JP6780373B2 - Method for producing high-purity polyarylene sulfide particles - Google Patents

Method for producing high-purity polyarylene sulfide particles Download PDF

Info

Publication number
JP6780373B2
JP6780373B2 JP2016166790A JP2016166790A JP6780373B2 JP 6780373 B2 JP6780373 B2 JP 6780373B2 JP 2016166790 A JP2016166790 A JP 2016166790A JP 2016166790 A JP2016166790 A JP 2016166790A JP 6780373 B2 JP6780373 B2 JP 6780373B2
Authority
JP
Japan
Prior art keywords
cake
liquid
pas
amount
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016166790A
Other languages
Japanese (ja)
Other versions
JP2018009135A (en
Inventor
健 小宮
健 小宮
堀内 俊輔
俊輔 堀内
秀 海法
秀 海法
慎吾 武知
慎吾 武知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2018009135A publication Critical patent/JP2018009135A/en
Application granted granted Critical
Publication of JP6780373B2 publication Critical patent/JP6780373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明にはポリアリーレンスルフィドの製造方法に関する。より詳しくは、高純度のポリアリーレンスルフィド粒子を簡便に効率よく回収する方法に関する。 The present invention relates to a method for producing polyarylene sulfide. More specifically, the present invention relates to a method for easily and efficiently recovering high-purity polyarylene sulfide particles.

ポリフェニレンスルフィド(以下、PPSと略する場合もある。)に代表されるポリアリーレンスルフィド(以下、PASと略する場合もある。)は優れた耐熱性、バリア性、耐薬品性、電気絶縁性、耐湿熱性、難燃性などエンジニアリングプラスチックとして好適な性質を有する樹脂である。また、射出成形、押出成形により各種成形部品、フィルム、シート、繊維などに成形可能であり、各種電気・電子部品、機械部品及び自動車部品など耐熱性、耐薬品性の要求される分野に広く用いられている。 Polyphenylene sulfide (hereinafter, may be abbreviated as PAS) represented by polyphenylene sulfide (hereinafter, may be abbreviated as PPS) has excellent heat resistance, barrier property, chemical resistance, and electrical insulation. It is a resin having properties suitable as engineering plastics such as moisture resistance and heat resistance and flame retardancy. In addition, it can be molded into various molded parts, films, sheets, fibers, etc. by injection molding and extrusion molding, and is widely used in fields where heat resistance and chemical resistance are required, such as various electrical / electronic parts, mechanical parts, and automobile parts. Has been done.

このPASの具体的な製造方法として、N−メチル−2−ピロリドン(以下、NMPと略する場合もある。)などの有機アミド溶媒中で水硫化ナトリウムなどのアルカリ金属硫化物とp−ジクロロベンゼンなどのジハロゲン化芳香族化合物とを反応させる方法が提案されており(例えば特許文献1参照。)、この方法はPASの工業的製造方法として幅広く利用されている。この製造方法における重合反応は脱塩重縮合機構であるため、塩化ナトリウムなどの副生塩が多量に生成する。従って、重合反応後には副生塩の除去工程が必要であるが、通常の処理では副生塩の完全な除去が難しく、一般的な製造工程では無機成分が含有されてしまう。このように製造されたPAS中に無機成分が残存していると、電気特性などの物性低下を招くといった問題が生じる場合がある。従って、このようなPASを原料として用いた成形品を電気・電子部品の分野に適用するには、十分に洗浄し無機成分を低減させたPASを使用する必要があり、コストの面などで大きな課題があった。 As a specific method for producing this PAS, an alkali metal sulfide such as sodium hydrosulfide and p-dichlorobenzene in an organic amide solvent such as N-methyl-2-pyrrolidone (hereinafter, may be abbreviated as NMP). A method of reacting with a dihalogenated aromatic compound such as the above has been proposed (see, for example, Patent Document 1), and this method is widely used as an industrial production method of PAS. Since the polymerization reaction in this production method is a desalting polycondensation mechanism, a large amount of by-product salt such as sodium chloride is produced. Therefore, a step of removing the by-product salt is required after the polymerization reaction, but it is difficult to completely remove the by-product salt by a normal treatment, and an inorganic component is contained in a general manufacturing process. If an inorganic component remains in the PAS produced in this way, there may be a problem that physical properties such as electrical characteristics are deteriorated. Therefore, in order to apply such a molded product using PAS as a raw material to the field of electrical and electronic parts, it is necessary to use PAS that has been sufficiently washed to reduce the amount of inorganic components, which is large in terms of cost. There was a challenge.

また、このような製法により得られたPASは、有機不純物としてPASの製造原料やPAS製造・回収過程で生じた副生成物、またはオリゴマーなどの低分子量成分など、揮発性が高い成分を含むため、このPASを溶融したり高温で使用する際に多量のガスが発生してしまう。これにより、射出成形などで溶融して用いた際に揮発成分が射出成形機内に付着し、メンテナンス回数が多くなることによる製造コストの増加や、成形品を高温で使用する際にガスが発生し何らかの不良を起こす等の問題が生じる場合がある。従って、無機成分同様、揮発性が高い低分子量PASなどの有機不純物も十分に低減させたPASを製造する必要があった。 Further, the PAS obtained by such a production method contains highly volatile components such as raw materials for producing PAS, by-products produced in the process of producing and recovering PAS, and low molecular weight components such as oligomers as organic impurities. , A large amount of gas is generated when this PAS is melted or used at a high temperature. As a result, volatile components adhere to the inside of the injection molding machine when it is melted and used in injection molding, etc., which increases the manufacturing cost due to the increased number of maintenances and generates gas when the molded product is used at a high temperature. Problems such as causing some defects may occur. Therefore, it is necessary to produce PAS in which organic impurities such as highly volatile low molecular weight PAS are sufficiently reduced as well as inorganic components.

PASにおける上記課題、すなわちPASの含有無機不純物量及び有機不純物量を低減する方法はこれまでにも種々検討されてきており、例えば上記方法で得られた不純物を含むPPSを、洗浄液に加えて攪拌した後、濾過を行い洗浄する方法(以下、この方法をリスラリー洗浄と呼ぶこともある。)を70℃で繰り返し実施する方法(例えば特許文献2参照。)、硫化水素ナトリウム、水酸化ナトリウム及びp−ジクロロベンゼンをNMP中で反応させて得られたPPSを含む反応物を室温下で遠心沈降操作し、沈降ケーキにNMPを加え遠心沈降操作を繰り返し実施する方法(例えば特許文献3参照。)、水及び温水に浸漬し攪拌した後、濾別して固形分を得る洗浄を、さらに酸性水溶液、イオン交換水と繰り返す方法(例えば特許文献4参照。)、固形分としてPPS樹脂微粒子を含むウエットケークを界面活性剤の存在する分散溶媒に加え攪拌し濾別することを繰り返して、母液を分散溶媒に置換する方法(例えば特許文献5参照。)などが開示されている。 Various methods for reducing the above-mentioned problems in PAS, that is, the amount of inorganic impurities contained in PAS and the amount of organic impurities have been studied so far. For example, PPS containing impurities obtained by the above method is added to a cleaning solution and stirred. After that, the method of filtering and cleaning (hereinafter, this method may be referred to as reslurry cleaning) is repeatedly carried out at 70 ° C. (see, for example, Patent Document 2), sodium hydrogen sulfide, sodium hydroxide and p. -A method in which a reactant containing PPS obtained by reacting dichlorobenzene in NMP is subjected to a centrifugation operation at room temperature, NMP is added to the settling cake, and the centrifugation operation is repeated (see, for example, Patent Document 3). After immersing in water and warm water and stirring, washing to obtain solid content by filtration is repeated with an acidic aqueous solution and ion-exchanged water (see, for example, Patent Document 4), and a wet cake containing PPS resin fine particles as solid content is used as an interface. A method of substituting a mother liquor with a dispersion solvent by repeating stirring and filtering in addition to a dispersion solvent in which an activator is present (see, for example, Patent Document 5) is disclosed.

一方で、含有不純物量の少ないPASの製造方法として、環式ポリアリーレンスルフィド(以下、環式PASと略する場合もある。)を用いる方法が挙げられる。 On the other hand, as a method for producing PAS having a small amount of impurities contained, a method using cyclic polyarylene sulfide (hereinafter, may be abbreviated as cyclic PAS) can be mentioned.

環式PASに代表される芳香族環式化合物は、その環状であることから生じる特性、すなわちその構造に由来する特異性により、近年注目を集めている。具体的には、高機能材料用途への応用展開可能性、たとえば包接能を有する化合物としての活用や、開環重合による高分子量直鎖状高分子の合成のための有効なモノマーとしての活用などが期待されている。 Aromatic cyclic compounds typified by cyclic PAS have been attracting attention in recent years due to their cyclic properties, that is, their specificity derived from their structure. Specifically, it can be applied to high-performance materials, for example, it can be used as a compound with inclusion ability, or it can be used as an effective monomer for the synthesis of high molecular weight linear polymers by ring-opening polymerization. Etc. are expected.

この環式PASを用いた含有不純物量の少ないPASの製造方法として、スルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させ環式PASを製造し、分離した環式PASを溶融重合させて高分子量化させる方法が挙げられる(例えば特許文献6参照。)。この方法では、環式PASを原料やその反応副生物と一度分離してから溶融重合を行うことで、一般的なPASと比べて含まれる無機不純物や有機不純物を少なくすることが可能となる。このため、不純物をより低減した環式PASを純度高く分離することが重要となる。この分離方法としては、少なくとも環式PASと線状PASを含む混合物から、環式PASを有機溶媒で抽出し有機溶媒を留去して固形分として得た後、再び有機溶媒でスラリー化し貧溶媒に再沈殿する環式PASの回収方法(例えば特許文献7参照。)や、母液及び不純物を含有する環式PASからなる固形分ケークが積層した分離フィルター上に溶剤を加えて固液分離(以下、この方法をかけ洗いと呼ぶ場合もある。)を実施する方法(例えば特許文献8参照。)などが開示されている。 As a method for producing a PAS containing a small amount of impurities using this cyclic PAS, a sulfidizing agent and a dihalogenated aromatic compound are brought into contact with each other in an organic polar solvent to produce a cyclic PAS, and the separated cyclic PAS is melted. Examples thereof include a method of polymerizing to increase the molecular weight (see, for example, Patent Document 6). In this method, by separating the cyclic PAS from the raw material and its reaction by-product once and then performing melt polymerization, it is possible to reduce the amount of inorganic impurities and organic impurities contained as compared with general PAS. Therefore, it is important to separate the cyclic PAS with less impurities with high purity. As this separation method, a cyclic PAS is extracted from a mixture containing at least a cyclic PAS and a linear PAS with an organic solvent, the organic solvent is distilled off to obtain a solid content, and then the mixture is again slurryed with an organic solvent to prepare a poor solvent. A method for recovering cyclic PAS that reprecipitates in (see, for example, Patent Document 7) and solid-liquid separation by adding a solvent on a separation filter in which a solid content cake composed of a mother liquor and a cyclic PAS containing impurities is laminated (hereinafter, , This method may be referred to as “washing”), and the like (see, for example, Patent Document 8) are disclosed.

特開平7−003022号公報Japanese Unexamined Patent Publication No. 7-003022 特開2015−218214号公報JP-A-2015-218214 特開2005−264018号公報Japanese Unexamined Patent Publication No. 2005-264018 特開2014−74186号公報Japanese Unexamined Patent Publication No. 2014-74186 特開2014−24957号公報Japanese Unexamined Patent Publication No. 2014-24957 特開2015−110758号公報Japanese Unexamined Patent Publication No. 2015-10758 特開2009−030012号公報JP-A-2009-030012 特開2014−108921号公報Japanese Unexamined Patent Publication No. 2014-108921

PASに含まれる不純物の除去に関して、特許文献1〜4に記載の方法ではPAS及び不純物を含有する混合物を液体と接触させ、無機不純物や有機不純物を液体に溶かし出すことでPASから除去する方法を採っているため、不純物を除去するために多量の溶媒を用いた数段階かつ長時間の洗浄が必要であり、従って極めて大がかりで煩雑なプロセスが必要な方法であった。さらに、この洗浄工程で発生する多量の水性廃水の処理も必要であり、極めてプロセスコストや環境負荷が大きいことが課題であった。 Regarding the removal of impurities contained in PAS, the method described in Patent Documents 1 to 4 is a method of removing impurities from PAS by contacting PAS and a mixture containing impurities with a liquid and dissolving inorganic impurities and organic impurities in the liquid. Since it is used, it requires several steps and long-term cleaning with a large amount of solvent to remove impurities, and therefore it is a method that requires an extremely large-scale and complicated process. Further, it is necessary to treat a large amount of aqueous wastewater generated in this cleaning process, and there is a problem that the process cost and the environmental load are extremely large.

また、特許文献4に記載されるリスラリー洗浄では、ケーク中の不純物を含む溶液を洗浄液により希釈し、ケーク濾過を行うことで溶液中の不純物を減少させることができるが、希釈により大幅に不純物を低減させるには、多大な洗浄液量を必要とする(例えば、理論上、ケーク中の液体の濃度を100分の1にするには、元の液体重量の99倍の洗浄液量が必要。)。また、少ない洗浄液量(例えば、ケーク中の液体重量の10倍量以下など。)では、ケークの洗浄液への分散性が低下し、洗浄効率が低下する傾向があるという欠点もあった。 Further, in the reslurry cleaning described in Patent Document 4, impurities in the solution can be reduced by diluting the solution containing impurities in the cake with a cleaning liquid and performing cake filtration, but the impurities are significantly reduced by the dilution. A large amount of cleaning solution is required to reduce the amount (for example, theoretically, in order to reduce the concentration of the liquid in the cake to 1/100, the amount of cleaning solution is 99 times the original liquid weight). Further, a small amount of cleaning liquid (for example, 10 times or less the weight of the liquid in the cake) has a drawback that the dispersibility of the cake in the cleaning liquid tends to decrease and the cleaning efficiency tends to decrease.

また、環式PASを用いる製造方法においても、各工程での線状PAS、環式PASの分離を高純度に行うことは大きな課題であった。特許文献7に記載の良溶媒の抽出後、良溶媒で再度スラリー化し、貧溶媒によって再沈殿を行う方法では、分離精度に優れているが、プロセス面として抽出やスラリー化、再沈殿といった煩雑なプロセスが必要となり、生産コストが嵩むといったデメリットがあった。また、特許文献8に記載の固形分ケークをフィルター上に積層させてかけ洗いを行う方法では、洗浄を簡便に行える点で現実的かつ低プロセスコストであるが、実施例などの記載はなく具体的な操作は不明であり、プロセス上簡便に行え、かつ洗浄効率の高いPAS粒子の洗浄方法を伴う製造方法は確立されていなかった。 Further, also in the manufacturing method using the cyclic PAS, it has been a big problem to separate the linear PAS and the cyclic PAS in each step with high purity. The method described in Patent Document 7 in which a good solvent is extracted, then slurryed again with a good solvent and reprecipitated with a poor solvent has excellent separation accuracy, but is complicated as a process surface such as extraction, slurrying, and reprecipitation. There was a demerit that a process was required and the production cost increased. Further, the method of laminating solid content cakes on a filter and performing washing by stacking the solid content cake described in Patent Document 8 is realistic and low process cost in that washing can be easily performed, but there is no description of examples and the like. The specific operation is unknown, and a production method including a method for cleaning PAS particles, which can be easily performed in the process and has high cleaning efficiency, has not been established.

そこで本発明は、上記従来技術の課題を解決し、不純物成分の低減された高純度なポリアリーレンスルフィド粒子を製造する方法を提供することを課題とし、さらに詳しくは、PAS粒子と液体を含むケークに含まれる不純物をより効率よく少量の洗浄液で洗浄し、高純度なPAS粒子を製造する方法に関する。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing high-purity polyarylene sulfide particles having a reduced impurity component, and more specifically, a cake containing PAS particles and a liquid. The present invention relates to a method for producing high-purity PAS particles by more efficiently cleaning impurities contained in the above with a small amount of cleaning liquid.

本発明は、上記課題に対し下記の手段を採用するものである。
すなわち、本発明は、
[1]少なくともポリアリーレンスルフィド粒子(a)及び液体(b)を含むケーク(c)を密度800kg/m以上に形成し、このケーク(c)への洗浄液(e)の供給と同時に濾液(d)の排出を行いポリアリーレンスルフィド粒子(a)を洗浄することを特徴とする高純度なポリアリーレンスルフィド粒子の製造方法であって、
ケーク(c)中のポリアリーレンスルフィド粒子(a)の含有量は25重量%以上、90重量%以下であり、
洗浄液(e)の液量が液体(b)の液量の0.5倍以上、等倍以下である製造方法。
[2]ケーク(c)を設置した濾過面から排出される濾液(d)の排出速度V[kg/(秒・m)]と、ケーク(c)への洗浄液(e)の供給速度をV[kg/(秒・m)]が、下記式1を満たすことを特徴とする[1]に記載の高純度なポリアリーレンスルフィド粒子の製造方法。
ΔV=|V−V|/V≦0.2 ・・・式1
[3]ケーク(c)の厚さが2mm以上、50mm以下であることを特徴とする[1]または[2]のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。
[4]水及び有機溶媒から選ばれる少なくとも一種類を洗浄液(e)として用いることを特徴とする[1]から[3]のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。
]液体(b)の置換率が70%以上、100%以下となることを特徴とする[1]から[]のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。
]ポリアリーレンスルフィド粒子(a)中の環式ポリアリーレンスルフィドの含有量が50重量%以上、100重量%以下であることを特徴とする[1]から[]のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。
The present invention employs the following means for the above problems.
That is, the present invention
[1] A cake (c) containing at least polyarylene sulfide particles (a) and a liquid (b) is formed at a density of 800 kg / m 3 or more, and the filtrate (e) is simultaneously supplied to the cake (c). A method for producing high-purity polyarylene sulfide particles, which comprises discharging d) and washing the polyarylene sulfide particles (a) .
The content of the polyarylene sulfide particles (a) in the cake (c) is 25% by weight or more and 90% by weight or less.
A manufacturing method in which the amount of the cleaning liquid (e) is 0.5 times or more and 1 times or less the liquid amount of the liquid (b).
[2] Discharge rate V 1 [kg / (sec · m 2 )] of the filtrate (d) discharged from the filtration surface on which the cake (c) is installed, and the supply rate of the cleaning liquid (e) to the cake (c). The method for producing high-purity polyarylene sulfide particles according to [1], wherein V 2 [kg / (sec · m 2 )] satisfies the following formula 1.
ΔV = | V 1 −V 2 | / V 1 ≦ 0.2 ・ ・ ・ Equation 1
[3] The method for producing high-purity polyarylene sulfide particles according to any one of [1] and [2], wherein the cake (c) has a thickness of 2 mm or more and 50 mm or less.
[4] The method for producing high-purity polyarylene sulfide particles according to any one of [1] to [3], wherein at least one selected from water and an organic solvent is used as the cleaning liquid (e).
[ 5 ] The method for producing high-purity polyarylene sulfide particles according to any one of [1] to [ 4 ], wherein the replacement rate of the liquid (b) is 70% or more and 100% or less.
[6] The content of the cyclic polyarylene sulfide in the polyarylene sulfide particles (a) is 50 wt% or more, and characterized in that 100 wt% or less from the [1] according to any one of [5] A method for producing high-purity polyarylene sulfide particles.

本発明によれば、無機及び有機不純物の低減された高純度なポリアリーレンスルフィド粒子を簡便に効率よく回収する方法が提供できる。こうして得られたポリアリーレンスルフィド粒子(以下、PAS粒子と略する場合もある。)、もしくは、得られた環式PASを主成分とするPAS粒子(a)を溶融重合させて高分子量化させた溶融重合物は、電気絶縁性などの物性低下が少なく、ガス発生量も少ない、優れたポリアリーレンスルフィドの特性を示す。また、液体(b)の重量の10倍量以下という極少量の洗浄液(e)であっても洗浄効率高く洗浄が可能であり、洗浄液量を大幅に低減することが可能となる。これにより工程の機器サイズを小さくできる上、溶媒回収などの工程を設ける際はエネルギーロスを抑えることができ、生産コストを抑えたプロセスを提供できる。 According to the present invention, it is possible to provide a method for easily and efficiently recovering high-purity polyarylene sulfide particles having reduced inorganic and organic impurities. The polyarylene sulfide particles thus obtained (hereinafter, may be abbreviated as PAS particles) or the obtained PAS particles (a) containing cyclic PAS as a main component are melt-polymerized to increase the molecular weight. The molten polymer exhibits excellent properties of polyarylene sulfide, which has less deterioration in physical properties such as electrical insulation and a small amount of gas generated. Further, even a very small amount of the cleaning liquid (e), which is 10 times or less the weight of the liquid (b), can be cleaned with high cleaning efficiency, and the amount of the cleaning liquid can be significantly reduced. As a result, the equipment size of the process can be reduced, energy loss can be suppressed when a process such as solvent recovery is provided, and a process with reduced production cost can be provided.

以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

少なくともポリアリーレンスルフィド粒子(a)及び液体(b)を含むケーク(c)を密度800kg/m以上に形成し、このケーク(c)への洗浄液(e)の供給と同時に濾液(d)の排出を行いポリアリーレンスルフィド粒子(a)を洗浄することを特徴とする高純度なポリアリーレンスルフィド粒子の製造方法に関する。 A cake (c) containing at least polyarylene sulfide particles (a) and a liquid (b) is formed at a density of 800 kg / m 3 or more, and the filtrate (d) is fed at the same time as the cleaning liquid (e) is supplied to the cake (c). The present invention relates to a method for producing high-purity polyarylene sulfide particles, which comprises discharging and washing the polyarylene sulfide particles (a).

[ポリアリーレンスルフィド]
本発明におけるPASとは、化学式(ア)
[Polyarylene sulfide]
PAS in the present invention is a chemical formula (a).

に示す繰り返し単位を主要構成単位とするホモポリマーまたはコポリマー、もしくは環式化合物である。 It is a homopolymer or copolymer having the repeating unit shown in the above as a main constituent unit, or a cyclic compound.

Arとしては化学式(イ)〜(エ)などが挙げられる。 Examples of Ar include chemical formulas (a) to (d).

(ただし、式中のR1、R2は水素、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。) (However, R1 and R2 in the formula are substituents selected from hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen group, and R1 and R2 are the same but different. May be good.)

この繰り返しを主要構成単位とする限り、化学式(オ)〜(キ)で表される分岐構造または架橋構造や、化学式(ク)〜(タ)で表される共重合成分を、ランダムに含んでも良いし、ブロックで含んでも良く、それらの混合物のいずれであってもよい。これら共重合量は、化学式(ア)の単位1モルに対して0〜1モル%の範囲であることが好ましい。 As long as this repetition is the main constituent unit, even if the branched structure or crosslinked structure represented by the chemical formulas (e) to (g) and the copolymerization component represented by the chemical formulas (ku) to (ta) are randomly contained. It may be contained in blocks, or it may be any mixture thereof. The amount of these copolymerizations is preferably in the range of 0 to 1 mol% with respect to 1 mol of the unit of the chemical formula (a).

特に好ましいPASとしては、ポリマーの主構成単位として化学式(チ) A particularly preferable PAS is the chemical formula (chi) as the main constituent unit of the polymer.

を80モル%以上、特に90モル%以上含有するPPSの他、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンが挙げられる。ここまでに挙げてきたPASの中で、環状構造をとらないものを特に線状PASと呼び、本発明の中で区別をする。 In addition to PPS containing 80 mol% or more, particularly 90 mol% or more, polyphenylene sulfide sulfone and polyphenylene sulfide ketone can be mentioned. Among the PASs mentioned so far, those having no cyclic structure are particularly called linear PASs, and are distinguished in the present invention.

次に、上記のPASの中で環状構造をとるPASを環式PASと呼び、環式PASとは、上記化学式(ア)の繰り返し単位を80モル%以上含有する下記化学式(ツ)のごとき化合物が例示できる。 Next, among the above PAS, the PAS having a cyclic structure is called a cyclic PAS, and the cyclic PAS is a compound such as the following chemical formula (tsu) containing 80 mol% or more of the repeating unit of the above chemical formula (a). Can be exemplified.

特に好ましい環式PASとしては、主要構成単位としてp−フェニレンスルフィド単位 A particularly preferable cyclic PAS is a p-phenylene sulfide unit as a main constituent unit.

を80モル%以上、特に90モル%以上含有する環式PPSが挙げられる。 A cyclic PPS containing 80 mol% or more, particularly 90 mol% or more.

環式PASの上記化学式(ツ)中の繰り返し数mに特に制限はないが4〜50の混合物が好ましく、4〜25がより好ましく、4〜20が更に好ましい。mがこの様な範囲の環式PASは加熱した際に流動化する温度が低くなる傾向にあるため、環式PASを成形加工する際や、他の樹脂と溶融混練する際に加工温度を低くできる観点で有利となる。また、環式PASを溶融重合により高重合度体へ転化させる場合には、環式PASが溶融解する温度以上に加熱して行うことが好ましいが、mが大きくなると環式PASの溶融解温度が高くなる傾向にあるため、PASの高重合度体への転化をより低い温度で行うことができるようになる観点でmを上記範囲にすることは有利となる。また、本発明の環式PASは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環式PASの混合物のいずれでも良いが、異なる繰り返し数を有する環式PASの混合物の方が単一の繰り返し数を有する単独化合物よりも溶融解温度が低く、融解に要する熱量も小さくなる傾向があるため好ましい。 The number of repetitions m in the above chemical formula (tsu) of the cyclic PAS is not particularly limited, but a mixture of 4 to 50 is preferable, 4 to 25 is more preferable, and 4 to 20 is further preferable. Since the temperature of the cyclic PAS having m in such a range tends to be low when heated, the processing temperature is lowered when the cyclic PAS is molded or melt-kneaded with other resins. It is advantageous from the viewpoint of being able to do it. Further, when converting the cyclic PAS into a high degree of polymerization by melt polymerization, it is preferable to heat the cyclic PAS to a temperature higher than the temperature at which the cyclic PAS melts, but as m increases, the melting temperature of the cyclic PAS increases. Therefore, it is advantageous to set m in the above range from the viewpoint that the conversion of PAS to a high degree of polymerization can be performed at a lower temperature. Further, the cyclic PAS of the present invention may be either a single compound having a single repetition number or a mixture of cyclic PAS having different repetition numbers, but the mixture of cyclic PAS having different repetition numbers is simpler. It is preferable because the melting solution temperature is lower than that of a single compound having one repetition number, and the amount of heat required for melting tends to be smaller.

本発明のPASについて、その分子量に特に制限はないが、一般的なPASの重量平均分子量としては、400〜1,000,000が例示できる。また、このうち線状PASについては、重量平均分子量が5,000未満のものを線状PASオリゴマー(以下、オリゴマーと呼ぶ場合がある。)、重量平均分子量が5,000以上のものを単に、線状PASと呼ぶことが出来る。 The molecular weight of the PAS of the present invention is not particularly limited, and the weight average molecular weight of a general PAS can be exemplified by 400 to 1,000,000. Regarding linear PAS, those having a weight average molecular weight of less than 5,000 are simply linear PAS oligomers (hereinafter, may be referred to as oligomers), and those having a weight average molecular weight of 5,000 or more are simply referred to. It can be called a linear PAS.

本発明におけるPAS粒子(a)とは、上記線状及び/または環式のPASからなる固形成分のことである。また、線状または環式どちらかのPASが、PAS粒子(a)中の50重量%以上を占める場合、そのPASをPAS粒子(a)の主成分と呼ぶ。 The PAS particle (a) in the present invention is a solid component composed of the linear and / or cyclic PAS. When either the linear or cyclic PAS occupies 50% by weight or more of the PAS particles (a), the PAS is referred to as the main component of the PAS particles (a).

PAS粒子(a)の平均粒径としては特に制限はないが、粒径が小さいとPAS粒子(a)を単離する際、濾材の目詰まりにより濾過速度が低下する可能性や濾過ができなくなる可能性、濾材から粒子が濾液側に流出する可能性などが考えられる。また、粒径が大きいとケーク(c)を圧縮し高密度にする際に密度が上がりづらくなることから、平均粒形が100nm〜1mmが好ましい。 The average particle size of the PAS particles (a) is not particularly limited, but if the particle size is small, the filtration rate may decrease due to clogging of the filter medium or filtration cannot be performed when the PAS particles (a) are isolated. There is a possibility that particles may flow out from the filter medium to the filtrate side. Further, if the particle size is large, it becomes difficult to increase the density when compressing the cake (c) to increase the density, so the average grain shape is preferably 100 nm to 1 mm.

本発明は、少なくとも上記PAS粒子(a)と液体(b)を含むケーク(c)を用いて洗浄を行い、高純度なポリアリーレン粒子を製造する方法に関する。 The present invention relates to a method for producing high-purity polyarylene particles by washing with a cake (c) containing at least the PAS particles (a) and the liquid (b).

[ケーク(c)の回収]
本発明において用いるケーク(c)は、少なくともPAS粒子(a)と液体(b)が含まれる固体的挙動を示すケークであれば、いかなるケークであっても問題はない。ケークが固体的挙動を保つためには、液体(b)に溶解していないPAS粒子(a)が存在することが必要である。このため、ケーク(c)中のPAS粒子(a)の含有量は25重量%以上であることが望ましい。より好ましくは30重量%以上であることが望ましい。また、上限としては90重量%以下であり、80重量%以下が好ましく、70重量%以下がより好ましい。同様に液体(b)の量は、下限としては10重量%以上であり、20重量%以上が好ましく、30重量%以上がより好ましく、上限としては75重量%以下であり、70重量%以下が好ましい。ケーク中のPAS粒子(a)の含有量については、ケーク(c)から液体(b)を完全に除去した際の重量を、元のケーク(c)の重量で割った値より比率として求めることができる。
[Recovery of cake (c)]
The cake (c) used in the present invention may be any cake as long as it contains at least PAS particles (a) and liquid (b) and exhibits solid behavior. In order for the cake to maintain its solid behavior, it is necessary for PAS particles (a) that are not dissolved in the liquid (b) to be present. Therefore, it is desirable that the content of the PAS particles (a) in the cake (c) is 25% by weight or more. More preferably, it is 30% by weight or more. The upper limit is 90% by weight or less, preferably 80% by weight or less, and more preferably 70% by weight or less. Similarly, the amount of the liquid (b) is 10% by weight or more as the lower limit, preferably 20% by weight or more, more preferably 30% by weight or more, and the upper limit is 75% by weight or less and 70% by weight or less. preferable. The content of PAS particles (a) in the cake is calculated as a ratio of the weight when the liquid (b) is completely removed from the cake (c) divided by the weight of the original cake (c). Can be done.

また、ケーク(c)、及びPAS粒子(a)や液体(b)は不純物を含まないことが望ましく、不純物含有量が少ないほど、言い換えれば純度が高いほど、単離後のPAS粒子(a)、もしくは環式PASを主成分とするPAS粒子(a)を溶融重合させて高分子量化させた溶融重合物のPASとしての特性がより発現されるようになる。従来は、高純度のPAS粒子(a)を得るために、より多大な労力とエネルギーを要する傾向にあったが、本発明ではより簡便に高純度なPAS粒子(a)を得ることができる。よってケーク(c)、及びPAS粒子(a)や液体(b)は、本発明の本質を損なわない範囲で不純物を含んでいてもよい。 Further, it is desirable that the cake (c) and the PAS particles (a) and the liquid (b) do not contain impurities, and the smaller the impurity content, in other words, the higher the purity, the more the isolated PAS particles (a). Alternatively, the characteristics of the molten polymer obtained by melt-polymerizing the PAS particles (a) containing cyclic PAS as a main component to increase the molecular weight will be more exhibited. Conventionally, in order to obtain high-purity PAS particles (a), a large amount of labor and energy have tended to be required, but in the present invention, high-purity PAS particles (a) can be obtained more easily. Therefore, the cake (c) and the PAS particles (a) and the liquid (b) may contain impurities as long as the essence of the present invention is not impaired.

ここで、本発明における不純物とは、得ようとしているPAS成分以外の成分を指し、特に限定されないが、例えば、無機不純物としては、塩や金属といった物質などが挙げられ、この量についてはPAS粒子(a)の灰分率によって簡易的に評価することができる。有機不純物としては、PASの製造原料やオリゴマー、またはPAS製造や回収の過程で変性して生じた化合物などが挙げられ、簡易的な評価方法の一つに発生ガス量の測定がある。また、これらの不純物を低減した状態を、高純度と呼ぶ。 Here, the impurities in the present invention refer to components other than the PAS component to be obtained, and are not particularly limited. Examples of inorganic impurities include substances such as salts and metals, and the amount of the impurities is PAS particles. It can be easily evaluated by the ash content of (a). Examples of organic impurities include raw materials and oligomers for producing PAS, compounds produced by modification in the process of producing and recovering PAS, and the like, and one of the simple evaluation methods is measurement of the amount of generated gas. Further, the state in which these impurities are reduced is called high purity.

液体(b)について、上記のケーク(c)の本質を損なわないものであれば限りはないが、主に後述するケーク(c)の調製、回収時に用いた一種類の溶媒、もしくは複数の溶媒の複合液からなる。ケーク(c)の調製、回収時に用いられる溶媒としては、例えば有機極性溶媒が挙げられ、なかでも有機アミド溶媒が挙げられる。具体例としては、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドンなどのN−アルキルピロリドン類、N−メチル−ε−カプロラクタムなどのカプロラクタム類、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミドなどに代表されるアプロチック有機溶媒、及びこれらの混合物などが、反応の安定性が高いために好ましく使用される。これらのなかでも特にN−メチル−2−ピロリドンが好ましく用いられる。また、有機極性溶媒以外には、例えば水やメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノールに代表されるアルコール類、アセトン、メチルエチルケトンに代表されるケトン類、酢酸エチル、酢酸ブチルに代表される酢酸エステル類が例示でき、水が特に好ましい。 The liquid (b) is not limited as long as it does not impair the essence of the cake (c) described above, but mainly one kind of solvent or a plurality of solvents used at the time of preparation and recovery of the cake (c) described later. Consists of a complex liquid of. Examples of the solvent used for the preparation and recovery of the cake (c) include an organic polar solvent, and among them, an organic amide solvent. Specific examples include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and N-cyclohexyl-2-pyrrolidone, caprolactams such as N-methyl-ε-caprolactam, 1, Aprotic organic solvents such as 3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric acid triamide, and mixtures thereof, have stable reactions. It is preferably used because it is expensive. Of these, N-methyl-2-pyrrolidone is particularly preferably used. In addition to organic polar solvents, for example, water, methanol, ethanol, propanol, isopropanol, butanol, alcohols typified by hexanol, acetone, ketones typified by methyl ethyl ketone, ethyl acetate, acetic acid typified by butyl acetate. Esters can be exemplified, and water is particularly preferable.

上記に該当するケーク(c)であれば、その調製方法及び回収方法に限りはない。以下にはケークの回収方法の一例を示す。 If the cake (c) corresponds to the above, the preparation method and recovery method are not limited. An example of a cake recovery method is shown below.

<線状PASを主成分とするPAS粒子(a)を含むケーク(c)の回収>
線状PASを主成分とするPAS粒子(a)を含むケーク(c)を得る方法の一例としては、特開2014−74186号に記載のように、少なくともスルフィド化剤とジハロゲン化芳香族化合物を有機極性溶媒中で重合反応させて重合反応物からクエンチ法、フラッシュ法などを用いてケークを製造及び回収する方法が挙げられる。こうして得られたケークをケーク(c)として本発明に用いることができる。
<Recovery of cake (c) containing PAS particles (a) containing linear PAS as a main component>
As an example of the method for obtaining the cake (c) containing the PAS particles (a) containing linear PAS as a main component, as described in JP-A-2014-74186, at least a sulfidizing agent and a dihalogenated aromatic compound are used. Examples thereof include a method of producing and recovering a cake from a polymerization reaction product by carrying out a polymerization reaction in an organic polar solvent by using a quenching method, a flash method or the like. The cake thus obtained can be used in the present invention as a cake (c).

<環式PASを主成分とするPAS粒子(a)を含むケーク(c)の回収>
環式PAS粒子を主成分とするPAS粒子(a)を含むケーク(c)を得る方法の一例としては、特開2015−110758号に記載されているように、スルフィド化剤とジハロゲン化芳香族化合物とを前述の有機極性溶媒中で接触させて反応させて得られる、少なくとも環式PASと線状PASを含む反応混合物(A)を得る。上記反応混合物(A)は固液分離によって、線状PASを主成分としたPAS粒子(a)を含むケークと濾液(B)に分離でき、このケークについてもケーク(c)として本発明に用いることができる。また、上記濾液(B)から有機極性溶媒を除去することにより、環式PASを主成分とするPAS粒子(a)を含むケーク(c)を得ることができる。
<Recovery of cake (c) containing PAS particles (a) containing cyclic PAS as a main component>
As an example of a method for obtaining a cake (c) containing PAS particles (a) containing cyclic PAS particles as a main component, as described in Japanese Patent Application Laid-Open No. 2015-10758, a sulfidizing agent and a dihalogenated aromatic are used. A reaction mixture (A) containing at least cyclic PAS and linear PAS, which is obtained by contacting and reacting the compounds in the above-mentioned organic polar solvent, is obtained. The reaction mixture (A) can be separated into a cake containing PAS particles (a) containing linear PAS as a main component and a filtrate (B) by solid-liquid separation, and this cake is also used in the present invention as a cake (c). be able to. Further, by removing the organic polar solvent from the filtrate (B), a cake (c) containing PAS particles (a) containing cyclic PAS as a main component can be obtained.

以下に、各工程に関する好ましい態様について詳述する。 Hereinafter, preferred embodiments of each step will be described in detail.

<(1)反応混合物(A)の調製方法>
以下、スルフィド化剤とジハロゲン化芳香族化合物を有機極性溶媒中で接触させて反応させ反応混合物(A)を得る方法に関する好ましい態様について詳述する。
<(1) Method for preparing reaction mixture (A)>
Hereinafter, a preferred embodiment of a method for obtaining a reaction mixture (A) by contacting a sulfidizing agent with a dihalogenated aromatic compound in an organic polar solvent and reacting them will be described in detail.

ジハロゲン化芳香族化合物とは、芳香環の二価基であるアリーレン基と、2つのハロゲノ基とを有する芳香族化合物である。例えば、アリーレン基としてベンゼン環の二価基であるフェニレン基を有すると共に2つのハロゲノ基を有する化合物として、p−ジクロロベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジブロモベンゼン、o−ジブロモベンゼン、m−ジブロモベンゼン、1−ブロモ−4−クロロベンゼン、及び1−ブロモ−3−クロロベンゼンなどのジハロゲン化ベンゼンを挙げることができる。さらに、ジハロゲン化芳香族化合物としては、1−メトキシ−2,5−ジクロロベンゼン、1−メチル−2,5−ジクロロベンゼン、1,4−ジメチル−2,5−ジクロロベンゼン、1,3−ジメチル−2,5−ジクロロベンゼン、及び3,5−ジクロロ安息香酸などのハロゲン以外の置換基をも含む化合物を挙げることができる。なかでも、p−ジクロロベンゼンに代表されるp−ジハロゲン化ベンゼンを主成分にするジハロゲン化芳香族化合物が好ましい。特に好ましくは、p−ジクロロベンゼンを80〜100モル%含むものであり、さらに好ましくは90〜100モル%含むものである。また、環式ポリアリーレンスルフィド共重合体を得るために異なる2種以上のジハロゲン化芳香族化合物を組み合わせて用いることも可能である。 The dihalogenated aromatic compound is an aromatic compound having an arylene group which is a divalent group of an aromatic ring and two halogeno groups. For example, as a compound having a phenylene group which is a divalent group of a benzene ring as an arylene group and having two halogeno groups, p-dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dibromobenzene and o-dibromo Examples thereof include dihalogenated benzene such as benzene, m-dibromobenzene, 1-bromo-4-chlorobenzene, and 1-bromo-3-chlorobenzene. Further, examples of the dihalogenated aromatic compound include 1-methoxy-2,5-dichlorobenzene, 1-methyl-2,5-dichlorobenzene, 1,4-dimethyl-2,5-dichlorobenzene and 1,3-dimethyl. Examples thereof include compounds containing substituents other than halogen such as -2,5-dichlorobenzene and 3,5-dichlorobenzoic acid. Of these, a dihalogenated aromatic compound containing p-dihalogenated benzene as a main component, typified by p-dichlorobenzene, is preferable. Particularly preferably, it contains 80 to 100 mol% of p-dichlorobenzene, and more preferably 90 to 100 mol%. It is also possible to use two or more different dihalogenated aromatic compounds in combination in order to obtain a cyclic polyarylene sulfide copolymer.

スルフィド化剤としては、ジハロゲン化芳香族化合物にスルフィド結合を導入できるものであれば良く、例えばアルカリ金属硫化物、アルカリ金属水硫化物、及び硫化水素が挙げられる。アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム及びこれら2種以上の混合物を挙げることができる。なかでも硫化リチウム及び/または硫化ナトリウムが好ましく、硫化ナトリウムがより好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。なお、水性混合物とは水溶液、もしくは水溶液と固体成分の混合物、もしくは水と固体成分の混合物のことをさす。一般的に入手できる安価なアルカリ金属硫化物は水和物または水性混合物であるので、このような形態のアルカリ金属硫化物を用いることが好ましい。また、アルカリ金属水硫化物の具体例としては、例えば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウム及びこれら2種以上の混合物を挙げることができる。なかでも水硫化リチウム及び/または水硫化ナトリウムが好ましく、水硫化ナトリウムがより好ましく用いられる。 The sulfidizing agent may be any one capable of introducing a sulfide bond into the dihalogenated aromatic compound, and examples thereof include alkali metal sulfide, alkali metal hydrosulfide, and hydrogen sulfide. Specific examples of alkali metal sulfides include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more of these. Of these, lithium sulfide and / or sodium sulfide are preferable, and sodium sulfide is more preferably used. These alkali metal sulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides. The aqueous mixture refers to an aqueous solution, a mixture of an aqueous solution and a solid component, or a mixture of water and a solid component. Since inexpensive alkali metal sulfides that are generally available are hydrates or aqueous mixtures, it is preferable to use alkali metal sulfides in this form. Specific examples of alkali metal hydrosulfides include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more of these. Of these, lithium hydrosulfide and / or sodium hydrosulfide are preferable, and sodium hydrosulfide is more preferably used.

ジハロゲン化芳香族化合物の使用量は、スルフィド化剤のイオウ成分1モル当たり0.9〜2.0モルの範囲であることが好ましく、0.95〜1.5モルの範囲がより好ましく、1.005〜1.2モルの範囲が更に好ましい。ジハロゲン化芳香族化合物は全量を一度に反応させてもよく、また、例えば国際公開第2013/061561号に記載のように分割して反応に供してもよい。 The amount of the dihalogenated aromatic compound used is preferably in the range of 0.9 to 2.0 mol, more preferably 0.95 to 1.5 mol, per 1 mol of the sulfur component of the sulfidizing agent. A range of .005 to 1.2 mol is more preferred. The whole amount of the dihalogenated aromatic compound may be reacted at one time, or may be divided and subjected to the reaction as described in, for example, International Publication No. 2013/061561.

スルフィド化剤とジハロゲン化芳香族化合物を接触させて反応させる際の反応温度は、有機極性溶媒の種類、量によって多様化するため一意的に決めることはできないが、通常120〜350℃、好ましくは180〜320℃、より好ましくは220〜310℃、さらに好ましくは225〜300℃の範囲を例示できる。この好ましい温度範囲ではより高い反応速度が得られ、反応が均一に進行しやすい傾向にある。また、反応は一定温度で行なう1段反応、段階的に温度を上げていく多段反応、あるいは連続的に温度を変化させていく形式の反応のいずれでもかまわない。 The reaction temperature when the sulfidizing agent and the dihalogenated aromatic compound are brought into contact with each other and reacted cannot be uniquely determined because they vary depending on the type and amount of the organic polar solvent, but are usually 120 to 350 ° C., preferably 120 to 350 ° C. The range of 180 to 320 ° C., more preferably 220 to 310 ° C., still more preferably 225 to 300 ° C. can be exemplified. In this preferred temperature range, a higher reaction rate is obtained and the reaction tends to proceed uniformly. Further, the reaction may be a one-step reaction performed at a constant temperature, a multi-step reaction in which the temperature is raised stepwise, or a reaction in which the temperature is continuously changed.

また、反応時間は、使用した原料の種類や量あるいは反応温度に依存するため限定できないが、0.1時間以上が好ましく、0.5時間以上がより好ましい。この好ましい時間以上とすることで、未反応の原料成分を十分に減少できるため、生成した環式ポリアリーレンスルフィドの回収がしやすくなる傾向にある。一方、反応時間に特に上限は無いが、40時間以内でも十分に反応が進行し、好ましくは10時間以内、より好ましくは6時間以内も採用できる。 The reaction time is not limited because it depends on the type and amount of the raw materials used or the reaction temperature, but is preferably 0.1 hours or more, more preferably 0.5 hours or more. By setting the time to this preferable time or longer, the unreacted raw material component can be sufficiently reduced, so that the produced cyclic polyarylene sulfide tends to be easily recovered. On the other hand, although there is no particular upper limit to the reaction time, the reaction proceeds sufficiently even within 40 hours, and preferably 10 hours or less, more preferably 6 hours or less can be adopted.

なお、スルフィド化剤とジハロゲン化芳香族化合物を接触させて反応させる方法には、バッチ式及び連続方法など公知の各種重合方式、反応方式を採用することができる。また、製造における雰囲気は非酸化性雰囲気下が望ましく、窒素、ヘリウム、及びアルゴンなどの不活性ガス雰囲気下で行なうことが好ましく、経済性及び取り扱いの容易さの面からは窒素雰囲気下が好ましい。なお、非酸化性雰囲気とは気相の酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指し、この中でも特に経済性及び取り扱いの容易さの面からは窒素雰囲気下で行なうことが好ましい。 As a method of contacting the sulfidating agent with the dihalogenated aromatic compound to react, various known polymerization methods and reaction methods such as a batch method and a continuous method can be adopted. Further, the atmosphere in the production is preferably a non-oxidizing atmosphere, preferably an atmosphere of an inert gas such as nitrogen, helium, and argon, and preferably a nitrogen atmosphere from the viewpoint of economy and ease of handling. The non-oxidizing atmosphere is an atmosphere in which the oxygen concentration in the gas phase is 5% by volume or less, preferably 2% by volume or less, and more preferably substantially no oxygen, that is, an atmosphere of an inert gas such as nitrogen, helium, or argon. Of these, it is preferable to carry out in a nitrogen atmosphere from the viewpoint of economy and ease of handling.

<(2)固液分離>
以下に、上記反応混合物(A)を固液分離することにより、線状PASを主成分としたPAS粒子(a)を含むケーク(c)と濾液(B)に分離して得る方法に関する、好ましい態様について詳述する。
<(2) Solid-liquid separation>
Hereinafter, the method for obtaining the reaction mixture (A) by solid-liquid separation into a cake (c) containing PAS particles (a) containing linear PAS as a main component and a filtrate (B) is preferable. Aspects will be described in detail.

固液分離を行なう温度は、有機極性溶媒の常圧における沸点以下であれば特に制限はないが、10℃〜200℃の範囲が好ましく、15℃〜180℃の範囲がより好ましく、20℃〜150℃の範囲がさらに好ましく、20℃〜120℃の範囲がよりいっそう好ましく、20℃〜90℃の範囲がとりわけ好ましい。上記範囲では、環式PASは有機極性溶媒に可溶であるが、線状PASは有機極性溶媒に溶けにくくなる傾向にある。そのため、上記温度範囲で固液分離を行なうことにより、反応混合物(A)から、固体成分として大部分の線状PASを分離することが可能となり、この固体成分をケーク(c)として回収し本発明に用いることもできる。また、固液分離を行なう温度が有機極性溶媒の常圧における沸点を超える場合、固液分離操作を密閉条件下で行う必要があり、特殊な装置が必要となる。そのため、操作の簡易性、経済性の観点で好ましくない。なお、ここで常圧とは大気の標準状態近傍における圧力のことであり、約25℃近傍の温度、絶対圧で101kPa近傍の大気圧条件のことである。 The temperature for solid-liquid separation is not particularly limited as long as it is equal to or lower than the boiling point of the organic polar solvent at normal pressure, but is preferably in the range of 10 ° C to 200 ° C, more preferably in the range of 15 ° C to 180 ° C, and to 20 ° C to 20 ° C. The range of 150 ° C. is even more preferable, the range of 20 ° C. to 120 ° C. is even more preferable, and the range of 20 ° C. to 90 ° C. is particularly preferable. In the above range, the cyclic PAS is soluble in the organic polar solvent, but the linear PAS tends to be difficult to dissolve in the organic polar solvent. Therefore, by performing solid-liquid separation in the above temperature range, it is possible to separate most of the linear PAS as a solid component from the reaction mixture (A), and this solid component is recovered as a cake (c). It can also be used in inventions. Further, when the temperature at which the solid-liquid separation is performed exceeds the boiling point of the organic polar solvent at normal pressure, the solid-liquid separation operation must be performed under closed conditions, and a special device is required. Therefore, it is not preferable from the viewpoint of simplicity of operation and economy. Here, the normal pressure is a pressure near the standard state of the atmosphere, and is a temperature near about 25 ° C. and an atmospheric pressure condition near 101 kPa in absolute pressure.

ここで濾過器としては、ふるい等の濾過器を用いる方法、遠心濾過器を用いる方法、振動スクリーンを用いる方法、加圧濾過機を用いる方法、吸引濾過器を用いる方法などで使用される容器が挙げられるが、これらに限定されるものではない。 Here, as the filter, a container used in a method using a filter such as a sieve, a method using a centrifugal filter, a method using a vibration screen, a method using a pressure filter, a method using a suction filter, etc. However, it is not limited to these.

固液分離を行なう際の雰囲気に特に制限はないが、接触させる際の時間や温度などの条件によって環式PASや有機極性溶媒が酸化劣化するような場合は、非酸化性雰囲気下で行なうことが好ましい。 The atmosphere for solid-liquid separation is not particularly limited, but if the cyclic PAS or organic polar solvent is oxidatively deteriorated due to conditions such as the time and temperature of contact, perform it in a non-oxidizing atmosphere. Is preferable.

<(3)有機極性溶媒の除去>
以下に、上記反応混合物(A)から固液分離した濾液(B)よりケーク(c)を回収する方法に関する、好ましい態様について詳述する。
<(3) Removal of organic polar solvent>
The preferred embodiment of the method for recovering the cake (c) from the filtrate (B) solid-liquid separated from the reaction mixture (A) will be described in detail below.

濾液(B)から有機極性溶媒を除去し、ケークを回収する方法に特に制限はなく、濾液(B)をPAS成分に対する溶解性が低く且つ有機極性溶媒と混和する溶媒と接触させて、環式PASを析出させて回収する方法、濾液(B)の有機極性溶媒の一部もしくは大部分を蒸留等の操作により除去した後に、PAS成分に対する溶解性が低く且つ有機極性溶媒と混和する溶媒と接触させて、環式PASを主成分とするPAS粒子(a)を含むケーク(c)を回収する方法、濾液(B)を冷却して環式PASを析出させ、析出した環式PASを回収する方法、濾液(B)を常圧以下で加熱して有機極性溶媒を除去し、環式PASを主成分とするPAS粒子(a)を含むケーク(c)を回収する方法が挙げられる。なかでも、有機極性溶媒の一部もしくは大部分を蒸留などの操作により除去した後に、PAS成分に対する溶解性が低く且つ有機極性溶媒と混和する溶媒と接触させて、環式PASを主成分とするPAS粒子(a)を含むケーク(c)を回収する方法が好ましい。また、この様な特性を有する溶媒は一般に比較的極性の高い溶媒があり、用いた有機極性溶媒の種類により好ましい溶媒は異なるので限定はできないが、例えば水やメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノールに代表されるアルコール類、アセトン、メチルエチルケトンに代表されるケトン類、酢酸エチル、酢酸ブチルに代表される酢酸エステル類が例示でき、入手性、経済性の観点から水、メタノール及びアセトンが好ましく、水が特に好ましい。このような溶媒による処理を行なうことで、ケーク(c)に含有される有機極性溶媒や副生塩の量を低減することが可能である。この処理により環式PASは固形成分として析出するので、公知の固液分離法を用いてケーク(c)を回収することができる。具体例としては、濾過による分離、遠心分離、デカンテーション等を例示できる。このようにしてケーク(c)を得ることができる。 The method of removing the organic polar solvent from the filtrate (B) and recovering the cake is not particularly limited, and the filtrate (B) is brought into contact with a solvent having low solubility in the PAS component and mixed with the organic polar solvent to form a cyclic formula. A method of precipitating and recovering PAS, after removing a part or most of the organic polar solvent of the filtrate (B) by an operation such as distillation, contact with a solvent having low solubility in the PAS component and mixing with the organic polar solvent. A method for recovering the cake (c) containing the PAS particles (a) containing the cyclic PAS as a main component, the filtrate (B) is cooled to precipitate the cyclic PAS, and the precipitated cyclic PAS is recovered. Examples thereof include a method in which the filtrate (B) is heated below normal pressure to remove an organic polar solvent, and a cake (c) containing PAS particles (a) containing cyclic PAS as a main component is recovered. Among them, after removing a part or most of the organic polar solvent by an operation such as distillation, the cyclic PAS is the main component by contacting with a solvent having low solubility in the PAS component and miscible with the organic polar solvent. A method of recovering the cake (c) containing the PAS particles (a) is preferable. Further, the solvent having such characteristics is generally a solvent having a relatively high polarity, and the preferable solvent differs depending on the type of the organic polar solvent used, so that the solvent cannot be limited, but for example, water, methanol, ethanol, propanol, isopropanol, butanol. , Alcohols typified by hexanol, acetone, ketones typified by methyl ethyl ketone, and acetate esters typified by ethyl acetate and butyl acetate can be exemplified, and water, methanol and acetone are preferable from the viewpoint of availability and economy. , Water is particularly preferred. By performing the treatment with such a solvent, it is possible to reduce the amount of the organic polar solvent and the by-product salt contained in the cake (c). Since the cyclic PAS is precipitated as a solid component by this treatment, the cake (c) can be recovered by using a known solid-liquid separation method. Specific examples include separation by filtration, centrifugation, decantation, and the like. In this way, the cake (c) can be obtained.

[ポリアリーレンスルフィド粒子の洗浄]
本発明では、上述の方法などで得られたケーク(c)について、以下に述べる洗浄方法を用いることで、不純物を低減した高純度なPAS粒子を得ることが可能となる。
[Washing of polyarylene sulfide particles]
In the present invention, it is possible to obtain high-purity PAS particles with reduced impurities by using the cleaning method described below for the cake (c) obtained by the above-mentioned method or the like.

本発明では、濾材を設置した濾過器上にケーク(c)を密度が800kg/m以上になるように配置し、濾過により濾過器下部より濾液(d)が排出されるのと同時に洗浄液(e)を供給することでPAS粒子(a)の洗浄を行うことを特徴とする。より高効率な洗浄を行うためにケーク密度は高い方がよく、900kg/m以上がより好ましく、1000kg/m以上がさらに好ましい。また、密度の上限としては、目的とするPASの種類や液体(b)の種類にもよるため一概に規定できないが、PAS単体の密度とケーク(c)の含液量より、一般的に密度1300kg/m以下と例示できる。 In the present invention, the cake (c) is arranged on a filter on which a filter medium is installed so that the density is 800 kg / m 3 or more, and the filtrate (d) is discharged from the lower part of the filter by filtration, and at the same time, the cleaning liquid (d) It is characterized in that the PAS particles (a) are washed by supplying e). In order to perform more efficient cleaning, the cake density is preferably high, 900 kg / m 3 or more is more preferable, and 1000 kg / m 3 or more is further preferable. Further, the upper limit of the density cannot be unconditionally defined because it depends on the type of the target PAS and the type of the liquid (b), but is generally higher than the density of the PAS alone and the liquid content of the cake (c). It can be exemplified as 1300 kg / m 3 or less.

本発明において、濾液(d)は液体(b)、もしくは液体(b)と洗浄液(e)の複合液である。本発明のように密度を一定以上にしたケークでは、PAS粒子(a)が詰まった間隙に液体(b)が存在している状態と推測できる。そこに洗浄液(e)を濾材と反対側からケークに投入することで、洗浄液(e)がケーク(c)から液体(b)を一対一の量的関係で置換すること(以下、押出置換と呼ぶ場合もある。)ができる。この際、液体(b)中に含まれる不純物も同時に押出置換されることより、より効率的に不純物の洗浄が可能となる。また、密度について、有効濾過面積の100分の1以上の面積に切り出したケークの体積を測定し、その際の重量を体積の値で割ることにより算出できる。連続生産などケークの面積が膨大である場合は、ランダムにサンプリングした10サンプルの平均値として求めるとより正確である。 In the present invention, the filtrate (d) is a liquid (b) or a composite liquid of the liquid (b) and the cleaning liquid (e). In a cake having a density higher than a certain level as in the present invention, it can be inferred that the liquid (b) is present in the gaps filled with the PAS particles (a). By pouring the cleaning liquid (e) into the cake from the side opposite to the filter medium, the cleaning liquid (e) replaces the cake (c) with the liquid (b) in a one-to-one quantitative relationship (hereinafter referred to as extrusion replacement). It may be called.) At this time, the impurities contained in the liquid (b) are also extruded and replaced at the same time, so that the impurities can be washed more efficiently. Further, the density can be calculated by measuring the volume of the cake cut into an area of 1/100 or more of the effective filtration area and dividing the weight at that time by the volume value. When the area of the cake is huge, such as in continuous production, it is more accurate to obtain it as the average value of 10 randomly sampled samples.

本発明において、洗浄液(e)の供給速度と濾液(d)の排出速度の関係に限りはないが、押出置換により高効率に洗浄を行うためには下記の式1が満たされていることが望ましい。
ΔV=|V−V|/V≦0.2 ・・・式1
(濾液(d)の排出速度をV[kg/(秒・m)]、洗浄液(e)の供給速度をV[kg/(秒・m)]と定義。)
In the present invention, the relationship between the supply rate of the cleaning liquid (e) and the discharge rate of the filtrate (d) is not limited, but the following formula 1 must be satisfied in order to perform cleaning with high efficiency by extrusion replacement. desirable.
ΔV = | V 1 −V 2 | / V 1 ≦ 0.2 ・ ・ ・ Equation 1
(The discharge rate of the filtrate (d) is defined as V 1 [kg / (sec · m 2 )], and the supply rate of the cleaning solution (e) is defined as V 2 [kg / (sec · m 2 )].)

液体(b)を洗浄液(e)により押出置換洗浄するため、液体(b)が洗浄液(e)によって希釈されない必要があり、VがVを大きく超えないようにする必要がある。また、洗浄液(e)が少ないとケーク中に空気が入り込み、圧密したケークに割れが生じる可能性がある。この割れから洗浄液(e)が優先的に流出してしまうため、ケークに割れができないように、VをVから大きく下回らせない必要がある。また、ΔV≦0.15がより好ましく、ΔV≦0.10がさらに好ましく、ΔV≦0.05がことさら好ましい。これらの速度は、プロセス的には濾液(d)と洗浄液(e)の流量計で測定した速度と、使用した濾過器の有効濾過面積によって求めることが出来る。 Since the liquid (b) is extruded and replaced with the cleaning liquid (e), the liquid (b) must not be diluted by the cleaning liquid (e), and V 2 must not greatly exceed V 1 . Further, if the amount of the cleaning liquid (e) is small, air may enter the cake and the compacted cake may be cracked. Since the cleaning liquid (e) preferentially flows out from this crack, it is necessary not to make V 2 significantly lower than V 1 so that the cake cannot be cracked. Further, ΔV ≦ 0.15 is more preferable, ΔV ≦ 0.10 is further preferable, and ΔV ≦ 0.05 is particularly preferable. These speeds can be obtained processally from the speeds measured by the flow meters of the filtrate (d) and the cleaning liquid (e) and the effective filtration area of the filter used.

また、濾液排出速度V及び洗浄液供給速度Vは、液体(b)や洗浄液(e)によっても異なるが、本発明の本質を損なわない範囲において特に制限はなく、0.01〜0.50[kg/(秒・m)]の範囲が例示できる。この範囲内の速度においては、ΔVを制御しやすく、押出置換による洗浄効率が比較的高くなると考えられる。なお、本例は一例的なものであり、本発明における速度を限定するものではない。 Further, the filtrate discharge rate V 1 and the cleaning liquid supply speed V 2 differ depending on the liquid (b) and the cleaning liquid (e), but are not particularly limited as long as the essence of the present invention is not impaired, and are 0.01 to 0.50. The range of [kg / (sec · m 2 )] can be exemplified. At a speed within this range, it is considered that ΔV can be easily controlled and the cleaning efficiency by extrusion replacement becomes relatively high. It should be noted that this example is an example and does not limit the speed in the present invention.

ケーク(c)の厚さについて、特に制限はないが、2mm以上、50mm以下の範囲が例示できる。ケーク厚の上限としては、洗浄液(e)が流れやすくなる厚みが望ましく、好ましくは30mm以下であり、20mm以下がより好ましく、15mm以下がさらに好ましい。また、上記のような割れを起こりにくくするため、ケーク厚の下限は2mm以上が好ましい。 The thickness of the cake (c) is not particularly limited, but a range of 2 mm or more and 50 mm or less can be exemplified. As the upper limit of the cake thickness, a thickness that facilitates the flow of the cleaning liquid (e) is desirable, preferably 30 mm or less, more preferably 20 mm or less, still more preferably 15 mm or less. Further, in order to prevent the above-mentioned cracking from occurring, the lower limit of the cake thickness is preferably 2 mm or more.

本発明で用いる洗浄液(e)の液量について、本発明の本質を損なわない範囲であれば特に制限はないが、上限としては例えば液体(b)の液量の10倍量以下でもよく、9倍量以下でもよく、6倍量以下でもよく、3倍量以下でもよく、等倍量以下でもよい。これは、本発明は洗浄液(e)による液体(b)の押出置換による洗浄を特徴とするため、上記のような少量の洗浄液(e)であっても高い洗浄効率を示すことができるためである。特にケーク(c)中に元から存在していた液体(b)と等量の洗浄液であってもケーク(c)中に元から存在していた液体(b)を押出置換により除去できる点は、他の洗浄方法では到達できない本発明の特徴である。また、下限としては、液体(b)を押出置換により除去する観点から液体(b)の0.5倍量以上が好ましく、等倍量以上がより好ましい。 The amount of the cleaning liquid (e) used in the present invention is not particularly limited as long as it does not impair the essence of the present invention, but the upper limit may be, for example, 10 times or less the amount of the liquid (b). The amount may be doubled or less, 6 times or less, tripled or less, or equal or less. This is because the present invention is characterized by cleaning by extrusion replacement of the liquid (b) with the cleaning liquid (e), so that even a small amount of the cleaning liquid (e) as described above can exhibit high cleaning efficiency. is there. In particular, the fact that the liquid (b) originally present in the cake (c) can be removed by extrusion replacement even if the amount of the cleaning liquid is equal to the liquid (b) originally present in the cake (c). , A feature of the present invention that cannot be reached by other cleaning methods. Further, as the lower limit, from the viewpoint of removing the liquid (b) by extrusion substitution, the amount of the liquid (b) is preferably 0.5 times or more, more preferably the same size or more.

ケーク(c)中に元から存在していた液体(b)と洗浄液(e)の置換率は、ケーク(c)中に元から存在していた液体(b)の重量をM[g]、洗浄後にケーク(c)に含まれる液体(b)の残存重量をM[g]として、以下のように示される。
置換率=(M―M)/M ・・・式2
The replacement rate of the liquid (b) originally present in the cake (c) and the cleaning liquid (e) is the weight of the liquid (b) originally present in the cake (c) M 1 [g]. The residual weight of the liquid (b) contained in the cake (c) after washing is M 2 [g], and is shown as follows.
Substitution rate = (M 1- M 2 ) / M 1 ... Equation 2

本発明では上記置換率が、70%以上であることが好ましく、85%以上がより好ましく、95%以上がさらにより好ましく、100%がことさら好ましい。また、上限は100%以下である。これは、液体(b)中に存在する不純物が多く、液体(b)の置換率が洗浄効率に大きく影響を与えるためである。置換率の測定方法として、洗浄液(e)と液体(b)が異なる時は、ガスクロマトグラフ(以下、GCと略する場合もある。)や高速液体クロマトグラフ(以下、HPLCと略する場合もある。)などの装置を用いて分析し、液体(b)の成分に由来するピーク、または液体(b)にのみ溶解し含まれている成分に由来するピークの洗浄前後での比率によって算出することができる。 In the present invention, the substitution rate is preferably 70% or more, more preferably 85% or more, even more preferably 95% or more, and even more preferably 100%. The upper limit is 100% or less. This is because there are many impurities present in the liquid (b), and the substitution rate of the liquid (b) greatly affects the cleaning efficiency. As a method for measuring the substitution rate, when the cleaning liquid (e) and the liquid (b) are different, a gas chromatograph (hereinafter, may be abbreviated as GC) or a high performance liquid chromatograph (hereinafter, may be abbreviated as HPLC). ), And calculate by the ratio of the peak derived from the component of the liquid (b) or the peak derived from the component dissolved and contained only in the liquid (b) before and after washing. Can be done.

本発明で用いる洗浄液(e)としては、水及び有機溶媒から選ばれる少なくとも一種類を用いる。洗浄液の種類としては、目的のPAS粒子(a)、液体(b)の種類、除去したい不純物によっても異なるが、PASが溶解または分解、架橋反応などの好ましくない副反応を実質的に引き起こさないものが好ましい。例えば、無機不純物の除去に好ましい洗浄液(e)としては、水、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコールなどのアルコール類が好ましく特に水が好ましい。また、必要に応じて、蟻酸、酢酸、プロピオン酸、酪酸、クロロ酢酸、ジクロロ酢酸、アクリル酸、安息香酸、サリチル酸、シュウ酸、マロン酸、コハク酸。フタル酸、フマル酸などの有機酸性化合物及びそのアルカリ金属塩、アルカリ土類金属塩、硫酸、リン酸、塩酸、炭酸、ケイ酸などの無機酸性化合物を添加して用いてもよい。 As the cleaning liquid (e) used in the present invention, at least one selected from water and an organic solvent is used. The type of cleaning liquid varies depending on the type of target PAS particles (a) and liquid (b) and impurities to be removed, but PAS does not substantially cause unfavorable side reactions such as dissolution or decomposition and cross-linking reaction. Is preferable. For example, as the cleaning liquid (e) preferable for removing inorganic impurities, alcohols such as water, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, and propylene glycol are preferable, and water is particularly preferable. Also, if necessary, formic acid, acetic acid, propionic acid, butyric acid, chloroacetic acid, dichloroacetic acid, acrylic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid. Organic acidic compounds such as phthalic acid and fumaric acid and inorganic acidic compounds such as alkali metal salts, alkaline earth metal salts, sulfuric acid, phosphoric acid, hydrochloric acid, carbonic acid and silicic acid may be added and used.

有機不純物の除去に好ましい洗浄液(e)としては、有機不純物は液体(b)内に溶解していることが多いため、液体(b)と近しい溶解性、極性を持った洗浄液が望ましい。例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドンなどのN−アルキルピロリドン類、クロロホルム、ブロモホルム、塩化メチレン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン、2,6−ジクロロトルエン等のハロゲン系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、メチルブチルケトン、アセトフェノン等のケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ペンチル、酢酸オクチル、酪酸メチル、酪酸エチル、酪酸ペンチル、サリチル酸メチル、蟻酸エチル、等のカルボン酸エステル系溶媒及び水が例示でき、なかでもメタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、クロロホルム、塩化メチレン、1,2−ジクロロエタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン、アセトン、酢酸メチル、酢酸エチルなどの有機溶媒が好ましく、メタノール、エタノール、プロパノール、エチレングリコール、クロロホルム、塩化メチレン、1,2−ジクロロエタン、アセトン、酢酸エチル、NMPが特に好ましく、メタノール、アセトン、NMPがいっそう好ましい。 As the cleaning solution (e) preferable for removing organic impurities, since the organic impurities are often dissolved in the liquid (b), a cleaning solution having a solubility and polarity close to that of the liquid (b) is desirable. For example, alcohol-phenolic solvents such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, polyethylene glycol, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N. N-alkylpyrrolidones such as −cyclohexyl-2-pyrrolidone, halogen-based solvents such as chloroform, bromoform, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, chlorobenzene, 2,6-dichlorotoluene, pentane , Hexane, heptane, octane, cyclohexane, cyclopentane, benzene, toluene, xylene and other hydrocarbon solvents, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, methyl butyl ketone, acetphenone and other ketone solvents, methyl acetate, acetate. Examples thereof include carboxylic acid ester-based solvents such as ethyl, pentyl acetate, octyl acetate, methyl butyrate, ethyl butyrate, pentyl butyrate, methyl salicylate, ethyl formate, and water, and among them, methanol, ethanol, propanol, butanol, pentanol, and ethylene. Organic solvents such as glycol, propylene glycol, chloroform, methylene chloride, 1,2-dichloroethane, pentane, hexane, heptane, octane, cyclohexane, cyclopentane, acetone, methyl acetate and ethyl acetate are preferred, with methanol, ethanol, propanol and ethylene. Glycol, chloroform, methylene chloride, 1,2-dichloroethane, acetone, ethyl acetate and NMP are particularly preferred, and methanol, acetone and NMP are even more preferred.

上記に挙げられた洗浄液について、二種類以上を複合液として使用することも可能であり、この場合、混和状態であることが望ましい。あるいは、上記の洗浄液を二種類以上連続的に用いて洗浄することも可能であり、本発明の本質を損なわない範囲であればその順序や回数、液量に限りはない。液体(b)を押出置換するために、液量の下限としては、洗浄液の合計量が液体(b)量の0.5倍量以上であることが好ましく、等倍量以上がさらに好ましい。また、上限としては液体(b)の10倍量以下でもよく、9倍量以下がでもよく、6倍量以下でもよい。二種類以上の洗浄液を順に用いるとき、二種類以上の洗浄液の合計量が、単一の洗浄液での洗浄の洗浄液量以下であっても、より高い洗浄効果を発揮することができる。また、二種類以上用いるそれぞれの洗浄液単体での洗浄効果を複合的に得ることもできる。二種類以上の洗浄液量の比としては、上記の液量の範囲内であれば特に制限はないが、洗浄したい不純物に応じて比率を変えて洗浄することができる。例えば、無機不純物を特に洗浄したい場合は上記の無機不純物の除去に好ましい洗浄液を多く用いることができ、有機不純物を特に洗浄したい場合は有機不純物の除去に好ましい洗浄液を多く用いることもでき、無機及び有機不純物を共に除去したい場合は、その不純物量の割合に応じた各洗浄液量にて洗浄を行うこともできる。 With respect to the cleaning liquids listed above, it is possible to use two or more kinds as a composite liquid, and in this case, it is desirable that they are in a mixed state. Alternatively, it is also possible to wash by continuously using two or more kinds of the above-mentioned cleaning liquids, and the order, the number of times, and the amount of the liquids are not limited as long as the essence of the present invention is not impaired. In order to extrude and replace the liquid (b), the lower limit of the liquid amount is preferably 0.5 times or more the total amount of the cleaning liquid, and more preferably the same size or more. Further, the upper limit may be 10 times or less of the liquid (b), 9 times or less, or 6 times or less. When two or more types of cleaning liquids are used in order, a higher cleaning effect can be exhibited even if the total amount of the two or more types of cleaning liquids is less than or equal to the cleaning liquid amount for cleaning with a single cleaning liquid. In addition, it is also possible to obtain a combined cleaning effect of each cleaning solution used in two or more types. The ratio of the two or more types of cleaning liquid amounts is not particularly limited as long as it is within the above-mentioned liquid amount range, but cleaning can be performed by changing the ratio according to the impurities to be cleaned. For example, when it is desired to particularly clean inorganic impurities, a large amount of a cleaning solution preferable for removing the above-mentioned inorganic impurities can be used, and when it is particularly desired to clean organic impurities, a large amount of a cleaning solution preferable for removing organic impurities can be used. When it is desired to remove organic impurities together, cleaning can be performed with each cleaning liquid amount according to the ratio of the impurity amount.

洗浄雰囲気や温度についても、目的とするPASに用いる洗浄液(e)によっても異なるが、温度条件によってPAS成分や洗浄液が酸化劣化するような場合には、非酸化性雰囲気下で行うことが望ましい。洗浄温度にも特に制限はないが、上限温度は使用する洗浄液(e)の大気圧下での環流温度以下にすることが望ましく、また、目的とするPAS粒子(a)が粒子形状を保てる温度が望ましい。例えば、環式PASを主成分とするPAS粒子(a)を高純度で得たい場合には、前述した好ましい洗浄液(e)を用いる際は、20〜150℃が好ましく、30〜100℃がより好ましい具体的な温度範囲として例示できる。 The cleaning atmosphere and temperature also differ depending on the cleaning liquid (e) used for the target PAS, but when the PAS component and the cleaning liquid are oxidatively deteriorated due to temperature conditions, it is desirable to perform the cleaning in a non-oxidizing atmosphere. The cleaning temperature is not particularly limited, but it is desirable that the upper limit temperature is equal to or lower than the recirculation temperature of the cleaning liquid (e) used under atmospheric pressure, and the temperature at which the target PAS particles (a) can maintain the particle shape. Is desirable. For example, when it is desired to obtain PAS particles (a) containing cyclic PAS as a main component with high purity, when the above-mentioned preferable cleaning solution (e) is used, the temperature is preferably 20 to 150 ° C, more preferably 30 to 100 ° C. It can be exemplified as a preferable specific temperature range.

本発明で用いる濾材については、得られるPAS粒子(a)の粒径にもよるが、濾材上に少なくともPAS粒子(a)を含むケーク(c)を形成でき、かつ、液体(b)は通過できるものであれば特に制限はない。したがって、本発明で用いる濾材は固液分離を行なう条件において安定であるものであれば良く、メンブレンフィルター、ガラスフィルター、あるいは金網や濾布など一般に用いられる濾材が例示でき、繰り返し使用可能なガラスフィルターや金網、瀘布が好ましく、とりわけ金網や瀘布が好ましい。また、いずれの濾材についても入手性の観点から市販されているものが好ましい。 With respect to the filter medium used in the present invention, although it depends on the particle size of the obtained PAS particles (a), a cake (c) containing at least the PAS particles (a) can be formed on the filter medium, and the liquid (b) can pass through. There are no particular restrictions as long as it can be done. Therefore, the filter medium used in the present invention may be a filter medium that is stable under the conditions for solid-liquid separation, and a commonly used filter medium such as a membrane filter, a glass filter, or a wire mesh or a filter cloth can be exemplified, and a glass filter that can be used repeatedly. Wire mesh and cloth are preferable, and wire mesh and cloth are particularly preferable. Further, it is preferable that any of the filter media is commercially available from the viewpoint of availability.

本発明で用いる金網の材質は、温度などの固液分離条件や、有機極性溶媒などの反応混合物(A)の成分組成に依存するため一概に規定できないが、前記の通り固液分離を行う条件において安定であれば良く、特に限定はされない。本発明で好適に用いられる金網の材質としては、SUS304やSUS316、SUS316Lなどのステンレス鋼や、ハステロイなどの特殊鋼も例示できる。中でも、汎用性の観点から一般的に用いられる前記のステンレス鋼が好ましく、SUS316あるいはSUS316Lがより好ましい。 The material of the wire mesh used in the present invention cannot be unconditionally specified because it depends on the solid-liquid separation conditions such as temperature and the component composition of the reaction mixture (A) such as an organic polar solvent, but the conditions for solid-liquid separation as described above. As long as it is stable, there is no particular limitation. Examples of the material of the wire mesh preferably used in the present invention include stainless steel such as SUS304, SUS316, and SUS316L, and special steel such as Hastelloy. Among them, the above-mentioned stainless steel generally used from the viewpoint of versatility is preferable, and SUS316 or SUS316L is more preferable.

また、本発明で用いる瀘布の材質も同様に、温度などの固液分離条件や、有機極性溶媒などの反応混合物(A)の成分組成に依存するため一概に規定できないが、固液分離を行う条件において安定であれば良く、特に限定されない。本発明で好適に用いられる瀘布の材質としては、一般的に用いられる、ポリプロピレン、ポリエチレンテレフタラート、ナイロンの他、より耐熱性や耐薬品性の高いポリフェニレンスルフィドや、ポリテトラフルオロエチレンなどが例示できる。中でも、濾材コストの観点からは一般的に用いられる前記のポリプロピレン、ポリエチレンテレフタラート、ナイロンが好ましく、ポリプロピレンがより好ましい。また、一般に固液分離性は瀘布の材質には依存しないため、固液分離の温度や用いる有機極性溶媒の種類に応じて材質を選択することも可能である。例えば耐熱性及び耐薬品性の観点で前記ポリプロピレンの適用が難しい場合には、より耐熱性や耐薬品性の高い、ポリフェニレンスルフィドや、ポリテトラフルオロエチレンを好ましく選択することができる。 Similarly, the material of the cloth used in the present invention cannot be unconditionally specified because it depends on the solid-liquid separation conditions such as temperature and the component composition of the reaction mixture (A) such as an organic polar solvent. It is not particularly limited as long as it is stable under the conditions to be performed. Examples of the material of the cloth preferably used in the present invention include polypropylene, polyethylene terephthalate, and nylon, which are generally used, polyphenylene sulfide having higher heat resistance and chemical resistance, and polytetrafluoroethylene. it can. Of these, polypropylene, polyethylene terephthalate, and nylon, which are generally used, are preferable from the viewpoint of filter media cost, and polypropylene is more preferable. Further, since the solid-liquid separability generally does not depend on the material of the filter cloth, the material can be selected according to the temperature of the solid-liquid separation and the type of the organic polar solvent used. For example, when it is difficult to apply the polypropylene from the viewpoint of heat resistance and chemical resistance, polyphenylene sulfide and polytetrafluoroethylene, which have higher heat resistance and chemical resistance, can be preferably selected.

ここで本発明で用いる濾材の細孔直径または目開きの好ましい上限としては70μm以下が例示でき、60μm以下がより好ましく、50μm以下がさらに好ましい。また、下限としては10μm以上が例示でき、15μm以上が好ましく、20μm以上がとりわけ好ましい。 Here, as a preferable upper limit of the pore diameter or the opening of the filter medium used in the present invention, 70 μm or less can be exemplified, more preferably 60 μm or less, still more preferably 50 μm or less. Further, as the lower limit, 10 μm or more can be exemplified, 15 μm or more is preferable, and 20 μm or more is particularly preferable.

ここで一般に、金網の目開きのサイズとしては「メッシュ」で示されることが多く、好ましい下限として350メッシュ以上が例示でき、400メッシュ以上がより好ましく、500メッシュ以上がさらに好ましい。また、好ましい上限として2000メッシュ以下が例示でき、1000メッシュ以下がより好ましく、800メッシュ以下がさらに好ましい。なお、「メッシュ」の数値はメーカーにより若干異なるが、上記の好ましいメッシュサイズの範囲であれば前記の好ましい目開きの範囲に含まれる。 Here, in general, the size of the mesh opening of the wire mesh is often indicated by "mesh", and 350 mesh or more can be exemplified as a preferable lower limit, 400 mesh or more is more preferable, and 500 mesh or more is further preferable. Further, as a preferable upper limit, 2000 mesh or less can be exemplified, 1000 mesh or less is more preferable, and 800 mesh or less is further preferable. Although the numerical value of "mesh" differs slightly depending on the manufacturer, the above-mentioned preferable mesh size range is included in the above-mentioned preferable opening range.

また、一般に瀘布の細孔直径または目開きは、その形状や大きさが複雑なため数値として表現が難しいため、代わりに「通気性(cm/(cm・秒))」で示される。したがって、本発明で用いる瀘布の孔のサイズも通気性で示すが、通気性の好ましい上限は50cm/(cm・秒)以下であり、30cm/(cm・秒)以下がより好ましく、20cm/(cm・秒)以下がさらに好ましく、10cm/(cm・秒)以下が殊更好ましい。また、下限としては1cm/(cm・秒)以上が例示でき、2cm/(cm・秒)以上がより好ましく、3cm/(cm・秒)以上がさらに好ましい。なお、本発明の通気性はJIS L 1096に規定の方法での測定した値である。 In addition, since the pore diameter or opening of the cloth is generally difficult to express as a numerical value due to its complicated shape and size, it is indicated by "breathability (cm 3 / (cm 2 seconds))" instead. .. Therefore, the size of the holes in the cloth used in the present invention is also indicated by breathability, but the preferable upper limit of breathability is 50 cm 3 / (cm 2 · sec) or less, and 30 cm 3 / (cm 2 · sec) or less is more preferable. Preferably, it is 20 cm 3 / (cm 2 · sec) or less, more preferably 10 cm 3 / (cm 2 · sec) or less. Further, as the lower limit, 1 cm 3 / (cm 2 · sec) or more can be exemplified, 2 cm 3 / (cm 2 · sec) or more is more preferable, and 3 cm 3 / (cm 2 · sec) or more is further preferable. The air permeability of the present invention is a value measured by the method specified in JIS L 1096.

上記範囲の細孔直径または目開きの濾材、または上記範囲の通気度の瀘布を用いることで、濾材上にケークを形成し易くなり、細孔直径または通気度が小さいほどケーク形成が容易になる傾向にある。一方で、濾材の細孔直径または目開きを小さくし過ぎると目詰まりし易く、同一濾材を繰り返し使用する際に分離効率が低下する傾向にある。また、一般に濾材は細孔直径または目開き、通気性が小さいほど高価になる傾向があるが、上記範囲であれば工業的にも支障なく使用できる。 By using a filter medium having a pore diameter or opening in the above range, or a cloth having an air permeability in the above range, it becomes easier to form a cake on the filter medium, and the smaller the pore diameter or the air permeability, the easier the cake formation. It tends to be. On the other hand, if the pore diameter or the opening of the filter medium is made too small, clogging tends to occur, and the separation efficiency tends to decrease when the same filter medium is used repeatedly. Further, in general, the filter medium tends to be more expensive as the pore diameter or opening and the smaller the air permeability, but if it is within the above range, it can be used industrially without any problem.

[回収したポリアリーレンスルフィド]
本発明により得られるPAS粒子、もしくは得られる環式PASを主成分とするPAS粒子(a)を溶融重合させて高分子量化させた溶融重合物(以下、これらを合わせて、本発明で得られるPASと呼ぶ場合がある。)がPASとして優れた特性を発揮するために、灰分率は0.25重量%以下であることが好ましく、0.15重量%以下がより好ましく、0.10重量%以下がさらに好ましく、0.05重量%以下がことさら好ましい。同様に、発生ガス量については、800ppm以下が好ましく、600ppm以下がより好ましく、500ppm以下がさらに好ましく、400ppm以下がことさら好ましい。
[Recovered polyarylene sulfide]
The PAS particles obtained by the present invention or the obtained molten polymer obtained by melt-polymerizing the obtained PAS particles (a) containing cyclic PAS as a main component to increase the molecular weight (hereinafter, these are combined and obtained in the present invention). In order for PAS) to exhibit excellent characteristics as PAS, the ash content is preferably 0.25% by weight or less, more preferably 0.15% by weight or less, and 0.10% by weight. The following is more preferable, and 0.05% by weight or less is particularly preferable. Similarly, the amount of generated gas is preferably 800 ppm or less, more preferably 600 ppm or less, further preferably 500 ppm or less, and even more preferably 400 ppm or less.

上記灰分率、発生ガス量を示す本発明により得られるPAS粒子は、含まれる不純物が少ないことから、従来のPASに比べ耐熱性、耐薬品性、難燃性、電気的性質並びに機械的性質が優れ、また、溶融状態において発生するガス量が少ないことから射出成形、射出圧縮成形、ブロー成形、押出成形において良成形性であり、かつ成形機汚染が少なく製造コスト低減が可能となる。また、シート、フィルム、繊維及びパイプなど高温使用におけるガスによる特性低下が起こりづらく高品質化が期待できる。 The PAS particles obtained by the present invention showing the ash content and the amount of generated gas contain less impurities, and therefore have heat resistance, chemical resistance, flame retardancy, electrical properties, and mechanical properties as compared with conventional PAS. It is excellent, and since the amount of gas generated in the molten state is small, it has good moldability in injection molding, injection compression molding, blow molding, and extrusion molding, and it is possible to reduce the manufacturing cost with less contamination of the molding machine. In addition, high quality can be expected because the characteristics of sheets, films, fibers, pipes, etc. are less likely to deteriorate due to gas when used at high temperatures.

また本発明で得られるPASの用途としては、例えばセンサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品/VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品などに代表される家庭、事務電気製品部品/オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、などに代表される機械関連部品/顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品/水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量センサー、水道メーターハウジングなどの水廻り部品/バルブオルタネーターターミナル、オルタネーターコネクター,ICレギュレーター、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、車速センサー、ケーブルライナー、エンジンコントロールユニットケース、エンジンドライバーユニットケース、コンデンサーケース、モーター絶縁材料、ハイブリッドカーの制御系部品ケースなどの自動車・車両関連部品、その他の各種用途が例示できる。 Further, the applications of PAS obtained in the present invention include, for example, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, condensers, variable condenser cases, optical pickups, oscillators, various terminal boards, metamorphic devices, etc. Electrical / electronic parts / VTR parts such as plugs, printed boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal, motor brush holders, parabolic antennas, computer-related parts, etc. For TV parts, irons, hair dryers, rice cooker parts, microwave parts, acoustic parts, audio equipment parts such as audio / laser discs (registered trademarks) / compact discs, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, etc. Typical household, office electrical product parts / office computer related parts, telephone equipment related parts, facsimile related parts, copying machine related parts, cleaning jigs, motor parts, lighters, etc. Machine related parts / microscopes, Optical equipment such as binoculars, cameras, watches, precision machinery related parts / water faucet pieces, mixing faucets, pump parts, pipe joints, water volume control valves, relief valves, hot water temperature sensors, water volume sensors, water meter housings, etc. Water parts / valves Alternate terminal, alternator connector, IC regulator, exhaust gas valve and other valves, fuel-related / exhaust / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine cooling water joint, carburetor Main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, throttle position sensor, crank shaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, radiator motor Brush holder, water pump impeller, turbine vane, wiper motor related parts, dustributor, starter switch, starter relay, wire harness for transmission, window washer nozzle, air conditioner panel switch board, fuel related electromagnetic valve coil, fuse connector , Horn terminal, Electrical component insulation plate, Step motor rotor, Lamp socket, Lamp reflector, lamp housing, brake piston, solenoid bobbin, engine oil filter, ignition device case, vehicle speed sensor, cable liner, engine control unit case, engine driver unit case, condenser case, motor insulation material, hybrid car control system parts case Examples include automobile / vehicle-related parts such as, and various other uses.

本発明で得られるPASを用いたPASフィルムの製造方法としては、公知の溶融製膜方法を採用することができ、例えば、単軸または2軸の押出機中でPASを溶融後、フィルムダイより押出し冷却ドラム上で冷却してフィルムを作成する方法、あるいは、このようにして作成したフィルムをローラー式の縦延伸装置とテンターと呼ばれる横延伸装置にて縦横に延伸する二軸延伸法などにより製造することができるが、特にこれに限定されるものではない。 As a method for producing a PAS film using PAS obtained in the present invention, a known melt film forming method can be adopted. For example, after melting PAS in a single-screw or twin-screw extruder, a film die is used. Manufactured by a method of producing a film by cooling on an extrusion cooling drum, or a biaxial stretching method in which the film produced in this way is stretched vertically and horizontally by a roller-type longitudinal stretching device and a transverse stretching device called a tenter. However, it is not particularly limited to this.

このようにして本発明で得られるPASのフィルムは、優れた機械特性、電気特性、耐熱性を有しており、フィルムコンデンサーやチップコンデンサーの誘電体フィルム用途、離形用フィルム用途など各種用途に好適に使用することができる。 The PAS film thus obtained in the present invention has excellent mechanical properties, electrical properties, and heat resistance, and is used in various applications such as dielectric film applications for film capacitors and chip capacitors, and release film applications. It can be preferably used.

本発明で得られるPASを用いたPAS繊維の製造方法としては、公知の溶融紡糸方法を適用することができ、例えば、原料であるPASチップを単軸または2軸の押出機に供給しながら混練し、ついで押出機の先端部に設置したポリマー流線入替器、濾過層などを経て紡糸口金より押出し、冷却、延伸、熱セットを行う方法などを採用することができるが、特にこれに限定されるものではない。 As a method for producing PAS fibers using PAS obtained in the present invention, a known melt spinning method can be applied. For example, a PAS chip as a raw material is kneaded while being supplied to a single-screw or twin-screw extruder. Then, a method of extruding from the spinneret via a polymer streamline changer installed at the tip of the extruder, a filtration layer, etc., and performing cooling, stretching, and heat setting can be adopted, but is particularly limited to this. It's not something.

このようにして本発明で得られるPASのモノフィラメントあるいは短繊維は、抄紙ドライヤーキャンパス、ネットコンベヤー、バグフィルターなどの各種用途に好適に使用することができる。 The PAS monofilaments or short fibers thus obtained in the present invention can be suitably used for various applications such as papermaking dryer campuses, net conveyors, and bag filters.

以下に実施例を挙げて本発明を具体的に説明する。これらの例は例示的なものであって限定的なものではない。 The present invention will be specifically described below with reference to examples. These examples are exemplary and not limiting.

<ケークの真空乾燥>
ケークの乾燥は以下の条件により行った。
装置:ヤマト化学 角型真空乾燥機 ADP300
条件:130℃、12時間(真空条件下)
<Vacuum drying of cake>
The cake was dried under the following conditions.
Equipment: Yamato Chemical Square Vacuum Dryer ADP300
Conditions: 130 ° C, 12 hours (vacuum conditions)

<液体(b)置換率の測定>
液体(b)の置換率については、ガスクロマトグラフを用いて求めた。
<Measurement of liquid (b) substitution rate>
The substitution rate of the liquid (b) was determined using a gas chromatograph.

未洗浄及び洗浄後のケーク約0.5gをクロロホルム約6gに溶解させ、孔径0.45μmのメンブランフィルターを用いて濾過し、得られた溶液についてGC測定を行った。測定したNMPに由来するピーク値の減少度合いより置換率を算出した。GCの測定条件について以下に示す。
装置:島津製作所製 GC−2010
カラム:J&W社製 DB−5 内径0.32mm、長さ30m(膜厚0.25μm)
キャリアーガス:ヘリウム
検出器:水素炎イオン化検出器(FID)
About 0.5 g of unwashed and washed cake was dissolved in about 6 g of chloroform, filtered using a membrane filter having a pore size of 0.45 μm, and the obtained solution was subjected to GC measurement. The substitution rate was calculated from the degree of decrease in the peak value derived from the measured NMP. The measurement conditions of GC are shown below.
Equipment: Shimadzu GC-2010
Column: J & W DB-5 inner diameter 0.32 mm, length 30 m (film thickness 0.25 μm)
Carrier gas: Helium detector: Hydrogen flame ionization detector (FID)

<環式PPSを主成分とするPPS粒子の溶融重合>
環式PPSの溶融重合は以下の方法により行った。
<Melting polymerization of PPS particles containing cyclic PPS as the main component>
The melt polymerization of the cyclic PPS was carried out by the following method.

環式PPS1.5gを試験管に仕込み、試験管内を窒素で置換した後、真空ポンプを用いて減圧し真空条件(2Torr以下)とした。試験管内の圧力を保ちながら、340℃に加温した電気管状炉内に挿入し、6時間加熱した。加熱後、試験管を取り出し、室温まで冷却し、高分子量化したPPS固体を得た。
装置:アサヒ理化 ARF−30KC セラミック電気管状炉
ULVAC GLD−051 真空ポンプ
条件:340℃、6時間(真空条件下)
1.5 g of cyclic PPS was charged into a test tube, the inside of the test tube was replaced with nitrogen, and then the pressure was reduced using a vacuum pump to obtain vacuum conditions (2 Torr or less). While maintaining the pressure in the test tube, it was inserted into an electric tube furnace heated to 340 ° C. and heated for 6 hours. After heating, the test tube was taken out and cooled to room temperature to obtain a high molecular weight PPS solid.
Equipment: Asahi Rika ARF-30KC Ceramic Electric Tube Furnace ULVAC GLD-051 Vacuum Pump Conditions: 340 ° C, 6 hours (vacuum conditions)

<環式ポリフェニレンスルフィドの分析>
PPS粒子中に含まれる環式PPSの量はHPLCを用いて求めた。
<Analysis of cyclic polyphenylene sulfide>
The amount of cyclic PPS contained in the PPS particles was determined by HPLC.

PPS約10mgを250℃で1−クロロナフタレン約5gに溶解させ、室温に冷却後、孔径0.45μmのメンブランフィルターを用いて濾過し、1−クロロナフタレン可溶成分を得た。得られた可溶成分をHPLC分析し、環式PPS量を定量した。 About 10 mg of PPS was dissolved in about 5 g of 1-chloronaphthalene at 250 ° C., cooled to room temperature, and filtered using a membrane filter having a pore size of 0.45 μm to obtain a 1-chloronaphthalene-soluble component. The obtained soluble component was analyzed by HPLC and the amount of cyclic PPS was quantified.

また、ケーク中の環式PPSの量についても同様にHPLCを用いて求めた。 The amount of cyclic PPS in the cake was also determined by HPLC in the same manner.

ケークの乾燥固体約10mgをクロロホルム約10gに溶解させよく攪拌した後、孔径0.45μmのメンブランフィルターを用いて濾過し、得られた可溶成分をHPLC分析し、環式PPS量を定量した。HPLCの測定条件を以下に示す。
装置:島津製作所製 LC−10Avpシリーズ
カラム:関東化学製 Mightysil RP−18GP
長さ150mm、内径4.6、(膜厚5μm)
検出器:フォトダイオードアレイ検出器(波長270nm)
About 10 mg of a dry solid of cake was dissolved in about 10 g of chloroform, stirred well, filtered using a membrane filter having a pore size of 0.45 μm, and the obtained soluble component was analyzed by HPLC to quantify the amount of cyclic PPS. The HPLC measurement conditions are shown below.
Equipment: Shimadzu LC-10Avp Series Column: Kanto Chemical Co., Ltd. Mightysil RP-18GP
Length 150 mm, inner diameter 4.6, (film thickness 5 μm)
Detector: Photodiode array detector (wavelength 270 nm)

<分子量測定>
PPSの分子量は、サイズ排除クロマトグラフの一種であるゲル浸透クロマトグラフ(以下、GPCと略する場合もある。)を用いて、ポリスチレン換算で算出した。GPCの測定条件を以下に示す。
装置:センシュー科学製SSC−7110
カラム:昭和電工製Shodex UT−G+Shodex UT−806M×2
溶離液:1−クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/min
試料注入量:300μL (濃度:0.1重量%)
標準サンプル:ポリスチレン
<Molecular weight measurement>
The molecular weight of PPS was calculated in terms of polystyrene using a gel permeation chromatograph (hereinafter, may be abbreviated as GPC), which is a type of size exclusion chromatograph. The measurement conditions of GPC are shown below.
Equipment: Senshu Kagaku SSC-7110
Column: Showa Denko Shodex UT-G + Shodex UT-806M x 2
Eluent: 1-chloronaphthalene detector: differential refractive index detector Column temperature: 210 ° C
Pre-constant temperature bath temperature: 250 ° C
Pump constant temperature bath temperature: 50 ° C
Detector temperature: 210 ° C
Flow rate: 1.0 mL / min
Sample injection volume: 300 μL (concentration: 0.1% by weight)
Standard sample: polystyrene

<灰分率測定>
灰分率の測定は以下の条件により行った。
<Measurement of ash content>
The ash content was measured under the following conditions.

ケークの乾燥固体約5gを電気炉にて550℃で6時間加熱を行い、その後冷却して回収した灰化物の重量より求めた。以下に条件を示す。
装置:トーマス科学器械株式会社 TMF−5
条件:550℃、6時間
Approximately 5 g of the dry solid of the cake was heated in an electric furnace at 550 ° C. for 6 hours, and then cooled to determine the weight of the recovered ash. The conditions are shown below.
Equipment: Thomas Kagaku Kikai Co., Ltd. TMF-5
Conditions: 550 ° C, 6 hours

<発生ガス量の測定>
溶融した際に揮発するガス発生量は、以下の方法で求めた。
<Measurement of generated gas amount>
The amount of gas generated when melted was determined by the following method.

ガラスアンプルにPPSを1g量り入れ、真空封管した。このガラスアンプルの胴部のみを、電気管状炉に挿入し加熱した。アンプルを取り出した後、電気管状炉によって加熱されておらず揮発ガスが凝集付着したアンプル首部をヤスリで切り出し、その重量と付着物除去後の重量を測定し、発生したガス量を計算した。使用した装置・器具を以下に示す。
装置:アサヒ理化 ARF−30KC セラミック電気管状炉
ガラスアンプル:胴部100mm×25mmφ、首部255mm×12mmφ、肉厚1mm
条件:320℃、2時間(真空封管状態)
1 g of PPS was placed in a glass ampoule and vacuum-sealed. Only the body of this glass ampoule was inserted into an electric tube furnace and heated. After taking out the ampoule, the neck of the ampoule, which was not heated by the electric tube furnace and had volatile gas aggregated and adhered, was cut out with a file, and the weight and the weight after removing the deposit were measured, and the amount of gas generated was calculated. The equipment and utensils used are shown below.
Equipment: Asahi Rika ARF-30KC Ceramic Electric Tube Furnace Glass Ampoule: Body 100 mm x 25 mmφ, neck 255 mm x 12 mmφ, wall thickness 1 mm
Conditions: 320 ° C, 2 hours (vacuum sealed state)

[参考例1]
ここではケーク(c)の回収例を示す。
[Reference example 1]
Here, an example of collecting the cake (c) is shown.

<反応混合物の調製>
撹拌機を具備した1リットルオートクレーブに水硫化ナトリウムの48重量%水溶液を23.36g(水硫化ナトリウム11.21g(0.200モル))、水酸化ナトリウムの48重量%水溶液を17.50g(水酸化ナトリウム8.40g(0.210モル))、N−メチル−2−ピロリドン(NMP)500mL、p−ジクロロベンゼン(p−DCB)30.00g(0.200モル)を仕込んだ。反応容器を室温・常圧下にて窒素ガス下に密封した後、400rpmで撹拌しながら、室温から200℃まで25分かけて昇温した。次いで、245℃まで25分かけて昇温した。245℃で6時間保持した後、室温近傍まで急冷し反応混合物を得た。
<Preparation of reaction mixture>
23.36 g (11.21 g (0.200 mol) of sodium hydrosulfide) and 17.50 g (water) of a 48 wt% aqueous solution of sodium hydroxide in a 1 liter autoclave equipped with a stirrer. 8.40 g (0.210 mol) of sodium oxide), 500 mL of N-methyl-2-pyrrolidone (NMP), and 30.00 g (0.200 mol) of p-dichlorobenzene (p-DCB) were charged. The reaction vessel was sealed under nitrogen gas at room temperature and normal pressure, and then the temperature was raised from room temperature to 200 ° C. over 25 minutes while stirring at 400 rpm. Then, the temperature was raised to 245 ° C. over 25 minutes. After holding at 245 ° C. for 6 hours, the mixture was rapidly cooled to near room temperature to obtain a reaction mixture.

<固液分離>
上記反応混合物150.0gを分取し、300mL容のフラスコに仕込み窒素置換を行った。反応混合物をマグネチックスターラーを用いて撹拌しながら恒温槽にて90℃で30分間保持した。
<Solid-liquid separation>
150.0 g of the above reaction mixture was separated, charged into a 300 mL flask, and replaced with nitrogen. The reaction mixture was kept at 90 ° C. for 30 minutes in a constant temperature bath with stirring using a magnetic stirrer.

ADVANTEC社製の万能型タンク付フィルターホルダーKST−90−UH(有効濾過面積約45.3cm)に、直径90mm、細孔直径10μmのメンブランフィルター(PTFE製)を設置し、タンク部分をバンドヒーターにて35℃に調温した。 A membrane filter (made of PTFE) with a diameter of 90 mm and a pore diameter of 10 μm is installed in the filter holder KST-90-UH (effective filtration area of about 45.3 cm 2 ) manufactured by ADVANTEC with a universal tank, and the tank part is a band heater. The temperature was adjusted to 35 ° C.

前記90℃に加熱した反応混合物全量をタンクに仕込み、タンクを密閉後、タンク内を窒素にて0.1MPaに加圧し、濾液約124gを回収した。 The entire amount of the reaction mixture heated to 90 ° C. was charged into the tank, the tank was sealed, the inside of the tank was pressurized to 0.1 MPa with nitrogen, and about 124 g of the filtrate was recovered.

<有機極性溶媒の除去>
上記濾液90gを300mLフラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温し、チューブポンプを用いて水30gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで30℃以下で約30分間撹拌を継続した後、得られたスラリーを細孔直径10〜16μmのガラスフィルターで吸引濾過しケークを得た。
<Removal of organic polar solvent>
90 g of the above filtrate was placed in a 300 mL flask, and the inside of the flask was replaced with nitrogen. Then, the mixture was heated to 100 ° C. with stirring, and 30 g of water was slowly added dropwise over about 15 minutes using a tube pump. Here, the weight ratio of NMP to water in the filtrate mixture after the completion of dropping water was 75:25. When water was added to this filtrate, solids were gradually formed in the mixture, and when the dropping of water was completed, the solids were dispersed into a slurry. The slurry is cooled to about 30 ° C. over about 1 hour with stirring, and then stirring is continued at 30 ° C. or lower for about 30 minutes, and then the obtained slurry is suction-filtered with a glass filter having a pore diameter of 10 to 16 μm. Got a cake.

<ケークの真空乾燥>
上記ケークを130℃で12時間真空乾燥することで、ケーク中の固形分を乾燥固体として得た。この乾燥処理より、ケークは液体を64重量%含むことがわかった。また、得られた乾燥固体をIR測定のKBr法にて分析した結果、ケークの固形分は99%以上がPPSであることがわかった。
<Vacuum drying of cake>
The cake was vacuum dried at 130 ° C. for 12 hours to obtain a solid content in the cake as a dry solid. From this drying process, the cake was found to contain 64% by weight of liquid. Moreover, as a result of analyzing the obtained dry solid by the KBr method of IR measurement, it was found that 99% or more of the solid content of the cake was PPS.

<環式ポリフェニレンスルフィドの分析>
上記乾燥固体をHPLCを用いて分析した結果、ケークの固形分中には環式PPSが89%含まれているとわかった。
<Analysis of cyclic polyphenylene sulfide>
As a result of analyzing the above dry solid by HPLC, it was found that the solid content of the cake contained 89% of cyclic PPS.

<灰分率測定>
上記乾燥固体を550℃の電気炉において約6時間灰化処理した結果、上記ケークの灰分率は0.35重量%であり、この灰化物の元となる無機物がケークに含まれていることがわかった。
<Measurement of ash content>
As a result of ashing the dry solid in an electric furnace at 550 ° C. for about 6 hours, the ash content of the cake was 0.35% by weight, and the cake contained an inorganic substance that was the source of this ash. all right.

<環式PPSを主成分とするPPS粒子の溶融重合>
上記乾燥固体1.5gを真空条件下で340℃、6時間加熱することで濃茶褐色固体を得た。
<Melting polymerization of PPS particles containing cyclic PPS as the main component>
A dark brown solid was obtained by heating 1.5 g of the above dry solid at 340 ° C. for 6 hours under vacuum conditions.

<分子量測定>
溶融重合により得られた濃茶褐色固体をGPC分析した結果、重量平均分子量6.4万とわかった。
<Molecular weight measurement>
As a result of GPC analysis of the dark brown solid obtained by melt polymerization, it was found that the weight average molecular weight was 64,000.

<発生ガス量の測定>
上記濃茶褐色固体1gを320℃で2時間加熱した際の発生ガス量を測定した結果、ガス量は810ppmであるとわかった。
<Measurement of generated gas amount>
As a result of measuring the amount of gas generated when 1 g of the dark brown solid was heated at 320 ° C. for 2 hours, it was found that the amount of gas was 810 ppm.

[実施例1]
ここではケーク密度を制御した洗浄により無機及び有機不純物を効率よく低減した高純度なPPS粒子の回収例を示す。
[Example 1]
Here, an example of recovering high-purity PPS particles in which inorganic and organic impurities are efficiently reduced by cleaning with controlled cake density is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、参考例1に記載のケーク8.4gを密度約930kg/m(以下、密度は有効濾過面積100%の面積におけるケークの体積と重量より算出した。)、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.5gだった。これを室温条件下でアスピレーターを用いて吸引濾過を行い、ケーク上に水5.5g(ケーク中の液体重量に対して等倍量。)を供給し洗浄を行った。この時、濾液排出速度は約0.13kg/(秒・m)であり、洗浄液である水の供給速度は0.44kg/(秒・m)であった。洗浄後の固形分をGC分析し、ケーク中の液体(b)の置換率を算出した結果、置換率は78%であった。 A cake with an inner diameter of 38 mm sandwiched between a membrane filter having a pore diameter of 10 μm is filled with 8.4 g of the cake described in Reference Example 1 at a density of about 930 kg / m 3 (hereinafter, the density is a cake in an area of 100% effective filtration area). It was calculated from the volume and weight of.), And was filled by applying pressure from above so that the cake thickness was about 8 mm. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.5 g. This was suction-filtered using an aspirator under room temperature conditions, and 5.5 g of water (equal to the weight of the liquid in the cake) was supplied onto the cake for washing. At this time, the filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the supply rate of water as a cleaning liquid was 0.44 kg / (sec m 2 ). As a result of GC analysis of the solid content after washing and calculating the replacement rate of the liquid (b) in the cake, the replacement rate was 78%.

また、得られた固形分を真空乾燥機130℃で12時間処理して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.24重量%の高純度なPPS粒子を得られたことがわかった。 Further, the obtained solid content was treated in a vacuum dryer at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.24% by weight were obtained.

[実施例2]
ここでは洗浄液量を増やした以外は実施例1と同様の操作を行い、不純物を効率よく低減した高純度なPPS粒子の回収例を示す。
[Example 2]
Here, an example of recovering high-purity PPS particles in which impurities are efficiently reduced by performing the same operation as in Example 1 except that the amount of cleaning liquid is increased is shown.

実施例1と同様に、細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク8.6gを密度約850kg/m、ケーク厚約9mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.6gだった。これを室温条件下でアスピレーターを用いて吸引濾過を行い、ケーク上に水16.8g(ケーク中の液体重量に対して3倍量。)を供給し洗浄を行った。この時、濾液排出速度は約0.13kg/(秒・m)であり、水の供給速度は0.44kg/(秒・m)であった。洗浄後の固形分をGC分析し、元のケーク中の液体(b)の置換率を算出した結果、置換率は95%であった。 In the same manner as in Example 1, pressure was applied from above to a Kiriyama separate having an inner diameter of 38 mm sandwiching a membrane filter having a pore diameter of 10 μm so that 8.6 g of cake had a density of about 850 kg / m 3 and a cake thickness of about 9 mm. It was filled over. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.6 g. This was suction-filtered using an aspirator under room temperature conditions, and 16.8 g of water (three times the weight of the liquid in the cake) was supplied onto the cake for washing. At this time, the filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the water supply rate was 0.44 kg / (sec m 2 ). As a result of GC analysis of the solid content after washing and calculating the replacement rate of the liquid (b) in the original cake, the replacement rate was 95%.

また、得られた固形分を真空乾燥機130℃で12時間処理して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.09重量%の高純度なPPS粒子を得られたことがわかった。 Further, the obtained solid content was treated in a vacuum dryer at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.09% by weight were obtained.

[実施例3]
ここでは実施例1から、さらに洗浄液の供給方法を調整した洗浄により不純物をより低減した高純度なPPS粒子の回収例を示す。
[Example 3]
Here, from Example 1, an example of recovering high-purity PPS particles in which impurities are further reduced by cleaning in which the method of supplying the cleaning liquid is further adjusted is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、参考例1に記載のケーク8.4gを密度約930kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.5gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上から速度を制御して水5.5g(ケーク中の液体重量に対して等倍量)を供給し洗浄を行った。この時、濾液排出速度は約0.13kg/(秒・m)であり、制御した水の供給速度も約0.13kg/(秒・m)であった。得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。 A pressure is applied from above to a Kiriyama separate having an inner diameter of 38 mm sandwiching a membrane filter having a pore diameter of 10 μm so that 8.4 g of the cake described in Reference Example 1 has a density of about 930 kg / m 3 and a cake thickness of about 8 mm. And filled. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.5 g. This was suction-filtered using an aspirator under room temperature conditions, and 5.5 g of water (equal to the weight of the liquid in the cake) was supplied from above the cake at a controlled speed to perform washing. At this time, the filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the controlled water supply rate was also about 0.13 kg / (sec m 2 ). The obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles.

この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.20重量%の高純度なPPS粒子を得られたことがわかった。 This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.20% by weight were obtained.

[実施例4]
ここでは実施例3より洗浄液量を多くした洗浄による高純度なPPS粒子の回収例を示す。
[Example 4]
Here, an example of recovering high-purity PPS particles by washing with a larger amount of washing liquid than in Example 3 is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク9.2gを密度約1010kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は6.1gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に速度を制御して水18.2g(ケーク中の液体重量に対して3倍量。)を供給し洗浄を行った。この時、濾液排出速度は約0.13kg/(秒・m)であり、水の供給速度は約0.13kg/(秒・m)であった。洗浄後の固形分をGC分析し、元のケーク中の液体(b)の置換率を算出した結果、置換率は98%であった。 A membrane filter having a pore diameter of 10 μm and an inner diameter of 38 mm was filled with 9.2 g of cake by applying pressure from above so as to have a density of about 1010 kg / m 3 and a cake thickness of about 8 mm. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 6.1 g. This was suction-filtered using an aspirator under room temperature conditions, and 18.2 g of water (three times the weight of the liquid in the cake) was supplied onto the cake at a controlled speed to perform washing. At this time, the filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the water supply rate was about 0.13 kg / (sec m 2 ). As a result of GC analysis of the solid content after washing and calculating the replacement rate of the liquid (b) in the original cake, the replacement rate was 98%.

また、得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.07重量%の高純度なPPS粒子を得られたことがわかった。 Further, the obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.07% by weight were obtained.

[実施例5]
ここでは実施例4よりもさらに洗浄液量を多くした洗浄による高純度なPPS粒子の回収例を示す。
[Example 5]
Here, an example of recovering high-purity PPS particles by washing with a larger amount of cleaning liquid than in Example 4 is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク8.6gを密度約940kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.5gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に速度を制御して水33.2g(ケーク中の液体重量に対して6倍量。)を供給し洗浄を行った。この時、濾液排出速度は約0.13kg/(秒・m)であり、水の供給速度は約0.13kg/(秒・m)であった。洗浄後の固形分をGC分析し、元のケーク中の液体(b)の置換率を算出した結果、置換率は99%であった。 A membrane filter having a pore diameter of 10 μm and an inner diameter of 38 mm was filled with 8.6 g of cake under pressure from above so as to have a density of about 940 kg / m 3 and a cake thickness of about 8 mm. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.5 g. This was suction-filtered using an aspirator under room temperature conditions, and 33.2 g of water (6 times the weight of the liquid in the cake) was supplied onto the cake at a controlled speed to perform washing. At this time, the filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the water supply rate was about 0.13 kg / (sec m 2 ). As a result of GC analysis of the solid content after washing and calculating the replacement rate of the liquid (b) in the original cake, the replacement rate was 99%.

また、得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.03重量%の高純度なPPS粒子を得られたことがわかった。 Further, the obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.03% by weight were obtained.

上記乾燥固体1.5gを真空条件下で340℃、6時間加熱することで茶褐色固体を得た。これをGPC分析した結果、重量平均分子量5.9万とわかった。また、この茶褐色固体1gを320℃で2時間加熱した際の発生ガス量を測定した結果、ガス量は550ppmであるとわかった。 A brown solid was obtained by heating 1.5 g of the above dry solid at 340 ° C. for 6 hours under vacuum conditions. As a result of GPC analysis, it was found that the weight average molecular weight was 59,000. Further, as a result of measuring the amount of gas generated when 1 g of this brown solid was heated at 320 ° C. for 2 hours, it was found that the amount of gas was 550 ppm.

[実施例6]
ここでは洗浄液としてNMP対水が3対1の複合液(以下、混合液と呼ぶ。)を使用する以外は実施例5と同様の操作を行った高純度なPPS粒子の回収例を示す。
[Example 6]
Here, an example of recovering high-purity PPS particles obtained by performing the same operation as in Example 5 except that a composite solution having a ratio of NMP to water of 3: 1 (hereinafter referred to as a mixed solution) is used as the cleaning solution is shown.

実施例5と同様に、細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク8.6gを密度約950kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.5gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に速度を制御して混合液33.3g(ケーク中の液体重量に対して6倍量。)を供給し洗浄を行った。この時、濾液排出速度は約0.03kg/(秒・m)であり、混合液の供給速度は約0.03kg/(秒・m)であった。得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.14重量%の高純度なPPS粒子を得られたことがわかった。 In the same manner as in Example 5, pressure was applied from above to a Kiriyama separate having an inner diameter of 38 mm sandwiching a membrane filter having a pore diameter of 10 μm so that 8.6 g of cake had a density of about 950 kg / m 3 and a cake thickness of about 8 mm. It was filled over. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.5 g. This was suction-filtered using an aspirator under room temperature conditions, and 33.3 g of a mixed solution (6 times the weight of the liquid in the cake) was supplied onto the cake at a controlled speed to perform washing. At this time, the filtrate discharge rate was about 0.03 kg / (sec m 2 ), and the supply rate of the mixed solution was about 0.03 kg / (sec m 2 ). The obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.14% by weight were obtained.

上記乾燥固体1.5gを真空条件下で340℃、6時間加熱することで茶褐色固体を得た。これをGPC分析した結果、重量平均分子量7.1万とわかった。また、この茶褐色固体1gを320℃で2時間加熱した際の発生ガス量を測定した結果、ガス量は410ppmであるとわかった。 A brown solid was obtained by heating 1.5 g of the above dry solid at 340 ° C. for 6 hours under vacuum conditions. As a result of GPC analysis, it was found that the weight average molecular weight was 71,000. Further, as a result of measuring the amount of gas generated when 1 g of this brown solid was heated at 320 ° C. for 2 hours, it was found that the amount of gas was 410 ppm.

[実施例7]
ここでは実施例5、6と同量の洗浄液量のうち、半分量を混合液、残り半分量を水とした二種類の洗浄液による連続的な洗浄による高純度なPPS粒子の回収例を示す。
[Example 7]
Here, an example of recovering high-purity PPS particles by continuous cleaning with two types of cleaning liquids, in which half of the cleaning liquid amount is the same as in Examples 5 and 6 and water is used as the other half, is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク8.6gを密度約950kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.5gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に速度を制御して混合液16.6g(ケーク中の液体重量に対して3倍量。)を供給し、続けて速度を制御して水16.7g(ケーク中の液体重量に対して3倍量。)を供給して洗浄を行った。混合液供給時、濾液排出速度は約0.03kg/(秒・m)であり、混合液の供給速度は約0.03kg/(秒・m)であり、その後の水供給時は、濾液排出速度は約0.13kg/(秒・m)であり、水の供給速度は約0.13kg/(秒・m)であった。洗浄後の固形分をGC分析し、元のケーク中の液体(b)の置換率を算出した結果、置換率は99%であった。 A Kiriyama separate having an inner diameter of 38 mm sandwiching a membrane filter having a pore diameter of 10 μm was filled with 8.6 g of cake by applying pressure from above so as to have a density of about 950 kg / m 3 and a cake thickness of about 8 mm. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.5 g. This is suction-filtered using an aspirator under room temperature conditions, and the speed is controlled to supply 16.6 g of a mixed solution (three times the weight of the liquid in the cake) on the cake, and then the speed is controlled. Then, 16.7 g of water (three times the weight of the liquid in the cake) was supplied for washing. When the mixed solution is supplied, the filtrate discharge rate is about 0.03 kg / (sec, m 2 ), the supply rate of the mixed solution is about 0.03 kg / (sec, m 2 ), and when water is subsequently supplied, the filtrate is discharged. The filtrate discharge rate was about 0.13 kg / (sec m 2 ), and the water supply rate was about 0.13 kg / (sec m 2 ). As a result of GC analysis of the solid content after washing and calculating the replacement rate of the liquid (b) in the original cake, the replacement rate was 99%.

また、得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.03重量%の高純度なPPS粒子を得られたことがわかった。 Further, the obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.03% by weight were obtained.

上記乾燥固体1.5gを真空条件下で340℃、6時間加熱することで茶褐色固体を得た。これをGPC分析した結果、重量平均分子量5.9万とわかった。また、この茶褐色固体1gを320℃で2時間加熱した際の発生ガス量を測定した結果、ガス量は320ppmであるとわかった。 A brown solid was obtained by heating 1.5 g of the above dry solid at 340 ° C. for 6 hours under vacuum conditions. As a result of GPC analysis, it was found that the weight average molecular weight was 59,000. Further, as a result of measuring the amount of gas generated when 1 g of this brown solid was heated at 320 ° C. for 2 hours, it was found that the amount of gas was 320 ppm.

[実施例8]
ここでは実施例7と同様に二種類の洗浄液を連続的に使用した洗浄において、実施例7と使用する洗浄液の順序を換えた洗浄による高純度なPPS粒子の回収例を示す。
[Example 8]
Here, an example of recovering high-purity PPS particles by cleaning in which the order of the cleaning liquids used is changed from that of Example 7 in the cleaning using two kinds of cleaning liquids in succession as in Example 7 is shown.

細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに、ケーク8.7gを密度約950kg/m、ケーク厚約8mmになるように上から圧力をかけて充填した。この時、ケーク中の液体(NMP:水=3:1)量は5.6gだった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に速度を制御して水16.7g(ケーク中の液体重量に対して3倍量。)を供給し、続けて速度を制御して混合液16.7g(ケーク中の液体重量に対して3倍量。)を供給して洗浄を行った。水供給時、濾液排出速度は約0.13kg/(秒・m)であり、水の供給速度は約0.13kg/(秒・m)であり、その後の混合液供給時は、濾液排出速度は約0.03kg/(秒・m)であり、混合液の供給速度は約0.03kg/(秒・m)であった。得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.02重量%の高純度なPPS粒子を得られたことがわかった。 A membrane filter having a pore diameter of 10 μm and an inner diameter of 38 mm was filled with 8.7 g of cake by applying pressure from above so as to have a density of about 950 kg / m 3 and a cake thickness of about 8 mm. At this time, the amount of liquid (NMP: water = 3: 1) in the cake was 5.6 g. This is suction-filtered using an aspirator under room temperature conditions, and the speed is controlled to supply 16.7 g of water (three times the weight of the liquid in the cake) on the cake, and then the speed is controlled. 16.7 g of the mixed solution (three times the weight of the liquid in the cake) was supplied for washing. When water is supplied, the filtrate discharge rate is about 0.13 kg / (sec, m 2 ), and the water supply rate is about 0.13 kg / (sec, m 2 ). The discharge rate was about 0.03 kg / (sec m 2 ), and the supply rate of the mixed solution was about 0.03 kg / (sec m 2 ). The obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that high-purity PPS particles having an ash content of 0.02% by weight were obtained.

上記乾燥固体1.5gを真空条件下で340℃、6時間加熱することで茶褐色固体を得た。これをGPC分析した結果、重量平均分子量5.6万とわかった。また、この茶褐色固体1gを320℃で2時間加熱した際の発生ガス量を測定した結果、ガス量は340ppmであるとわかった。 A brown solid was obtained by heating 1.5 g of the above dry solid at 340 ° C. for 6 hours under vacuum conditions. As a result of GPC analysis, it was found that the weight average molecular weight was 56,000. Further, as a result of measuring the amount of gas generated when 1 g of this brown solid was heated at 320 ° C. for 2 hours, it was found that the amount of gas was 340 ppm.

[比較例1]
ここではケークの液体重量と等倍量の洗浄液を用いたリスラリー洗浄によるPPS粒子の回収例を示す。
[Comparative Example 1]
Here, an example of recovering PPS particles by reslurry cleaning using a cleaning liquid having the same amount as the liquid weight of the cake is shown.

参考例1のケーク8.4g(ケーク中の液体量は5.5g。)を水5.5g(ケークの液体重量と等倍量。)に分散させ室温で5分間攪拌しようとした。しかし、この洗浄液量ではケークを分散させることはできず、攪拌を行うことはできなかった。洗浄液分の水を含んだケークについて、細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートとアスピレーターによって吸引濾過したが濾過はできず、この洗浄液量ではリスラリー洗浄は行えないことがわかった。 8.4 g of the cake of Reference Example 1 (the amount of liquid in the cake was 5.5 g) was dispersed in 5.5 g of water (the amount equal to the weight of the liquid in the cake), and an attempt was made to stir at room temperature for 5 minutes. However, the cake could not be dispersed with this amount of cleaning liquid, and stirring could not be performed. The cake containing water for the cleaning liquid was suction-filtered by a Kiriyama separate with an inner diameter of 38 mm and an aspirator sandwiching a membrane filter with a pore diameter of 10 μm, but filtration was not possible, and reslurry cleaning could not be performed with this amount of cleaning liquid. all right.

[比較例2]
ここではケーク中の液体重量の3倍量の洗浄液を用いたリスラリー洗浄によるPPS粒子の回収例を示す。
[Comparative Example 2]
Here, an example of recovering PPS particles by reslurry cleaning using a cleaning liquid having an amount three times the weight of the liquid in the cake is shown.

参考例1のケーク30.3g(ケーク中の液体量は19.5g。)を水58.6g(ケークの液体重量に対して3倍量。)に分散させ室温で5分間攪拌した後、細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートとアスピレーターによって吸引濾過した。洗浄後の固形分をガスクロマトグラフを用いて元のケーク中の液体の置換率を測定した結果、置換率は64%であった。 30.3 g of the cake of Reference Example 1 (the amount of liquid in the cake is 19.5 g) is dispersed in 58.6 g of water (three times the weight of the liquid in the cake), stirred at room temperature for 5 minutes, and then finely divided. Suction filtration was performed with a Kiriyama separate having an inner diameter of 38 mm and an aspirator sandwiching a membrane filter having a pore diameter of 10 μm. As a result of measuring the replacement rate of the liquid in the original cake using a gas chromatograph for the solid content after washing, the replacement rate was 64%.

また、得られた固形分を130℃で12時間真空乾燥して、PPS粒子の乾燥固体を得た。この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.13重量%のPPS粒子を得られたことがわかった。 Further, the obtained solid content was vacuum dried at 130 ° C. for 12 hours to obtain a dry solid of PPS particles. This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that PPS particles having an ash content of 0.13% by weight were obtained.

[比較例3]
ここでは密度について制御を行わない、かけ洗い洗浄によるPPS粒子の回収例を示す。
[Comparative Example 3]
Here, an example of recovering PPS particles by washing with a wash without controlling the density is shown.

参考例1のケーク10.2g(ケーク中の液体量は6.6g。)を特に密度を制御せずに細孔直径10μmのメンブレンフィルターを挟んだ内直径38mmのキリヤマセパロートに圧力をかけずに充填した。この時のケークの密度は約300kg/m、ケーク厚約25mmであった。これを室温条件下でアスピレーターを用いて吸引濾過し、ケーク上に水16.5g(ケークの液体重量に対して3倍。)を供給して洗浄を行った。この時、濾液排出速度は約0.15kg/(秒・m)であり、水の供給速度は0.15kg/(秒・m)であった。得られた固形分を真空乾燥機130℃で12時間処理して、PPS粒子の乾燥固体を得た。 10.2 g of the cake of Reference Example 1 (the amount of liquid in the cake is 6.6 g) without applying pressure to the Kiryama separate with an inner diameter of 38 mm sandwiching a membrane filter with a pore diameter of 10 μm without controlling the density. Filled in. The cake density at this time was about 300 kg / m 3 , and the cake thickness was about 25 mm. This was suction-filtered using an aspirator under room temperature conditions, and 16.5 g of water (three times the liquid weight of the cake) was supplied onto the cake for washing. At this time, the filtrate discharge rate was about 0.15 kg / (sec m 2 ), and the water supply rate was 0.15 kg / (sec m 2 ). The obtained solid content was treated in a vacuum dryer at 130 ° C. for 12 hours to obtain a dry solid of PPS particles.

この乾燥固体を550℃の電気炉で6時間灰化処理し、洗浄後の灰分量を測定した結果、灰分量が0.20重量%のPPS粒子を得られたことがわかった。 This dry solid was incinerated in an electric furnace at 550 ° C. for 6 hours, and the amount of ash after washing was measured. As a result, it was found that PPS particles having an ash content of 0.20% by weight were obtained.

実施例1と比較例1を比較すると、等量の洗浄液(共に液体(b)と等量)であっても、実施例1では無機不純物を低減させることができたのに対し、比較例1では洗浄を行うことができなかった。比較例1のように従来のリスラリー洗浄では、洗浄液量が少ないと洗浄効率は低くなり洗浄自体行えなくなる傾向がある。これに対し、本発明の技術では少液量においても優れた洗浄効果を発揮し、高純度なPPS粒子を得られることがわかった。 Comparing Example 1 and Comparative Example 1, even if the cleaning liquids had the same amount (both equal to the liquid (b)), the inorganic impurities could be reduced in Example 1, whereas Comparative Example 1 Could not be washed. In the conventional reslurry cleaning as in Comparative Example 1, if the amount of cleaning liquid is small, the cleaning efficiency tends to be low and the cleaning itself tends to be impossible. On the other hand, it was found that the technique of the present invention exerts an excellent cleaning effect even in a small amount of liquid and can obtain high-purity PPS particles.

また実施例1や比較例1よりは洗浄液量が多い、ケークの液体重量の3倍量で行った実施例2と比較例2を比較すると、実施例2では灰分量が0.09重量%まで減少したのに対し、比較例2では0.13重量%までしか減少していないことがわかった。これらより、本発明の洗浄技術はリスラリー洗浄より優れた洗浄効果を有し、より高純度なPPS粒子を得られることがわかった。 Further, comparing Example 2 and Comparative Example 2 in which the amount of cleaning liquid was larger than that of Example 1 and Comparative Example 1 and the amount was three times the weight of the cake liquid, the amount of ash in Example 2 was up to 0.09% by weight. While it decreased, it was found that in Comparative Example 2, it decreased only to 0.13% by weight. From these, it was found that the cleaning technique of the present invention has a cleaning effect superior to that of reslurry cleaning and can obtain PPS particles having higher purity.

密度の制御について、実施例2と比較例3を比較すると、同等の洗浄液量(ケークの液体重量の3倍量。)であっても、密度850kg/mの実施例2では灰分率が0.09重量%まで低減しているのに対し、密度300kg/mの比較例3では0.20重量%までしか低減していないことがわかった。これより、ケークの密度が800kg/m以上にて洗浄を行うことで洗浄効果が高くなり、より高純度なPPS粒子を得られることがわかった。 Control of density, comparing Comparative Example 3 to Example 2, equivalent cleaning liquid amount (cake liquid weight of 3 volumes of.) Is even, Example 2, ash content of density 850 kg / m 3 is 0 to .09 are you reduced to wt%, only up to Comparative example 3, 0.20 wt% of density 300 kg / m 3 was found that no decrease. From this, it was found that the cleaning effect was enhanced by performing cleaning at a cake density of 800 kg / m 3 or more, and higher purity PPS particles could be obtained.

洗浄液供給方法について、実施例1と実施例3を比較すると、同量の洗浄液量(ケークの液体重量と同量。)において、ΔV<0.05に制御した実施例3では灰分率0.20重量%と、ΔV=約0.7で洗浄した実施例1の灰分率0.24重量%よりも無機不純物を除去できたことがわかった。 Comparing Example 1 and Example 3 with respect to the cleaning liquid supply method, in Example 3 in which the amount of cleaning liquid (the same amount as the weight of the cake liquid) was controlled to ΔV <0.05, the ash content ratio was 0.20. It was found that the inorganic impurities could be removed more than the ash content of 0.24% by weight of Example 1 washed with% by weight and ΔV = about 0.7.

また、液体(b)の3倍量の洗浄液を用いた実施例2と実施例4でも、ΔV<0.05に制御した実施例4では灰分率0.07重量%と、ΔV=約0.7で洗浄した実施例2の灰分率0.09重量%と比べ、無機不純物を除去できたことがわかった。これらより、ΔV≦0.2に制御することで、より高純度なPPS粒子を得られることがわかった。 Further, also in Examples 2 and 4 in which three times the amount of the cleaning liquid of the liquid (b) was used, in Example 4 in which ΔV <0.05 was controlled, the ash content was 0.07% by weight, and ΔV = about 0. It was found that the inorganic impurities could be removed as compared with the ash content of 0.09% by weight of Example 2 washed in No. 7. From these, it was found that higher purity PPS particles can be obtained by controlling ΔV ≦ 0.2.

また、実施例3、4、5を比較すると、洗浄液量増加につれて無機不純物の洗浄効率は高くなっていることがわかった。しかし、洗浄液は使用量が増えるほど製造コストを嵩ませる一面もある。洗浄液量に対する洗浄効果の効率で考えると、洗浄液量が少ない方が洗浄効率は高くなっていることもわかった。 Further, comparing Examples 3, 4 and 5, it was found that the cleaning efficiency of inorganic impurities increased as the amount of cleaning liquid increased. However, as the amount of cleaning liquid used increases, the manufacturing cost also increases. Considering the efficiency of the cleaning effect with respect to the amount of cleaning liquid, it was also found that the smaller the amount of cleaning liquid, the higher the cleaning efficiency.

洗浄液の種類について、それぞれ水と混合液を用いたこと以外は同様の操作をした実施例5と6で洗浄効果の違いを比較した。水を用いた実施例5では、灰分率は0.03重量%と大きく低減したが、ガス量は550ppmであった。一方、混合液を用いた実施例6では灰分率は0.14重量%であったが、ガス量は410ppmまで低減した。これより、それぞれ未洗浄の参考例1の灰分率0.35重量%、ガス量810ppmから、水では無機不純物が、混合液では有機不純物が優位的に洗浄できることがわかった。 Regarding the types of cleaning liquids, the differences in cleaning effects were compared between Examples 5 and 6 in which the same operation was performed except that water and a mixed liquid were used, respectively. In Example 5 using water, the ash content was significantly reduced to 0.03% by weight, but the gas amount was 550 ppm. On the other hand, in Example 6 using the mixed solution, the ash content was 0.14% by weight, but the gas amount was reduced to 410 ppm. From this, it was found from the ash content of 0.35% by weight and the gas amount of 810 ppm of the unwashed Reference Example 1 that inorganic impurities can be predominantly washed in water and organic impurities can be predominantly washed in the mixed solution.

また、実施例7、8では水、混合液それぞれの洗浄液(それぞれ、液体(b)の3倍量。)を併用し、洗浄液量の合計を実施例5、6と等量(液体(b)の6倍量。)にして洗浄効果の確認を行った。結果、混合液の後に水を使用した実施例7では灰分率が0.03重量%、ガス量が320ppmであり、水の後に混合液を使用した実施例8では灰分率が0.02重量%、ガス量340ppmと低い値を示した。これより、各洗浄液一種類の洗浄での灰分率0.03重量%(実施例5)、ガス量410ppm(実施例6)と比べ低い値を示したことより、二種類(実施例7、8)の方が高い洗浄効果を示していることがわかった。これらより、複数の洗浄液の併用により洗浄効果が向上し、さらに無機及び有機不純物が共に低減したより高純度なPPS粒子を得られることがわかった。 Further, in Examples 7 and 8, the cleaning liquids of water and the mixed liquid (each of which is three times the amount of the liquid (b)) are used in combination, and the total amount of the cleaning liquid is equal to that of Examples 5 and 6 (liquid (b)). The cleaning effect was confirmed by setting the amount to 6 times that of.). As a result, in Example 7 in which water was used after the mixed solution, the ash content was 0.03% by weight and the amount of gas was 320 ppm, and in Example 8 in which the mixed solution was used after water, the ash content was 0.02% by weight. , The amount of gas was as low as 340 ppm. As a result, the ash content of each type of cleaning liquid was 0.03% by weight (Example 5) and the gas amount was 410 ppm (Example 6), which were lower than those of two types (Examples 7 and 8). ) Was found to have a higher cleaning effect. From these, it was found that the cleaning effect was improved by the combined use of a plurality of cleaning liquids, and higher-purity PPS particles in which both inorganic and organic impurities were reduced could be obtained.

Claims (6)

少なくともポリアリーレンスルフィド粒子(a)及び液体(b)を含むケーク(c)を密度800kg/m以上に形成し、このケーク(c)への洗浄液(e)の供給と同時に濾液(d)の排出を行いポリアリーレンスルフィド粒子(a)を洗浄することを特徴とする高純度なポリアリーレンスルフィド粒子の製造方法であって、
ケーク(c)中のポリアリーレンスルフィド粒子(a)の含有量は25重量%以上、90重量%以下であり、
洗浄液(e)の液量が液体(b)の液量の0.5倍以上、等倍以下である製造方法。
A cake (c) containing at least polyarylene sulfide particles (a) and a liquid (b) is formed at a density of 800 kg / m 3 or more, and the filtrate (d) is fed at the same time as the cleaning liquid (e) is supplied to the cake (c). A method for producing high-purity polyarylene sulfide particles, which comprises discharging and washing the polyarylene sulfide particles (a) .
The content of the polyarylene sulfide particles (a) in the cake (c) is 25% by weight or more and 90% by weight or less.
A manufacturing method in which the amount of the cleaning liquid (e) is 0.5 times or more and 1 times or less the liquid amount of the liquid (b).
ケーク(c)を設置した濾過面から排出される濾液(d)の排出速度V[kg/(秒・m)]と、ケーク(c)への洗浄液(e)の供給速度をV[kg/(秒・m)]が、下記式1を満たすことを特徴とする請求項1に記載の高純度なポリアリーレンスルフィド粒子の製造方法。
ΔV=|V−V|/V≦0.2 ・・・式1
The discharge rate V 1 [kg / (sec · m 2 )] of the filtrate (d) discharged from the filtration surface on which the cake (c) is installed, and the supply rate of the cleaning liquid (e) to the cake (c) are V 2. The method for producing high-purity polyarylene sulfide particles according to claim 1, wherein [kg / (sec · m 2 )] satisfies the following formula 1.
ΔV = | V 1 −V 2 | / V 1 ≦ 0.2 ・ ・ ・ Equation 1
ケーク(c)の厚さが2mm以上、50mm以下であることを特徴とする請求項1または2のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。 The method for producing high-purity polyarylene sulfide particles according to any one of claims 1 or 2, wherein the cake (c) has a thickness of 2 mm or more and 50 mm or less. 水及び有機溶媒から選ばれる少なくとも一種類を洗浄液(e)として用いることを特徴とする請求項1から3のいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。 The method for producing high-purity polyarylene sulfide particles according to any one of claims 1 to 3, wherein at least one selected from water and an organic solvent is used as the cleaning liquid (e). 液体(b)の置換率が70%以上、100%以下となることを特徴とする請求項1からのいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。 The method for producing high-purity polyarylene sulfide particles according to any one of claims 1 to 4 , wherein the replacement rate of the liquid (b) is 70% or more and 100% or less. ポリアリーレンスルフィド粒子(a)中の環式ポリアリーレンスルフィドの含有量が50重量%以上、100重量%以下であることを特徴とする請求項1からのいずれかに記載の高純度なポリアリーレンスルフィド粒子の製造方法。 The content of the cyclic polyarylene sulfide in the polyarylene sulfide particles (a) is 50 wt% or more, high purity polyarylene according to any one of claims 1 to 5, characterized in that 100 wt% or less Method for producing sulfide particles.
JP2016166790A 2016-06-30 2016-08-29 Method for producing high-purity polyarylene sulfide particles Expired - Fee Related JP6780373B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016129935 2016-06-30
JP2016129935 2016-06-30

Publications (2)

Publication Number Publication Date
JP2018009135A JP2018009135A (en) 2018-01-18
JP6780373B2 true JP6780373B2 (en) 2020-11-04

Family

ID=60994995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166790A Expired - Fee Related JP6780373B2 (en) 2016-06-30 2016-08-29 Method for producing high-purity polyarylene sulfide particles

Country Status (1)

Country Link
JP (1) JP6780373B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232254A (en) * 2004-02-18 2005-09-02 Toray Ind Inc Polyarylene sulfide resin and extruded molding artice
JP2010100701A (en) * 2008-10-22 2010-05-06 Toray Ind Inc Method for treatment of resin slurry
JP2015110758A (en) * 2013-10-29 2015-06-18 東レ株式会社 Method for producing cyclic polyarylene sulfide

Also Published As

Publication number Publication date
JP2018009135A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP4432971B2 (en) Process for producing polyarylene sulfide
US9938379B2 (en) Salt byproduct separation during formation of polyarylene sulfide
JP5888350B2 (en) Method for producing polyarylene sulfide resin
JP6836705B2 (en) Manufacturing method of polyarylene sulfide resin
JP4905417B2 (en) Method for producing cyclic polyarylene sulfide
JP5423038B2 (en) Process for producing polyarylene sulfide and oligoarylene sulfide
CN115335435A (en) Polyarylene sulfide and method for producing same
JP2018076492A (en) Polyarylne sulfide prepolymer and method for producing the same
JP6780373B2 (en) Method for producing high-purity polyarylene sulfide particles
JP6123902B2 (en) Polyarylene sulfide and process for producing the same
JP2008201885A (en) Polyphenylenesulfide film
JP5516241B2 (en) Method for producing cyclic polyarylene sulfide
JP6836704B2 (en) Manufacturing method of polyarylene sulfide resin
JP4998231B2 (en) Polyphenylene sulfide resin composition
WO2021100758A1 (en) Polyphenylene sulfide resin composition for automobile cooling component, and automobile cooling component
JP2018053195A (en) Method for producing polyarylene sulfide
JP5422988B2 (en) Process for producing polyarylene sulfide
JP2017114920A (en) Manufacturing method of polyarylene sulfide resin
JP5516312B2 (en) Method for recovering cyclic polyarylene sulfide
CN118019805A (en) Polyarylene sulfide resin composition and molded article
JP2021127455A (en) Method for producing polyarylene sulfide
JP2019026735A (en) High molecular weight polyphenylene sulfide
CN117999318A (en) Polyarylene sulfide resin composition and molded article
JP2023152968A (en) Polyarylene sulfide and polyarylene sulfide production method
JP2011132517A (en) Manufacturing method of polyarylene sulfide, and granulated polyarylene sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R151 Written notification of patent or utility model registration

Ref document number: 6780373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees