7−トリメチル−1,4,7−トリアザシクロノナン、1,4,7,10,13,16−ヘキサメチル−1,4,7,10,13,16−ヘキサアザシクロオクタデカン等の非芳香族性複素環式化合物;2,2’−ビピリジル、2,2’:6’,2”−ターピリジン等の芳香族性複素環式化合物等が挙げられる。
また、分子内に1個以上のエーテル結合と1個以上の三級アミン構造を有する化合物をルイス塩基として使用してもよい。このような化合物としては、例えばトリス[2−(2−メトキシエトキシ)エチル]アミン等が挙げられる。
これらルイス塩基は1種を単独で使用しても、2種以上を併用してもよい。
ルイス塩基の使用量は、重合開始効率、重合末端アニオンの安定性等の観点から、有機リチウム化合物1モルに対して0.3〜5.0モルの範囲であることが好ましく、0.5〜3.0モルの範囲であることがより好ましく、1.0〜2.0モルの範囲であることがさらに好ましい。ルイス塩基の使用量が有機リチウム化合物1モルに対して、5.0モルを超えると経済性において不利となる傾向となり、0.3モルを下回ると重合開始効率が低下する傾向となる。
また、ルイス塩基の使用量は、有機アルミニウム化合物1モルに対して、0.2〜1.2モルの範囲であることが好ましく、0.3〜1.0モルの範囲であることがより好ましい。
上記リビングアニオン重合は、温度制御および系内を均一化して重合を円滑に進行させる観点から、有機溶媒の存在下に行うことが好ましい。有機溶媒としては、安全性、重合後の反応混合液の水洗における水との分離性、回収・再使用の容易性等の観点から、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化炭化水素;フタル酸ジメチル等のエステル等が好ましい。これら有機溶媒は1種を単独で使用しても、2種以上を併用してもよい。なお、有機溶媒は、重合を円滑に進行させる観点から、乾燥処理を施すとともに、不活性ガス存在下であらかじめ脱気しておくことが好ましい。
また、上記リビングアニオン重合では、必要に応じ、反応系に他の添加剤を存在させてもよい。該他の添加剤としては、例えば塩化リチウム等の無機塩類;リチウムメトキシエトキシエトキシド、カリウムt−ブトキシド等の金属アルコキシド;テトラエチルアンモニウムクロリド、テトラエチルホスホニウムブロミド等が挙げられる。
上記リビングアニオン重合は−30〜25℃で行うのが好ましい。−30℃よりも低いと重合速度が低下し、生産性が低下する傾向がある。一方、25℃より高いと、上記部分構造(1)を含む(メタ)アクリル系重合体ブロック(a)の重合をリビング性よく行うことが困難となる傾向となる。
上記リビングアニオン重合は、窒素、アルゴン、ヘリウム等の不活性ガスの雰囲気下で行うことが好ましい。また、反応系が均一になるように十分な攪拌条件下にて行うことが好ましい。また、反応系が均一になるように十分な攪拌条件下にて行うことが好ましい。また、使用する単量体は、リビングアニオン重合を円滑に進行させる観点から、不活性ガス雰囲気下であらかじめ乾燥処理しておくことが好ましい。乾燥処理にあたっては、水素化カルシウム、モレキュラーシーブス、活性アルミナ等の脱水剤または乾燥剤が好ましく用いられる。
上記リビングアニオン重合において、有機リチウム化合物、有機アルミニウム化合物、ルイス塩基および単量体をアニオン重合の反応系に添加する方法としては、ルイス塩基が、有機リチウム化合物との接触前に有機アルミニウム化合物と接触するように添加することが好ましい。また、有機アルミニウム化合物は、単量体より先にアニオン重合の反応系に添加しても、同時に添加してもよい。有機アルミニウム化合物を単量体と同時にアニオン重合の反応系に添加する場合、有機アルミニウム化合物を単量体と別途混合したのちに添加してもよい。
上記リビングアニオン重合は、メタノール;酢酸または塩酸のメタノール溶液;酢酸、塩酸の水溶液等のプロトン性化合物などの重合停止剤を反応液に添加することにより停止できる。重合停止剤の使用量は、通常、用いる有機リチウム化合物1モルに対して1〜100モルの範囲が好ましい。
アニオン重合停止後の反応液から化合物Aを分離取得する方法としては、公知の方法を採用できる。例えば、反応液を化合物Aの貧溶媒に注いで化合物Aを沈殿させる方法、反応液から有機溶媒を留去して化合物Aを取得する方法等が挙げられる。
なお、分離取得した化合物A中に有機リチウム化合物および有機アルミニウム化合物に由来する金属成分が残存していると、化合物Aの物性の低下、透明性不良等を生じる場合がある。よって、有機リチウム化合物および有機アルミニウム化合物に由来する金属成分をアニオン重合停止後に除去することが好ましい。該金属成分の除去方法としては、酸性水溶液を用いた洗浄処理、イオン交換樹脂、セライト、活性炭等の吸着剤を用いた吸着処理等が有効である。ここで、酸性水溶液としては、例えば、塩酸、硫酸水溶液、硝酸水溶液、酢酸水溶液、プロピオン酸水溶液、クエン酸水溶液等を使用することができる。
上記化合物Aの製造において部分構造(1)を含む活性エネルギー線硬化性基を導入する方法としては、上記したジ(メタ)アクリレート(3)を含有する単量体を重合して(メタ)アクリル系重合体ブロック(a)を形成する方法の他に、部分構造(1)の前駆体となる部分構造(以下「前駆体構造」という)を含む重合体ブロックを形成した後に、該前駆体構造を部分構造(1)に変換する方法も挙げられる。前駆体構造を含む重合体ブロックは、重合性官能基と前駆体構造を含む化合物を含有する単量体を重合することで得られる。該重合性官能基としては、スチリル基、1,3−ジエニル基、ビニルオキシ基、(メタ)アクリロイル基などが挙げられ、(メタ)アクリロイル基が好ましい。前駆体構造としては、水酸基および保護基(シリルオキシ基、アシルオキシ基、アルコキシ基など)によって保護された水酸基、アミノ基および保護基によって保護されたアミノ基、ならびにチオール基および保護基によって保護されたチオール基、ならびにイソシアネート基などが挙げられる。
前駆体構造として水酸基を含む重合体ブロックは、部分構造(1)および水酸基と反応しうる部分構造(カルボキシル基、エステル、カルボニルハライドなど)を有する化合物と反応させることで(メタ)アクリル系重合体ブロック(a)を形成できる。また、前駆体構造として保護基によって保護された水酸基を含む重合体ブロックは、該保護基を外して水酸基とした後、同様に(メタ)アクリル系重合体ブロック(a)を形成できる。
前駆体構造としてアミノ基を含む重合体ブロックは、部分構造(1)およびアミノ基と反応しうる部分構造(カルボキシル基、カルボン酸無水物、エステル、カルボニルハライド、アルデヒド基、イソシアネート基など)を有する化合物と反応させることで(メタ)アクリル系重合体ブロック(a)を形成できる。また、前駆体構造として保護基によって保護されたアミノ基を含む重合体ブロックは、該保護基を外してアミノ基とした後で同様に(メタ)アクリル系重合体ブロック(a)を形成できる。
前駆体構造としてチオール基を含む重合体ブロックは、部分構造(1)およびチオール基と反応しうる部分構造(カルボキシル基、カルボン酸無水物、エステル、カルボニルハライド、イソシアネート基、炭素−炭素二重結合など)を有する化合物と反応させることで(メタ)アクリル系重合体ブロック(a)を形成できる。また、前駆体構造として保護基によって保護されたチオール基を含む重合体ブロックは、該保護基を外してチオール基とした後で同様に(メタ)アクリル系重合体ブロック(a)を形成できる。
前駆体構造としてイソシアネート基を含む重合体ブロックは、部分構造(1)およびイソシアネート基と反応しうる部分構造(水酸基、アミノ基など)を有する化合物と反応させることで(メタ)アクリル系重合体ブロック(a)を形成できる。
化合物Aの製造において、(メタ)アクリル系重合体ブロック(a)を形成する方法としては、活性エネルギー線硬化性基を容易に直接導入できる観点から、ジ(メタ)アクリレート(3)を含有する単量体を重合する方法、典型的にはリビングアニオン重合する方法が好ましい。
〔媒質〕
(化合物B)
本発明における媒質(以下、化合物Bという)は、化合物Aと相溶して、温度0〜150℃の間で液状−ゲル状転移温度(Tc)を有する本発明の相溶組成物(以下、相溶組成物ともいう)を構成する化合物である。
化合物Bとしては、化合物Aとの相溶組成物が流動性を有することができる化合物を目安として選択するとよく、(メタ)アクリレート系モノマー、(メタ)アクリルアミド系モノマー等のラジカル重合性不飽和結合含有モノマー、可塑剤、溶剤などであってよい。
化合物Aとの相溶組成物が流動性を有することができるモノマー化合物としては、
好ましくは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレート等のアルコキシ置換アルキル(メタ)アクリレート;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等のヒドロキシ置換アルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等のジ(メタ)アクリレート;4−t−ブチルシクロヘキシルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ノルボルネン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環構造含有(メタ)アクリレート、(メタ)アクリロイルモルフォリン、ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミドからなる群から選ばれる少なくとも1種の化合物、
より好ましくは、イソデシルアクリレート、4−ヒドロキシブチルアクリレート及び4−tert−ブチルシクロヘキシルアクリレートからなる群から選ばれる少なくとも1種の化合物である。
化合物Bとして、後述するゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、ラジカル反応性、カチオン反応性、アニオン反応性及び湿気反応性からなる群から選ばれる少なくとも1種の反応性を有する反応性化合物を使用することが好ましい。なお、本明細書では空気中の水分(湿気)によって重合反応する反応性のことを湿気反応性といい、硬化性組成物中の湿気反応性基の重合反応による硬化性組成物の硬化を湿硬化という。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、ラジカル反応性化合物としては、
好ましくは、(メタ)アクリレート、(メタ)アクリルアミド、(メタ)アクリロニトリル、ウレタン(メタ)アクリレート、ビニル基、ビニルエーテル、アリルエーテル、マレインイミド及び無水マレイン酸からなる群から選ばれる少なくとも1種の、
より好ましくは、(メタ)アクリレート、(メタ)アクリルアミド、ウレタン(メタ)アクリレート及びビニルエーテルからなる群から選ばれる少なくとも1種の、
さらに好ましくは、(メタ)アクリレート及びウレタン(メタ)アクリレートからなる群から選ばれる少なくとも1種のラジカル反応性基(ラジカル反応の速度と安定性の観点から好ましくは2官能以上の多官能の基)を有する反応性化合物である。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、カチオン反応性化合物としては、
好ましくは、エポキシ、オキセタン及びビニルエーテルからなる群から選ばれる少なくとも1種のカチオン反応性を有する反応性化合物である。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、アニオン反応性化合物としては、好ましくは、エポキシ、オキセタン及びビニルエーテルからなる群から選ばれる少なくとも1種のアニオン反応性を有する反応性化合物である。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、湿気反応性化合物としては、好ましくはイソシアネート基及び/またはアルコキシシラン基である。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点から、好ましくは化合物Aとラジカル反応性化合物である化合物Bとの組み合わせによって相溶組成物を構成する。
ゲル状の相溶組成物及び硬化時の相溶組成物の強度、弾性及び粘着性を向上する観点と相溶組成物の利用し易さの観点から、相溶組成物は、反応性化合物の種類に応じて適切な重合開始剤を含有していることが好ましい。
反応性化合物がラジカル反応性化合物の場合は、重合開始剤としては、
好ましくは、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、ベンゾフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−メチルチオ]フェニル]−2−モルホリノプロパンー1−オン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、2−ヒドロキシ−2−メチル−[4−(1−メチルビニル)フェニル]プロパノールオリゴマー、2−ヒドロキシ−2−メチル−[4−(1−メチルビニル)フェニル]プロパノールオリゴマー,2−ヒドロキシ−2−メチル−1−フェニル−1−プロパノン、イソプロピルチオキサントン、o−ベンゾイル安息香酸メチル、[4−(メチルフェニルチオ)フェニル]フェニルメタン、2,4−ジエチルチオキサントン、2−クロロチオキサントン、ベンゾフェノン、エチルアントラキノン、ベンゾフェノンアンモニウム塩、チオキサントンアンモニウム塩、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキサイド、2,4,6−トリメチルベンゾフェノン、4−メチルベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、1,4ジベンゾイルベンゼン、10−ブチル−2−クロロアクリドン、2,2’ビス(o−クロロフェニル)4,5,4’,5’−テトラキス(3,4,5−トリメトキシフェニル)1,2’−ビイミダゾール、2,2’ビス(o−クロロフェニル)4,5,4’,5’−テトラフェニル−1,2’−ビイミダゾール、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルジフェニルエーテル、アクリル化ベンゾフェノン、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、o−メチルベンゾイルベンゾエート、p−ジメチルアミノ安息香酸エチルエステル、p−ジメチルアミノ安息香酸イソアミルエチルエステル、活性ターシャリアミン、カルバゾール・フェノン系光反応開始剤化合物、アクリジン系光反応開始剤化合物、トリアジン系光反応開始剤化合物及びベンゾイル系光反応開始剤化合物からなる群から選ばれる少なくとも1種以上の化合物であり、
より好ましくは、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン及び/又は2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキシドである。
反応性化合物がカチオン反応性化合物の場合は、重合開始剤としては、
好ましくはアリールジアゾニウム塩、ジアリールハロニウム塩、トリアリールスルホニウム塩、トリホスホニウム塩、鉄アレン錯体、チタノセン錯体及びアリールシラノールアルミニウム錯体からなる群から選ばれる少なくとも1種のイオン性光酸発生剤化合物、並びに/又は、ニトロベンジルエステル、スルホン酸誘導体、燐酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン及びN−ヒドロキシイミドスルホナートからなる群から選ばれる少なくとも1種の非イオン性光酸発生剤化合物である。
反応性化合物がアニオン反応性化合物の場合は、重合開始剤としては、
好ましくは、1,10−ジアミノデカン、4,4’−トリメチレンジピペラジン、カルバメート類化合物及びその誘導体、コバルト−アミン錯体類化合物、アミノオキシイミノ類化合物及びアンモニウムボレート類化合物からなる群から選ばれる少なくとも1種の化合物である。
反応性化合物が湿気反応性化合物の場合は、重合開始剤としては、
好ましくは、シラノール縮合触媒としてテトラブチルチタネート、テトラプロピルチタネート、チタンテトラアセチルアセトナート及びビスアセチルアセトナトジイソプロポキシチタンからなる群から選ばれる少なくとも1種のチタン化合物、
ジブチル錫ジウラレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクテート、ジブチル錫ジエチルヘキサノレート、ジブチル錫ジメチルマレエート、ジブチル錫ジエチルマレエート、ジブチル錫ジブチルマレエート、ジブチル錫ジオクチルマレエート、ジブチル錫ジトリデシルマレエート、ジブチル錫ジベンジルマレエート、ジブチル錫ジアセテート、ジオクチル錫ジエチルマレエート、ジオクチル錫ジオクチルマレエート、ジブチル錫ジメトキサイド、ジブチル錫ジノニルフェノキサイド、ジブテニル錫オキサイド、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセトナート、ジブチル錫オキサイドとシリケート化合物との反応物及びジブチル錫オキサイドとフタル酸エステルとの反応物からなる群から選ばれる少なくとも1種の4価の有機錫化合物、
アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート及びジイソプロポキシアルミニウムエチルアセトアセテートからなる群から選ばれる少なくとも1種の有機アルミニウム化合物、
ジルコニウムテトラアセチルアセトナートなどのジルコニウム化合物、
アミン系化合物、酸性リン酸エステル、酸性リン酸エステルとアミン系化合物との反応物、飽和または不飽和の多価カルボン酸またはその酸無水物、カルボン酸化合物とアミン系化合物との塩などの反応物、オクチル酸鉛、並びに、
イソシアネート反応触媒からなる群から選ばれる少なくとも1種の化合物である。
イソシアネート反応触媒としては、
好ましくは、トリエチルアミン、ベンジルメチルアミン、N,N’,N’−トリメチルアミノエチルピペラジン、トリエチレンジアミン及びジメチルエタノールアミンからなる群から選ばれる少なくとも1種のアミン類化合物、
トリエチルホスフィンなどのトリアルキルホスフィン類化合物、
ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、錫オクトエート及びジブチル錫ジエチルヘキサノレートからなる群から選ばれる少なくとも1種の有機スズ化合物、
ジ(2−エチルヘキサン酸)鉛、ナフテン酸鉛、ナフテン酸銅、ナフテン酸コバルト、並びに、ナフテン酸亜鉛から選ばれる少なくとも1種の化合物である。
化合物Aとの相溶組成物が流動性を有することができる可塑剤としては、
好ましくは、ジブチルフタレート、ジイソノニルフタレート、ジブチルフタレート、ジ(2−エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル;
アジピン酸ジオクチル、アジピン酸ジイソノニル、セバシン酸ジオクチル、セバシン酸ジイソノニル、1,2−シクロヘキサンジカルボン酸ジイソノニル等の多価カルボン酸エステル;
安息香酸アルキル;
トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル;
トリメリット酸エステル
(水添)ポリイソプレン、水酸基含有(水添)ポリイソプレン、(水添)ポリブタジエン、水酸基含有(水添)ポリブタジエン、ポリブテン等のゴム系ポリマー;
熱可塑性エラストマー;
石油樹脂;
脂環族飽和炭化水素樹脂;
テルペン樹脂、テルペンフェノール樹脂、変性テルペン樹脂、水添テルペン樹脂等のテルペン系樹脂;
ロジンフェノール等のロジン系樹脂;
不均化ロジンエステル系樹脂、重合ロジンエステル系樹脂、水添ロジンエステル系樹脂等のロジンエステル系樹脂;
キシレン樹脂;及び
アクリルポリマー、アクリルコポリマー等のアクリル系樹脂からなる群から選ばれる少なくとも1種の化合物、
より好ましくは、多価カルボン酸エステル及びロジンエステル系樹脂からなる群から選ばれる少なくとも1種の化合物である。
化合物Aに対して溶剤として作用する化合物Bとしては、
好ましくは、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、ベンジルアルコールなどのアルコール類;
ベンゼン、トルエン、キシレン、ミネラルスピリット、シクロヘキサン、n−ヘキサン、メチルシクロヘキサン、スチレンなどの炭化水素類;
ジエチルエーテルなどのエーテル類;
酢酸エチル、酢酸プロピル、酢酸ブチル、ジエチレングリコールモノエチルエーテルアセテート、炭酸ジエチル、炭酸ジメチル、炭酸プロピレンなどのエステル類;
アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどの窒素類;
ブチルグリコール、メチルジグリコール、ブチルジグリコール、3−メチル−3−メトキシブタノール、テトラヒドロフランなどのグリコールエーテル類;
塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼンなどの塩素類;
ジメチルスルホキシド;アセトニトリル;ギ酸、酢酸等のカルボン酸類;及び水からなる群から選ばれる少なくとも1種の化合物、
より好ましくは、アルコール類、炭化水素類、エステル類及びケトン類からなる群から選ばれる少なくとも1種の化合物、
更に好ましくは、アセトン、ヘキサン、イソプロピルアルコール及び炭酸ジエチルからなる群から選ぶことができる。
化合物Bは、化合物Aとの相溶組成物が流動性を有する化合物であるが、化合物Aに対してある配合量までは、化合物Aと相溶して0〜150℃の間でTcを有する相溶組成物を構成でき、その配合量を超えるとTcが0℃未満となり、室温が0℃を超えると相溶組成物であることができなくなり、化合物Aが化合物Bに溶解した溶液になってしまう場合がある。このような場合、化合物Bは、Tcが0〜150℃にある配合量のときは相溶組成物の媒質であり、Tcが0℃未満になると相溶組成物の溶剤であることになる。
本発明における溶剤とは、溶剤と溶剤相溶組成物との混合組成物のTcが、その溶剤の配合量が一定量を超えると0℃未満になる化合物ということができる。従って、ラジカル重合性不飽和結合含有モノマーや可塑剤であっても、混合組成物のTcが、そのラジカル重合性不飽和結合含有モノマーや可塑剤の配合量が一定量を超えると0℃未満になれば、それらは本発明における溶剤であるとみなすことができる。
化合物Bの粘度は、化合物Aと相溶して、温度0〜150℃の間で液状−ゲル状転移温度(Tc)を有する本発明の相溶組成物を製造できる範囲であればよいが、
化合物Aとの相溶組成物を容易に製造する観点から、化合物Bの粘度は、
好ましくは0.001〜10Pa・sであり、より好ましくは0.001〜1Pa・sであり、更に好ましくは0.001〜0.5Pa・sである。
なお、化合物Bがオリゴマー等の場合で温度Tcよりも低温環境で高粘度又は固体の場合でも、温度Tcよりも高温環境では低粘度になったり、低粘度の他の化合物Bには溶解したり、溶剤に溶解したりするので、これらを組合せて化合物Aと混錬して相溶組成物を製造できる。
相溶組成物を、後述する接着剤組成物として使用する場合、部材への塗布性の観点から、液状の相溶組成物の粘度は、
好ましくは0.1〜100Pa・sであり、より好ましくは0.3〜50Pa・sであり、更に好ましくは0.5〜10Pa・sである。
なお、化合物B及び相溶組成物の粘度は、実施例に記載した測定条件で測定する。
〔相溶組成物〕
化合物Aと化合物Bとが相溶してなる相溶組成物は、温度0〜150℃の間で、
化合物Aは液状−ゲル状転移温度(Tc)を有さず、
相溶組成物は液状−ゲル状転移温度(Tc)を有する組成物である。
温度Tcは0〜150℃の範囲において、以下の条件で測定された貯蔵剛性率G’と損失剛性率G”とが等しくなる温度とする。
相溶組成物及び化合物Aの貯蔵剛性率G’と損失剛性率G”は、
レオメータ(Anton Paar社製)を使用し、
コーンローター(φ=25mm、ローター角度2°)、周波数1Hz、ひずみ1%で、
150℃から0℃に向けて、2℃/分で冷却して測定した。
実施例1の相溶組成物の貯蔵剛性率G’と損失剛性率G”について、温度0〜80℃の範囲の測定結果を、図1に示す(なお、化合物Aでは貯蔵剛性率G’と損失剛性率G”とが等しくなる温度が存在しなかった)。
実施例1の場合、貯蔵剛性率G’と損失剛性率G”とが等しくなる温度(貯蔵剛性率G’曲線と損失剛性率G”曲線とが交わる温度)44℃が、相溶組成物についての温度Tcとなる。
相溶組成物は、
温度Tc以上(好ましくは温度Tcよりも10℃以上高温、より好ましくは温度Tcよりも15℃以上高温、更に好ましくは温度Tcよりも20℃以上高温)の温度では、大気圧下で水平なガラスプレート上に0.01g以上滴下すると自然流動する液状体であるが、温度Tc未満(好ましくは温度Tcよりも10℃以上低温、より好ましくは温度Tcよりも15℃以上低温、更に好ましくは温度Tcよりも20℃以上低温)の温度では、大気圧下で水平なガラスプレート上に0.01g以上静置しても流動しないゲル状体である。
相溶組成物は、温度Tcの前後(好ましくはTc±10℃の温度範囲、より好ましくはTc±15℃の温度範囲、更に好ましくはTc±20℃の温度範囲)の温度で、ゲル状体と液状体に可逆的に変化する。
相溶組成物をゲル状で使用できる温度範囲が広く、あまり高温で液状にする必要がないという観点から、温度Tcは、好ましくは10〜100℃、より好ましくは20〜90℃、更に好ましくは30〜80℃である。
温度Tcは、
(メタ)アクリル系重合体ブロック(a)のTgを高くするか、化合物Bの配合比率を少なくすると、高温側に設定でき
(メタ)アクリル系重合体ブロック(a)のTgを低くするか、化合物Bの配合比率を大きくすると、低温側に設定できる。
例えば、相溶組成物を後述する接着剤組成物として使用した場合、
温度Tcより高温で液状の相溶組成物を部材上に塗工し、相溶組成物を介して部材同士を貼り合わせて、温度Tcより低温にすると、部材同士は、ゲル状の相溶組成物を介して安定に接着されるが、再び、温度Tcより高温にすると、相溶組成物がゲル状から液状に変化するため、部材同士を容易に分離した状態にすることができる。
〔相溶組成物粘弾性体〕
相溶組成物は、ゲル状の相溶組成物及び硬化時の相溶組成物の弾性と粘着性を向上する観点から、化合物A、化合物Bとしてラジカル反応性、カチオン反応性、アニオン反応性及び湿気反応性からなる群から選ばれる少なくとも1種の反応性を有する反応性化合物(好ましくは、更に可塑剤との組み合わせ)並びに重合開始剤を含有することが好ましい(以下、化合物A、化合物Bとしてラジカル反応性、カチオン反応性、アニオン反応性及び湿気反応性からなる群から選ばれる少なくとも1種の反応性を有する反応性化合物(好ましくは、更に可塑剤との組み合わせ)並びに重合開始剤を含有するゲル状の相溶組成物を相溶組成物粘弾性体ともいう)。
相溶組成物粘弾性体は、後述する複合構造物を構成する部材上に貼り合わせるためのシートを構成できる程度の弾性及び強度(以下、これらをまとめて「粘弾性特性」ともいう)を有することが好ましく、このような粘弾性特性を有する相溶組成物粘弾性体は、粘着シートとして使用できる適度の粘性を伴う。
シートを構成できる程度の弾性率として、室温(25℃)において、好ましくは0.3〜1000kPa、より好ましくは0.5〜500kPa、更に好ましくは0.5〜200kPaであり、
室温(25℃)において、弾性率が0.3kPa未満の場合は、温度Tc−20℃において、好ましくは0.5〜500kPa、より好ましくは1〜200kPaである。
なお、相溶組成物粘弾性体の弾性率は、実施例に記載した測定条件で測定する。
シートを構成できる程度の伸びとして、
好ましくは10〜1000%、より好ましくは30〜800%、更に好ましくは50〜500%であり、
シートを構成できる程度の破壊強度として、
好ましくは1×10〜1×10Pa、より好ましくは1×10〜1×10Pa、更に好ましくは1×10〜1×10Paである。
なお、相溶組成物粘弾性体の伸びと破断強度は、ダンベル引張試験によって測定することができる。具体的には、相溶組成物粘弾性体の弾性率が室温(25℃)で0.3Pa以上の場合は室温(25℃)で、0.3Pa未満の場合は温度Tc−20℃で、以下の条件で測定できる。
(1)相溶組成物粘弾性体を温度Tc+20℃で液状にした後ダンベルの型に流し込み温度Tc未満の温度に冷却(実際は室温)して厚み1mmのダンベル試験片を作製する
(2)ダンベル試験片を引張試験機(ミネベア製テクノグラフ、TG−2kN)にて10mm/minの引張り速度で引張り、測定結果から伸び率及び破断強度を読み取る。
相溶組成物粘弾性体は、上述の粘弾性特性を有する場合、例えば、相溶組成物粘弾性体でシートを形成すると、実施例に記載した測定条件で○と評価できる程度の粘着性を有する粘着シートを構成することができる。
相溶組成物粘弾性体はこの粘着性によって、例えば、粘着シートを構成したときに、粘着シートを部材の表面に安定して貼り合わせることができる。
相溶組成物粘弾性体は後述する複合構造物を製造するに際して、以下のような課題を解決することができる。
例えば、光学部材又は光学製品等である複合構造物を構成する一対のプレート状部材が粘着シート、硬化性液状接着剤等の接着剤を介して貼り合わせられた積層体として以下を挙げることができる。
(1)フラットパネル(2D)ディスプレイ周辺部材:
(1−1)破損したガラスの飛散を防止するための飛散防止フィルムと保護ガラスを粘着シートで貼り合わせた積層体;
(1−2)液晶パネルの破損防止および光反射防止のための保護パネルと液晶パネルを粘着シートまたは硬化性液状接着剤で貼り合わせた積層体;
(1−3)機能性部材を粘着シートまたは硬化性液状接着剤で貼り合わせて積層したタッチセンサーパネル(フィルム);
(1−4)複数の光学フィルムを粘着シートで貼り合わせて積層したバックライト。
(2)立体パネル(2.5D、3D)保護パネル・ディスプレイ。
(3)破損ガラスの飛散防止および衝撃強度改善のために粘着シートまたは硬化性液状接着剤で貼り合わせた建築用の防犯ガラスや安全ガラス。
(4)受光面材と裏面材の封止のために粘着シートまたは硬化性液状接着剤で貼り合わせた太陽電池モジュール。
(5)強度改善のために粘着シート又は硬化性液状接着剤で貼り合わせた包装用フィルム。
上記のような積層体の製造で使用される従来の粘着シートは、硬化性液状接着剤に比べて、厚みが均一、製造工程が簡便、他の部材への汚染が少ないという利点があるが、以下のような課題を有する:
(A)基材に段差がある場合に気泡が残りやすい;
(B)リペアが困難である;
(C)薄いシートの取り扱いが困難である;
(D)溶剤型粘着剤は厚いシートの作製が困難であるため、耐衝撃性が必要な車載用途での使用に対応が困難である。
上記のような積層体の製造で使用される従来の2段階硬化型粘着シートは、部材に粘着させた段階では、架橋点の少ない低弾性の粘着シートであるため基材段差に追従して気泡が残りにくく、低接着強度のため従来品よりもリペアが容易であり、貼り合わせた後、光および熱で硬化することで架橋が進行し、本来の強度を発現するという利点があるが以下のような課題がある:
(E)粘着シートの厚みに対して部材側の段差が相対的に大きい、例えば、貼り合わせ厚みが薄い場合や段差が大きい場合に積層体の貼り合わせの困難性が解消しない;
(F)段差吸収のために低弾性化すると粘着シートの取り扱いが困難になる。
上記のような積層体の製造で使用される従来の硬化性液状接着剤は、液状であるため基材段差由来の気泡の心配がなく、部材の厚み公差もキャンセルできるという利点があるが、以下のような課題を有する:
(G)貼り合わせた時に接着範囲から流れ出すため他部材への汚染や搬送時のアライメントズレの管理がし難い。
接着工法の観点から、従来の接着剤の課題の解決が試みられている:
(a)硬化性液状接着剤の塗工域の外周にダムを形成して樹脂の流れ出しを抑止する;
(b)流れてきた硬化性液状接着剤を光で硬化して止める;
(c)外周を封止された基板間に、例えば真空引きで液硬化性液状接着剤を注入する;
(d)チキソ性を付与した硬化性液状接着剤を用いる(ステンシル方式);
(e)部材上に均一に硬化性液状接着剤の層を形成したあとUVを照射して流動性を制御してから貼り合わせる;
(f)基材の段差を硬化性液状接着剤でキャンセルした後、粘着シートで貼り合わせる;
(g)粘着シート上に硬化性液状接着剤を滴下してから貼り合わせる。
しかし、これらの工法にも以下のような課題がある:
(H)工法(a)は、ダムの形状が半円状となるためダムの外側に樹脂欠損(空隙)ができる、用いたダムと硬化性液状接着剤によっては境界線が発生して、ダムと硬化性液状接着剤の界面で剥離しやすい;
(I)工法(b)は、流れてきた樹脂を光で硬化して止める方法は、光が照射できない箇所の流れ出しを止めることができないため、基材の形状や材質に制限がある;
(J)工法(c)はプロセスが複雑な上に注入工程のタクトタイムの管理が困難である;
(K)工法(d)は工程が複雑になり、チキソ付与剤にフィラーを使用する場合が多く、外観不良(フィラー凝集、気泡)による歩留まり低下する;
(L)工法(e)は、流れ出しと気泡と強度を考慮した流動性の制御が困難である。
例えば、以下の困難が発生しうる:
・基材に形成した液状の層は表面張力の影響を受けて端部に盛り上がりが発生するため、貼り合わせ前に層の流動性を低下(硬化)させすぎると、貼り合わせた時に盛り上がりの段差箇所に気泡が発生する;
・貼り合わせる時、端部の盛り上がりがキャンセルされるまで厚み方向に押し込んで貼り合わせる必要があるが、層の流動性を低下させすぎた場合はプレスバックによる強度低下が生じ、反対に流動性を残しすぎた場合は流れ出しが発生する;
・ダム方式と同様に樹脂端部が半円状となるため、基材構造によっては外側に樹脂欠損(空隙)が生じうる。
(M)工法(f)は、液状樹脂組成物および粘着シートが必要であり、工程が複雑なうえ液状樹脂組成物と粘着シートの界面での剥離が発生しやすい。
(N)工法(g)は、液状樹脂組成物および粘着シートが必要であり、工程が複雑で、液状で貼り合わせるためはみ出しも発生しやすく、さらに液状樹脂組成物と粘着シートの界面での剥離が発生しやすい。
以上から、従来の粘着シートおよび硬化性液状接着剤では、近年要請の高まる、デザイン性を求めて遮光印刷部の狭い保護パネルやディスプレイを用いた積層体や、2.5Dや3D形状の保護パネルやディスプレイを用いた積層体を製造するにあたり下の課題を有する
(O)デザイン形状に追従し、気泡がなく、樹脂の流れ出しなく貼り合わせることが困難である。
相溶組成物粘弾性体を、温度Tc以上の高温環境で一方の部材上に塗工すれば、液状であるため段差がある場合でも段差をキャンセルすることができ、その後、急激に温度Tc未満の低温環境まで冷却して相溶組成物粘弾性体をゲル状にすれば、盛り上がりや肩落ちが小さい相溶組成物粘弾性体の層を一方の部材上に形成することができる。
温度Tc未満の低温環境のまま、相溶組成物粘弾性体の層で被覆された一方の部材と他方の部材とを貼り合わせれば、相溶組成物粘弾性体の層はゲル状であるため流れ出しの少ない積層体を得ることができる。
さらに、上記の積層体を構成する相溶組成物粘弾性体の層に加熱、光照射及び加湿からなる群から選ばれる少なくとも1種の処理をして、相溶組成物粘弾性体の層を熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて、液状−ゲル状転移温度(Tc)を有さない硬化体にすることで、硬化した相溶組成物粘弾性体の層が温度Tc以上の高温環境でも流動性のない粘弾性体のままとなり、上記の積層体は高温においても安定な積層形態を維持することができる。
また、温度Tc未満の低温環境で、ゲル状の相溶組成物粘弾性体を、一方の部材の表面と他方の部材の表面に沿うような成形粘弾性体とし、成形粘弾性体を加熱、光照射及び加湿からなる群から選ばれる少なくとも1の処理をして、熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて、液状−ゲル状転移温度(Tc)を有さない粘着硬化体とする。
なお、成形粘弾性体は、ゲル状の相溶組成物粘弾性体と同じ粘弾性特性と液状−ゲル状転移温度(Tc)を有する。
例えば、一対の部材がプレート状であれば、相溶組成物粘弾性体をシート状の成形粘弾性体とし、加熱、光照射及び加湿からなる群から選ばれる少なくとも1種の処理をして、熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて、液状−ゲル状転移温度(Tc)を有さないシート状の粘着硬化体とし、これを粘着シートとして使用することができる。
更に、液状−ゲル状転移温度(Tc)を有さないシート状の粘着硬化体は、相溶組成物粘弾性体における反応性化合物や可塑剤の種類や配合を調整して弾性の程度を制御できるので、ロール状に巻ける程度の弾性に調整することも、ロール状に巻けないほど硬くすることも、薄いシートも成形することも可能であり、前述したように肩落ち、角立ちの小さいシートが成形できるため、プレスバックや欠損のない貼り合わせが可能となる。
相溶組成物粘弾性体によれば厚みの大きなシート状の成形粘弾性体を得ることができるので、結果として粘着硬化体からなる厚みの大きな積層体を得ることができる。
以上のように、物理ゲルと考えられる相溶組成物粘着粘弾性体又は粘着硬化体を利用して、光学部品又は光学製品等である複合構造物を構成する一対のプレート状部材を、相溶組成物粘弾性体を温度Tc未満の低温環境でシート状に成型して得られる成形粘弾性体からなる粘着シートを介して貼り合わせて(必要に応じて、熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて粘着硬化体からなる粘着シートにして)積層体を形成することで、上記課題(A)〜(O)からなる群より選ばれる少なくとも1以上の課題を解決することができる。
相溶組成物は、液状時の部材への塗布性及びゲル状時の部材同士の接着性並びに相転移性の観点から、化合物A100質量部に対して、化合物Bの質量部は、好ましくは200〜1000質量部、より好ましくは250〜800質量部である。
相溶組成物が相溶組成物粘弾性体である場合、粘弾性特性の観点から、化合物B中の反応性化合物の含有割合は、好ましくは20〜80質量%、より好ましくは25〜70質量%、更に好ましくは30〜60質量%である。
相溶組成物が相溶組成物粘弾性体である場合、加える重合開始剤は、少なくとも化合物A及び化合物Bの合計に対して、好ましくは1〜10質量%、より好ましくは2〜8質量%、更に好ましくは2.5〜7.5質量%である。
〔チキソトロピック相溶組成物〕
液晶表示体及び光学レンズ等の光学系デバイスの構成部材や、電子ペーパー及び電池等の電子系デバイスの構成部材を接着剤で固定する際に、接着剤の流出や糸引きなどによる汚染が生じないことと、特定の枠内に均一に塗布されることとが要請される場合がある。
この要請に対して、糸引きのし難いチキソトロピー性を有する接着剤を使用することが試みられているが、光学系デバイスや電子系デバイスの構成部材に光透過性を要請される光透過性部材が接着剤として含まれる場合、接着剤のチキソトロピー性を付与するために、金属酸化物微粒子等のフィラーを添加すると、光学透明性を維持することが困難になり、オイルゲル化剤を添加しても、光学系デバイスや電子系デバイス用途の精密な流動性制御に対応できるチキソトロピー性を付与することが困難である。
本発明の相溶組成物は、化合物A及び化合物Bを選択すると、さらにゲル状体においてチキソトロピー性を有する相溶組成物(以下、チキソトロピック相溶組成物ともいう)を構成し、さらに光学透明性と両立するチキソトロピック相溶組成物を構成することができる。
相溶組成物が相溶性とチキソトロピー性を有するという観点から、相溶組成物中、化合物A100質量部に対して、化合物Bが好ましくは100〜1000質量部、より好ましくは、120〜600質量部を配合する。
チキソトロピック相溶組成物がチキソトロピー性を有するとは、チキソトロピック相溶組成物が剪断応力を受けると(剪断速度を速くすると)粘度が低下し、剪断応力が解除されると(剪断速度を遅くすると)粘度が回復し流動性が制御される粘弾性特性を有することをいう。
相溶組成物のゲル状体におけるチキソトロピック性は、
基準となる剪断速度0.1(sec−1)におけるチキソトロピック相溶組成物の粘度η0.1(Pa・s)と、剪断速度1(sec−1)におけるチキソトロピック相溶組成物の粘度η(Pa・s)との比x=η0.1/ηと、
基準となる剪断速度1(sec−1)におけるチキソトロピック相溶組成物の粘度η(Pa・s)と、剪断速度10(sec−1)におけるチキソトロピック相溶組成物の粘度η10(Pa・s)との比x=η/η10とを尺度にすることができる。
およびxが1より大きい(好ましくは1.2以上の)チキソトロピック相溶組成物を、例えば後述する接着剤組成物として使用すると、スリットコーターを使用して所定の範囲を面塗布したときに、チキソトロピック相溶組成物は、スリットコーターから押出されているときは適度に流動し、押出された後は流動が止まるため、所定の範囲からの流出や糸引きなどによる汚染が生じ難く、所定の範囲に均一に塗布することが可能となる。
このようなチキソトロピック相溶組成物の塗布性および塗布形状保持の観点から、η0.1は、好ましくは10〜10000Pa・s、より好ましくは30〜5000Pa・s、さらに好ましくは50〜3000Pa・sであり、
ηは、好ましくは10〜1000Pa・s、より好ましくは20〜700Pa・s、さらに好ましくは30〜500Pa・sであり、
η10は、好ましくは3〜500Pa・s、より好ましくは5〜300Pa・s、さらに好ましくは5〜150Pa・sであり、
は、好ましくは1.1〜20、より好ましくは1.2〜15、さらに好ましくは1.25〜10であり、
は、好ましくは1.1〜20、より好ましくは1.2〜15、さらに好ましくは1.25〜10である。
〔チキソトロピック相溶組成物の透明性〕
チキソトロピック相溶組成物は、チキソトロピー性を有するように化合物Aと化合物Bとが相溶してなるだけでなく、0.3mmの厚みにおけるHAZE値1.0以下である。
HAZE値は、チキソトロピック相溶組成物の全光線透過率における、拡散透過率の割合を表す。
例えば、光学材料用にチキソトロピー性を有する接着剤組成物を使用する場合、従来の接着剤組成物はチキソトロピー性を付与するのに、硬化性を有する樹脂組成物にフィラーを添加していたが、添加されたフィラーによって光散乱を生じるため、HAZE値が増大し、樹脂組成物を構成する樹脂の全光線透過率に基づく透明性を低下させる。
一方、チキソトロピック相溶組成物は、フィラーを添加しなくても、化合物Aと化合物Bとが相溶してなる樹脂組成物だけでチキソトロピー性を確保できるので、HAZE値を増大させる要因がなく、チキソトロピック相溶組成物を構成する樹脂の全光線透過性に基づく透明性をあまり損なわずに活かすことができる。
従って、チキソトロピック相溶組成物は、HAZE値を1.0以下、好ましくは0.7以下、より好ましくは0.5以下、更に好ましくは0.3以下、更に好ましくは0.2以下の透明性を確保できる。
〔溶剤〕
相溶組成物を溶解する溶剤を選ぶことができる。
溶剤に溶解する相溶組成物は、例えば、相溶組成物を後述する接着剤組成物として使用した場合、温度Tcよりも高温にしなくても、ゲル状の相溶組成物を介して接着された部材同士を、ゲル状の相溶組成物に溶剤を接触させて相溶組成物を溶解して、固形分を残すことなくゲル状の相溶組成物を除去することで、部材同士を分離した状態にすることができる。
相溶組成物を溶解する溶剤としては、
好ましくは、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、ベンジルアルコールなどのアルコール類;
ベンゼン、トルエン、キシレン、ミネラルスピリット、シクロヘキサン、n−ヘキサン、メチルシクロヘキサン、スチレンなどの炭化水素類;
ジエチルエーテルなどのエーテル類;
酢酸エチル、酢酸プロピル、酢酸ブチル、ジエチレングリコールモノエチルエーテルアセテート、炭酸ジエチル、炭酸ジメチル、炭酸プロピレンなどのエステル類;
アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類;
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどの窒素類;
ブチルグリコール、メチルジグリコール、ブチルジグリコール、3−メチル−3−メトキシブタノール、テトラヒドロフランなどのグリコールエーテル類;
塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼンなどの塩素類;
ジメチルスルホキシド;アセトニトリル;ギ酸、酢酸等のカルボン酸類;及び水からなる群から選ばれる少なくとも1種の化合物、
より好ましくは、アルコール類、炭化水素類、エステル類及びケトン類からなる群から選ばれる少なくとも1種の化合物、
更に好ましくは、アセトン、ヘキサン、イソプロピルアルコール及び炭酸ジエチルからなる群から選ばれる少なくとも1種の化合物、である。
相溶組成物は、化合物A及び化合物Bの相溶性(温度0〜150℃の間で、化合物Aは液状−ゲル状転移温度(Tc)を有さず、相溶組成物が液状−ゲル状転移温度(Tc)を有するという性状)を阻害しない範囲で、後述するような化合物B以外の添加剤を任意に配合することができ、その場合の化合物B以外の添加剤の配合量は、配合物の全質量中、好ましくは0〜50質量%、より好ましくは0〜30質量%である。
〔接着剤組成物〕
本発明の相溶組成物は、液状で部材に塗工して、ゲル状にすると部材への付着力に優れるため、部材同士を接着するための接着剤組成物として好適に使用できる。
本発明の接着剤組成物(以下、接着剤組成物ともいう)は、本発明の相溶組成物を配合してなるため相溶組成物を含有し、部材への塗布性と、部材同士の安定した接着の観点から、温度Tcの前後の温度(好ましくはTc±10℃の温度範囲、より好ましくはTc±15℃の温度範囲、更に好ましくはTc±20℃の温度範囲)をまたいで、ゲル状体と液状体に可逆的に変化する(接着剤組成物が前述の変化を有することを相転移性ともいう)。
接着剤組成物は、液状時の部材への塗布性及びゲル状時の部材同士の接着性(以下、まとめて接着性ともいう)並びに相転移性を阻害しない範囲で、例えば、酸化防止剤、濡れ剤、界面活性剤、イオン性液体、消泡剤、紫外線吸収剤、光安定剤、無機、有機各種フィラー、ポリマー等の添加物を含めることができる。
接着剤組成物は、含有する相溶組成物が相溶組成物粘弾性体である場合、さらに、相溶組成物粘弾性体の好適粘弾性特性を有する。
相溶組成物が相溶組成物粘弾性体である場合、接着剤組成物は、接着性、相転移性及び粘弾性特性を阻害しない範囲で、例えば、酸化防止剤、濡れ剤、界面活性剤、イオン性液体、消泡剤、紫外線吸収剤、光安定剤、無機、有機各種フィラー、ポリマー等の添加剤を含めることができる。
なお、接着剤組成物中の添加剤とは、相溶組成物中に配合される添加剤と、相溶組成物と共に配合される添加剤を併せたものをいう。
接着剤組成物は、部材への塗工性の観点から、液状の相溶組成物の粘度が、好ましくはTc+10℃以上の温度範囲(より好ましくはTc+15℃以上の温度範囲、更に好ましくはTc+20℃以上の温度範囲)で、
好ましくは100Pa・s以下であり、より好ましくは50Pa・s以下であり、更に好ましくは10Pa・s以下である。
接着剤組成物は、接着性及び相転移性の観点から、接着剤組成物全量に対して、相溶組成物に配合される化合物A及びBの合計量は、
好ましくは50〜100質量%、より好ましくは70〜100質量%である。
〔複合構造物〕
本発明の複合構造物(以下、複合構造物ともいう)は、部材1及び部材2を含み、部材1及び部材2が接着剤組成物を介して接着している構造物である。
部材1及び部材2が接着剤組成物を介して接着しているとは、部材1と部材2の表面が接着剤組成物を間に挟んで接着剤組成物に接触して接着している(部材1と部材2の接着剤組成物の近傍の相対的位置が固定されている)ことをいう。
複合構造物において、部材1及び2を接着している接着剤組成物が、さらに、例えば、温度Tcよりも高温にして接着剤組成物を液状にして除去したり、温度Tcよりも低温のままで接着剤組成物に溶剤を接触して接着剤組成物を溶解除去したりして、部材1及び2の接着を解除することを予定している場合、部材1及び部材2の接着剤組成物を介しての接着を仮固定といい、部材1及び2の接着を解除することを予定して使用される場合の接着剤組成物を仮固定剤ともいう。
前記部材1及び前記部材2がプレートである場合は、例えば、
好ましくは部材1及び部材2の厚み方向の面が接着剤組成物を介して接着又は仮固定されるか、より好ましくは部材1及び部材2のプレート面が接着剤組成物を介して接着又は仮固定されるかして、
部材1及び部材2が前記接着剤組成物を介して接着して、部材1及び部材2が積層体を構成していてもよい。
プレートは表裏面の面積に比べて厚みの薄い構造物であるが、板状でもよく、薄膜状でもよく、平面状でも曲面状でもよい。
本発明の複合構造物としては、以下が例示できる
(1)各種フィルム等の光学部材を備える液晶表示体であって、光学部材が接着又は仮固定されて積層体等を構成している液晶表示体。
(2)液晶セルを備える液晶表示体であって、液晶セル内が接着又は仮固定されている液晶表示体。
(3)ウエハーなどの表面平滑性を要する物品を基材上に複数個仮固定して、表面加工を同時に行い、基材を除去して使用する。
(4)防眩ミラー、電子ペーパー、電池又はコンデンサー等の電解液を用いるデバイスであって、電極やセパレータ、集電体等の部材が接着又は仮固定されているデバイス。仮固定剤として使用する場合、溶解した接着剤組成物が電解液に混入しても電解液の性能が阻害されないように接着剤組成物の構成化合物を選択することが好ましい。
(5)光学レンズを研磨するための研磨装置であって、光学レンズと光学レンズの固定支持台が仮固定された研磨装置。
(6)光学レンズ等の原材料を複数個仮固定して所定の形状に機械的加工を行った後接着剤を除去して各々を部品として使用する。
(7)フラットパネル(2D)ディスプレイ周辺部材:
(7−1)破損したガラスの飛散を防止するための飛散防止フィルムと保護ガラスを粘着シートで貼り合わせた積層体;
(7−2)液晶パネルの破損防止および光反射防止のための保護パネルと液晶パネルを粘着シートまたは硬化性液状接着剤で貼り合わせた積層体;
(7−3)機能性部材を粘着シートまたは硬化性液状接着剤で貼り合わせて積層したタッチセンサーパネル(フィルム);
(7−4)複数の光学フィルムを粘着シートで貼り合わせて積層したバックライト。
(8)立体パネル(2.5D、3D)保護パネル・ディスプレイ。
(9)破損ガラスの飛散防止および衝撃強度改善のために粘着シートまたは硬化性液状接着剤で貼り合わせた建築用の防犯ガラスや安全ガラス。
(10)受光面材と裏面材の封止のために粘着シートまたは硬化性液状接着剤で貼り合わせた太陽電池モジュール
(11)強度改善のために粘着シート又は硬化性液状接着剤で貼り合わせた包装用フィルム。
複合構造物は、通常、温度Tc以下で接着剤組成物がゲル状である状態で使用される。
温度Tc以下での接着性の観点から、部材1及び2の材質は、ガラス、PET、TAC、COP、ポリイミド、PMMA、ポリカーボネート、塩化ビニル、PVA、ポリエチレン、ポリプロピレン、シリコーン、グラファイト、アルミニウム、銅、SUS等が好ましく、部材の表面に有機ハードコート層や無機ハードコート層が処理されていても良く、導電性を持たせるためにITOやIZO、カーボンナノチューブなどの透明導電性材料が処理されていても良く、電極や配線材料として表面に銀、銅などの金属がパターニングされていても良い。
複合構造物が、例えば、好ましくは、部材1及び/又は部材2がプレート状である相溶組成物粘弾性体を介した積層体の場合、より好ましくは、近年、フラットパネル(2D)の中でもよりデザイン性の要求される遮光印刷部の狭い保護パネルやディスプレイを用いた積層体や、フラットパネル(2D)に加えてデザイン性がより要請される2.5Dや3D形状の保護パネルやディスプレイを用いた積層体の場合、相溶組成物粘弾性体がデザイン形状に追従し、部材1及び部材2との部材の間に気泡がなく、樹脂の流れ出しもない状態で貼り合わせられている。
従って、複合構造物が、好ましくは部材1及び/又は部材2がプレート状である相溶組成物粘弾性体を介した積層体の場合、より好ましくは部材1または部材2の一方が、液晶表示パネル、有機EL表示パネル、保護パネル、タッチパネル、ガラス又はプラスチック板であり、もう一方が光透過性部材である場合の相溶組成物粘弾性体を介した積層体の場合、相溶組成物粘弾性体がデザイン形状に追従し、部材1及び部材2との部材の間に気泡がなく、樹脂の流れ出しもない状態で貼り合わせられている。
〔複合構造物の製造方法〕
(製造方法1)
複合構造物は、
温度Tcよりも高温の温度環境で、
部材1と部材2を、接着剤組成物を介して貼り合わせる工程1と、
工程1の後、温度環境を温度Tcよりも低温にして複合構造物を得る工程2とを含む製造方法(以下「製造方法1」ともいう)で得ることができる。
製造方法1では、第1工程では接着剤組成物は液状であるので、
部材1及び部材2の接着部位に液状になった接着剤組成物を容易に塗工でき、
工程2では、塗工された接着剤組成物はゲル状になって、部材1及び部材2を接着又は仮固定できる。
第1工程では、接着剤組成物は、ディスペンサー、ジェットディスペンサー、インクジェット、スリットコーター、ダイコーター、スクリーン印刷等使用して、それぞれの方法にとって好適な粘度の温度で塗工することが好ましい。
複合構造物が最終の仕様において、部材1及び部材2の接着が解除されていることが予定されている場合、複合構造物の製造方法には、さらに、工程2の後に、さらに、接着剤組成物に溶剤を接触させて、及び/又は、温度環境を前記温度Tcよりも高温にして、部材1及び部材2の接着剤組成物を介しての接着を解除する工程3を含むことが好ましい。
(製造方法2)
相溶組成物が相溶組成物粘弾性体である場合、複合構造物は、
温度Tcよりも低温の温度環境で、
部材1と部材2を、相溶組成物粘弾性体を配合してなる接着剤組成物を介して貼り合わせる工程1’と、
工程1’の後、当該接着剤組成物を熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて、粘着弾性体を介して貼り合わされた部材1及び部材2を含む複合構造物を得る工程2’とを含む製造方法で得ることができる(以下「製造方法2」ともいう)。
製造方法2の工程1’における接着剤組成物は、例えばTcよりも高温環境で接着剤組成物を液状にした後に冷却してゲル状にする工程で、予め所定の形状(好ましくは、シート状)に成形しておいてもよいし、その工程を、部材1又は部材2の表面で行ってもよい。
製造方法2は、接着剤組成物が相溶組成物粘弾性体に由来する粘弾性特性により、上述したように課題(A)〜(O)からなる群から選ばれる少なくとも1の課題を解決することができ、例えば、好ましくは、複合構造物が部材1及び/又は部材2がプレート状である相溶組成物粘弾性体を介した積層体の場合、より好ましくは部材1及び部材2の少なくとも一方がプレート状である相溶組成物粘弾性体を介した積層体の場合、更に好ましくは、近年、フラットパネル(2D)の中でもよりデザイン性の要求される遮光印刷部の狭い保護パネルやディスプレイを用いた積層体や、フラットパネル(2D)に加えてデザイン性がより要請される2.5Dや3D形状の保護パネルやディスプレイを用いた積層体を製造する際に、相溶組成物粘弾性体がデザイン形状に追従し、部材1及び部材2との部材の間に気泡がなく、樹脂の流れ出しもない状態で貼り合わせることが可能となる。
(製造方法3)
相溶組成物が相溶組成物粘弾性体である場合、複合構造物は、
前記製造方法が、
本発明の相溶組成物粘弾性体を含む接着剤組成物を熱硬化、光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて粘着硬化体を得る工程1”と、
部材1と部材2を、粘着硬化体を介して貼り合わされた部材1及び部材2を含む複合構造物を得る工程2”とを有する複合構造物の製造方法でも得ることができる(以下「製造方法3」ともいう)。
製造方法3の工程1”では、例えば接着剤組成物をTcよりも高温環境で液状にした後に冷却してゲル状にする工程で、予め所定の形状(好ましくは、シート状)に成形して得た相溶組成物粘弾性体を使用してもよいし、その工程を、部材1又は部材2の表面で行ってもよい。
製造方法3で、工程2”は、工程1”で予め所定の形状(好ましくは、シート状)に成形して得た成形粘弾性体を予め光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせて所定の形状(好ましくは、シート状)の粘着硬化体としてもよいし、工程1”で部材1又は部材2の表面に得た予め所定の形状(好ましくは、シート状)の成形粘弾性体をそのまま部材1又は部材2の表面で光硬化及び湿硬化からなる群から選ばれる少なくとも1種の硬化をさせてもよい。
製造方法3によれば、予め粘着硬化体を製造して、例えば粘着シートとして使用できるため、部材に遮光部分があっても粘着シート全体は硬化しており、従来の硬化性液状接着剤のように、塗工後ぬれ拡がることがなく、塗工精度の制御が容易である。
また、相溶組成物が温度Tcよりも高温で思うように粘度が下がらない場合、または温度Tcよりも過剰に高温にしないと粘度が下がらない場合、製造方法3を適用することで、温度Tc未満の低温の環境のまま粘着硬化体の粘弾性効果を利用することが可能となる。
従って、製造方法2も、接着剤組成物が相溶組成物粘弾性体及び粘着硬化体に由来する粘弾性特性により、上述したように課題(A)〜(O)からなる群から選ばれる少なくとも1の課題を解決することができ、例えば、好ましくは複合構造物が部材1及び/又は部材2がプレート状である相溶組成物粘弾性体を介した積層体の場合、より好ましくは部材1及び部材2の少なくとも一方がプレート状である相溶組成物粘弾性体を介した積層体の場合、更に好ましくは、近年、フラットパネル(2D)の中でもよりデザイン性の要求される遮光印刷部の狭い保護パネルやディスプレイを用いた積層体や、フラットパネル(2D)に加えてデザイン性がより要請される2.5Dや3D形状の保護パネルやディスプレイを用いた積層体を製造する際に、相溶組成物粘弾性体がデザイン形状に追従し、部材1及び部材2との部材の間に気泡がなく、樹脂の流れ出しもない状態で貼り合わせることが可能となる。
〔複合構造物の製造過程におけるリペア調整〕
従来は、製造方法2における工程1’と工程2’の間において、相溶組成物粘弾性体の代わりに従来の粘着シートを使用していたために、部材の段差由来の気泡が残り易く、この気泡を除去するために工程1’と工程2’の間でリペアする必要が生じる場合があったが、製造方法2によれば、例えば、段差が存在する基材上にTc温度以上で相溶組成物粘弾性体を塗布することで段差をキャンセルすることができ、相溶組成物粘弾性体シートを形成したものを段差が存在する基材に貼り合わせた場合においては、相溶組成物粘弾性体シートの粘着性、強度及び弾性により、相溶組成物粘弾性体シートが部材の段差を有する形状に追従するため、部材の段差由来の気泡が残り難くなり、リペアの頻度を大幅に減らすことが可能となる。
相溶組成物粘弾性体シートの段差をキャンセルする効果は、貼り合わせる基材上で相溶組成物粘弾性体シートを形成して貼り合わせる場合、及び、予め相溶組成物粘弾性体シートを形成して基材上に貼り合わせる場合のどちらでも好適に発現される。
また、製造方法2において工程1’と工程2’の間でリペアする場合であっても、温度Tc以上の高温環境でリペアすれば、相溶組成物粘弾性体は液状となるため容易にリペアすることが可能となる。
〔複合構造物の解体方法〕
工程2で得られた複合構造物は、接着剤組成物に溶剤を接触させて、及び/又は、温度環境を前記温度Tcよりも高温にして、部材1及び部材2の接着剤組成物を介しての接着を解除して、前記部材1と前記部材2とを隔離することで、複合構造物の解体を容易にすることができる。
〔化合物原料〕
(1)化合物A
下記の合成例1で得られた活性エネルギー線硬化性基を有する(メタ)アクリル系重合体ブロック(a)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とからなる(メタ)アクリル系ブロック共重合体(a1)〜(a3)を化合物Aとして使用した。
〔合成例1〕
5Lのフラスコに、トルエン1800gを添加した後、N,N,N’,N’,N’’−ペンタメチルジエチレントリアミン2.5gおよびイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムを23質量%含むトルエン溶液67gを順次添加して−30℃に冷却した。これにsec−ブチルリチウムを12質量%含むシクロヘキサン溶液6.5gを加え、その後単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート3.6gとメタクリル酸メチル130gとの混合物133.6gを一括で添加し重合を開始した。引き続き、反応液を−30℃で12時間撹拌し、次いで単量体としてアクリル酸n−ブチル280gを添加して2時間反応した。引き続き反応液を−30℃で撹拌しつつ、単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート3.6gとメタクリル酸メチル130gの混合物133.6gを添加した後、25℃に昇温した。上記混合物の添加から120分後に、メタノールを18g加えることにより重合を停止させて、重合体ブロック(a)−重合体ブロック(b)−重合体ブロック(a)の順に結合したトリブロック共重合体である(メタ)アクリル系ブロック共重合体(a1)を含有する溶液を得た。次いで得られた溶液を大量のメタノールと水の混合溶液(メタノールの割合は90質量%)中に注ぎ、析出した白色沈殿物をろ過で回収して減圧乾燥することで(メタ)アクリル系ブロック共重合体(a1)を480g得た。得られた(メタ)アクリル系ブロック共重合体(a1)のメルトフローレートを測定したところ、6.4g/10minであった(評価条件:190℃、2.16kgf)。
なお、重合体ブロック(a)のガラス転移温度は120℃、重合体ブロック(b)のガラス転移温度は−30℃であり、化合物(a1)は0〜150℃の範囲において温度Tcを有さない。
〔合成例2〕
5Lのフラスコに、トルエン1300gを添加した後、N,N,N’,N’,N’’−ペンタメチルジエチレントリアミン2.9gおよびイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムを26質量%含むトルエン溶液58gを順次添加して−30℃に冷却した。これにsec−ブチルリチウムを10質量%含むシクロヘキサン溶液7.6gを加え、その後単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート8.6gとメタクリル酸メチル237gとの混合物245gを一括で添加し重合を開始した。引き続き、反応液を−30℃で13時間撹拌し、次いで単量体としてアクリル酸n−ブチル315gを2時間かけて逐次添加して反応した。その後、メタノールを30g加えることにより重合を停止させた後、25℃に昇温し、重合体ブロック(a)−重合体ブロック(b)の順に結合したジブロック共重合体である(メタ)アクリル系ブロック共重合体(a2)を含有する溶液を得た。次いで得られた溶液を大量のメタノールと水の混合溶液(メタノールの割合は90質量%)中に注ぎ、析出した白色沈殿物をろ過で回収して減圧乾燥することで(メタ)アクリル系ブロック共重合体(a2)を460g得た。得られた(メタ)アクリル系ブロック共重合体(a2)のメルトフローレートを測定したところ、9.3g/10minであった(評価条件:190℃、2.16kgf)。
なお、重合体ブロック(a)のガラス転移温度は120℃、重合体ブロック(b)のガラス転移温度は−30℃であり、化合物(a2)は0〜150℃の範囲において温度Tcを有さない。
〔合成例3〕
5Lのフラスコに、トルエン1730gを添加した後、N,N,N’,N’,N’’−ペンタメチルジエチレントリアミン1.5gおよびイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムを26質量%含むトルエン溶液70gを順次添加して−30℃に冷却した。これにsec−ブチルリチウムを10質量%含むシクロヘキサン溶液3.9gを加え、その後単量体として1,1−ジメチルプロパン−1,3−ジオールジメタクリレート4.4gとメタクリル酸メチル183g1との混合物187.7gを一括で添加し重合を開始した。引き続き、反応液を−30℃で12時間撹拌し、次いで単量体としてアクリル酸n−ブチル280gを添加して2時間反応した。引き続き、反応液を−30℃で13時間撹拌し、次いで単量体としてアクリル酸n−ブチル174gを2時間かけて逐次添加して反応した。その後、メタノールを20g加えることにより重合を停止させた後、25℃に昇温し、重合体ブロック(a)−重合体ブロック(b)の順に結合したジブロック共重合体である(メタ)アクリル系ブロック共重合体(a3)を含有する溶液を得た。次いで得られた溶液を大量のメタノールと水の混合溶液(メタノールの割合は90質量%)中に注ぎ、析出した白色沈殿物をろ過で回収して減圧乾燥することで(メタ)アクリル系ブロック共重合体(a3)を320g得た。得られた(メタ)アクリル系ブロック共重合体(a3)のメルトフローレートを測定したところ、3.7g/10minであった(評価条件:190℃、2.16kgf)。
なお、重合体ブロック(a)のガラス転移温度は120℃、重合体ブロック(b)のガラス転移温度は−30℃であり、化合物(a3)は0〜150℃の範囲において温度Tcを有さない。
(2)化合物B
化合物b1:イソデシルアクリレート(サートマー社製、SR395)
化合物b2:4−t−ブチルシクロヘキシルアクリレート(Rahn社製、genomer1119)
化合物b3:4−ヒドロキシブチルアクリレート(日本化成社製、4−HBA
化合物b4:ジイソノニルシクロヘキシルジカルボキシレート(BASF社製、DINCH)
化合物b5:水添ロジンエステル(荒川化学工業社製、KE−311)
化合物b6:エポキシ系エステル(4,5−エポキシ−1,2−シクロヘキサンジカルボン酸ビス(2−エチルヘキシル))(DIC社製、W150)
化合物b7:不均化ロジンエステル(荒川化学工業社製、ME−D)
化合物b8:ラウリルアクリレート(共栄社製、LA)
化合物b9:イソボルニルアクリレート(日本化薬社製、RM−1002)
化合物b10:PPGウレタンアクリレート(ダイセル・オルネクス社製、EB270)
化合物b11:ポリブタジエンウレタンアクリレート(日本曹達社製、TE2000)
(3)その他の化合物
化合物r1:1−ヒドロキシシクロヘキシルフェニルケトン(重合開始剤)(BASF社製、I−184)
化合物r2:ポリウレタンアクリレート(日本合成化学社製、UV3630ID80)
〔相溶条件〕
(1)実施例1
化合物a1を100g、化合物b1を150g、化合物b2を150g、化合物b4を200g、化合物r1を30gそれぞれ評量して、容器(材質SUS316製、容量2000ml)に充填し、80℃、大気圧下で、スリーワンモーター(新東科学社製)を使用して200回転/分で360分間攪拌して、相溶組成物(相溶組成物粘弾性体)を得た。
(2)実施例2〜5および比較例1
使用した化合物を、表1記載の化合物に置き換えて、表1記載の配合で、実施例1と同様にして実施例2〜5の相溶組成物(相溶組成物粘弾性体)および比較例1の比較組成物を製造した。
(3)実施例6〜9
使用した化合物を、表2記載の化合物に置き換えて、表2記載の割合で、実施例1と同様にして実施例6〜9の相溶組成物(相溶組成物粘弾性体)を製造した。
〔測定項目〕
実施例1〜5および比較例1の相溶組成物に対して、以下の物性を測定した
(1)相溶組成物の液状−ゲル状転移温度Tc(℃)
(2)相溶組成物の粘度が1Pa・s以下となる温度(℃)
(3)Tc+20℃での複素粘度(Pa・s
(4)弾性率(kPa)
(5)粘着性
(6)硬化後の流動性
(7)溶剤溶解性
(8)HAZE値
(9)積層体剥離試験(加温、溶剤浸漬)
実施例6〜9の相溶組成物に対して、以下の物性を測定した。
(1)相溶組成物の液状−ゲル状転移温度Tc(℃)
(2)相溶組成物の粘度が1Pa・s以下となる温度(℃)
(3)溶剤溶解性
(4)25℃、剪断速度0.1(sec−1)における粘度η0.1(Pa・s)
(5)25℃、剪断速度1(sec−1)における粘度η1(Pa・s)
(6)25℃、剪断速度10(sec−1)における粘度η10(Pa・s)
(7)HAZE値
表1〜3に測定結果を示す。
〔粘度の測定条件〕
レオメータ(Anton Paar社製)を使用し、コーンローター(φ=25mm、ローター角度2°)、周波数1Hz、ひずみ1%で、150℃から0℃に向けて、2℃/分で冷却して測定した。Tc以上の温度領域で測定された数値を複素粘度とした。
レオメータ(Anton Paar社製)を使用し、コーンローター(φ=25mm、ローター角度2°)、25℃にて、剪断速度を0.01(sec−1)から100(sec−1)まで変化させて測定された数値を粘度η0.1、η及びη10とした。
〔弾性率の測定条件〕
レオメータ(Anton Paar社製)を使用し、コーンローター(φ=25mm、ローター角度2°)、周波数1Hz、ひずみ1%で、150℃から0℃に向けて、2℃/分で冷却して測定した。25℃で測定された貯蔵剛性率の数値を弾性率とした。ただし、25℃において弾性率が0.3MPa以下の場合は温度Tc−20℃における貯蔵剛性率を弾性率とした。
〔粘着性の測定条件〕
(1)Tcより20℃高い温度で液状相溶組成物とし、離型処理されたPETフィルム(ニッパ社製、J0L、50μm)上に、後述するディスペンサー1を用いて、幅3cm、長さ4cm、厚さ0.15mmの液層にして室温(25℃)、又は25℃において弾性率が0.3MPa以下の場合は温度Tc−20℃まで冷却して成形粘弾性体としてのシートを製造する
(2)湿度40〜60%、室温(25℃)又は25℃において弾性率が0.3MPa以下の場合は温度Tc−20℃で、後述するガラス基板2上に密着させて貼り合わせた後、PETフィルムを剥離する
(3)湿度40〜60%、室温(25℃)又は25℃において弾性率が0.3MPa以下の場合は温度Tc−20℃で、シートが貼られたガラス基板2を、シートが下側になるように空中に水平に静置する。
水平に静置して5分経過後に、粘着シートが落下しなければ○、
水平に静置して5分経過後に、粘着シートが落下すれば×、
とした
(4)なお、ガラス基板2の表面は、試験前にアセトンに浸漬して清浄後、乾燥してから使用する。
〔硬化後の流動性の測定条件〕
スライドガラス上に、実施例1〜5及び比較例1の相溶組成物をゲル状態で5mmΦ×0.5mmtに成形したものを設置し、メタルハライドランプ(アイグラフィックス社製、コンベアタイプ)にて、250mW/cm、3000mJ/cmで相溶組成物を硬化させた。各温度に設定されたホットプレートに相溶組成物を設置したスライドガラスを乗せ、10分間放置した。
硬化物の形状が変化し流動が見られなければ○、
硬化物の形状が変形し流動が見られれば×、
とした。
〔溶剤溶解性の測定条件〕
実施例1〜9および比較例1の相溶組成物のそれぞれに、
溶剤としてアセトン(関東化学社製、特級)を使用して、
ゲル状の相溶組成物0.02gに溶剤0.78g加え、25℃、遮光環境下で24時間静置する処理をして、以下のように判断した:ゲル状の相溶組成物の残留物の有無を目視で確認し、
ゲル状の組成物の残留物がないと確認された場合、溶剤溶解性は○;
ゲル状の組成物の残留物があると確認された場合、溶剤溶解性は×。
〔HAZE値の測定条件〕
実施例1〜9および比較例1の相溶組成物のそれぞれについて、
2.5cm×3.8cm×1mmtのガラスの両端に0.3mmtのスペーサーを貼り、相溶組成物を挟んでメタルハライドランプ(アイグラフィックス社製、コンベアタイプ)にて、250mW/cm、3000mJ/cmで相溶組成物を硬化させた。ヘイズメーター(日本電色工業社製、NDH5000)にて測定し、全光線透過率と拡散透過率の比を求めた。
〔複合構造物と比較構造物の製造〕
(1)複合構造物の製造
図2を参照しながら説明する。
スライドガラス1(プレート状の部材1)(1)のプレート面上に厚さ200μmのスペーサー(3)を設置したものを5組用意して(図2(2−1(平面図))(2−2(正面図))、
5枚のスライドガラス1上に、実施例1〜5のゲル状相溶組成物(4)のそれぞれを、スパーテルを用いて0.015g採取、設置し(図2(2−3))、
Tcより20℃高い温度に設定されたホットプレート上で30秒加温後、スライドガラス1上で相溶組成物が液相溶組成物(5)になったことを目視で確認し(図2(2−4))、
もう一枚のスライドガラス2(プレート状の部材2)(2)のプレート面を貼り合わせ(工程1)、さらに30秒そのまま放置してから(図2(2−5))、
ホットプレートから取り外すことで温度環境(25℃)まで温度を下げて、
スライドガラス1とスライドガラス2がそれぞれの組成物を介して積層する積層体(複合構造物)を得た(工程2)(図2(2−6))。
(2)比較構造物の製造
複合構造物の製造の工程1で、比較組成物を介して貼り合わされたスライドガラス1とスライドガラス2に、紫外線を3000mJ/cm照射し、比較組成物を硬化させ、スライドガラス1とスライドガラス2が比較組成物の硬化体を介して積層する積層体(比較構造物)を得た。
〔複合構造物の高温下での解体〕
複合構造物の製造で得たスライドガラス1とスライドガラス2がそれぞれの相溶組成物を介して積層する積層体を、Tcより20℃高い温度に設定したホットプレートに載せ、1分間放置後、積層体のスライドガラス1とスライドガラス2とは手指による軽い剥離操作で離隔でき、積層体を解体することができた(剥離した際に、相溶組成物はいずれも液状だった)。
比較構造物の製造で得た比較構造物を、100℃に設定したホットプレートに載せ、5分間放置したが、比較組成物の硬化体は固体のままで積層体のスライドガラス1とスライドガラス2とを軽い剥離操作では離隔することができなかった。
〔複合構造物の溶剤の接触による解体〕
複合構造物の製造で得たスライドガラス1とスライドガラス2がそれぞれの相溶組成物を介して積層する積層体を、アセトンに浸漬し、60分間放置した。
その後、積層体を剥離したら、積層体は容易に剥離し解体することができた(剥離した際に、相溶組成物はいずれも溶解して液状だった)。
比較構造物の製造で得た比較構造物を、アセトンに浸漬し、60分間放置しても、比較組成物の硬化体は硬化したまま、あるいは膨潤しただけで、積層体のスライドガラス1とスライドガラス2とを軽い剥離操作では離隔することができなかった。
〔積層体製造試験〕
(1)用具
(1−1)ガラス基板1(プレート状の部材1)
外周2mm、厚み50μmの遮光印刷(帝国インキ製造社製 GLS−HF)を施した縦60×横80×厚み0.8mmのガラス基板を使用した
(1−2)ガラス基板2(プレート状の部材2)
縦60×横80×厚み0.8mmの透明なガラス基板を使用した
(1−3)ディスペンサー1
フラットノズル(武蔵エンジニアリング社製、SHOT MASTER 300)を使用した
(1−4)ディスペンサー2
ノードソン社製 PICOJET PVバルブを使用した
(1−5)紫外線照射装置
コンベア型紫外線照射装置(アイグラフィックス社製、メタルハライドランプ)を使用した。
(2)製造条件
(2−1)製造実施例61〜5(図3を参照)
表1記載の実施例1〜5の相溶組成物粘弾性体(接着剤組成物)を、
Tcより20℃高い温度で液状相溶組成物(10)とし、それぞれ、ガラス基板1(6)上にディスペンサー1(9)を用いて、厚さ0.15mmの液層にして室温(25℃)まで冷却して成形粘弾性体(11)の層に成形した。
Tcよりも低温である室温(25℃)で、それぞれの成形粘弾性体(11)が形成されたガラス基板1(6)をガラス基板2(7)上に載せて、ガラス基板1(6)及びガラス基板2(7)を成形粘弾性体(11)を介して貼り合わせた硬化前の積層体を製造した(工程1’)。
硬化前の積層体を、紫外線照射装置(15)を用いてピーク照度400mW/cm、積算光量6000mJ/cm(オーク製作所社製 波長350nm)、反応率100%で光硬化させて、ガラス基板1及びガラス基板2を粘着硬化体(12)の層(粘着硬化体)を介して貼り合わせて製造実施例1〜5の積層体(複合構造物)(13)を得た(工程2’)。
(2−2)製造比較例1
表1記載の実施例1〜5の相溶組成物粘弾性体(接着剤組成物)を、表1記載の比較例1の比較組成物に置き換えて、室温(25℃)で塗布した以外は製造実施例1〜5と同様の条件で製造比較例1の積層体を得た。
(2−3)製造実施例6(図4を参照)
表1記載の実施例5の相溶組成物粘弾性体(接着剤組成物)を、Tcより20℃高い温度で液状相溶組成物(10)とし、ガラス基板1(6)上にディスペンサー1(9)を用いて、厚さ0.15mmの液層にして室温(25℃)まで冷却して成形粘弾性体(11)の層に成形した。
室温(25℃)で、成形粘弾性体(11)が形成されたガラス基板1(6)を、紫外線照射装置(15)を用いてピーク照度400mW/cm、積算光量6000mJ/cm(オーク製作所社製350nm)、反応率は95%で成形粘弾性体を光硬化させて粘着硬化体(12)にする(工程1”)。
室温(25℃)減圧下で、粘着硬化体(12)が形成されているガラス基板1(6)をガラス基板2(7)と粘着硬化体(12)を介して貼り合わされた製造実施例6の積層体(複合構造物)(14)を得た(工程2”)。
(2−4)製造比較例2
ガラス基板1上にディスペンサー1を用いて、室温(25℃)で、表1記載の比較例1の比較組成物を厚さ0.15mmに形成した後、365LEDランプ(HOYA社製)を用いて照度100mW/cm、照射時間2sec、反応率30%で光硬化し、流動性を低下させた一次硬化体を得た。
減圧下で、一次硬化体を形成したガラス基板1を、一次硬化体を介してガラス基板2と貼り合わせた積層体を得た。
積層体に、さらに、紫外線照射装置を用いてピーク照度400mW/cm、積算光量6000mJ/cm(オーク製作所社製 波長350nm)で硬化させて製造比較例2の積層体を得た。
(2−5)製造比較例3
比較例3における一次硬化体製造時の光硬化条件を、照度100mW/cm、照射時間5sec、反応率60%に変更し、製造比較例2と同手順で製造比較例3の積層体を得た。評価用試験片を作製した。
(2−6)製造比較例4
比較例3における一次硬化体製造時の光硬化条件を、照度100mW/cm、照射時間10sec、反応率95%に変更し、製造比較例2と同手順で製造比較例4の積層体を得た。評価用試験片を作製した。
(2−7)製造比較例5
ガラス基板の外周にジェットディスペンサー2を用いて、表1記載の比較例1の比較組成物を幅1mm×高さ0.2mmに描画し、365LEDランプ(Panasonic社製)を用いて照度100mW/cm、照射時間5secで硬化し、ダムを形成した。
ガラス基板1上にディスペンサー1を用いて、表1記載の比較例1の比較組成物を塗布した後、減圧下で、ガラス基板1上の比較例1の比較組成物を介してガラス基板2と貼り合わせ、組成物の厚みを0.15mmになるように圧力をかけて調整して硬化前の比較積層体を得た。
硬化前の比較積層体を、紫外線照射装置を用いてピーク照度400mW/cm、積算光量6000mJ/cm(オーク製作所社製 波長350nm)で光硬化させて製造比較例5の積層体を得た。
(2−8)製造比較例6
表1記載の比較例1の比較組成物をPET製離型フィルム上に塗布し、別のPET製離型フィルムを貼り合わせ、0.15mmのスペーサーを用いて、粘着組成物の厚みが0.15mmになるように調整して硬化前の積層物を得た。
硬化前の積層物を紫外線照射装置を用いてピーク照度400mW/cm、積算光量6000mJ/cm(オーク製作所社製 波長350nm)で硬化させた後、60×80mmにカットして粘着シートとした。
ガラス基板1上に粘着シートを貼り付けた後、減圧下で、ガラス基板1上の粘着シートを介してガラス基板2を貼り合わせた試験片を、さらにオートクレーブ(東都テック社製PBD−20)にて気圧0.5MPa、温度50℃、時間30分処理して製造比較例6の積層体を得た。
(3)積層状態の評価
製造実施例1〜6の積層体と、製造比較例1〜6の積層体について、目視および顕微鏡を使用して以下の基準で評価した。
(3−1)積層後の組成物流れ出し
積層体中の粘着硬化体又は比較組成物硬化体の最短位置が、
ガラス基板1上に形成した相溶組成物粘弾性体又は比較組成物液層の最端位置から、
変化していない場合に○、外側に広がっている場合に×とした。
(3−2)面内気泡
積層体中の粘着硬化体又は比較組成物硬化体の領域に気泡が、
存在しない場合に○、存在している場合に×とした。
(3−3)外側部の欠損
積層体中の粘着硬化体又は比較組成物硬化体が遮光印刷領域に沿った外周部分を満たせていない部分が、
存在しない場合に○、存在している場合に×とした。
(3−4)段差気泡
それぞれの積層体を80℃のオーブンに250時間入れたのち、印刷段差の気泡有無を観察し、印刷段差上に気泡が、存在しない場合に○、存在している場合に×とした。
1 スライドガラス1(部材1)
2 スライドガラス2(部材2)
3 スペーサー
4 ゲル状相溶組成物
5 液状相溶組成物
6 ガラス基板1(部材1)
7 ガラス基板2(部材2)
8 遮光印刷部分
9 ディスペンサー1
10 液状相溶組成物
11 成形粘弾性体
12 粘着硬化体
13 硬化前の積層体
14 実施例11の積層体
15 紫外線照射装置

Claims (16)

  1. ブロック共重合体化合物と媒質とが相溶してなる相溶組成物であって、
    前記ブロック共重合体化合物は、下記式(1):
    (式(1)中、Rは水素原子または炭素数1〜20の炭化水素基を表す)で示される部分構造を含む活性エネルギー線硬化性基を有する(メタ)アクリル系重合体ブロック(a)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とを有する(メタ)アクリル系ブロック共重合体であり、
    前記ブロック共重合体化合物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有さず、
    前記相溶組成物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有し、
    前記式(1)の活性エネルギー線硬化性基は下記式(2):
    (式(2)中、Rは水素原子または炭素数1〜20の炭化水素基を表し、RおよびRはそれぞれ独立して水素原子または炭素数1〜6の炭化水素基を表し、XはO、S、またはN(R)(Rは水素原子または炭素数1〜6の炭化水素基を表す)を表し、nは1〜20の整数を表す)で示され、
    前記ブロック共重合体化合物は、前記(メタ)アクリル系重合体ブロック(a)と前記(メタ)アクリル系重合体ブロック(b)とが結合するジブロック共重合体であり、
    前記媒質が、前記ブロック共重合体化合物100質量部に対して、
    75〜200質量部のロジンエステル系樹脂、
    40〜100質量部のアルキル(メタ)アクリレート、
    25〜67質量部のヒドロキシ置換アルキル(メタ)アクリレート、及び、
    50〜133質量部の脂環構造含有(メタ)アクリレートを含み、さらに、
    多価カルボン酸エステル、PPGウレタンアクリレート、及び、ポリブタジエンウレタンアクリレートからなる群から選ばれる少なくとも1種の化合物を含み、
    前記多価カルボン酸エステルを含む場合の質量部は0質量部超67質量部以下、
    前記PPGウレタンアクリレートを含む場合の質量部は0質量部超50質量部以下、
    前記ポリブタジエンウレタンアクリレートを含む場合の質量部は0質量部超〜50質量部以下であり、
    前記ロジンエステル系樹脂、前記アルキル(メタ)アクリレート、前記ヒドロキシ置換アルキル(メタ)アクリレート及び前記脂環構造含有(メタ)アクリレートの合計質量部が280〜467質量部である相溶組成物。
  2. 前記相溶組成物の
    剪断速度0.1(sec−1)における粘度η0.1(Pa・s)、
    剪断速度1(sec−1)における粘度η(Pa・s)、
    剪断速度10(sec−1)における粘度η10(Pa・s)、
    粘度η0.1(Pa・s)と粘度η(Pa・s)の比x=η0.1/η、及び、
    粘度η(Pa・s)と粘度η10(Pa・s)の比x=η/η10において、
    が、1.1〜7.55であり、
    が、1.1〜5.68である請求項1記載の相溶組成物。
  3. ブロック共重合体化合物と媒質とが相溶してなる相溶組成物であって、
    前記ブロック共重合体化合物は、下記式(1):
    (式(1)中、Rは水素原子または炭素数1〜20の炭化水素基を表す)で示される部分構造を含む活性エネルギー線硬化性基を有する(メタ)アクリル系重合体ブロック(a)と、活性エネルギー線硬化性基を有さない(メタ)アクリル系重合体ブロック(b)とを有する(メタ)アクリル系ブロック共重合体であり、
    前記ブロック共重合体化合物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有さず、
    前記相溶組成物は、0〜150℃の間で液状−ゲル状転移温度(Tc)を有し、
    前記式(1)の活性エネルギー線硬化性基は下記式(2):
    (式(2)中、Rは水素原子または炭素数1〜20の炭化水素基を表し、RおよびRはそれぞれ独立して水素原子または炭素数1〜6の炭化水素基を表し、XはO、S、またはN(R)(Rは水素原子または炭素数1〜6の炭化水素基を表す)を表し、nは1〜20の整数を表す)で示され、
    前記ブロック共重合体化合物は、1個の前記(メタ)アクリル系重合体ブロック(b)の両端に前記(メタ)アクリル系重合体ブロック(a)各1個がそれぞれ結合したトリブロック共重合体であり、
    前記媒質が、
    アルキル(メタ)アクリレート及び脂環構造含有(メタ)アクリレートを含み、
    さらに、ロジンエステル系樹脂及び多価カルボン酸エステルからなる群から選ばれる少なくとも1種以上の化合物を含み、
    前記Tcが10〜44℃である相溶組成物。
  4. 前記Tcが10〜25℃である請求項3記載の相溶化合物。
  5. さらに、ゲル状の前記相溶組成物が溶剤に溶解する請求項1〜4のいずれか1項記載の相溶組成物。
  6. さらに、ゲル状の前記相溶組成物が弾性体である請求項1〜5のいずれか1項記載の相溶組成物。
  7. さらに、熱硬化性及び/又は光硬化性を有する請求項1〜6のいずれか1項記載の相溶組成物。
  8. 請求項1〜7のいずれか1項記載の相溶組成物を配合してなる接着剤組成物。
  9. 部材1及び部材2を含む複合構造物であって、
    前記部材1及び前記部材2が請求項8記載の接着剤組成物を介して接着している複合構造物。
  10. 前記部材1及び前記部材2がプレートであり、
    前記部材1及び前記部材2が請求項8記載の接着剤組成物を介して接着して、前記部材1及び前記部材2が積層体を構成している請求項9記載の複合構造物。
  11. 前記部材1及び前記部材2の一方の部材が、液晶表示パネル、有機EL表示パネル、保護パネル、タッチパネル、ガラス又はプラスチック板であり、他の一方の部材が光透過性部材である請求項9又は10記載の複合構造物。
  12. 部材1及び部材2を含む複合構造物の製造方法であって、
    前記温度Tcよりも高温の温度環境で、
    前記部材1と前記部材2を、前記接着剤組成物を介して貼り合わせる工程1と、
    前記工程1の後、前記温度環境を前記温度Tcよりも低温の温度環境にして請求項9〜11のいずれか1項記載の複合構造物を得る工程2とを有する複合構造物の製造方法。
  13. さらに、前記接着剤組成物に請求項記載の溶剤を接触させて、前記部材1及び前記部材2の前記接着剤組成物を介しての接着を解除する工程3を含む、請求項12記載の複合構造物の製造方法。
  14. 前記接着剤組成物に請求項記載の溶剤を接触させて、及び/又は、前記温度環境を前記温度Tcよりも高温の温度環境にして、前記部材1及び前記部材2の前記接着剤組成物を介しての接着を解除して、前記部材1と前記部材2とを離隔する、請求項9〜11のいずれか1項記載の複合構造物の解体方法。
  15. 部材1及び部材2を含む複合構造物の製造方法であって、
    前記製造方法が、
    前記温度Tcよりも低温の温度環境で、
    前記部材1と前記部材2を、請求項7記載の相溶組成物を配合してなる請求項8記載の接着剤組成物を介して貼り合わせる工程1’と、
    前記工程1’の後、前記接着剤組成物を熱硬化及び光硬化からなる群から選ばれる少なくとも1種の硬化をさせて請求項9〜11のいずれか1項記載の複合構造物を得る工程2’とを有する複合構造物の製造方法。
  16. 部材1及び部材2を含む複合構造物の製造方法であって、
    前記製造方法が、
    請求項7記載の相溶組成物を配合してなる請求項8記載の接着剤組成物を熱硬化及び/又は光硬化させて粘着硬化体を得る工程1”と、
    前記部材1と前記部材2を、前記粘着硬化体を介して貼り合わせて請求項9〜11のいずれか1項記載の複合構造物を得る工程2”とを有する複合構造物の製造方法。
JP2017081699A 2017-04-18 2017-04-18 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法 Active JP6807081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081699A JP6807081B2 (ja) 2017-04-18 2017-04-18 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081699A JP6807081B2 (ja) 2017-04-18 2017-04-18 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法

Publications (2)

Publication Number Publication Date
JP2018178013A JP2018178013A (ja) 2018-11-15
JP6807081B2 true JP6807081B2 (ja) 2021-01-06

Family

ID=64281110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081699A Active JP6807081B2 (ja) 2017-04-18 2017-04-18 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法

Country Status (1)

Country Link
JP (1) JP6807081B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486598B1 (ko) * 2020-04-07 2023-01-09 삼성에스디아이 주식회사 점착제 조성물, 이로부터 형성된 점착층 및 이를 포함하는 광학표시장치
WO2022191147A1 (ja) * 2021-03-11 2022-09-15 Kjケミカルズ株式会社 コーティング組成物、該コーティング組成物からなる粘着性又は非粘着性コート層、及びこれらのコート層を備える積層体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289306B2 (ja) * 2014-08-08 2018-03-07 株式会社クラレ 硬化型接着剤
JP6771715B2 (ja) * 2015-09-29 2020-10-21 協立化学産業株式会社 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法

Also Published As

Publication number Publication date
JP2018178013A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6943461B2 (ja) 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法
JP6289445B2 (ja) (メタ)アクリル系ブロック共重合体およびその製造方法
TWI624514B (zh) 光硬化性樹脂組成物、及影像顯示裝置之製造方法
JP2014119520A (ja) 画像表示装置の製造方法
TW201229168A (en) UV-curable optical resin adhesive composition
JP7376819B2 (ja) 画像表示装置の製造方法
CN106896551B (zh) 图像显示装置的制造方法
TW201726876A (zh) 光硬化性樹脂組成物及影像顯示裝置之製造方法
WO2017014154A1 (ja) (メタ)アクリル系ブロック共重合体
JP6807081B2 (ja) 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法
JP6943431B2 (ja) 相溶組成物、接着剤組成物、複合構造物並びに複合構造物の製造方法及び解体方法、チップの表面加工方法並びに複合体の製造方法
JP6762033B2 (ja) 相溶組成物、接着剤組成物、複合構造物、複合構造物の製造方法及び解体方法、チップの表面加工方法並びに複合体の製造方法
WO2016027602A1 (ja) 活性エネルギー線硬化性組成物
JP6782393B2 (ja) 硬化性樹脂組成物、接着剤組成物、及び複合構造物の製造方法
JP6309402B2 (ja) (メタ)アクリル系ブロック共重合体および活性エネルギー線硬化性組成物
JP2016199663A (ja) 紫外線硬化型粘着剤組成物および粘着シート
TW201829184A (zh) 層合玻璃及其製造方法、層合玻璃的中間膜用光硬化性樹脂組成物
JP2018039941A (ja) (メタ)アクリル系ブロック共重合体組成物
JP2016041794A (ja) 活性エネルギー線硬化性組成物
JP6498518B2 (ja) ブロック共重合体ならびにその製造方法および用途
JP2017530219A (ja) ディスプレイ用途におけるuv硬化性接着剤のための改善された硬化マスキング領域
JP6346528B2 (ja) ブロック共重合体および活性エネルギー線硬化性組成物
JP6289306B2 (ja) 硬化型接着剤
JP6856935B2 (ja) 複合体の製造方法及びゲル状組成物
JP6329028B2 (ja) 硬化型シーリング剤

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6807081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250