JP6791544B2 - Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method - Google Patents

Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method Download PDF

Info

Publication number
JP6791544B2
JP6791544B2 JP2015126698A JP2015126698A JP6791544B2 JP 6791544 B2 JP6791544 B2 JP 6791544B2 JP 2015126698 A JP2015126698 A JP 2015126698A JP 2015126698 A JP2015126698 A JP 2015126698A JP 6791544 B2 JP6791544 B2 JP 6791544B2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric semiconductor
conversion material
conductive glass
semiconductor composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015126698A
Other languages
Japanese (ja)
Other versions
JP2017011166A (en
Inventor
邦久 加藤
邦久 加藤
豪志 武藤
豪志 武藤
祐馬 勝田
祐馬 勝田
近藤 健
健 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2015126698A priority Critical patent/JP6791544B2/en
Publication of JP2017011166A publication Critical patent/JP2017011166A/en
Application granted granted Critical
Publication of JP6791544B2 publication Critical patent/JP6791544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱電半導体組成物、並びに熱電変換材料及びその製造方法に関する。 The present invention relates to a thermoelectric semiconductor composition, a thermoelectric conversion material, and a method for producing the same.

近年、システムが単純でしかも小型化が可能な熱電発電技術が、ビル、工場等で使用される化石燃料資源等から発生する未利用の廃熱エネルギーに対する回収発電技術として注目されている。しかしながら、熱電発電は一般に発電効率が悪いこともあり、さまざまな企業、研究機関で発電効率の向上のための研究開発が活発になされている。発電効率の向上には、熱電変換材料の高効率化が必須となるが、これらを実現するために、金属並みの高い電気伝導率とガラス並みの低い熱伝導率を備えた材料の開発が望まれている。 In recent years, thermoelectric power generation technology, which has a simple system and can be miniaturized, has been attracting attention as a recovery power generation technology for unused waste heat energy generated from fossil fuel resources used in buildings, factories, and the like. However, thermoelectric power generation generally has poor power generation efficiency, and various companies and research institutes are actively conducting research and development to improve power generation efficiency. In order to improve power generation efficiency, it is essential to improve the efficiency of thermoelectric conversion materials, but in order to achieve these, it is hoped that materials with high electrical conductivity comparable to metal and low thermal conductivity comparable to glass will be developed. It is rare.

熱電変換特性は、熱電性能指数Z(Z=σS/λ)によって評価することができる。ここで、Sはゼーベック係数、σは電気伝導率(抵抗率の逆数)、λは熱伝導率である。上記、熱電性能指数Zの値を大きくすれば、発電効率が向上するため、発電の高効率化にあたっては、ゼーベック係数S及び電気伝導率σが大きく、熱伝導率λが小さい熱電変換材料を見出すことが重要である。 The thermoelectric conversion characteristic can be evaluated by the thermoelectric figure of merit Z (Z = σS 2 / λ). Here, S is the Seebeck coefficient, σ is the electrical conductivity (the reciprocal of the resistivity), and λ is the thermal conductivity. If the value of the thermoelectric performance index Z is increased, the power generation efficiency is improved. Therefore, in order to improve the efficiency of power generation, a thermoelectric conversion material having a large Seebeck coefficient S and a large electric conductivity σ and a small thermal conductivity λ is found. This is very important.

上記のように、発電効率を向上させる検討が必要とされる一方、現在製造されている熱電変換素子は量産性に乏しく、発電ユニットが高価であるため、建築物の壁面へ設置する場合など大面積な用途へのさらなる普及には製造コストの削減が必要不可欠であった。また、現在製造されている熱電変換素子は屈曲性が悪く、フレキシブルな熱電変換素子が望まれていた。
このような中で、特許文献1には、高分子物質を溶剤に溶解された溶液に、金属粉末と絶縁性ガラス組成物を分散した導電性ペースト組成物の導電性を向上させるために、絶縁性ガラス組成物の代わりに酸化バナジウム、酸化バリウム、酸化鉄を含む導電性ガラス組成物を用いた高導電性ペースト組成物が開示されている。
また、特許文献2には、熱可塑性樹脂、熱硬化性樹脂、天然ゴム、あるいは合成ゴムの内の1つにグラファイトやカーボンブラック等の導電性粒子を混合することによりなる導電性プラスチック中に、例えば、平均粒子径が500ミクロン以下の粉状物のn型熱電半導体粒子を30重量パーセントから80重量パーセントの範囲内で混練することによって分散させてなる熱電半導体材料が開示されている。
さらに、特許文献3には、支持体上に、熱伝導率の低下に寄与する微粒子化した熱電半導体、耐熱性樹脂及び微粒子間の空隙部での電気伝導率の低下を抑制するイオン液体を含む熱電半導体組成物を用いた熱電変換材料が検討されている。
As mentioned above, while it is necessary to consider improving the power generation efficiency, the thermoelectric conversion elements currently manufactured are poor in mass productivity and the power generation unit is expensive, so it is often installed on the wall surface of a building. Reduction of manufacturing cost was indispensable for further widespread use in area applications. Further, the thermoelectric conversion element currently manufactured has poor flexibility, and a flexible thermoelectric conversion element has been desired.
Under such circumstances, Patent Document 1 describes insulation in order to improve the conductivity of a conductive paste composition in which a metal powder and an insulating glass composition are dispersed in a solution in which a polymer substance is dissolved in a solvent. A highly conductive paste composition using a conductive glass composition containing vanadium oxide, barium oxide, and iron oxide instead of the sex glass composition is disclosed.
Further, in Patent Document 2, a conductive plastic obtained by mixing conductive particles such as graphite and carbon black with one of a thermoplastic resin, a thermosetting resin, a natural rubber, or a synthetic rubber is described in a conductive plastic. For example, a thermosetting semiconductor material in which powdery n-type thermosetting semiconductor particles having an average particle diameter of 500 microns or less are dispersed by kneading in the range of 30% by weight to 80% by weight is disclosed.
Further, Patent Document 3 includes, on the support, a finely divided thermoelectric semiconductor that contributes to a decrease in thermal conductivity, a heat-resistant resin, and an ionic liquid that suppresses a decrease in electric conductivity in a gap between the fine particles. Thermoelectric conversion materials using thermoelectric semiconductor compositions are being studied.

特開2011−144077号公報Japanese Unexamined Patent Publication No. 2011-144007 特許第3919469号公報Japanese Patent No. 3919469 国際公開第2015/019871号International Publication No. 2015/019871

しかしながら、特許文献1には、前記導電性ガラス組成物を、熱電変換材料を構成する熱電半導体組成物の一成分として適用する技術は開示されていなかった。
また、特許文献2では、前記導電性プラスチックの電気伝導度が、体積固有抵抗値で10−4Ω〜10Ω・cmの範囲の導電性を有するプラスチックを用いるものであった。
さらに、特許文献3では、導電補助剤としてイオン液体を開示しているものの、導電性ガラスについては開示がなく、また、熱電半導体組成物の成膜後のアニール処理を行う場合、イオン液体の耐熱性が十分ではなかった。
However, Patent Document 1 does not disclose a technique for applying the conductive glass composition as a component of a thermoelectric semiconductor composition constituting a thermoelectric conversion material.
Further, in Patent Document 2, a plastic having an electric conductivity in the range of 10 -4 Ω to 10 3 Ω · cm in volume specific resistance value is used.
Further, Patent Document 3 discloses an ionic liquid as a conductive auxiliary agent, but does not disclose conductive glass, and when an annealing treatment is performed after the formation of a thermoelectric semiconductor composition, the heat resistance of the ionic liquid is not disclosed. The sex was not enough.

本発明は、上記状況を鑑み、微粒子化した熱電半導体間の空隙部での電気伝導率の低下を抑制する導電性補助剤を含有した熱電半導体組成物を提供することを課題とする。また、本発明は、屈曲性に優れ、かつ簡便に低コストで製造可能である熱電変換材料及びその製造方法を提供することを課題とする。 In view of the above situation, it is an object of the present invention to provide a thermoelectric semiconductor composition containing a conductive auxiliary agent that suppresses a decrease in electrical conductivity in a gap between micronized thermoelectric semiconductors. Another object of the present invention is to provide a thermoelectric conversion material which is excellent in flexibility and can be easily manufactured at low cost, and a method for manufacturing the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱電半導体の微粒子及び耐熱性樹脂とともに、導電補助剤としての導電性ガラスを配合することで、微粒子間の空隙部での電気伝導率の低下が抑制された熱電半導体組成物が得られることを見出した。また、支持体上に、該熱電半導体組成物からなる薄膜を形成することにより、従来の、導電補助剤を有しない熱電変換材料に比べより優れた熱電性能指数が得られ、かつ屈曲性に優れ、しかも簡便に低コストで製造可能であることを見出し、本発明を完成した。
すなわち、本発明は、以下の(1)〜(12)を提供するものである。
(1)熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む、熱電半導体組成物。
(2)前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜40質量%である、上記(1)に記載の熱電半導体組成物。
(3)前記導電性ガラスが、バナジン酸塩、バリウム酸塩及び鉄酸塩を含む、上記(1)に記載の熱電半導体組成物。
(4)前記導電性ガラスの軟化点が、350〜550℃である、上記(1)に記載の熱電半導体組成物。
(5)支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有する、熱電変換材料。
(6)前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜40質量%である、上記(5)に記載の熱電変換材料。
(7)前記導電性ガラスが、バナジン酸塩、バリウム酸塩及び鉄酸塩を含む、上記(5)に記載の熱電変換材料。
(8)前記導電性ガラスの軟化点が、350〜550℃である、上記(5)に記載の熱電変換材料。
(9)支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有する熱電変換材料の製造方法であって、支持体上に、溶媒を含む該熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程、さらに該薄膜をアニール処理する工程を含む、熱電変換材料の製造方法
(10)前記アニール処理が、前記導電性ガラスの軟化点以上で行われる、上記(9)に記載の熱電変換材料の製造方法。
(11)前記導電性ガラスの軟化点が350〜550℃である、上記(9)又は(10)に記載の熱電変換材料の製造方法。
(12)前記支持体がプラスチックフィルムである、上記(9)に記載の熱電変換材料の製造方法。
As a result of diligent studies to solve the above problems, the present inventors have combined the fine particles of the thermoelectric semiconductor and the heat-resistant resin with the conductive glass as a conductive auxiliary agent to form the gaps between the fine particles. It has been found that a thermoelectric semiconductor composition in which a decrease in electrical conductivity is suppressed can be obtained. Further, by forming a thin film made of the thermoelectric semiconductor composition on the support, a better thermoelectric figure of merit can be obtained and excellent flexibility as compared with the conventional thermoelectric conversion material having no conductive auxiliary agent. Moreover, they have found that they can be easily manufactured at low cost, and have completed the present invention.
That is, the present invention provides the following (1) to (12).
(1) A thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass.
(2) The thermoelectric semiconductor composition according to (1) above, wherein the blending amount of the conductive glass is 0.1 to 40% by mass in the total solid content of the thermoelectric semiconductor composition.
(3) The thermoelectric semiconductor composition according to (1) above, wherein the conductive glass contains vanadate, barium salt and ferrate.
(4) The thermoelectric semiconductor composition according to (1) above, wherein the conductive glass has a softening point of 350 to 550 ° C.
(5) A thermoelectric conversion material having a thin film composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass on a support.
(6) The thermoelectric conversion material according to (5) above, wherein the amount of the conductive glass blended is 0.1 to 40% by mass in the total solid content of the thermoelectric semiconductor composition.
(7) The thermoelectric conversion material according to (5) above, wherein the conductive glass contains vanadate, barium salt and iron salt.
(8) The thermoelectric conversion material according to (5) above, wherein the softening point of the conductive glass is 350 to 550 ° C.
(9) A method for producing a thermoelectric conversion material having a thin film composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass on a support, wherein the thermoelectric contains a solvent on the support. A method for producing a thermoelectric conversion material, which comprises a step of applying a semiconductor composition, drying, and forming a thin film, and a step of annealing the thin film. (10) The annealing treatment is at or above the softening point of the conductive glass. The method for producing a thermoelectric conversion material according to (9) above.
(11) The method for producing a thermoelectric conversion material according to (9) or (10) above, wherein the softening point of the conductive glass is 350 to 550 ° C.
(12) The method for producing a thermoelectric conversion material according to (9) above, wherein the support is a plastic film.

本発明によれば、微粒子化した熱電半導体間の空隙部での電気伝導率の低下を抑制する導電性補助剤を含有した熱電半導体組成物を提供することができる。また、屈曲性に優れ、かつ簡便に低コストで製造可能である熱電変換材料及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a thermoelectric semiconductor composition containing a conductive auxiliary agent that suppresses a decrease in electrical conductivity in a gap between micronized thermoelectric semiconductors. Further, it is possible to provide a thermoelectric conversion material which is excellent in flexibility and can be easily manufactured at low cost, and a method for manufacturing the thermoelectric conversion material.

[熱電半導体組成物]
本発明の熱電半導体組成物は、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含むことを特徴とする。導電性ガラスを用いることで、熱電半導体微粒子本来の導電性を損なうことなく、かつ低熱伝導性が保持された組成物が得られる。
[Thermoelectric semiconductor composition]
The thermoelectric semiconductor composition of the present invention is characterized by containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass. By using the conductive glass, a composition having low thermal conductivity can be obtained without impairing the original conductivity of the thermoelectric semiconductor fine particles.

(熱電半導体微粒子)
本発明の熱電半導体組成物に用いる熱電半導体微粒子は、熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕することにより得られる。
(Thermoelectric semiconductor fine particles)
The thermoelectric semiconductor fine particles used in the thermoelectric semiconductor composition of the present invention can be obtained by pulverizing a thermoelectric semiconductor material to a predetermined size with a pulverizer or the like.

前記熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、p型ビスマステルライド、n型ビスマステルライド、BiTe等のビスマス−テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン−テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛−アンチモン系熱電半導体材料;SiGe等のシリコン−ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。 The thermoelectric semiconductor material is not particularly limited as long as it is a material capable of generating thermoelectromotive force by imparting a temperature difference. For example, p-type bismasterlide, n-type bismasterlide, Bi 2 Te 3, etc. Bismus-Teruru thermoelectric semiconductor materials; Telluride thermoelectric semiconductor materials such as GeTe and PbTe; Antimon-Teruru thermoelectric semiconductor materials; Zinc-antimon thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 ; SiGe Silicon-germanium-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; bismus selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; VDD-based thermoelectric semiconductor materials such as β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si; oxides Thermoelectric semiconductor materials; Whistler materials such as FeVAL, FeVALSi, and FeVTiAl, sulfide thermoelectric semiconductor materials such as TiS 2 , and the like are used.

これらの中でも、本発明に用いる前記熱電半導体材料は、p型ビスマステルライド又はn型ビスマステルライド、BiTe等のビスマス−テルル系熱電半導体材料であることが好ましい。
前記p型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2−Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、p型熱電変換材料としての特性が維持されるので好ましい。
また、前記n型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3−YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、n型熱電変換材料としての特性が維持されるので好ましい。
Among these, the thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as p-type bismuthellide, n-type bismuthellide, or Bi 2 Te 3 .
As the p-type bismuth telluride, one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used. In this case, X is preferably 0 <X ≦ 0.8, more preferably 0.4 ≦ X ≦ 0.6. When X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a p-type thermoelectric conversion material are maintained, which is preferable.
Further, as the n-type bismuth telluride, those having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y , are preferably used. In this case, Y is preferably 0 ≦ Y ≦ 3, more preferably 0.1 <Y ≦ 2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as an n-type thermoelectric conversion material are maintained, which is preferable.

本発明に用いる熱電半導体微粒子の前記熱電半導体組成物の全固形分中の配合量は、好ましくは、30〜99質量%、より好ましくは、50〜96質量%であり、さらに好ましくは、70〜95質量%である。熱電半導体微粒子の配合量が、上記範囲内であれば、ゼーベック係数の絶対値が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The blending amount of the thermoelectric semiconductor fine particles used in the present invention in the total solid content of the thermoelectric semiconductor composition is preferably 30 to 99% by mass, more preferably 50 to 96% by mass, and further preferably 70 to 70 to 90% by mass. It is 95% by mass. When the blending amount of the thermoelectric semiconductor fine particles is within the above range, the absolute value of the Seebeck coefficient is large, the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited and sufficient. A film having film strength and flexibility can be obtained, which is preferable.

本発明に用いる熱電半導体微粒子の平均粒径は、好ましくは、10nm〜200μm、より好ましくは、30nm〜30μm、さらに好ましくは、50nm〜10μm、特に好ましくは、1〜6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、ウィリーミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値とした。
The average particle size of the thermoelectric semiconductor fine particles used in the present invention is preferably 10 nm to 200 μm, more preferably 30 nm to 30 μm, still more preferably 50 nm to 10 μm, and particularly preferably 1 to 6 μm. Within the above range, uniform dispersion can be facilitated and the electric conductivity can be increased.
The method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor fine particles is not particularly limited, and is a jet mill, a ball mill, a bead mill, a colloid mill, a conical mill, a disc mill, an edge mill, a milling mill, a hammer mill, a pellet mill, a willy mill, and a roller. It may be pulverized to a predetermined size by a known fine pulverizer such as a mill.
The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction type particle size analyzer (manufactured by CILAS, type 1064), and was used as the median value of the particle size distribution.

また、本発明に用いる熱電半導体微粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体微粒子は、結晶性が向上し、さらに、熱電半導体微粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数が増大し、熱電性能指数をさらに向上させることができる。アニール処理Aは、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で、微粒子の融点以下の温度で、数分〜数十時間行うことが好ましい。具体的には、用いる熱電半導体微粒子に依存するが、通常、100〜1500℃で、数分〜数十時間行うことが好ましい。 Further, the thermoelectric semiconductor fine particles used in the present invention are preferably annealed (hereinafter, may be referred to as "annealing treatment A"). By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor fine particles is improved, and the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient of the thermoelectric conversion material is increased and the thermoelectric performance index is further improved. Can be made to. The annealing treatment A is not particularly limited, but before preparing the thermoelectric semiconductor composition, the gas flow rate is controlled under an inert gas atmosphere such as nitrogen or argon so as not to adversely affect the thermoelectric semiconductor fine particles. Similarly, it is preferably carried out for several minutes to several tens of hours at a temperature equal to or lower than the melting point of the fine particles under an atmosphere of a reducing gas such as hydrogen or under vacuum conditions. Specifically, although it depends on the thermoelectric semiconductor fine particles used, it is usually preferable to carry out at 100 to 1500 ° C. for several minutes to several tens of hours.

(導電性ガラス)
本発明で用いる導電性ガラスは、後述するように、バナジン酸塩を主成分とし、電気伝導率が高く(但し、熱伝導率の増加を抑制できる範囲)かつ軟化点が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができ、かつ後述する薄膜を成膜した後のアニール処理を、より高温度で行うことができるため、熱電変換材料のゼーベック係数が増大し、熱電性能指数をさらに向上させることができる。さらに、本発明に用いる導電性ガラスは、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
(Conductive glass)
As will be described later, the conductive glass used in the present invention is characterized by having vanazine salt as a main component, having high electrical conductivity (however, within a range in which an increase in thermal conductivity can be suppressed), and having a high softening point. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress the reduction of the electric conductivity between the thermoelectric semiconductor fine particles, and the annealing treatment after forming the thin film described later is performed at a higher temperature. Therefore, the Seebeck coefficient of the thermoelectric conversion material can be increased, and the thermoelectric performance index can be further improved. Further, since the conductive glass used in the present invention has excellent compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.

導電性ガラスは、公知または市販のものが使用できる。本発明で用いる導電性ガラスとしては、バナジン酸塩、バリウム酸塩、鉄酸塩を含むバナジウム系の導電性ガラス組成物を用いることが好ましい。具体的には、該導電性ガラス組成物を、例えば、白金るつぼ中で1000〜1300℃の範囲で溶融し、急冷してガラス化し、さらに微粒子化したもの(以下、「導電性バナジン酸塩ガラス」ということがある。)を用いることができる。
導電性バナジン酸塩ガラスにおいて、酸化バナジウムが、導電性ガラス全モル量中25モル%以上、好ましくは25〜95モル%、より好ましくは40〜80モル%、酸化バリウムが好ましくは1〜40モル%、酸化鉄が好ましくは1〜20モル%含有する。また、酸化バリウムと酸化バナジウムのモル比は、好ましくは5:90〜35:50であり、酸化鉄と酸化バナジウムのモル比は、好ましくは5:90〜15:50である。さらに、SiO,Al,ZrO、B等の酸化物を含んでいてもよい。これらの酸化物の含有量は導電性ガラス全モル量中、好ましくは0〜30モル%である。
また、本発明に用いる導電性ガラスは、株式会社東海産業より購入(商品名:NTAガラス)することができる。
As the conductive glass, known or commercially available ones can be used. As the conductive glass used in the present invention, it is preferable to use a vanadium-based conductive glass composition containing vanadate, barium salt, and iron salt. Specifically, the conductive glass composition is melted in a platinum crucible in a range of 1000 to 1300 ° C., rapidly cooled to vitrify, and further finely divided (hereinafter, "conductive vanadate glass"). ”) Can be used.
In the conductive vanadate glass, vanadium oxide is 25 mol% or more, preferably 25 to 95 mol%, more preferably 40 to 80 mol%, and barium oxide is preferably 1 to 40 mol% in the total molar amount of the conductive glass. %, Iron oxide is preferably contained in an amount of 1 to 20 mol%. The molar ratio of barium oxide to vanadium oxide is preferably 5:90 to 35:50, and the molar ratio of iron oxide to vanadium oxide is preferably 5:90 to 15:50. Further, oxides such as SiO 2 , Al 2 O 3 , ZrO 2 , and B 2 O 3 may be contained. The content of these oxides is preferably 0 to 30 mol% in the total molar amount of the conductive glass.
The conductive glass used in the present invention can be purchased from Tokai Sangyo Co., Ltd. (trade name: NTA glass).

本発明に用いる導電性ガラスの微粒子の平均粒径は、好ましくは、10nm〜200μm、より好ましくは、20nm〜50μm、さらに好ましくは、50nm〜10μmである。上記範囲内であれば、均一分散が容易になり、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
なお、導電性ガラスの平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値とした。
The average particle size of the fine particles of the conductive glass used in the present invention is preferably 10 nm to 200 μm, more preferably 20 nm to 50 μm, and further preferably 50 nm to 10 μm. Within the above range, uniform dispersion becomes easy and compatibility with the heat-resistant resin is excellent, so that the electric conductivity of the thermoelectric conversion material can be made uniform.
The average particle size of the conductive glass was obtained by measuring with a laser diffraction type particle size analyzer (manufactured by CILAS, type 1064), and was used as the median value of the particle size distribution.

導電性ガラスの電気伝導率は、好ましくは1.0×10−6〜1.0×10S/cmであり、より好ましくは1.0×10−4〜1.0×10−1S/cmであり、さらに好ましくは1.0×10−3〜1.0×10−1S/cmである。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制しかつ熱伝導率の増加を抑制することができる。 Electrical conductivity of the conductive glass is preferably 1.0 × 10 -6 ~1.0 × 10 0 S / cm, more preferably 1.0 × 10 -4 ~1.0 × 10 -1 S / Cm, more preferably 1.0 × 10 -3 to 1.0 × 10 -1 S / cm. When the electric conductivity is within the above range, the decrease in the electric conductivity between the thermoelectric semiconductor fine particles can be effectively suppressed and the increase in the thermal conductivity can be suppressed as the conductivity auxiliary agent.

導電性ガラスの軟化点は、好ましくは350〜550℃であり、より好ましくは400〜550℃であり、さらに好ましくは500〜550℃である。軟化点が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができ、かつゼーベック係数がさらに増加する。 The softening point of the conductive glass is preferably 350 to 550 ° C, more preferably 400 to 550 ° C, and even more preferably 500 to 550 ° C. When the softening point is within the above range, the effect as a conductive auxiliary agent can be maintained and the Seebeck coefficient is further increased even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.

導電性ガラスは、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 The mass loss rate of the conductive glass at 400 ° C. by thermogravimetric analysis (TG) is preferably 10% or less, more preferably 5% or less, still more preferably 1% or less. As long as the mass reduction rate is within the above range, the effect as a conductive auxiliary agent can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.

熱電半導体微粒子を除く導電性ガラスと耐熱性樹脂とからなる組成物から形成される薄膜の電気伝導率は、上限値が1.0×10−3S/cm未満(体積固有抵抗値では1.0×10Ω・cm超)であり、下限値が、好ましくは1.0×10−8S/cm以上、より好ましくは1.0×10−6S/cm以上、さらに好ましくは1.0×10−5S/cm以上、特に好ましくは1.0×10−4S/cm以上である。電気伝導率が上記範囲であれば、熱電半導体微粒子を分散させた時に、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。 The upper limit of the electrical conductivity of a thin film formed from a composition composed of conductive glass excluding thermoelectric semiconductor fine particles and a heat-resistant resin is less than 1.0 × 10 -3 S / cm (the volume specific resistance value is 1. (0 × 10 3 Ω · cm or more), and the lower limit is preferably 1.0 × 10-8 S / cm or more, more preferably 1.0 × 10-6 S / cm or more, and further preferably 1. It is 0 × 10 -5 S / cm or more, particularly preferably 1.0 × 10 -4 S / cm or more. When the electric conductivity is in the above range, the reduction of the electric conductivity between the thermoelectric semiconductor fine particles can be effectively suppressed when the thermoelectric semiconductor fine particles are dispersed.

導電性ガラスの前記熱電半導体組成物の全固形分中の配合量は、好ましくは0.1〜40質量%、より好ましくは0.5〜30質量%、さらに好ましくは1.0〜20質量%である。前記導電性ガラスの配合量が、上記範囲内であれば、熱電半導体微粒子間の電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The blending amount of the conductive glass in the total solid content of the thermoelectric semiconductor composition is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, still more preferably 1.0 to 20% by mass. Is. When the blending amount of the conductive glass is within the above range, the decrease in electrical conductivity between the thermoelectric semiconductor fine particles is effectively suppressed, and a film having high thermoelectric performance can be obtained.

(耐熱性樹脂)
本発明に用いる耐熱性樹脂は、熱電半導体微粒子間のバインダーとして働き、後述する熱電変換材料の屈曲性を高めるためのものである。該耐熱性樹脂は、特に制限されるものではないが、後述する熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂を用いる。
前記耐熱性樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、エポキシ樹脂、及びこれらの樹脂の化学構造を有する共重合体等が挙げられる。前記耐熱性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。これらの中でも、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。前述の支持体として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
(Heat resistant resin)
The heat-resistant resin used in the present invention acts as a binder between thermoelectric semiconductor fine particles, and is for increasing the flexibility of a thermoelectric conversion material described later. The heat-resistant resin is not particularly limited, but when a thin film made of a thermoelectric semiconductor composition described later is subjected to crystal growth of thermoelectric semiconductor fine particles by annealing or the like, the mechanical strength and thermal conductivity of the resin, etc. Use a heat-resistant resin that maintains the various physical properties of.
Examples of the heat-resistant resin include polyamide resins, polyamideimide resins, polyimide resins, polyetherimide resins, polybenzoxazole resins, polybenzoimidazole resins, epoxy resins, and copolymers having a chemical structure of these resins. Can be mentioned. The heat-resistant resin may be used alone or in combination of two or more. Among these, polyamide resins, polyamide-imide resins, polyimide resins, and epoxy resins are preferable and have excellent flexibility because they have higher heat resistance and do not adversely affect the crystal growth of thermoelectric semiconductor fine particles in the thin film. Therefore, polyamide resin, polyamide-imide resin, and polyimide resin are more preferable. When a polyimide film is used as the above-mentioned support, the polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film and the like. In the present invention, the polyimide resin is a general term for polyimide and its precursor.

前記耐熱性樹脂は、分解温度が、好ましくは300℃以上、より好ましくは350℃以上、さらに好ましくは400℃以上である。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料の屈曲性を維持することができる。 The heat-resistant resin has a decomposition temperature of preferably 300 ° C. or higher, more preferably 350 ° C. or higher, still more preferably 400 ° C. or higher. When the decomposition temperature is within the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as described later.

また、前記耐熱性樹脂は、熱重量測定(TG)による350℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料の屈曲性を維持することができる。 Further, the heat-resistant resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and further preferably 1% or less at 350 ° C. by thermogravimetric analysis (TG). .. As long as the mass reduction rate is within the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as described later. ..

前記耐熱性樹脂の前記熱電半導体組成物の全固形分中の配合量は、好ましくは0.1〜40質量%、より好ましくは0.5〜20質量%、さらに好ましくは1〜20質量%である。前記耐熱性樹脂の配合量が、上記範囲内であれば、高い熱電性能と皮膜強度が両立した膜が得られる。 The blending amount of the heat-resistant resin in the total solid content of the thermoelectric semiconductor composition is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass. is there. When the blending amount of the heat-resistant resin is within the above range, a film having both high thermoelectric performance and film strength can be obtained.

本発明の熱電半導体組成物には、前記熱半導体微粒子、前記耐熱性樹脂及び前記導電性ガラス以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらの添加剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 In addition to the thermoelectric semiconductor fine particles, the heat-resistant resin, and the conductive glass, the thermoelectric semiconductor composition of the present invention further contains a dispersant, a film-forming auxiliary, a light stabilizer, an antioxidant, and an adhesive, if necessary. Other additives such as an imparting agent, a plasticizer, a coloring agent, a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be contained. These additives can be used alone or in combination of two or more.

本発明の熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、前記熱電半導体微粒子と前記導電性ガラス及び前記耐熱性樹脂、必要に応じて前記その他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
The method for preparing the thermoelectric semiconductor composition of the present invention is not particularly limited, and the thermoelectric semiconductor fine particles, the conductive glass, and the conductive glass can be prepared by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, and a hybrid mixer. The thermoelectric semiconductor composition may be prepared by adding the heat-resistant resin, the other additives if necessary, and a solvent, and mixing and dispersing them.
Examples of the solvent include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. One of these solvents may be used alone, or two or more of these solvents may be mixed and used. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.

[熱電変換材料]
本発明の熱電変換材料は、支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有することを特徴とする。該薄膜は、上述した本発明の熱電半導体組成物を用いてなる。
[Thermoelectric conversion material]
The thermoelectric conversion material of the present invention is characterized by having a thin film composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and conductive glass on a support. The thin film is made by using the thermoelectric semiconductor composition of the present invention described above.

(支持体)
本発明の熱電変換材料に用いる支持体は、熱電変換材料の電気伝導率の低下、熱伝導率の増加に影響を及ぼさないものであれば、特に制限されない。支持体としては、例えば、ガラス、シリコン、プラスチックフィルム等が挙げられる。なかでも、屈曲性に優れるという点から、プラスチックフィルムが好ましい。
プラスチックフィルムとしては、具体的には、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルム、ポリエーテルケトンフィルム、ポリエーテル・エーテルケトンフィルム、ポリフェニレンサルファイドフィルム等が挙げられる。また、これらフィルムの積層体であってもよい。
これらの中でも、熱電半導体組成物からなる薄膜をアニール処理した場合でも、支持体が熱変形することなく、熱電変換材料の性能を維持することができ、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
(Support)
The support used for the thermoelectric conversion material of the present invention is not particularly limited as long as it does not affect the decrease in the electric conductivity and the increase in the thermal conductivity of the thermoelectric conversion material. Examples of the support include glass, silicon, a plastic film and the like. Of these, a plastic film is preferable because it has excellent flexibility.
Specific examples of the plastic film include a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, a polyamideimide film, a polyetherketone film, a polyetheretherketone film, and a polyphenylene sulfide film. Further, it may be a laminate of these films.
Among these, even when a thin film made of a thermoelectric semiconductor composition is annealed, the performance of the thermoelectric conversion material can be maintained without thermal deformation of the support, and heat resistance and dimensional stability are high. , Polyimide film, polyamide film, polyetherimide film, polyaramid film, polyamideimide film is preferable, and polyimide film is particularly preferable from the viewpoint of high versatility.

前記支持体の厚さは、屈曲性、耐熱性及び寸法安定性の観点から、1〜1000μmが好ましく、10〜500μmがより好ましく、20〜100μmがさらに好ましい。
また、上記プラスチックフィルムの分解温度が、好ましくは200℃以上、より好ましくは250℃以上、さらに好ましくは300℃以上である。
The thickness of the support is preferably 1 to 1000 μm, more preferably 10 to 500 μm, still more preferably 20 to 100 μm from the viewpoint of flexibility, heat resistance and dimensional stability.
The decomposition temperature of the plastic film is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and even more preferably 300 ° C. or higher.

(熱電半導体組成物)
本発明の熱電変換材料に用いる熱電半導体組成物は、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む。該熱電半導体組成物は、前述した本発明の熱電半導体組成物にかかる記載をすべて含む。
(Thermoelectric semiconductor composition)
The thermoelectric semiconductor composition used in the thermoelectric conversion material of the present invention contains thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass. The thermoelectric semiconductor composition includes all the above-mentioned descriptions of the thermoelectric semiconductor composition of the present invention.

前記熱電半導体組成物からなる薄膜の厚みは、特に制限はないが、熱電性能と皮膜強度の点から、好ましくは100nm〜200μm、より好ましくは300nm〜150μm、さらに好ましくは5〜150μmである。 The thickness of the thin film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 200 μm, more preferably 300 nm to 150 μm, and further preferably 5 to 150 μm from the viewpoint of thermoelectric performance and film strength.

前記熱電半導体組成物からなる薄膜は、後述する本発明の熱電変換材料の製造方法で説明するように、支持体上に、前記熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで大面積の熱電変換材料を得ることができる。 The thin film made of the thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition on a support and drying it, as described later in the method for producing a thermoelectric conversion material of the present invention. .. By forming in this way, a thermoelectric conversion material having a large area can be easily obtained at low cost.

本発明の熱電変換材料は、単独で用いることもできるが、例えば、複数を、電気的には電極を介して直列に、熱的にはセラミックス又は絶縁性を有するフレキシブルなシート等を介して並列に接続して、熱電変換素子として、発電用及び冷却用として使用することができる。 The thermoelectric conversion material of the present invention can be used alone, but for example, a plurality of them are electrically connected in series via electrodes and thermally connected in parallel via ceramics or a flexible sheet having insulating properties. It can be used as a thermoelectric conversion element for power generation and cooling.

[熱電変換材料の製造方法]
本発明の熱電変換材料の製造方法は、支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有する熱電変換材料の製造方法であって、支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程(以下、「薄膜形成工程」ということがある。)、さらに該薄膜をアニール処理する工程(以下、「アニール処理工程」ということがある。)を含む、ことを特徴とする。以下、本発明に含まれる工程について、順次説明する。
[Manufacturing method of thermoelectric conversion material]
The method for producing a thermoelectric conversion material of the present invention is a method for producing a thermoelectric conversion material having a thin film composed of a thermoelectric semiconductor fine film, a heat-resistant resin and a conductive glass on a support. A step of applying a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass onto the surface, drying the mixture, and forming a thin film (hereinafter, may be referred to as a "thin film forming step"), and further the thin film. It is characterized by including a step of annealing (hereinafter, may be referred to as “annealing step”). Hereinafter, the steps included in the present invention will be sequentially described.

(薄膜形成工程)
本発明の溶媒を含む熱電半導体組成物を、支持体上に塗布する方法としては、スクリーン印刷、フレキソ印刷、グラビア印刷、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ドクターブレード等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、スロットダイコート等が好ましく用いられる。
次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80〜150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒〜数十分である。
(Thin film forming process)
Known methods for applying the thermoelectric semiconductor composition containing the solvent of the present invention onto a support include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor blade. The method is not particularly limited. When the coating film is formed into a pattern, screen printing, slot die coating, or the like, which enables easy pattern formation using a screen plate having a desired pattern, is preferably used.
Next, a thin film is formed by drying the obtained coating film, and as a drying method, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted. The heating temperature is usually 80 to 150 ° C., and the heating time varies depending on the heating method, but is usually several seconds to several tens of minutes.

(アニール処理工程)
得られた熱電変換材料は、薄膜形成後、さらにアニール処理(以下、「アニール処理B」ということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる耐熱性樹脂及び導電性ガラスの耐熱温度等に依存するが、導電性ガラスの軟化点以上で行うことが好ましく、通常、数分〜数十時間行われる。
(Annealing process)
It is preferable that the obtained thermoelectric conversion material is further subjected to an annealing treatment (hereinafter, may be referred to as “annealing treatment B”) after forming a thin film. By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor fine particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved. The annealing treatment B is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or vacuum conditions in which the gas flow rate is controlled, and the heat-resistant resin and conductivity used are used. Although it depends on the heat resistant temperature of the glass, it is preferably performed at the softening point or higher of the conductive glass, and is usually performed for several minutes to several tens of hours.

本発明の製造方法によれば、簡便な方法で熱電性能が高く、低コストの熱電変換材料を得ることができる。 According to the manufacturing method of the present invention, a thermoelectric conversion material having high thermoelectric performance and low cost can be obtained by a simple method.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.

実施例、比較例で作製した熱電変換材料の熱電性能評価、屈曲性評価は、以下の方法で行った。
<熱電性能評価>
(a)電気伝導率
実施例及び比較例で作製した熱電変換材料を、表面抵抗測定装置(三菱化学社製、商品名:ロレスタGP MCP−T600)により、四端子法で試料の表面抵抗値を測定し、電気伝導率(σ)を算出した。
(b)ゼーベック係数
JIS C 2527:1994に準拠して実施例及び比較例で作製した熱電変換材料の熱起電力を測定し、ゼーベック係数(S)を算出した。作製した熱変換材料の一端を加熱して、熱変換材料の両端に生じる温度差をクロメル−アルメル熱電対を使用し測定し、熱電対設置位置に隣接した電極から熱起電力を測定した。
具体的には、温度差と起電力を測定する試料の両端間距離を25mmとし、一端を20℃に保ち、他端を25℃から50℃まで1℃刻みで加熱し、その際の熱起電力を測定して、傾きからゼーベック係数(S)を算出した。なお、熱電対及び電極の設置位置は、薄膜の中心線に対し、互いに対称の位置にあり、熱電対と電極の距離は1mmである。
(c)熱伝導率
熱伝導率の測定には3ω法を用いて熱伝導率(λ)を算出した。
得られた、電気伝導率、ゼーベック係数及び熱伝導率から、熱電性能指数Z(Z=σS/λ)を求め、無次元熱電性能指数ZT(T=300K)を算出した。
<屈曲性評価>
実施例及び比較例で作製した熱電変換材料について、円筒形マンドレル法によりマンドレル径φ10mmの時の薄膜の屈曲性を評価した。円筒形マンドレル試験前後で、熱電変換材料の外観評価及び熱電性能評価を行い、以下の基準で屈曲性を評価した。
◎:試験前後で熱電変換材料の外観に異常が見られず無次元熱電性能指数ZTが変化しない場合
○:試験前後で熱電変換材料の外観に異常が見られずZTの減少が30%未満であった場合
×:試験後に熱電変換材料にクラック等の割れが発生したり、ZTが30%以上減少した場合
The thermoelectric performance evaluation and flexibility evaluation of the thermoelectric conversion materials produced in Examples and Comparative Examples were carried out by the following methods.
<Thermoelectric performance evaluation>
(A) Electrical conductivity The thermoelectric conversion material produced in Examples and Comparative Examples is subjected to the surface resistance value of a sample by a four-terminal method using a surface resistance measuring device (manufactured by Mitsubishi Chemical Corporation, trade name: Loresta GP MCP-T600). It was measured and the electrical conductivity (σ) was calculated.
(B) Seebeck coefficient The thermoelectromotive force of the thermoelectromotive conversion materials produced in Examples and Comparative Examples was measured according to JIS C 2527: 1994, and the Seebeck coefficient (S) was calculated. One end of the produced heat conversion material was heated, the temperature difference generated at both ends of the heat conversion material was measured using a chromel-almel thermocouple, and the thermoelectromotive force was measured from an electrode adjacent to the thermocouple installation position.
Specifically, the distance between both ends of the sample for measuring the temperature difference and the electromotive force is set to 25 mm, one end is kept at 20 ° C., and the other end is heated from 25 ° C. to 50 ° C. in 1 ° C increments. The electromotive force was measured and the Seebeck coefficient (S) was calculated from the inclination. The thermocouple and the electrode are installed at positions symmetrical with respect to the center line of the thin film, and the distance between the thermocouple and the electrode is 1 mm.
(C) Thermal conductivity The thermal conductivity (λ) was calculated using the 3ω method for the measurement of the thermal conductivity.
The thermoelectric figure of merit Z (Z = σS 2 / λ) was obtained from the obtained electric conductivity, Seebeck coefficient, and thermal conductivity, and the dimensionless thermoelectric figure of merit ZT (T = 300K) was calculated.
<Flexibility evaluation>
The flexibility of the thin film when the mandrel diameter was φ10 mm was evaluated by the cylindrical mandrel method for the thermoelectric conversion materials produced in Examples and Comparative Examples. Before and after the cylindrical mandrel test, the appearance and thermoelectric performance of the thermoelectric conversion material were evaluated, and the flexibility was evaluated according to the following criteria.
⊚: No abnormality is observed in the appearance of the thermoelectric conversion material before and after the test, and the dimensionless thermoelectric figure of merit ZT does not change. If there is ×: When cracks such as cracks occur in the thermoelectric conversion material after the test, or when ZT decreases by 30% or more.

(熱電半導体微粒子の作製方法)
ビスマス−テルル系熱電半導体材料であるp型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P−7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径1.2μmの熱電半導体微粒子T1を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(CILAS社製、1064型)により粒度分布測定を行った。
また、ビスマス−テルル系熱電半導体材料であるn型ビスマステルライドBiTe(高純度化学研究所製、粒径:180μm)を上記と同様に粉砕し、平均粒径1.4μmの熱電半導体微粒子T2を作製した。
(Method for producing thermoelectric semiconductor fine particles)
A bismuth-tellurium thermoelectric semiconductor material, p-type bismuth tellurium Bi 0.4 Te 3 Sb 1.6 (manufactured by High Purity Chemical Laboratory, particle size: 180 μm), and a planetary ball mill (manufactured by Fritsch Japan, Premium line P). -7) was used and pulverized in a nitrogen gas atmosphere to prepare thermoelectric semiconductor fine particles T1 having an average particle size of 1.2 μm. The particle size distribution of the thermoelectric semiconductor fine particles obtained by pulverization was measured with a laser diffraction type particle size analyzer (CILAS, 1064 type).
Further, n-type bismuth tellurium Bi 2 Te 3 (manufactured by High Purity Chemical Laboratory, particle size: 180 μm), which is a bismuth-tellurium thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 μm are pulverized. T2 was prepared.

(実施例1)
(1)熱電半導体組成物の作製
表1に示す実施例1に記載した配合量(熱電半導体組成物の全固形分中の質量%)になるように、得られたビスマス−テルル系熱電半導体材料の微粒子T1、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物−co−4,4´−オキシジアニリン)溶液、溶媒:N−メチルピロリドン、固形分濃度:15質量%、分解温度:490℃、熱重量測定による300℃における質量減少率:0.5%)、及び導電性ガラスとしてNTAガラスパウダー(株式会社東海産業製、平均粒子径:2.6μm)を混合分散した熱電半導体組成物からなる塗工液を調製した。
(Example 1)
(1) Preparation of Thermoelectric Semiconductor Composition The bismuth-tellu thermoelectric semiconductor material obtained so as to have the blending amount (mass% of the total solid content of the thermoelectric semiconductor composition) shown in Example 1 shown in Table 1. Fine particles T1, polyamic acid (manufactured by Sigma Aldrich, poly (pyromeric acid dianhydride-co-4,4'-oxydianiline) solution, solvent: N-methylpyrrolidone, solid), which is a polyimide precursor as a heat-resistant resin. Mineral concentration: 15% by mass, decomposition temperature: 490 ° C, mass reduction rate at 300 ° C by thermoelectric weight measurement: 0.5%), and NTA glass powder as conductive glass (manufactured by Tokai Sangyo Co., Ltd., average particle size: 2) A coating solution composed of a thermoelectric semiconductor composition in which 0.6 μm) was mixed and dispersed was prepared.

(2)熱電変換材料の製造
(1)で調製した塗工液を、スピンコート法により支持体であるポリイミドフィルム(東レデュポン社製、商品名「カプトン」、厚さ50μm)上に塗布し、温度150℃で、10分間アルゴン雰囲気下で乾燥し、厚さが20μmの薄膜を形成した。次いで、得られた薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=5体積%:95体積%)雰囲気下で、加温速度5K/minで昇温し、450℃で1時間保持し、薄膜形成後のアニール処理Bを行うことにより、熱電半導体材料の微粒子を結晶成長させ、熱電変換材料を作製した。
(2) Manufacture of thermoelectric conversion material The coating liquid prepared in (1) is applied onto a polyimide film (manufactured by Toray DuPont, trade name "Kapton", thickness 50 μm) which is a support by a spin coating method. The film was dried at a temperature of 150 ° C. for 10 minutes in an argon atmosphere to form a thin film having a thickness of 20 μm. Next, the obtained thin film was heated at a heating rate of 5 K / min in an atmosphere of a mixed gas of hydrogen and argon (hydrogen: argon = 5% by volume: 95% by volume), and held at 450 ° C. for 1 hour. By performing the annealing treatment B after forming the thin film, fine particles of the thermoelectric semiconductor material were crystallized to produce a thermoelectric conversion material.

(実施例2)
アニール処理Bの温度を500℃に変更したこと以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 2)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that the temperature of the annealing treatment B was changed to 500 ° C.

(実施例3)
熱電半導体微粒子をT1からT2に変更した以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 3)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that the thermoelectric semiconductor fine particles were changed from T1 to T2.

(実施例4)
アニール処理Bの温度を500℃に変更した以外は、実施例3と同様にして、熱電変換材料を作製した。
(Example 4)
A thermoelectric conversion material was produced in the same manner as in Example 3 except that the temperature of the annealing treatment B was changed to 500 ° C.

(実施例5)
導電性ガラスの添加量を5質量%から1質量%に変更した以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 5)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that the amount of the conductive glass added was changed from 5% by mass to 1% by mass.

(実施例6)
導電性ガラスの添加量を5質量%から20質量%に変更した以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 6)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that the amount of the conductive glass added was changed from 5% by mass to 20% by mass.

(実施例7)
耐熱性樹脂をエポキシ樹脂(Hexion Specialty Chemicals社製、EPON 862)に変更し、硬化剤(Dixie Chemicals社製、 methylhexahydrophthalic anhydride)をエポキシ樹脂に対して、4.25質量%添加したこと以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 7)
Except for the fact that the heat-resistant resin was changed to an epoxy resin (Hexion Specialty Chemicals, EPON 862) and a curing agent (Dixie Chemicals, methylexahydrophatic anchor) was added to the epoxy resin in an amount of 4.25% by mass. A thermoelectric conversion material was produced in the same manner as in Example 1.

(実施例8)
アニール処理Bの温度を480℃にした以外は、実施例1と同様にして、熱電変換材料を作製した。
(Example 8)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that the temperature of the annealing treatment B was set to 480 ° C.

(比較例1)
導電性ガラスを添加しない以外は、実施例1と同様にして、熱電変換材料を作製した。
(Comparative Example 1)
A thermoelectric conversion material was produced in the same manner as in Example 1 except that conductive glass was not added.

Figure 0006791544
Figure 0006791544

実施例1〜8及び比較例1で得られた熱電変換材料の熱電性能評価及び屈曲性評価結果を表2に示す。 Table 2 shows the thermoelectric performance evaluation and flexibility evaluation results of the thermoelectric conversion materials obtained in Examples 1 to 8 and Comparative Example 1.

Figure 0006791544
Figure 0006791544

実施例1〜8の熱電変換材料は、導電補助剤として導電性ガラスを加えない比較例1に比べて、無次元熱電性能指数ZTが2〜4オーダー高く、また、円筒形マンドレル試験前後で、熱電変換材料にクラック等の割れが発生することもなく、無次元熱電性能指数ZTがほとんど低下せず、屈曲性が優れていることが分かった。 The thermoelectric conversion materials of Examples 1 to 8 have a dimensionless thermoelectric performance index ZT of 2 to 4 orders higher than that of Comparative Example 1 in which conductive glass is not added as a conductive auxiliary agent, and before and after the cylindrical mandrel test. It was found that the thermoelectric conversion material did not have cracks such as cracks, the dimensionless thermoelectric performance index ZT hardly decreased, and the flexibility was excellent.

本発明の熱電半導体組成物は、熱と電気の相互エネルギー変換性能を有し、熱電変換材料として利用される。また、本発明の熱電変換材料は、熱と電気の相互エネルギー変換を行う熱電変換素子にして、モジュールに組み込み、利用される。具体的には、簡便に低コストで製造可能な屈曲性を有する熱電変換材料が得られ、例えば、建築物の壁面へ設置する場合など、壁面部の表面の形状によらずかつ大面積な用途等に、低コストの熱電変換材料として用いることができる。 The thermoelectric semiconductor composition of the present invention has a mutual energy conversion performance between heat and electricity, and is used as a thermoelectric conversion material. Further, the thermoelectric conversion material of the present invention is used by incorporating it into a module as a thermoelectric conversion element that performs mutual energy conversion between heat and electricity. Specifically, a thermoelectric conversion material having flexibility that can be easily manufactured at low cost can be obtained, and for example, when it is installed on the wall surface of a building, it is used in a large area regardless of the shape of the surface of the wall surface portion. Etc., it can be used as a low-cost thermoelectric conversion material.

Claims (13)

熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物であって、前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜20質量%である、熱電半導体組成物。 A thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass, wherein the blending amount of the conductive glass is 0.1 to 20% by mass based on the total solid content of the thermoelectric semiconductor composition. Thermoelectric semiconductor composition. 前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜5質量%である、請求項1に記載の熱電半導体組成物。 The thermoelectric semiconductor composition according to claim 1, wherein the blending amount of the conductive glass is 0.1 to 5% by mass in the total solid content of the thermoelectric semiconductor composition. 前記導電性ガラスが、バナジン酸塩、バリウム酸塩及び鉄酸塩を含む、請求項1に記載の熱電半導体組成物。 The thermoelectric semiconductor composition according to claim 1, wherein the conductive glass contains vanadate, barium salt and ferrate. 前記導電性ガラスの軟化点が、350〜550℃である、請求項1に記載の熱電半導体組成物。 The thermoelectric semiconductor composition according to claim 1, wherein the conductive glass has a softening point of 350 to 550 ° C. 支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有し、前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜20質量%である、熱電変換材料。 A thin film composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and a conductive glass is provided on the support, and the blending amount of the conductive glass is 0 in the total solid content of the thermoelectric semiconductor composition. A thermoelectric conversion material, which is 1 to 20% by mass. 前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜5質量%である、請求項5に記載の熱電変換材料。 The thermoelectric conversion material according to claim 5, wherein the amount of the conductive glass blended is 0.1 to 5% by mass in the total solid content of the thermoelectric semiconductor composition. 前記導電性ガラスが、バナジン酸塩、バリウム酸塩及び鉄酸塩を含む、請求項5に記載の熱電変換材料。 The thermoelectric conversion material according to claim 5, wherein the conductive glass contains vanadate, barium salt and iron salt. 前記導電性ガラスの軟化点が、350〜550℃である、請求項5に記載の熱電変換材料。 The thermoelectric conversion material according to claim 5, wherein the conductive glass has a softening point of 350 to 550 ° C. 支持体上に、熱電半導体微粒子、耐熱性樹脂及び導電性ガラスを含む熱電半導体組成物からなる薄膜を有する熱電変換材料の製造方法であって、前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜20質量%であり、支持体上に、溶媒を含む該熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程、さらに該薄膜をアニール処理する工程を含む、熱電変換材料の製造方法。 A method for producing a thermoelectric conversion material having a thin film composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and conductive glass on a support, wherein the blending amount of the conductive glass is the thermoelectric semiconductor composition. A step of applying the thermoelectric semiconductor composition containing a solvent on the support, which is 0.1 to 20% by mass based on the total solid content of the product, and drying the thermoelectric semiconductor composition to form a thin film, and a step of annealing the thin film. A method for manufacturing a thermoelectric conversion material, including. 前記アニール処理が、前記導電性ガラスの軟化点以上で行われる、請求項9に記載の熱電変換材料の製造方法。 The method for producing a thermoelectric conversion material according to claim 9, wherein the annealing treatment is performed at the softening point or higher of the conductive glass. 前記導電性ガラスの軟化点が350〜550℃である、請求項9又は10に記載の熱電変換材料の製造方法。 The method for producing a thermoelectric conversion material according to claim 9 or 10, wherein the softening point of the conductive glass is 350 to 550 ° C. 前記導電性ガラスの配合量が、前記熱電半導体組成物の全固形分中0.1〜5質量%である、請求項9に記載の熱電変換材料の製造方法The method for producing a thermoelectric conversion material according to claim 9, wherein the amount of the conductive glass blended is 0.1 to 5% by mass in the total solid content of the thermoelectric semiconductor composition. 前記支持体がプラスチックフィルムである、請求項9に記載の熱電変換材料の製造方法。 The method for producing a thermoelectric conversion material according to claim 9, wherein the support is a plastic film.
JP2015126698A 2015-06-24 2015-06-24 Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method Active JP6791544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015126698A JP6791544B2 (en) 2015-06-24 2015-06-24 Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126698A JP6791544B2 (en) 2015-06-24 2015-06-24 Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017011166A JP2017011166A (en) 2017-01-12
JP6791544B2 true JP6791544B2 (en) 2020-11-25

Family

ID=57761867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126698A Active JP6791544B2 (en) 2015-06-24 2015-06-24 Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6791544B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309830B2 (en) * 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
WO2007114317A1 (en) * 2006-03-31 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Peltier device and temperature regulating container equipped with the peltier device
JP4696289B2 (en) * 2006-10-11 2011-06-08 財団法人北九州産業学術推進機構 Thermocouple temperature sensor and manufacturing method thereof
US8044292B2 (en) * 2006-10-13 2011-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Homogeneous thermoelectric nanocomposite using core-shell nanoparticles
JP2011144077A (en) * 2010-01-15 2011-07-28 Tokyo Electronics Chemicals Corp Highly electroconductive paste composition
WO2012039265A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Semiconductor junction element, semiconductor device using same, and method for manufacturing semiconductor junction element
JP5537402B2 (en) * 2010-12-24 2014-07-02 株式会社日立製作所 Thermoelectric conversion material
JP5526104B2 (en) * 2011-10-25 2014-06-18 株式会社日立製作所 Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
WO2014033891A1 (en) * 2012-08-31 2014-03-06 株式会社日立製作所 Thermoelectric conversion device
WO2014073095A1 (en) * 2012-11-09 2014-05-15 株式会社日立製作所 Thermoelectric conversion module and method for manufacturing same
JP5712340B1 (en) * 2013-08-09 2015-05-07 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017011166A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6683132B2 (en) Peltier cooling element and manufacturing method thereof
JP5712340B1 (en) Thermoelectric conversion material and manufacturing method thereof
CN110168759B (en) Thermoelectric conversion material and method for producing same
JP6127041B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP6672562B2 (en) Peltier cooling element and method of manufacturing the same
KR102170477B1 (en) Paste composition for thermoelectric device, thermoelectric device and prepareing method using the same
WO2014201430A1 (en) Dispenser printed mechanically-alloyed p-type flexible thermoelectric generators
JPWO2016147809A1 (en) Waste heat recovery sheet
JP6791544B2 (en) Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method
JP2014209594A (en) Thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201030

R150 Certificate of patent or registration of utility model

Ref document number: 6791544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250