JP6806632B2 - モータ電流制御装置およびモータ電流制御方法 - Google Patents

モータ電流制御装置およびモータ電流制御方法 Download PDF

Info

Publication number
JP6806632B2
JP6806632B2 JP2017108551A JP2017108551A JP6806632B2 JP 6806632 B2 JP6806632 B2 JP 6806632B2 JP 2017108551 A JP2017108551 A JP 2017108551A JP 2017108551 A JP2017108551 A JP 2017108551A JP 6806632 B2 JP6806632 B2 JP 6806632B2
Authority
JP
Japan
Prior art keywords
motor
mode
current
motor current
electric angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017108551A
Other languages
English (en)
Other versions
JP2018207607A (ja
Inventor
山▲崎▼ 圭
圭 山▲崎▼
徹也 関
徹也 関
茂樹 宮地
茂樹 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2017108551A priority Critical patent/JP6806632B2/ja
Priority to US16/617,078 priority patent/US11005400B2/en
Priority to DE112018002815.1T priority patent/DE112018002815T5/de
Priority to PCT/JP2018/020869 priority patent/WO2018221628A1/ja
Priority to CN201880034617.1A priority patent/CN110663169B/zh
Publication of JP2018207607A publication Critical patent/JP2018207607A/ja
Application granted granted Critical
Publication of JP6806632B2 publication Critical patent/JP6806632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/32Reducing overshoot or oscillation, e.g. damping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/22Control of step size; Intermediate stepping, e.g. microstepping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/36Protection against faults, e.g. against overheating or step-out; Indicating faults

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)

Description

本発明は、モータ電流制御装置およびモータの電流制御方法に関する。
Hブリッジ回路によりモータコイルなどの誘導性負荷を電流駆動する際には、PWM(Pulse Width Modulation)制御を用いることが多い。PWM制御は、負荷に対して電流のチャージとディスチャージ(減衰)を繰り返すことにより電流制御を行うものである。
このようなPWM制御によるモータ駆動の例として、例えば特許文献1に記載の技術がある。特許文献1の要約書の課題には、「ICに搭載したHブリッジ回路によってリアクタンス負荷に対する電流のチャージとディスチャージを繰り返すことにより定電流制御を行う際に、正確な電流制御を行うことができ、負荷電流の脈流を小さくする。」と記載されている。特許文献1の要約書の解決手段には、「一対の外部出力端子15,16に接続されるコイル負荷Lを駆動するためのHブリッジ回路と、Hブリッジ回路の出力スイッチ素子11〜14をPWM信号によりスイッチング駆動し、Hブリッジ回路による負荷に対するチャージモード、低速減衰モード、高速減衰モードを選択的に設定可能なPWM制御回路20と、負荷に対する高速減衰モードにおいて負荷の電流が第1の設定電流値以下に低下したことを検出する第1の電流検出回路21と、この検出出力を受けて低速減衰モードに切り換え制御するための制御信号を生成し、PWM制御回路を制御する出力制御ロジック回路23とを具備する。」と記載されている。
ところで、上記のようなモータの駆動方式として、ロータの回転時、特に低速回転時に残留振動が小さく安定性に優れた方式であるマイクロステップ駆動が知られている。この方式は、Hブリッジ回路のスイッチング素子をPWM制御することによって、略正弦波状の基準電流曲線とモータ電流とが同じになるように制御を行い、定電流制御を実現する。ここで、略正弦波状の基準電流曲線は、ロータとステータの位置関係から導かれ、以下、「基準電流」という。基準電流は基本ステップ角(例えば1回転)をn分の1に分割し、その期間毎に基準電流を変化させる。この期間はマイクロステップといい、単一または複数のPWMサイクルで構成される。マイクロステップ駆動方式によれば、マイコンなどから段階的に変化するステップ状の電流を容易に生成可能である。
特開2002−204150号公報
ステッピングモータのPWM周波数は、20KHz〜40KHzであり、このステッピングモータを駆動させた際には、可聴域の高周波ノイズが発生するという問題がある。この高周波ノイズを抑制するには、防音材などを用いることが考えられる。しかし、新たな部品を要し、コストアップしてしまうという問題がある。
高周波ノイズを抑制する他の方法としては、例えばPWM周期を短くして、PWM周波数を上げることが考えられる。しかし、PWM周期を短くするには、高価なマイコンを要するため、やはりコストアップしてしまうという問題がある。また、PWM周期を短くすることは、マイコンの負荷が大きくなりすぎることから、専用のモータドライバや高価なマイコンを用いる必要があり、やはりコストアップにつながる。
そこで、本発明は、ステッピングモータのマイクロステップ駆動において高周波ノイズを抑制することを課題とする。
前記した課題を解決するため、本発明のモータ電流制御装置は、スイッチング素子を有し、モータに設けられたモータコイルに接続されるHブリッジ回路と、前記スイッチング素子を所定のPWM周期毎に駆動し、前記Hブリッジ回路に対して、前記モータコイルに流れるモータ電流を増加させるチャージモード、または前記モータ電流を減衰させる高速減衰モード、前記高速減衰モードよりも低速に前記モータ電流を減衰させる低速減衰モードのうち何れかの動作モードを指定する制御手段と、を有する。
前記制御手段は、ロータとステータの位置関係から前記PWM周期毎に基準電流値を設定し、前記基準電流値が下降し始める電気角から所定電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えたのちに前記低速減衰モードに切り替え、前記所定電気角を超えたのち、前記基準電流値が上昇し始める電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えたのちに前記モータ電流が前記基準電流値を超えたならば前記高速減衰モードに切り替え、更に前記低速減衰モードに切り替える。
本発明のモータ電流制御方法は、スイッチング素子を有し、モータに設けられたモータコイルに接続されるHブリッジ回路と、前記スイッチング素子を所定のPWM周期毎に駆動し、前記Hブリッジ回路に対して、前記モータコイルに流れるモータ電流を増加させるチャージモード、または前記モータ電流を減衰させる高速減衰モード、前記高速減衰モードよりも低速に前記モータ電流を減衰させる低速減衰モードのうち何れかの動作モードを指定する制御手段と、を備えたモータ電流制御装置が実行する。
前記制御手段が、ロータとステータの位置関係から前記PWM周期毎に基準電流値を設定するステップと、前記基準電流値が下降し始める電気角から所定電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えるステップの後に前記低速減衰モードに切り替えるステップを実行し、前記所定電気角を超えたのち、前記基準電流値が上昇し始める電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えるステップの後に、前記モータ電流が前記基準電流値を超えたならば前記高速減衰モードに切り替えるステップを実行し、更に前記低速減衰モードに切り替えるステップを実行する。
本発明によれば、ステッピングモータのマイクロステップ駆動において高周波ノイズを抑制できる。
発明の一実施形態によるモータ制御システムの全体ブロック図である。 モータ制御装置の詳細ブロック図である。 Hブリッジ回路の動作モードの説明図である。 X相のモータの電気角に対する基準電流値とモータ電流の波形図である。 Y相のモータの電気角に対する基準電流値とモータ電流の波形図である。 制御対象となる下降期間の各PWM周期の電流制御データを示す図である。 制御対象となる緩下降期間と急下降期間とを示す図である。 制御対象となる緩下降期間のPWM周期の例を示す図である。 制御対象となる急下降期間のPWM周期の例を示す図である。 モータ電気角に応じた分岐処理ルーチンのフローチャートである。 緩下降期間のPWM周期処理ルーチンのフローチャート(その1)である。 緩下降期間のPWM周期処理ルーチンのフローチャート(その2)である。 急下降期間のPWM周期処理ルーチンのフローチャート(その1)である。 急下降期間のPWM周期処理ルーチンのフローチャート(その2)である。 減衰モード切替時間設定のフローチャートである。 比較例のノイズスペクトラムを示す図である。 本実施形態のノイズスペクトラムを示す図である。
以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
図1は、発明の一実施形態によるモータ制御システムの全体ブロック図である。
図1において、モータ120は、バイポーラ型2相ステッピングモータであり、永久磁石を有し回動自在に設けられた回転子126と、回転子126の周囲の周回方向を4等分する位置に設けられた固定子とを有している。これらの固定子は、X相の固定子122XP,122XNと、Y相の固定子122YP,122YNとからなる。固定子122XPと固定子122XNとは、回転子126を挟んで反対側に位置している。固定子122YPと固定子122YNとは、回転子126を挟んで反対側に位置し、かつ固定子122XPと固定子122XNの方向に対して垂直の方向を向いている。
これらの固定子には各々巻線が同方向に巻回されている。固定子122XP,122XNに巻回された巻線は直列に接続されており、両巻線を合わせて「固定子巻線124X」という。同様に、固定子122YP,122YNに巻回された巻線は直列に接続されており、両巻線を合わせて「固定子巻線124Y」という。
上位装置130は、モータ120の回転速度を指令する速度指令信号を出力する。モータ制御装置100(モータ電流制御装置の一例)は、この速度指令信号に応じてモータ120を駆動制御するものである。モータ制御装置100には、Hブリッジ回路20X,20Yが設けられており、それぞれ固定子巻線124X,124Yに対して、X相電圧VMX,Y相電圧VMYを印加する。
図2は、モータ制御装置100の詳細ブロック図である。
なお、図1には2系統の固定子巻線124X,124Yと、2系統のHブリッジ回路20X,20Yを示したが、図2では簡略化のため、1系統の固定子巻線124と、1系統のHブリッジ回路20を示している。
モータ制御装置100の内部には、CPU(Central Processing Unit)101が設けられている。CPU101は、ROM(Read Only Memory)103に記憶された制御プログラムに基づき、バス106を介して各部を制御する。RAM(Random Access Memory)102は、CPU101のワークメモリとして使用される。タイマ104は、CPU101の制御の下、リセットされたタイミングからの経過時間を測定する。I/Oポート105は、図1に示した上位装置130、その他外部装置との間で信号を入出力する。ブリッジ制御部107は、CPU101からの指令に基づいて、ブリッジ制御回路110の各部を制御する。電流制限制御部112は、必要に応じて電流制限するように、PWM信号発生器113を制御する。
ここで、ブリッジ制御回路110は、一体の集積回路として構成されている。その内部においてPWM信号発生器113は、ブリッジ制御部107による制御に基づいて、PWM信号を生成してHブリッジ回路20に供給する。Hブリッジ回路20には、例えばFET(Field-Effect Transistor)であるスイッチング素子2,4,6,8,15,17が含まれている。PWM信号は、これらスイッチング素子2,4,6,8,15,17にゲート電圧として印加されるオン/オフ信号である。なお、図中において、スイッチング素子2,4,6,8,15,17の下側の端子がソース、上側の端子がドレインになる。
スイッチング素子2,4は直列に接続され、その直列回路に対して、直流電源140およびアース線142が接続され、所定の電圧Vddが印加される。同様に、スイッチング素子6,8も直列に接続され、その直列回路に対して電圧Vddが印加される。ダイオード12,14,16,18は、還流用のダイオードであり、スイッチング素子2,4,6,8に対して並列に接続されている。スイッチング素子15,17は、電流検出用に設けられているものであり、それぞれスイッチング素子4,8と共にカレントミラー回路を形成している。これにより、スイッチング素子4,8に流れる電流に比例する電流が、それぞれスイッチング素子15,17に流れる。
なお、スイッチング素子2,4,6,8は、還流用のダイオードの代わりに、自身の寄生ダイオードを用いてもよい。
スイッチング素子2,4の接続点の電圧VMout0は、モータ120の固定子巻線124の一端に印加される。また、スイッチング素子6,8の接続点の電圧VMout1は固定子巻線124の他端に印加される。よって、固定子巻線124には、両者の差であるモータ電圧VM(=電圧VMout0−VMout1)が印加される。このモータ電圧VMとは、実際には図1に示したX相電圧VMXおよびY相電圧VMYである。
電流検出部116は、スイッチング素子15,17に流れる電流値を電流方向に応じて測定することにより、固定子巻線124に流れる電流の電流測定値Icoilを出力する。D/Aコンバータ115は、ブリッジ制御部107から、基準電流値Irefのデジタル値を受信し、これをアナログ値に変換する。比較器114は、アナログ値の電流測定値Icoilと基準電流値Irefとを比較し、前者が後者以上になると“1”信号を出力すると共に、それ以外の場合は“0”信号を出力する。
但し、比較器114の出力信号には、ノイズなどの影響によってチャタリングが起こる場合がある。電流フィルタ111は、このチャタリングを除外するために設けられている。すなわち、比較器114の出力信号が切り替わると、電流フィルタ111は、所定のフィルタ期間Tfだけ待機し、比較器114の出力信号が切替後の値に維持されているか否かを再度判定する。この判定結果が肯定であった場合に、この出力信号の切替後の値を閾値超過フラグCLとして出力する。
また、電圧VMout0,VMout1は、A/Dコンバータ117と、BEMF(逆起電力)検出部118にも供給される。A/Dコンバータ117は、電圧VMout0,VMout1に基づいて、固定子巻線124の逆起電力Vbemfを測定し出力する。この逆起電力Vbemfは、脱調検出のために用いられる。BEMF検出部118は、モータ電圧VMが逆起電力である場合、この電圧方向の切り替わり(ゼロクロス)に応じてフラグZCを出力する。モータ電圧VMが逆起電力である場合とは、Hブリッジ回路20から固定子巻線124に電圧が印加されていない期間である。
また、ブリッジ制御部107は、電流制御有効フラグCLMを出力する。この電流制御有効フラグCLMは、Hブリッジ回路20に供給されるPWM信号の変更を許容する場合は“1”、許容しない場合は“0”になる。具体的にいうと、PWM期間の開始時以降の時間Tcsから時間Tceまでの間において、電流制御有効フラグCLMが“1”となる。電流制限制御部112は、電流制御有効フラグCLMが“0”である場合は、現在のPWM信号を維持するように、PWM信号発生器113を制御する。
図3は、Hブリッジ回路20の動作モードの説明図である。
図3(a)〜(f)は、Hブリッジ回路20の動作モードを説明する図である。
図3(a)は、Hブリッジ回路20のチャージモードを説明する図である。
固定子巻線124に流れるモータ電流の絶対値を増加させる場合には、例えば、斜めに対向するスイッチング素子4,6がオン状態にされ、それ以外のスイッチング素子2,8がオフ状態にされる。この状態では、スイッチング素子6、固定子巻線124、スイッチング素子4を介して破線で示す方向にモータ電流が流れると共に、このモータ電流が増加していく。この動作モードを「チャージモード」という。この状態から、モータ電流を高速に減衰させる場合には、図3(b)に示す高速減衰モードに遷移する。
図3(b)は、Hブリッジ回路20の高速減衰モードを説明する図である。
固定子巻線124に流れるモータ電流の絶対値を高速に減衰させる場合には、直前のチャージモードとは反対に、斜めに対向するスイッチング素子4,6をオフ状態にし、スイッチング素子2,8をオン状態にする。固定子巻線124には逆起電力が発生するため、スイッチング素子8、固定子巻線124、スイッチング素子2を介して破線で示す方向に電流が流れ、モータ電流が高速に減衰していく。この動作モードを「高速減衰モード」という。
また、図3(a)のチャージモードまたは図3(b)の高速減衰モードから、電流を低速に減衰させる場合には、図3(c)に示す低速減衰モードに遷移する。
図3(c)は、Hブリッジ回路20の低速減衰モードを説明する図である。
固定子巻線124に流れるモータ電流の絶対値を、高速減衰モードよりも低速に減衰させる場合には、電圧Vdd側のスイッチング素子2,6をオン状態とし、グランド側のスイッチング素子4,8をオフ状態にする。すると、図示した破線のように、スイッチング素子2,6および固定子巻線124をループする電流が流れる。この電流は、スイッチング素子2,6および固定子巻線124のインピーダンスによって減衰していく。このときの減衰速度は、上記した高速減衰モードよりも低速である。この動作モードを「低速減衰モード」という。
図3(d)は、Hブリッジ回路20の低速減衰モードのバリエーションを説明する図である。
固定子巻線124に流れるモータ電流の絶対値を、高速減衰モードよりも低速に減衰させる場合には、電圧Vdd側のスイッチング素子2,6をオフ状態とし、グランド側のスイッチング素子4,8をオン状態にしてもよい。すると、図示した破線のように、スイッチング素子4,8および固定子巻線124をループするモータ電流が流れる。この電流は、スイッチング素子4,8および固定子巻線124のインピーダンスによって減衰していく。このときの減衰速度は、上記した高速減衰モードよりも低速である。
ところで、何れかのスイッチング素子のゲート電圧をオフにしたとしても、このスイッチング素子のゲートの寄生容量によって、そのスイッチング素子はしばらくの間はオン状態に留まる。このため、例えばチャージモード(図3(a)参照)から高速減衰モード(図3(b)参照)に瞬時に切り替えると、瞬間的に全てのスイッチング素子がオン状態になり、電圧Vddとグランドとの間が短絡し、スイッチング素子が破壊されるおそれがある。このような事態を防止するため、Hブリッジ回路20は、「貫通保護モード」という動作モードに設定される。
図3(e)は、全てのスイッチング素子2,4,6,8をオフ状態にした貫通保護モードである。
図3(a)のチャージモードから図3(e)の貫通保護モードに切り替えられると、固定子巻線124には逆起電力が発生するため、ダイオード18、固定子巻線124、ダイオード12を介して破線で示す方向にモータ電流が流れる。図3(e)の貫通保護モードでは、ダイオード12,18の順方向電圧降下に応じた電力損失が生じるため、モータ電流の減衰速度は最も大きくなる。
ここで、図3(a)のチャージモードと図3(d)の低速減衰モードとを比較すると、何れにおいても、スイッチング素子4はオン状態である。従って、図3(a)の状態から図3(d)の状態に遷移させる場合においては、スイッチング素子4はオン状態にしたままであっても差支えない。そこで、このような場合には、図3(f)に示すように、スイッチング素子4をオン状態にし、スイッチング素子2,6,8をオフ状態にした貫通保護モードを採用することができる。この場合は、同図の破線に示すように、スイッチング素子4、ダイオード18、固定子巻線124をループするモータ電流が流れる。
図3(f)の状態では、ダイオード18の順方向電圧降下に応じた電力損失が生じるため、低速減衰モードと比較すると減衰速度は大きくなる。しかし、図3(f)は、高速減衰モードまたは図3(e)の貫通保護モードと比較すると、はるかに減衰速度を低くすることができる。チャージモードまたは高速減衰モードから低速減衰モードに遷移させる場合は、「モータ電流を大きく減衰させたくない」という事である。よって、図3(f)に示したように、1個のスイッチング素子のみをオン状態にした貫通保護モードが選択される。
但し、図2において、CPU101からブリッジ制御部107に指定される動作モードは、チャージモード、低速減衰モードまたは高速減衰モードのうち何れかである。後述する制御プログラムにおいても、貫通保護モードは明示的には指定されない。しかし、ブリッジ制御部107は、指定された動作モードを直ちに反映させるのではなく、間に必ず貫通保護モード(図3(e)または図3(f))を挿入して、PWM信号発生器113を制御する。
図2においてブリッジ制御部107からD/Aコンバータ115に供給される基準電流値Irefは、実際には、X相の基準電流値IXrefとY相の基準電流値IYrefとからなる。ステッピングモータ120の一回転、すなわち機械角θmおよび電気角θが0°〜360°の範囲におけるこれら基準電流値IXref,IYrefの設定例を図4と図5に破線で示す。
図4は、X相のモータの電気角θに対する基準電流値IXrefとモータ電流の波形図である。破線は基準電流値IXrefを示し、実線はモータ電流を示している。基準電流値IXrefは、コサインカーブであり、実際には階段波で近似した波形になる。
このようにして基準電流値IXrefを定めてモータ120を駆動する方式はマイクロステップ方式と呼ばれており、特に低速回転時に残留振動が小さく安定性に優れている特徴がある。また、階段波が変動する周期をマイクロステップ周期Tmという。マイクロステップ周期Tmは、PWM周期と同一か、その整数倍にすることが望ましい。説明を簡単にするため、本実施形態では、電気角1°とマイクロステップ周期とが一致していることとする。
電気角0°を超え、かつ52°以下は、モータ電流の絶対値が緩やかに下降する期間である。このとき、モータ電流の下降を抑制するので、モータ電流は、電気角20°くらいから所定の傾きを保つ。モータ電流は、基準電流値IXrefから離れて差が拡大する。
電気角52°を超え、かつ90°以下は、モータ電流の絶対値が急に下降する期間である。このとき、モータ電流の下降を抑制しないので、モータ電流は、基準電流値IXrefに近づいて差が収束する。
電気角90°を超え、かつ180°以下は、モータ電流の絶対値が上昇する期間である。このとき、モータ電流は、基準電流値IXrefに重なっている。
以降、モータ電流は、180°毎に緩下降と急下降と上昇とを繰り返す。
なお、緩下降期間は、電気角0°を超え、かつ52°以下に限定されず、電気角45°を含む所定範囲であればよい。緩下降期間の他の例は、電気角0°を超え、かつ60°以下であってもよい。
図5は、Y相のモータの電気角に対する基準電流値IYrefとモータ電流の波形図である。基準電流値IYrefは、サインカーブであり、実際には階段波で近似した波形になる。
電気角0°を超え、かつ90°以下は、モータ電流の絶対値が上昇する期間である。このとき、モータ電流は、基準電流値IYrefに重なっている。
電気角90°を超え、かつ142°以下は、モータ電流の絶対値が緩やかに下降する期間である。このとき、モータ電流の下降を抑制するので、モータ電流は、電気角110°くらいから所定の傾きを保つ。モータ電流は、基準電流値IYrefから離れて差が拡大する。
電気角142°を超え、かつ180°以下は、モータ電流の絶対値が急に下降する期間である。このとき、モータ電流の下降を抑制しないので、モータ電流は、基準電流値IYrefに近づいて差が収束する。
以降、モータ電流は、180°毎に上昇と緩下降と急下降とを繰り返す。
なお、緩下降期間は、電気角90°を超え、かつ142°以下に限定されず、電気角135°を含む所定範囲であればよい。緩下降期間の他の例は、電気角90°を超え、かつ150°以下であってもよい。
図6は、制御対象となる緩下降期間と急下降期間の各PWM周期の電流制御データを示す図である。この電流制御データは、例えばブリッジ制御部107に格納されている。
ブリッジ制御部107は、急下降期間のPWM回数分のロータとステータ位置から用意した前回の急下降期間のチャージモード時間TON_oと、今回の急下降期間のチャージモード時間TONおよび減衰モード切替時間Tfsを予めメモリに格納する。なお、緩下降期間のチャージモード時間TON_o,TONおよび減衰モード切替時間Tfsは、メモリに格納されない。
電流制御データは、PWM周期の順番を示したPWM周期番号と、前回の回転期間におけるチャージモード時間TON_oと、今回の回転期間におけるチャージモード時間TONと、減衰モード切替時間Tfsとを含んで構成される。
PWM周期番号は、モータの回転と同期したPWM周期の番号を示している。
前回の回転期間とは、前回の下降期間のことを示している。よって、チャージモード時間TON_oは、前回の急下降期間の各PWM周期におけるチャージモードの時間を示している。
今回の回転期間とは、今回の急下降期間のことを示している。よって、チャージモード時間TONは、今回の急下降期間の各PWM周期におけるチャージモードの時間を示している。
減衰モード切替時間Tfsは、急下降期間のPWM周期において、高速減衰モードまたはチャージモードから低速減衰モードに切り替えるタイミングを示している。
ブリッジ制御部107は、各PWM周期の電流制御データを予め格納しており、更に回転駆動と共に動的に書き換えている。
図7は、制御対象となる緩下降期間と急下降期間とを示す図である。グラフの縦軸は、電流値を示している。グラフの横軸は、電気角θを示している。破線は、基準電流値Irefを示し、実線はモータ電流を示している。
今回の下降期間の電気角θが180°〜270°の場合、前回の下降期間の電気角θは、それよりも半回転遅れた0°〜90°である。そして、次回の下降期間の電気角θは、それよりも半回転進んだ360°〜450°である。つまり、今回の下降期間に対して前回の下降期間は、半回転だけ遅れている。また次回の下降期間は、今回の下降期間よりも半回転だけ進んでいる。
いずれの下降期間においても同一のPWM周期番号が同一の電気角θとなるように、モータ120の電気角θとPWM周期とが同期処理される。これにより、異なる下降期間の同一順番のPWM周期におけるモータ電流を比較することが可能となる。
なお、今回の下降期間に対する前回の下降期間と、今回の下降期間に対する次回の下降期間とは、1回転(360°)だけずれていてもよい。この場合、今回の下降期間は、前回の下降期間に対して1回転だけ遅れている。また次回の下降期間は、それよりも1回転だけ進んでいる。これにより、回転子が非対称性を有している場合であっても、好適に制御することができる。
更に今回の下降期間に対する前回の下降期間と、今回の下降期間に対する次回の下降期間とは、半回転の自然数倍(nπ)だけずれていてもよい。例えば、モータの2回転毎に周期的な外乱が発生する場合には、この外乱を好適に抑制可能である。
図8は、制御対象となる緩下降期間のPWM周期の例を示す図である。図8では、Period1からPeriod4までの4回のPWM期間が示されている。
図8の最上部は、緩下降期間における動作モードがチャージモードの期間を黒線で示している。このチャージモードの期間は、チャージモードフラグTonが“1”である。
図8の2番目は、電流測定値Icoilの波形図であり、基準電流値Iref1〜Iref3を2点鎖線で示している。実線は緩下降期間における電流測定値Icoilを示している。
以下、基準電流値Iref1〜Iref3を特に区別しないときには、単に基準電流値Irefと記載する。なおPeriod2とPeriod3で示すように、基準電流値Iref2は、連続する複数のPWM周期で同一であってもよい。
図8の3,4番目は、電圧VMout0,VMout1の波形図である。
図8の5番目は、ブリッジ制御部107の内部状態である閾値超過フラグCLを示している。図8の6番目は、ブリッジ制御部107の内部出力である電流制御有効フラグCLMを示している。
最初に、Period1からPeriod2における今回の緩下降期間の動作を説明する。
時間Tsは、今回のPWM周期が開始するタイミングである。各PWM周期が開始するときに電流制御有効フラグCLMは、1つ前のPWM周期の時間Tceで設定された“0”で開始すると共に、Hブリッジ回路20はチャージモードで動作する。チャージモードフラグTonは、“1”に変化する。このときの電圧VMout0は、電圧Vddレベルであり、電圧VMout1はグランドレベルである。閾値超過フラグCLは、“0”である。
時間Tsの後の時間Tcsにおいて、電流制御有効フラグCLMが“1”に切り替わる。これにより電流制限制御部112は、PWM信号の変更を許容するように、PWM信号発生器113を制御する。この電流制御有効フラグCLMは、後記する時間Tceまで“1”となる。
時間Tcsの後に電流測定値Icoilが基準電流値Iref51を超え、更にフィルタ期間Tfが経過すると、閾値超過フラグCLは、“1”に変化する。閾値超過フラグCLが“1”に変化するとチャージモードは終了し、チャージモードフラグTonは、“0”に変化する。
チャージモード時間TONは、チャージモードが継続した時間を示している。このチャージモード時間TONにより、基準電流値Iref1に対する電流測定値Icoilのズレを測定することができる。チャージモード時間TONは、チャージモードフラグTonが“1”に設定されている期間である。
チャージモードの終了後にHブリッジ回路20は、低速減衰モードに切り替わる。このときの電圧VMout0は、グランドレベルである。電圧VMout1は、電圧Vddレベルである。閾値超過フラグCLは、“1”である。
その後、電流測定値Icoilが基準電流値Iref1よりも小さくなるが、フィルタ期間Tfが経過する前にPeriod1が終了する。
時間Tceにおいて、電流制御有効フラグCLMが“0”に切り替わる。これにより電流制限制御部112はPWM信号の変更を許容せず、常に低速減衰モードでPWM信号発生器113を制御する。Period1においてHブリッジ回路20は、既に低速減衰モードであるため、動作モードは変化しない。
時間Teは、Period1のPWM周期が終了するタイミングであり、かつPeriod2のPWM周期が開始する時間Tsと同一のタイミングである。以降、Period51と同様なPWM周期が実行される。この緩下降期間のPWM周期処理を、以下の図11で説明する。
図9は、制御対象となる急下降期間のPWM周期の例を示す図である。図9では、Period51からPeriod54までの4回のPWM期間が示されている。
図9の最上部は、前回の急下降期間における動作モードがチャージモードの期間を黒線で示している。また、チャージモードフラグTonが1である区間を示している。図9の2番目は、今回の急下降期間における動作モードがチャージモードの期間を黒線で示している。
図9の3番目は、電流測定値Icoilの波形図であり、基準電流値Iref51〜Iref53を2点鎖線で示している。実線は今回の急下降期間における電流測定値Icoilを示し、破線は、前回の急下降期間における電流測定値Icoilを示している。
以下、基準電流値Iref51〜Iref53を特に区別しないときには、単に基準電流値Irefと記載する。なおPeriod52とPeriod53で示すように、基準電流値Iref52は、連続する複数のPWM周期で同一であってもよい。
図9の4,5番目は、電圧VMout0,VMout1の波形図である。
図9の6番目は、ブリッジ制御部107の内部状態である閾値超過フラグCLを示している。図9の7番目は、ブリッジ制御部107の内部出力である電流制御有効フラグCLMを示している。なお、各波形図において、実線は今回の急下降期間における値を示し、破線は前回の急下降期間における値を示している。
最初に、Period51からPeriod52における今回の急下降期間の動作を説明する。
時間Tsは、今回のPWM周期が開始するタイミングである。各PWM周期が開始するときに電流制御有効フラグCLMは、1つ前のPWM周期の時間Tceで設定された“0”で開始すると共に、Hブリッジ回路20はチャージモードで動作する。このときの電圧VMout0は、電圧Vddレベルであり、電圧VMout1はグランドレベルである。チャージモードフラグTonは“1”に変化する。閾値超過フラグCLは、“0”である。
時間Tsの後の時間Tcsにおいて、電流制御有効フラグCLMが“1”に切り替わる。これにより電流制限制御部112は、PWM信号の変更を許容するように、PWM信号発生器113を制御する。この電流制御有効フラグCLMは、後記する時間Tceまで“1”となる。
時間Tcsの後に電流測定値Icoilが基準電流値Iref51を超え、更にフィルタ期間Tfが経過すると、閾値超過フラグCLは、“1”に変化する。閾値超過フラグCLが“1”に変化するとチャージモードは終了し、チャージモードフラグTonは、“0”に変化する。
チャージモード時間TONは、チャージモードが継続した時間を示している。このチャージモード時間TONにより、基準電流値Iref51に対する電流測定値Icoilのズレを測定することができる。チャージモード時間TONは、チャージモードフラグTonが“1”に設定されている期間である。
チャージモードの終了後にHブリッジ回路20は、高速減衰モードに切り替わる。このときの電圧VMout0は、グランドレベルである。電圧VMout1は、電圧Vddレベルである。閾値超過フラグCLは、“1”である。
その後、電流測定値Icoilが基準電流値Iref51よりも小さくなり、更にフィルタ期間Tfが経過すると、閾値超過フラグCLは、“0”に変化する。
減衰モード切替時間Tfsにおいて、Hブリッジ回路20は、低速減衰モードに切り替わる。このときの電圧VMout0と電圧VMout1は、グランドレベルである。この減衰モード切替時間Tfsは、PWM周期ごとに、それぞれ異なる値が適用される。この減衰モード切替時間Tfsを適宜設定することにより、各PWM周期におけるモータ電流を好適に減衰させて、基準電流値Irefに近づけることができる。減衰モード切替時間Tfsは、時間Tcsよりも大きく、かつ後記する時間Tmaxよりも小さい。
時間Tceにおいて、電流制御有効フラグCLMが“0”に切り替わる。これにより電流制限制御部112はPWM信号の変更を許容せず、常に低速減衰モードでPWM信号発生器113を制御する。Period51においてHブリッジ回路20は、既に低速減衰モードであるため、動作モードは変化しない。
時間Teは、Period51のPWM周期が終了するタイミングであり、かつPeriod52のPWM周期が開始する時間Tsと同一のタイミングである。以降、Period51と同様なPWM周期が実行される。
次に、Period51からPeriod52における破線で示した前回の急下降期間の動作との違いを説明する。Hブリッジ回路20は、前回の急下降期間にて、今回の急下降期間よりも早いタイミングで高速減衰モードから低速減衰モードに切り替わっている。電流測定値Icoilは、Period52のPWM周期が開始するタイミングにおいて、前回の急下降期間よりも低い値となり、かつ基準電流値Iref52に近づいている。Period52の前回の急下降期間のチャージモード時間TON_oは、今回の急下降期間のチャージモード時間TONよりも短い。
次にPeriod53〜Period54における前回の急下降期間の動作を説明する。
Period53における破線で示した前回の急下降期間の電流測定値Icoilでわかるように、Hブリッジ回路20は、時間Tmaxにおいて初めて低速減衰モードに切り替わっている。すなわち、時間Tmaxは、減衰モード切替時間Tfsと等しい。
実線で示した今回の急下降期間の電流測定値Icoilで示したように、Hブリッジ回路20は、前回の急下降期間よりも早い減衰モード切替時間Tfsに低速減衰モードに切り替わる。よって、電流測定値Icoilは、前回の急下降期間よりも基準電流値Iref53に近づく。
これは、今回の急下降期間の方が、1ステップ前(1PWM周期前すなわちPeriod53)の電流測定値Icoilの減衰が小さいことから、Period54において高い電流値からチャージモードが開始されたことによる。その逆に、チャージモード時間TONが短いということは、1ステップ前の電流測定値Icoilの減衰が小さいことを意味する。すなわちチャージモード時間TONにより、コイル電流の減衰を判定することができる。
Period53〜Period54で示したように、減衰モード切替時間Tfsが長い場合は、高速減衰モードの期間が長くなり、電流測定値Icoilの減衰が大きくなる。その逆に、減衰モード切替時間Tfsが短い場合は、高速減衰モードの期間が短くなり、電流測定値Icoilの減衰が小さくなる。
よって、チャージモード時間TONの増加を打ち消すように、1ステップ前(1PWM周期前)の減衰モード切替時間Tfsを短くすることで、電流測定値Icoilを基準電流値Irefに好適に近づけることができる。これを実現する処理を、以下の図13から図15で説明する。
図10は、モータの電気角に応じた分岐処理ルーチンのフローチャートである。
なお、図10は、ROM103に記憶されCPU101によって実行される制御プログラムによる処理を示し、不図示の上位装置の駆動指示によって起動される。以下、Y相の制御を例に説明する。X相の制御は、Y相の制御とは電気角θの判定条件が90°異なるだけである。
ステップS10において、CPU101は、電気角θを判定する。
電気角θが90°を超え、かつ142°以下の場合、CPU101は、ステップS11に進み、緩下降期間におけるPWM周期処理を実行する。緩下降期間におけるPWM周期処理は、後記する図11と図12で説明する。電気角θが90°の場合とは、前記基準電流値が下降し始める場合である。電気角142°の場合とは、基準電流値が下降し始めたのち、+52°回転した角度である。
その後、CPU101は、駆動を継続すると判定したならば(ステップS14→Yes)、ステップS10の処理に戻る。CPU101は、駆動を継続すると判定しなかったならば(ステップS14→No)、図10の処理を終了する。
電気角θが142°を超え、かつ180°以下の場合、CPU101は、ステップS12に進み、急下降期間におけるPWM周期処理を実行する。急下降期間におけるPWM周期処理は、後記する図13と図14で説明する。電気角が90°の場合とは、前記基準電流値の下降が終了する場合である。
その後、CPU101は、駆動を継続すると判定したならば(ステップS14→Yes)、ステップS10の処理に戻る。CPU101は、駆動を継続すると判定しなかったならば(ステップS14→No)、図10の処理を終了する。
電気角θが0°を超え、かつ90°以下の場合、CPU101は、ステップS13に進み、上昇期間におけるPWM周期処理を実行する。その後、CPU101は、駆動を継続すると判定したならば(ステップS14→Yes)、ステップS10の処理に戻る。CPU101は、駆動を継続すると判定しなかったならば(ステップS14→No)、図10の処理を終了する。
図11と図12は、緩下降期間のPWM周期処理ルーチンのフローチャートである。この処理の説明において、適宜図8の緩下降期間のタイムチャートを参照する。
なお、図11と図12は、ROM103に記憶されCPU101によって実行される制御プログラムによる処理を示し、緩下降期間においてPWM周期毎に起動される。
急下降期間制御ルーチンの処理が開始される際には、タイマ104がリセットされ、以降はPWM周期が開始された後の経過時間が計時される。また、回転子126の電気角θの推定値と、図4または図5に示した波形とに基づいて、当該PWM周期における基準電流値Irefが決定される。決定された基準電流値Irefは、ブリッジ制御部107(図2参照)にセットされる。
また、電流制御有効フラグCLMは、前回のPWM周期において、“0”に設定されている。この前回のPWM周期に設定された電流制御有効フラグCLMは、引き続き、今回のPWM周期においても用いられる。前回のPWM周期には、後述する図12のステップS34が実行されたことにより電流制御有効フラグCLMが“0”に設定される。このステップS34の処理の詳細については後述する。
ステップS20において、PWM信号発生器113は、Hブリッジ回路20をチャージモードで動作させる。
次にステップS21において、電流制限制御部112は閾値超過フラグCLを取得する。なお、本ルーチン内で閾値超過フラグCLは、ステップS21が再び実行されるまで変化しない。
(時間Tcsで電流制御を有効化する処理)
ステップS22〜S24は、図8の時間Tcsで電流制御を有効化する処理である。
ステップS22において、ブリッジ制御部107は、時間Tcsが経過したか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS33の処理に進む。
前記したステップS20の処理により、Hブリッジ回路20はPWM周期の開始時にチャージモードで動作する。更にステップS22の処理により、PWM周期が開始する時間Tsから時間Tcsまでは最小ON時間となる。
最小ON時間がない場合には、電流波形が大きく落ち込む場合がある。すなわち、電流波形のリップルが大きくなるため、モータのトルク損失や、振動、騒音が大きくなる。これに対して、本実施形態では、PWM周期の開始時から時間Tcsまで、動作モードがチャージモードに設定されるので、モータ電流の電流リップルを抑制できる。これにより、モータの駆動効率を上昇させることができると共に、モータのトルクの損失と騒音、振動などを低減することができる。
ステップS23において、ブリッジ制御部107は、時間Tcsであるか否かを判定し、当該判定条件が成立したならば(Yes)、ステップS24にて、電流制御有効フラグCLMを“1”に設定する。この電流制御有効フラグCLMは、後記する図12のステップS34で参照される。
(時間Tmax以前の低速減衰モード移行処理)
ステップS25〜S29は、図8の時間Tmaxが経過する前に、チャージモードから低速減衰モードへの移行する処理である。
ステップS25において、ブリッジ制御部107は、時間Tmaxが経過したか否かを判定し、当該判定条件が成立したならば(Yes)、ステップS26の処理に進む。
ステップS26において、電流制限制御部112は、閾値超過フラグCLが“1”であるか否かを判定し、当該判定条件が成立しなかったならば(No)、図12のステップS30の処理に進む。
ステップS27において、電流制限制御部112は、電流制御有効フラグCLMが“1”であるか否かを判定し、当該判定条件が成立しなかったならば(No)、図12のステップS30の処理に進む。
次にステップS28において、ブリッジ制御部107は、Hブリッジ回路20がチャージモードで動作しているか否かを判定し、当該判定条件が成立しなかったならば(No)、図12のステップS30の処理に進む。
ステップS29においてPWM信号発生器113がHブリッジ回路20に対して低速減衰モードで動作するように指示し、図12のステップS30の処理に進む。
(時間Tcs以降の時間Tmaxにおける低速減衰モード移行処理)
ステップS30〜S32は、図8の時間Tmaxに、チャージモードから低速減衰モードに移行する処理である。
ステップS30において、ブリッジ制御部107は、時間Tmaxであるか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS33の処理に進む。
次にステップS31において、ブリッジ制御部107は、Hブリッジ回路20がチャージモードで動作しているか否かを判定する。当該判定条件が成立したならば(Yes)、ステップS32において、PWM信号発生器113は、Hブリッジ回路20に対して低速減衰モードで動作するように指示する。
(時間Tceに次周期準備処理)
ステップS33,S34は、図9の時間Tceに、次のPWM周期の準備をする処理である。
ステップS33において、ブリッジ制御部107は、時間Tceであるか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS35の処理に進む。当該判定条件が成立したならば(Yes)、ステップS34にて電流制御有効フラグCLMに“0”を設定する。ステップS34で設定された電流制御有効フラグCLMは、引き続き、次回のPWM周期においても用いられる。
ステップS35において、ブリッジ制御部107は、現在のPWM周期が終了する時間Teであるか否かを判定する。当該判定条件が成立しなかったならば(No)、ブリッジ制御部107は、図11のステップS21の処理に戻り、このPWM周期の処理を繰り返す。当該判定条件が成立したならば(Yes)、現在のPWM周期の処理を終了する。
図13と図14は、急下降期間のPWM周期処理ルーチンのフローチャートである。この処理の説明において、適宜図9の急下降期間のタイムチャートを参照する。
なお、図13と図14は、ROM103に記憶されCPU101によって実行される制御プログラムによる処理を示し、急下降期間においてPWM周期毎に起動される。
急下降期間制御ルーチンの処理が開始される際には、タイマ104がリセットされ、以降はPWM周期が開始された後の経過時間が計時される。また、回転子126の電気角θの推定値と、図4または図5に示した波形とに基づいて、当該PWM周期における基準電流値Irefが決定される。決定された基準電流値Irefはブリッジ制御部107(図2参照)にセットされる。
また、電流制御有効フラグCLMは、前回のPWM周期において、“0”に設定されている。この前回のPWM周期に設定された電流制御有効フラグCLMは、引き続き、今回のPWM周期においても用いられる。前回のPWM周期には、後述するステップS63が実行されたことにより電流制御有効フラグCLMが“0”に設定される。このステップS63の処理の詳細については後述する。
ステップS40において、PWM信号発生器113は、Hブリッジ回路20をチャージモードで動作させ、ステップS41においてブリッジ制御部107がチャージモード時間TONの計測を開始する。
次にステップS42において、ブリッジ制御部107は、タイマ104から経過時間を取得し、更に電流制限制御部112は閾値超過フラグCLを取得する。なお、本ルーチン内で経過時間および閾値超過フラグCLは、ステップS42が再び実行されるまで変化しない。
(時間Tcsで電流制御を有効化する処理)
ステップS43〜S45は、図9の時間Tcsで電流制御を有効化する処理である。
ステップS43において、ブリッジ制御部107は、時間Tcsが経過したか否かを判定し、当該判定条件が成立しなかったならば(No)、図14のステップS64の処理に進む。
前記したステップS40の処理により、Hブリッジ回路20はPWM周期の開始時にチャージモードで動作する。更にステップS43の処理により、PWM周期が開始する時間Tsから時間Tcsまでは最小ON時間となる。
最小ON時間がない場合には、電流波形が大きく落ち込む場合がある。すなわち、電流波形のリップルが大きくなるため、モータのトルク損失や、振動、騒音が大きくなる。これに対して、本実施形態では、PWM周期の開始時から時間Tcsまで、動作モードがチャージモードに設定されるので、モータ電流の電流リップルを抑制できる。これにより、モータの駆動効率を上昇させることができると共に、モータのトルクの損失と騒音、振動などを低減することができる。
ステップS44において、ブリッジ制御部107は、時間Tcsであるか否かを判定し、当該判定条件が成立したならば(Yes)、ステップS45にて、電流制御有効フラグCLMを“1”に設定する。この電流制御有効フラグCLMは、後記するステップS48で参照される。
(時間Tcs以降かつ減衰モード切替時間Tfs以前の高速減衰モード移行処理)
ステップS46〜S51は、図9の時間Tcs以降かつ減衰モード切替時間Tfs以前に、チャージモードから高速減衰モードへの移行する処理である。
ステップS46において、ブリッジ制御部107は、時間Tcsが経過したか否かを判定し、当該判定条件が成立したならば(Yes)、図14のステップS52の処理に進む。
ステップS47において、電流制限制御部112は、閾値超過フラグCLが“1”であるか否かを判定し、当該判定条件が成立しなかったならば(No)、図14のステップS52の処理に進む。
ステップS48において、電流制限制御部112は、電流制御有効フラグCLMが“1”であるか否かを判定し、当該判定条件が成立しなかったならば(No)、図14のステップS52の処理に進む。
次にステップS49において、ブリッジ制御部107は、Hブリッジ回路20がチャージモードで動作しているか否かを判定し、当該判定条件が成立しなかったならば(No)、図14のステップS52の処理に進む。
ステップS50においてブリッジ制御部107は、チャージモード時間TONを記憶し、ステップS51においてPWM信号発生器113がHブリッジ回路20に対して高速減衰モードで動作するように指示する。その後、ブリッジ制御部107は、図14のステップS52の処理に進む。
(時間Tcs以降かつ減衰モード切替時間Tfsの低速減衰モード移行処理)
図14に示したステップS52〜S56は、図9の時間Tcs以降かつ減衰モード切替時間Tfsに、チャージモードまたは高速減衰モードから低速減衰モードへ移行する処理である。
ステップS52において、ブリッジ制御部107は、減衰モード切替時間Tfsが経過したか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS64の処理に進む。
ステップS53において、ブリッジ制御部107は、減衰モード切替時間Tfsであるか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS57の処理に進む。
次にステップS54において、ブリッジ制御部107は、Hブリッジ回路20がチャージモードで動作しているか否かを判定する。当該判定条件が成立したならば(Yes)、ブリッジ制御部107は、ステップS55にてチャージモード時間TONを記憶する。
更にステップS56において、PWM信号発生器113は、Hブリッジ回路20に対して低速減衰モードで動作するように指示する。この処理により、図9のPeriod51〜54の減衰モード切替時間Tfsにおいて、実線で示した電流測定値Icoilは、急峻な減衰から緩やかな減衰に切り替わる。図9では、前回の下降期間の減衰モード切替時間Tfsは図示していないが、例えばPeriod52,54において、破線で示した電流測定値Icoilが急峻な減衰から緩やかな減衰に切り替わっている。この切り替わり時間は、前回の下降期間の減衰モード切替時間Tfsである。
(時間Tcs,Tfs以降の時間Tmaxにおける低速減衰モード移行処理)
ステップS57〜S60は、図9の時間Tcsと減衰モード切替時間Tfs以降の時間Tmaxに、チャージモードまたは高速減衰モードから低速減衰モードに移行する処理である。
ステップS57において、ブリッジ制御部107は、時間Tmaxであるか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS61の処理に進む。
次にステップS58において、ブリッジ制御部107は、Hブリッジ回路20がチャージモードで動作しているか否かを判定する。当該判定条件が成立したならば(Yes)、ブリッジ制御部107は、ステップS59にてチャージモード時間TONを記憶する。
更にステップS60において、PWM信号発生器113は、Hブリッジ回路20に対して低速減衰モードで動作するように指示する。この処理により、図9のPeriod53の時間Tmaxにおいて、破線で示した電流測定値Icoilは、急峻な減衰から緩やかな減衰に切り替わる。
(時間Tcs,Tfs以降で時間Tceに次周期準備処理)
ステップS61〜S63は、図9の時間Tcsと減衰モード切替時間Tfs以降の時間Tceに、次のPWM周期の準備をする処理である。
ステップS61において、ブリッジ制御部107は、時間Tceであるか否かを判定し、当該判定条件が成立しなかったならば(No)、ステップS64の処理に進む。当該判定条件が成立したならば(Yes)、ステップS62にて次のPWM周期のモータ動作条件設定と減衰モード切替時間設定(図15参照)を行い、ステップS63にて電流制御有効フラグCLMに“0”を設定する。ステップS63で設定された電流制御有効フラグCLMは、引き続き、次回のPWM周期においても用いられる。
ステップS64において、ブリッジ制御部107は、現在のPWM周期が終了する時間Teであるか否かを判定する。当該判定条件が成立しなかったならば(No)、ブリッジ制御部107は、図13のステップS42の処理に戻り、このPWM周期の処理を繰り返す。当該判定条件が成立したならば(Yes)、現在のPWM周期の処理を終了する。
図15は、減衰モード切替時間設定のフローチャートである。ここでは、図14のステップS62のモータ動作条件設定処理において実施される減衰モード切替時間設定の詳細を示している。
ステップS70において、ブリッジ制御部107は、今回のPWM周期のチャージモード時間TONを取得する。
ステップS71において、ブリッジ制御部107は、チャージモード時間TONが前回の下降期間の同一番号のPWM周期のチャージモード時間TON_oよりも大きいか否かを判定する。ブリッジ制御部107は、チャージモード時間TONが前回のチャージモード時間TON_oよりも大きいと判定したならば(Yes)、ステップS72の処理に進む。ブリッジ制御部107は、チャージモード時間TONが前回のチャージモード時間TON_oよりも大きくないと判定したならば(No)、ステップS73の処理に進む。
ステップS72において、ブリッジ制御部107は、次回の下降期間の1ステップ前の減衰モード切替時間Tfsを所定量だけ減少させ、ステップS74の処理に進む。ここで1ステップ前の減衰モード切替時間Tfsとは、PWM周期番号が1だけ小さいものをいう。
ステップS73において、ブリッジ制御部107は、次回の下降期間の1ステップ前の減衰モード切替時間Tfsを所定量だけ増加させる。
ステップS74において、ブリッジ制御部107は、チャージモード時間TON_oに、チャージモード時間TONを設定する。これにより、今回のチャージモード時間TONは、次回の下降期間においてチャージモード時間TON_oとして参照される。ブリッジ制御部107は、ステップS74の処理が終了すると、図15の処理を終了する。
この減衰モード切替時間設定では、今回の下降周期に対する次回の下降周期のチャージモード時間TONが安定するように、次回の下降周期の1ステップ前の減衰モード切替時間Tfsを変更している。これにより、次回の下降周期において、電流測定値Icoilを基準電流値Irefに近づけることができる。
図16は比較例のノイズスペクトラムを示す図であり、図17は本実施形態のノイズスペクトラムを示す図である。図16と図17のグラフの横軸は、周波数を示している。グラフの縦軸は、モータ駆動時のノイズを示している。
比較例のノイズスペクトラムは、モータ電流の下降期間において、図13と図14に示したPWM周期処理を実行した場合のノイズ成分を示している。本実施形態のノイズスペクトラムは、比較例に対して9KHzから1.5KHzのノイズが抑圧できている。9KHzから1.5KHzのノイズは、可聴領域であるため、ノイズの抑圧によりモータの静音性を高めることができる。
(変形例)
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で、変更実施が可能であり、例えば、次の(a)〜(e)のようなものがある。
(a) 上記実施形態では、プログラムを用いたソフトウエア的な処理として説明した。しかし、ASIC(Application Specific Integrated Circuit;特定用途向けIC)、またはFPGA(field-programmable gate array)などを用いたハードウエア的な処理で実現してもよい。
(b) Hブリッジ回路20を構成するスイッチング素子として、上記実施形態ではFETを適用した。しかし、これらに代えてバイポーラ・トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ:Insulated Gate Bipolar Transistor)、その他のスイッチング素子を適用してもよい。
(c) また、上記実施形態では、モータ120としてバイポーラ型2相ステッピングモータを適用した例を説明したが、モータ120の種類や相数は用途に応じて様々なものを適用してもよい。
(d) 上記実施形態においては、基準電流値Irefの設定方式としてマイクロステップ方式を採用したが、基準電流値Irefは、電気角θに対して連続的に変化する値を用いてもよい。
(e) 上記実施形態の2極のステッピングモータに限らず、4極やそれ以上の極数を有するステッピングモータに適用してもよい。なお、2極のステッピングモータでは、機械角θmと電気角θとは一致する。4極のステッピングモータにおいては、機械角θmの2倍が電気角θとなる。
2,4,6,8,15,17 スイッチング素子
12,14,16,18 ダイオード
20,20X,20Y Hブリッジ回路
100 モータ制御装置 (モータ電流制御装置の一例)
101 CPU(制御手段)
102 RAM
103 ROM
104 タイマ
105 I/Oポート
106 バス
107 ブリッジ制御部 (制御手段の一部)
110 ブリッジ制御回路
111 電流フィルタ (制御手段の一部)
112 電流制限制御部 (制御手段の一部)
113 PWM信号発生器 (制御手段の一部)
114 比較器
115 D/Aコンバータ
116 電流検出部
117 A/Dコンバータ
118 BEMF検出部
120 モータ
122XP,122XN,122YP,122YN 固定子 (モータコイルの一例)
124X,124Y,124 固定子巻線
126 回転子
130 上位装置
140 直流電源
142 アース線

Claims (5)

  1. スイッチング素子を有し、モータに設けられたモータコイルに接続されるHブリッジ回路と、
    前記スイッチング素子を所定のPWM周期毎に駆動し、前記Hブリッジ回路に対して、前記モータコイルに流れるモータ電流を増加させるチャージモード、または前記モータ電流を減衰させる高速減衰モード、前記高速減衰モードよりも低速に前記モータ電流を減衰させる低速減衰モードのうち何れかの動作モードを指定する制御手段と、
    を有し、
    前記制御手段は、ロータとステータの位置関係から前記PWM周期毎に基準電流値を設定し、
    前記基準電流値が下降し始める電気角から所定電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えたのちに前記低速減衰モードに切り替え、
    前記所定電気角を超えたのち、前記基準電流値が上昇し始める電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えたのちに前記モータ電流が前記基準電流値を超えたならば前記高速減衰モードに切り替え、更に前記低速減衰モードに切り替える、
    ことを特徴とするモータ電流制御装置。
  2. 前記基準電流値が下降し始める電気角を0°としたとき、前記所定電気角は60°である、
    ことを特徴とする請求項1に記載のモータ電流制御装置。
  3. 前記基準電流値が下降し始める電気角を0°としたとき、前記所定電気角は52°である、
    ことを特徴とする請求項1に記載のモータ電流制御装置。
  4. スイッチング素子を有し、モータに設けられたモータコイルに接続されるHブリッジ回路と、
    前記スイッチング素子を所定のPWM周期毎に駆動し、前記Hブリッジ回路に対して、前記モータコイルに流れるモータ電流を増加させるチャージモード、または前記モータ電流を減衰させる高速減衰モード、前記高速減衰モードよりも低速に前記モータ電流を減衰させる低速減衰モードのうち何れかの動作モードを指定する制御手段と、
    を有し、
    前記制御手段は、ロータとステータの位置関係から前記PWM周期毎に基準電流値を設定し、
    前記基準電流値が下降し始める電気角から所定電気角までの範囲においては、前記モータ電流の下降速度を抑えることにより、前記モータ電流と前記基準電流値との差が拡大し、
    前記所定電気角を超えたのち、前記基準電流値が上昇し始める電気角までの範囲においては、前記モータ電流の下降速度を抑えないことにより、前記モータ電流と前記基準電流値との差が収束する、
    ことを特徴とするモータ電流制御装置。
  5. スイッチング素子を有し、モータに設けられたモータコイルに接続されるHブリッジ回路と、
    前記スイッチング素子を所定のPWM周期毎に駆動し、前記Hブリッジ回路に対して、前記モータコイルに流れるモータ電流を増加させるチャージモード、または前記モータ電流を減衰させる高速減衰モード、前記高速減衰モードよりも低速に前記モータ電流を減衰させる低速減衰モードのうち何れかの動作モードを指定する制御手段と、
    を備えたモータ電流制御装置のモータ電流制御方法であって、
    前記制御手段が、ロータとステータの位置関係から前記PWM周期毎に基準電流値を設定するステップと、
    前記基準電流値が下降し始める電気角から所定電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えるステップの後に前記低速減衰モードに切り替えるステップを実行し、
    前記所定電気角を超えたのち、前記基準電流値が上昇し始める電気角までの範囲においては、前記PWM周期毎に、前記Hブリッジ回路を前記チャージモードに切り替えるステップの後に、前記モータ電流が前記基準電流値を超えたならば前記高速減衰モードに切り替えるステップを実行し、更に前記低速減衰モードに切り替えるステップを実行する、
    ことを特徴とするモータ電流制御方法。
JP2017108551A 2017-05-31 2017-05-31 モータ電流制御装置およびモータ電流制御方法 Active JP6806632B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017108551A JP6806632B2 (ja) 2017-05-31 2017-05-31 モータ電流制御装置およびモータ電流制御方法
US16/617,078 US11005400B2 (en) 2017-05-31 2018-05-30 Motor current control device and motor current control method
DE112018002815.1T DE112018002815T5 (de) 2017-05-31 2018-05-30 Vorrichtung zur Steuerung eines Motorstroms und Verfahren zur Steuerung eines Motorstroms
PCT/JP2018/020869 WO2018221628A1 (ja) 2017-05-31 2018-05-30 モータ電流制御装置およびモータ電流制御方法
CN201880034617.1A CN110663169B (zh) 2017-05-31 2018-05-30 电机电流控制装置及电机电流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108551A JP6806632B2 (ja) 2017-05-31 2017-05-31 モータ電流制御装置およびモータ電流制御方法

Publications (2)

Publication Number Publication Date
JP2018207607A JP2018207607A (ja) 2018-12-27
JP6806632B2 true JP6806632B2 (ja) 2021-01-06

Family

ID=64456134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108551A Active JP6806632B2 (ja) 2017-05-31 2017-05-31 モータ電流制御装置およびモータ電流制御方法

Country Status (5)

Country Link
US (1) US11005400B2 (ja)
JP (1) JP6806632B2 (ja)
CN (1) CN110663169B (ja)
DE (1) DE112018002815T5 (ja)
WO (1) WO2018221628A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224204B2 (ja) * 2019-02-26 2023-02-17 ローム株式会社 ステッピングモータの駆動回路、それを用いた電子機器
JP7327951B2 (ja) 2019-02-28 2023-08-16 ローム株式会社 ステッピングモータの駆動回路およびその駆動方法、それを用いた電子機器
JP7208071B2 (ja) 2019-03-14 2023-01-18 ローム株式会社 ステッピングモータの駆動回路およびその駆動方法、それを用いた電子機器
WO2021193364A1 (ja) * 2020-03-27 2021-09-30 ローム株式会社 ステッピングモータ用のドライバ装置
WO2023182303A1 (ja) * 2022-03-25 2023-09-28 ヌヴォトンテクノロジージャパン株式会社 モータ駆動装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564582B2 (ja) * 1994-12-16 2004-09-15 アイシン精機株式会社 スイッチドレラクタンスモ−タの通電制御装置
JPH0998594A (ja) * 1995-09-29 1997-04-08 Aisin Seiki Co Ltd 電気モ−タの通電制御方法
JPH09219995A (ja) * 1996-02-13 1997-08-19 Alps Electric Co Ltd ステッピングモータの駆動方法
JP3774578B2 (ja) * 1998-10-09 2006-05-17 キヤノン株式会社 記録装置及びモータ制御回路
JP3665565B2 (ja) 2000-12-28 2005-06-29 株式会社東芝 半導体集積回路およびモータ駆動制御システム
JP2007104839A (ja) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd モータ駆動装置および方法
DE102009040139B4 (de) * 2009-09-05 2012-10-04 Trinamic Motion Control Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur sensorlosen Motorlasterfassung und zur lastwertabhängigen Motorstromregelung bei Schrittmotoren
JP2013162568A (ja) * 2012-02-02 2013-08-19 Toshiba Corp モータ駆動制御システム
JP2014053997A (ja) * 2012-09-05 2014-03-20 Toshiba Corp モータ駆動制御装置
US9397597B2 (en) * 2013-07-29 2016-07-19 Texas Instruments Incorporated Sensed motor winding current adapting blanking period between max/min values
CN203660943U (zh) * 2013-12-03 2014-06-18 嘉兴中润微电子有限公司 一种电机驱动芯片中的混合衰减控制电路
US9742329B2 (en) * 2014-04-17 2017-08-22 Texas Instruments Incorporated Current regulation in motors
JP6204385B2 (ja) * 2015-01-22 2017-09-27 ミネベアミツミ株式会社 モータ電流制御装置およびモータ電流制御方法
JP6204386B2 (ja) * 2015-01-28 2017-09-27 ミネベアミツミ株式会社 モータ電流制御装置およびモータ電流制御方法
JP6580859B2 (ja) * 2015-04-24 2019-09-25 ローム株式会社 モータ駆動装置及びモータ駆動装置の駆動方法
CN105897088B (zh) * 2016-06-13 2018-07-13 王良坤 一种pwm斩波恒流控制的自动衰减控制电路

Also Published As

Publication number Publication date
WO2018221628A1 (ja) 2018-12-06
DE112018002815T5 (de) 2020-02-13
CN110663169A (zh) 2020-01-07
US20200083827A1 (en) 2020-03-12
US11005400B2 (en) 2021-05-11
CN110663169B (zh) 2023-05-26
JP2018207607A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6806632B2 (ja) モータ電流制御装置およびモータ電流制御方法
JP6204386B2 (ja) モータ電流制御装置およびモータ電流制御方法
JP6322134B2 (ja) モータ制御装置およびモータ制御方法
US7402975B2 (en) Motor drive device and drive method
JP6603638B2 (ja) モータ駆動制御装置およびモータ駆動制御方法
JP4959460B2 (ja) モータ起動装置及びモータ起動方法
JP5573585B2 (ja) 車両用回転電機
JP6204385B2 (ja) モータ電流制御装置およびモータ電流制御方法
JP6475182B2 (ja) モータ駆動制御装置
US20120181959A1 (en) Driving apparatus of sensorless brushless motor
JP6450256B2 (ja) モータ駆動制御装置
JP5966980B2 (ja) 車両用回転電機
JP2018170880A (ja) 電動機駆動装置、方法、及びプログラム
CN110476348B (zh) 电动机的磁场位置检测方法
JPH08126381A (ja) 直流ブラシレスモータの駆動装置
JP5784361B2 (ja) ブラシレスモータの駆動制御装置
US11165377B2 (en) Control device for stepping motor and control method for stepping motor
JP5606899B2 (ja) ブラシレスモータの駆動制御装置
KR20210073596A (ko) 무브러시 영구 자석 모터의 제어 방법
JP6330344B2 (ja) モータ制御装置
JP2019041443A (ja) モータ駆動制御装置
JP2021002926A (ja) モータ制御装置
JP2019216499A (ja) ブラシレスdcモータの制御方法及び制御装置
JP2013229949A (ja) 二相ブラシレスモータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150