JP6764925B2 - Perishables storage device and storage method - Google Patents

Perishables storage device and storage method Download PDF

Info

Publication number
JP6764925B2
JP6764925B2 JP2018248472A JP2018248472A JP6764925B2 JP 6764925 B2 JP6764925 B2 JP 6764925B2 JP 2018248472 A JP2018248472 A JP 2018248472A JP 2018248472 A JP2018248472 A JP 2018248472A JP 6764925 B2 JP6764925 B2 JP 6764925B2
Authority
JP
Japan
Prior art keywords
storage
ozone
perishables
ultraviolet rays
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018248472A
Other languages
Japanese (ja)
Other versions
JP2019054824A (en
Inventor
直也 比留間
直也 比留間
金井 理
理 金井
孝子 郁田
孝子 郁田
順太郎 市村
順太郎 市村
菱沼 宣是
宣是 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Ushio Denki KK
Original Assignee
Mayekawa Manufacturing Co
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Ushio Denki KK filed Critical Mayekawa Manufacturing Co
Publication of JP2019054824A publication Critical patent/JP2019054824A/en
Application granted granted Critical
Publication of JP6764925B2 publication Critical patent/JP6764925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/10Preserving against microbes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nutrition Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、真空紫外線を利用して生鮮品の保管,冷蔵又は解凍時の殺菌を行うための生鮮品の保管装置及び保管方法に関する。 The present invention relates to a perishables storage device and a storage method for storing perishables, refrigerating or sterilizing them at the time of thawing using vacuum ultraviolet rays.

従来より生鮮品のカビや細菌の繁殖を防ぐため、紫外線ランプを冷蔵庫内に設置し、紫外線を照射して空気を殺菌したり、加湿器の水槽や配管に紫外線ランプを設け、加湿用水に紫外線を照射して殺菌する、等の方法が行われている。
その他、プラズマ式オゾン発生器を用いてオゾンを発生させ、冷蔵庫内でオゾン水を散布したり、あるいは冷蔵庫内に次亜塩素酸を散布して殺菌する方法が採用されている。
In order to prevent the growth of mold and bacteria in fresh products, an ultraviolet lamp is installed in the refrigerator to sterilize the air by irradiating it with ultraviolet rays, and an ultraviolet lamp is installed in the water tank and piping of the humidifier to add ultraviolet rays to the humidifying water. The method such as sterilizing by irradiating with ultraviolet rays is performed.
In addition, a method of generating ozone by using a plasma type ozone generator and spraying ozone water in the refrigerator or hypochlorous acid in the refrigerator is adopted for sterilization.

特許文献1には、光電子材に紫外線を照射して発生させた酸素イオンラジカルと水分を含んだ空気に貯蔵食品を暴露するようにした殺菌貯蔵装置が開示されている。
特許文献2には、紫外線ランプを用い、加湿用水に紫外線を照射して殺菌したり、又は導入した空気に紫外線を照射してオゾンを発生させ、発生したオゾンを空気吹出口から放出するようにした加湿装置が開示されている。
特許文献3には、食品を収納した収納庫内で紫外線ランプを点灯して食品の殺菌を行うと共に、庫内の冷気を循環させることが開示されている。
Patent Document 1 discloses a sterilization storage device in which stored food is exposed to air containing oxygen ion radicals and water generated by irradiating a photoelectron material with ultraviolet rays.
In Patent Document 2, an ultraviolet lamp is used to sterilize humidifying water by irradiating it with ultraviolet rays, or the introduced air is irradiated with ultraviolet rays to generate ozone, and the generated ozone is discharged from an air outlet. The humidifying device is disclosed.
Patent Document 3 discloses that the ultraviolet lamp is turned on in the storage chamber in which the food is stored to sterilize the food and the cold air in the refrigerator is circulated.

特開2010−193829号公報JP-A-2010-193829 特開2013−155995号公報Japanese Unexamined Patent Publication No. 2013-155995 特開2014−25613号公報Japanese Unexamined Patent Publication No. 2014-25613

紫外線を照射して発生したオゾンやラジカルによって保管食品の殺菌効果を得る方法では、オゾン又はラジカルの酸化作用によって保管食品が酸化障害を起こす問題がある。
特許文献1には、例えば、段落[0042]に、波長240nm以下の紫外線をカットした紫外線ランプを使用することで、オゾンによる保管食品の酸化を防止することが記載されている。しかし、この方法では、オゾンの発生効率が低下すると共に、オゾン発生量を正確に制御できないという問題がある。
上記問題を解決する手段は特許文献2及び3にも記載されていない。
また、水銀灯を使用した紫外線ランプは、10℃以下の低温では点灯しにくいため、一度昇温させて点灯させる必要があり、操作が煩雑になる。プラズマ式オゾン発生器を用いる方法は、空気中の窒素と酸素が化学結合した窒素酸化物を生成し、冷蔵庫を構成する機材や保管された青果物を傷めるおそれがあり、かつ環境及び作業者に悪影響を及ぼす。
In the method of obtaining the bactericidal effect of stored food by ozone or radical generated by irradiating ultraviolet rays, there is a problem that the stored food causes oxidative damage due to the oxidizing action of ozone or radical.
Patent Document 1, for example, describes in paragraph [0042] that the use of an ultraviolet lamp that blocks ultraviolet rays having a wavelength of 240 nm or less prevents oxidation of stored foods by ozone. However, this method has a problem that the ozone generation efficiency is lowered and the ozone generation amount cannot be accurately controlled.
The means for solving the above problem is not described in Patent Documents 2 and 3.
Further, since it is difficult to turn on an ultraviolet lamp using a mercury lamp at a low temperature of 10 ° C. or lower, it is necessary to raise the temperature once and turn it on, which complicates the operation. The method using a plasma ozone generator produces nitrogen oxides in which nitrogen and oxygen in the air are chemically bonded, which may damage the equipment constituting the refrigerator and stored fruits and vegetables, and adversely affect the environment and workers. To exert.

本発明は、上記課題に鑑み、保管庫内に保管される生鮮品を紫外線の照射によって発生するオゾン又はラジカルで痛めるおそれなく、かつ生鮮品全体を効率良く殺菌可能にすることで、長期間鮮度を維持可能にすることを目的とする。 In view of the above problems, the present invention makes it possible to efficiently sterilize the perishables stored in the storage without being damaged by ozone or radicals generated by irradiation with ultraviolet rays, thereby making the perishables fresh for a long period of time. The purpose is to make it sustainable.

(1)幾つかの実施形態に係る生鮮品の保管装置は、
生鮮品をチルド状態以上の温度で保管可能な生鮮品保管庫と、
前記生鮮品保管庫の庫内温度をチルド状態以上の温度に調整可能な温度調整部と、
前記生鮮品保管庫の庫内に空気流を形成する空気流発生部と、
紫外線を前記空気流に照射してオゾン又はラジカルを発生させる照射部と、
前記紫外線を断続的に前記空気流に照射させるように前記照射部を制御可能な断続照射制御部と、
を備える。
(1) The perishables storage device according to some embodiments is
A perishables storage that can store perishables at temperatures above the chilled state,
A temperature control unit that can adjust the temperature inside the perishables storage to a temperature higher than the chilled state,
An air flow generator that forms an air flow in the perishables storage
An irradiation unit that irradiates the air stream with ultraviolet rays to generate ozone or radicals,
An intermittent irradiation control unit capable of controlling the irradiation unit so as to intermittently irradiate the air flow with the ultraviolet rays.
To be equipped.

上記構成において、上記照射部より上記空気流に紫外線を照射することにより、上記生鮮品の周囲にオゾンやOHラジカルなどのラジカルが生成される。生成したオゾンやラジカルは上記空気流により生鮮品保管庫の内部全域に拡散する。拡散したオゾン又はラジカルによって庫内全域が殺菌され、カビなどの微生物の繁殖を抑制し、保管された生鮮品の腐敗を抑制できる。これによって、生鮮品の鮮度を長期間保持できる。
また、上記断続照射制御部によって紫外線を断続的に照射することで、生鮮品の周囲に発生するオゾン又はラジカルの濃度制御が容易になる。断続照射により発生するオゾン又はラジカルの濃度制御を行うことで、生鮮品の殺菌効果を維持しつつ、オゾン又はラジカルによって被る生鮮品の酸化障害を抑制できる。
In the above configuration, radicals such as ozone and OH radicals are generated around the perishable product by irradiating the air stream with ultraviolet rays from the irradiation unit. The generated ozone and radicals are diffused throughout the inside of the perishables storage by the above air flow. The entire interior is sterilized by the diffused ozone or radicals, the growth of microorganisms such as mold can be suppressed, and the spoilage of stored fresh products can be suppressed. As a result, the freshness of perishables can be maintained for a long period of time.
Further, by intermittently irradiating ultraviolet rays with the intermittent irradiation control unit, it becomes easy to control the concentration of ozone or radicals generated around the perishable product. By controlling the concentration of ozone or radicals generated by intermittent irradiation, it is possible to suppress the oxidative damage of fresh products suffered by ozone or radicals while maintaining the bactericidal effect of fresh products.

なお、上記温度調整部によって、生鮮品をチルド状態以上の温度で保管するので、生鮮品の細胞中に氷結晶が形成するのを抑止できる。これによって、氷結晶の形成による細胞膜の損傷を抑制でき、生鮮品を鮮度良く保管できる。
また、上記温度調整部によって生鮮品保管庫の内部を冷蔵、保温又は解凍を行うことのできる生鮮品の適温に調整することで、生鮮品保管庫を凍結庫、冷蔵庫、保温庫及び解凍庫等に利用可能になる。
Since the fresh product is stored at a temperature equal to or higher than the chilled state by the temperature adjusting unit, it is possible to prevent the formation of ice crystals in the cells of the fresh product. As a result, damage to the cell membrane due to the formation of ice crystals can be suppressed, and fresh produce can be stored with good freshness.
In addition, by adjusting the inside of the perishables storage to an appropriate temperature for perishables that can be refrigerated, kept warm or thawed by the above temperature control unit, the perishables storage can be frozen, refrigerator, heat-retaining, thawed, etc. Will be available to.

(2)幾つかの実施形態では、前記(1)の構成において、
前記断続照射制御部は、
前記生鮮品が前記オゾン又はラジカルに曝される時間と前記オゾン又はラジカルの濃度との積で求められる積算濃度に基づいて前記紫外線を断続照射させるものである。
本発明者等は、生鮮品に殺菌効果をもたらすオゾン又はラジカルの酸化作用の程度は、上記積算濃度によって決まることを見い出した。生鮮品がオゾン又はラジカルに曝される時間は、実質的に上記照射部によって紫外線が照射される時間と置き換えることができる。
(2) In some embodiments, in the configuration of (1) above,
The intermittent irradiation control unit
The ultraviolet rays are intermittently irradiated based on the integrated concentration obtained by the product of the time when the fresh product is exposed to the ozone or radicals and the concentration of the ozone or radicals.
The present inventors have found that the degree of oxidizing action of ozone or radicals that bring about a bactericidal effect on fresh foods is determined by the above-mentioned integrated concentration. The time that the perishable product is exposed to ozone or radicals can be substantially replaced with the time that the ultraviolet rays are irradiated by the irradiation unit.

紫外線の照射方法として、連続照射と断続照射とがあり、連続照射は少ない積算濃度で酸化作用を増大できるが、生鮮品の保管期間が長くなると、酸化作用が強くなりすぎて生鮮品の表面に酸化障害が現れるおそれがある。他方、断続照射は、オゾン又はラジカルの発生を抑制できるので、生鮮品の保管期間が長くなっても、生鮮品の表面を傷めずに殺菌できる。
上記(2)の構成によれば、上記積算濃度に基づいて紫外線を断続照射することで、オゾン又はラジカルの発生量を正確に制御できる。そのため、生鮮品に対する酸化作用の程度を正確に調整できるので、生鮮品の表面を傷めずに殺菌効果を維持できる。
There are two methods of irradiating ultraviolet rays, continuous irradiation and intermittent irradiation. Continuous irradiation can increase the oxidizing action with a small integrated concentration, but if the storage period of the fresh product is long, the oxidizing action becomes too strong and the surface of the fresh product becomes Oxidation damage may occur. On the other hand, intermittent irradiation can suppress the generation of ozone or radicals, so that even if the storage period of the fresh product is long, the surface of the fresh product can be sterilized without being damaged.
According to the configuration of (2) above, the amount of ozone or radicals generated can be accurately controlled by intermittently irradiating ultraviolet rays based on the integrated concentration. Therefore, since the degree of oxidizing action on the fresh product can be accurately adjusted, the bactericidal effect can be maintained without damaging the surface of the fresh product.

(3)幾つかの実施形態では、前記(2)の構成において、
前記断続照射制御部は、
前記生鮮品保管庫における前記生鮮品の保管中に前記紫外線を断続照射させ、
前記生鮮品の周囲の前記積算濃度が、前記生鮮品の殺菌効果が現れる下限値と前記生鮮品の表面に酸化障害が現れる上限値との間の値になるように制御させるものである。
上記(3)の構成によれば、生鮮品の保管期間中、積算濃度を上記下限値と上記上限値との間の値になるように、紫外線を断続照射することで、保管期間中の全期間に亘り生鮮品の表面を傷めずに殺菌効果を維持できる。
(3) In some embodiments, in the configuration of (2) above,
The intermittent irradiation control unit
During the storage of the perishables in the perishables storage, the ultraviolet rays are intermittently irradiated.
The integrated concentration around the perishable product is controlled to be a value between the lower limit value at which the bactericidal effect of the perishable product appears and the upper limit value at which the oxidative damage appears on the surface of the perishable product.
According to the configuration of (3) above, during the storage period of the perishable product, the integrated concentration is intermittently irradiated with ultraviolet rays so as to be a value between the lower limit value and the upper limit value, so that the entire storage period is completed. The bactericidal effect can be maintained for a period of time without damaging the surface of the fresh product.

(4)一実施形態では、前記(1)〜(3)の何れかの構成において、
前記照射部は、200nm未満の単一波長の真空紫外線を放射可能なエキシマランプ又は希ガス蛍光ランプで構成される。
上記エキシマランプ又は上記希ガス蛍光ランプを用い、前記ランプから放射される空気中の酸素に強く吸収される200nm未満の単一波長の真空紫外線を空気に照射することで、空気中の酸素からオゾン又はラジカルを効率良く生成できる。他方、上記波長の真空紫外線は空気中のNには吸収されず、Nを乖離しないので、NOを発生しない。従って、生鮮品保管庫の保管空間を構成する機材や保管される生鮮品を傷めるおそれがない。
(4) In one embodiment, in any of the configurations (1) to (3) above,
The irradiation unit is composed of an excimer lamp or a rare gas fluorescent lamp capable of emitting vacuum ultraviolet rays having a single wavelength of less than 200 nm.
By using the excimer lamp or the rare gas fluorescent lamp to irradiate the air with vacuum ultraviolet rays having a single wavelength of less than 200 nm, which is strongly absorbed by oxygen in the air radiated from the lamp, oxygen in the air becomes ozone. Alternatively, radicals can be generated efficiently. On the other hand, the vacuum ultraviolet rays having the above wavelength are not absorbed by N 2 in the air and do not deviate from N 2 , so that NO X is not generated. Therefore, there is no risk of damaging the equipment that constitutes the storage space of the perishables storage or the perishables that are stored.

また、波長200nm未満の真空紫外線を放射する上記エキシマランプ又は希ガス蛍光ランプは、温度及び湿度に対する点灯依存性が少なく、農産物の保管温度である5℃以下の低温度帯で速やかに点灯できると共に、高湿度環境でもオゾン又はラジカルを高効率で発生できるので、生鮮品保管庫が解凍庫として用いられる場合、高湿度の庫内空間を速やかに殺菌できる。
また、電力供給と同時に速やかに点灯してオゾン又はラジカルを発生し、電力停止と同時にこれらの発生が停止するため、オゾン又はラジカルの濃度コントロールが容易である。
Further, the excimer lamp or the rare gas fluorescent lamp that emits vacuum ultraviolet rays having a wavelength of less than 200 nm has little dependence on temperature and humidity, and can be quickly lit in a low temperature range of 5 ° C. or lower, which is the storage temperature of agricultural products. Since ozone or radicals can be generated with high efficiency even in a high humidity environment, when the fresh product storage is used as a thawing storage, the space inside the high humidity storage can be sterilized quickly.
Further, the ozone or radicals are quickly turned on at the same time as the power is supplied to generate ozone or radicals, and these generations are stopped at the same time when the power is stopped, so that the concentration of ozone or radicals can be easily controlled.

(5)一実施形態では、前記(1)〜(4)の何れかの構成において、
前記温度調整部は、
前記生鮮品がタンパク質凝固点以下の温度域に加温できる加温部として構成される。
上記(5)の構成によれば、前記温度調整部によって、生鮮品保管庫内の生鮮品をタンパク質凝固点(例えば72℃)以下の温度域に加温することで、生鮮品保管庫を解凍庫として有効に利用出来る。また、加温する温度の上限をタンパク質凝固点以下とすることで、生鮮品fを変質させるおそれはない。
(5) In one embodiment, in any of the configurations (1) to (4) above,
The temperature control unit
The fresh product is configured as a heating unit capable of heating in a temperature range below the protein freezing point.
According to the configuration of (5) above, the perishable product storage is thawed by heating the perishable product in the perishable product storage to a temperature range below the protein freezing point (for example, 72 ° C.) by the temperature adjusting unit. Can be effectively used as. Further, by setting the upper limit of the heating temperature to be equal to or lower than the protein freezing point, there is no risk of deteriorating the fresh product f.

(6)一実施形態では、前記(1)〜(4)の何れかの構成において、
前記温度調整部は、
前記生鮮品が冷蔵状態で若しくはチルド状態で保存できる冷気発生部として構成される。
ここで、「冷蔵状態」とは2,3〜10℃の温度に保持することを言い、「チルド状態」とは−2、−3〜5℃の温度に保持することを言う。
上記(6)の構成によれば、生鮮品を冷蔵状態又はチルド状態で保存することで、生鮮品保管庫を冷蔵庫、保温庫として有効に利用出来る。
(6) In one embodiment, in any of the configurations (1) to (4) above,
The temperature control unit
The perishable product is configured as a cold air generating unit that can be stored in a refrigerated state or a chilled state.
Here, the "refrigerated state" means holding at a temperature of 2, 3 to 10 ° C, and the "chilled state" means holding at a temperature of -2, -3 to 5 ° C.
According to the configuration of (6) above, by storing the fresh food in a refrigerated state or a chilled state, the fresh food storage can be effectively used as a refrigerator and a heat insulating storage.

(7)一実施形態では、前記(1)〜(6)の何れかの構成において、
前記生鮮品の周囲の前記空気流を加湿するための加湿部をさらに備える。
前記生鮮品が例えば食肉、魚、青果物等の場合、これらを低温状態で保存すると乾燥して劣化するおそれがあるため、上記加湿部を設けることで、保管された生鮮品の乾燥を抑制できる。
(7) In one embodiment, in any of the configurations (1) to (6) above,
A humidifying section for humidifying the air flow around the perishable product is further provided.
When the fresh food is, for example, meat, fish, fruits and vegetables, etc., if they are stored in a low temperature state, they may dry and deteriorate. Therefore, by providing the humidifying portion, it is possible to suppress the drying of the stored fresh food.

さらに、一実施形態として、フリーザのような連続式の冷凍装置を用いて生鮮品を凍結する場合においても、連続式冷凍装置を生鮮品保管庫内の殺菌された雰囲気に設置することで、フリーザの稼動終了後、生鮮品残渣による機材の汚染を未然に防ぐことができる。 Further, as one embodiment, even when perishables are frozen using a continuous refrigerating device such as a freezer, the freezer can be installed in a sterilized atmosphere in the perishables storage. After the end of operation, it is possible to prevent the equipment from being contaminated by perishable residues.

(8)幾つかの実施形態に係る保管方法は、
保管庫内で生鮮品をチルド状態以上の温度で保管する生鮮品保管工程と、
前記生鮮品の周囲に空気流を形成する空気流形成工程と、
前記空気流に紫外線を断続的に照射してオゾン又はラジカルを生成すると共に、前記オゾンやラジカルを前記空気流により前記保管庫の庫内全域に拡散させる紫外線照射工程と、
を含む。
(8) The storage method according to some embodiments is
A perishables storage process that stores perishables at a temperature above the chilled state in the storage, and
An air flow forming step of forming an air flow around the perishable product,
An ultraviolet irradiation step in which the air stream is intermittently irradiated with ultraviolet rays to generate ozone or radicals, and the ozone or radicals are diffused throughout the inside of the storage by the air stream.
including.

上記紫外線照射工程において、上記保管庫内で紫外線を空気流に照射することにより、上記生鮮品の周囲にオゾンやOHラジカルなどのラジカルを生成させ、生成したオゾンやラジカルは上記空気流により生鮮品保管庫の内部全域に拡散する。拡散したオゾン又はラジカルによって庫内全域が殺菌され、カビなどの微生物の繁殖を抑制し、保管された生鮮品の腐敗を抑制できる。これによって、生鮮品の鮮度を長期間保持できる。
また、上記紫外線照射工程において、紫外線を断続的に照射することで、生鮮品の周囲に発生するオゾン又はラジカルの濃度制御が容易になる。断続照射により発生するオゾン又はラジカルの濃度制御を行うことで、生鮮品の殺菌効果を維持しつつ、オゾン又はラジカルによって被る生鮮品の酸化障害を抑制できる。
In the ultraviolet irradiation step, by irradiating the air stream with ultraviolet rays in the storage, radicals such as ozone and OH radicals are generated around the fresh product, and the generated ozone and radicals are produced by the air flow. Spreads throughout the interior of the vault. The entire interior is sterilized by the diffused ozone or radicals, the growth of microorganisms such as mold can be suppressed, and the spoilage of stored fresh products can be suppressed. As a result, the freshness of perishables can be maintained for a long period of time.
Further, in the above-mentioned ultraviolet irradiation step, by irradiating the ultraviolet rays intermittently, it becomes easy to control the concentration of ozone or radicals generated around the fresh food. By controlling the concentration of ozone or radicals generated by intermittent irradiation, it is possible to suppress the oxidative damage of fresh products suffered by ozone or radicals while maintaining the bactericidal effect of fresh products.

なお、生鮮品保管工程では、生鮮品をチルド状態以上の温度で保管するので、生鮮品の細胞中に氷結晶が形成するのを抑止でき、これによって、氷結晶の形成による細胞膜の損傷を抑制でき、生鮮品を鮮度良く保管できる。 In the perishables storage process, since the perishables are stored at a temperature higher than the chilled state, it is possible to prevent the formation of ice crystals in the cells of the perishables, thereby suppressing damage to the cell membrane due to the formation of ice crystals. It is possible to store fresh products with good freshness.

(9)一実施形態では、前記(8)の方法において、
前記紫外線照射工程は、
前記紫外線の照射時間と前記オゾン又はラジカルの濃度との積で求められる積算濃度に基づいて、前記紫外線を断続照射するものである。
上記(9)の方法によれば、上記積算濃度に基づいて紫外線を断続照射することで、生鮮品に対するオゾン又はラジカルの発生量を、生鮮品の表面を傷めずに殺菌効果を維持できる適量に制御できる。
(9) In one embodiment, in the method (8) above,
The ultraviolet irradiation step is
The ultraviolet rays are intermittently irradiated based on the integrated concentration obtained by the product of the irradiation time of the ultraviolet rays and the concentration of the ozone or radicals.
According to the method (9) above, by intermittently irradiating ultraviolet rays based on the integrated concentration, the amount of ozone or radicals generated in the perishable product is adjusted to an appropriate amount capable of maintaining the bactericidal effect without damaging the surface of the perishable product. Can be controlled.

(10)一実施形態では、前記(9)の方法において、
前記紫外線照射工程は、
前記生鮮品保管工程において前記紫外線を断続照射させ、前記生鮮品の周囲の前記積算濃度が、前記生鮮品の殺菌効果が現れる下限値と、前記生鮮品の表面に酸化障害が現れる上限値との間の値になるように制御するものである。
上記(10)の方法によれば、積算濃度を上記下限値と上記上限値との間の値になるように、紫外線を断続照射することで、保管期間中全期間において生鮮品の表面を傷めずに殺菌効果を維持できる。
(10) In one embodiment, in the method (9) above,
The ultraviolet irradiation step is
In the perishables storage step, the perishables are intermittently irradiated, and the integrated concentration around the perishables is the lower limit of the bactericidal effect of the perishables and the upper limit of the oxidative damage on the surface of the perishables. It is controlled so that the value is between.
According to the method (10), the surface of the perishable product is damaged during the entire storage period by intermittently irradiating the perishable product with ultraviolet rays so that the integrated concentration becomes a value between the lower limit value and the upper limit value. The bactericidal effect can be maintained without.

(11)一実施形態では、前記(8)〜(10)のいずれかの方法において、
前記紫外線は200nm未満の波長域を有する真空紫外線である。
上記(11)の方法によれば、空気中の酸素に強く吸収される200nm未満の単一波長の真空紫外線を空気に照射することで、オゾン又はラジカルを効率良く生成できる。他方、上記波長の真空紫外線は空気中のNには吸収されず、Nを乖離しないので、NOを発生しない。従って、生鮮品保管庫の保管空間を構成する機材や保管される生鮮品を傷めるおそれがない。
(11) In one embodiment, in any of the methods (8) to (10) above,
The ultraviolet rays are vacuum ultraviolet rays having a wavelength range of less than 200 nm.
According to the method (11) above, ozone or radicals can be efficiently generated by irradiating the air with vacuum ultraviolet rays having a single wavelength of less than 200 nm, which is strongly absorbed by oxygen in the air. On the other hand, the vacuum ultraviolet rays having the above wavelength are not absorbed by N 2 in the air and do not deviate from N 2 , so that NO X is not generated. Therefore, there is no risk of damaging the equipment and the stored fresh products that constitute the storage space of the fresh product storage.

なお、保管庫に保管される生鮮品は、例えば、収穫後調理されていない生の青果物、肉、魚類であり、あるいはこれらが少なくとも部分的に切断された切り身である。切断面(切り口)のある切り身は、特にオゾン又はラジカルによって酸化障害を受けやすい。
上記幾つかの実施形態によれば、これらの生鮮品をオゾン又はラジカルによる酸化障害を被ることなく、かつ鮮度を維持したまま長期保存できる。
The fresh produce stored in the storage is, for example, raw fruits and vegetables, meat, fish that have not been cooked after harvesting, or fillets in which these are at least partially cut. Fillets with cut surfaces (cut ends) are particularly susceptible to oxidative damage due to ozone or radicals.
According to some of the above embodiments, these perishables can be stored for a long period of time without being damaged by oxidation by ozone or radicals and while maintaining their freshness.

本発明によれば、保管された生鮮品全体を効率良く殺菌でき、これによって、微生物の繁殖を抑制して生鮮品の腐敗を抑制し、生鮮品の鮮度を長期間保持できると共に、生鮮品の表面に酸化障害が発生するのを抑制できる。 According to the present invention, the whole perishable product stored can be efficiently sterilized, thereby suppressing the growth of microorganisms, suppressing the spoilage of the perishable product, maintaining the freshness of the perishable product for a long period of time, and maintaining the freshness of the perishable product. It is possible to suppress the occurrence of oxidative damage on the surface.

一実施形態に係る保管装置の構成図である。It is a block diagram of the storage apparatus which concerns on one Embodiment. 一実施形態に係る保管装置の構成図である。It is a block diagram of the storage apparatus which concerns on one Embodiment. 一実施形態に係る保管装置の構成図である。It is a block diagram of the storage apparatus which concerns on one Embodiment. 一実施形態に係る保管装置の構成図である。It is a block diagram of the storage apparatus which concerns on one Embodiment. 一実施形態に係る保管装置の制御系を示すブロック線図である。It is a block diagram which shows the control system of the storage apparatus which concerns on one Embodiment. 生鮮品の保管期間と適正積算濃度との関係を示すグラフである。It is a graph which shows the relationship between the storage period of a fresh product and an appropriate integrated concentration. 一実施形態に係る保管方法の工程図である。It is a process drawing of the storage method which concerns on one Embodiment. 一つの殺菌試験の結果を示す図表である。It is a chart which shows the result of one sterilization test. 一実施形態に係る放電ランプの模式的断面図である。It is a schematic sectional view of the discharge lamp which concerns on one Embodiment. 紫外線照射により発生したオゾンガスのガスクロマトグラフィを示すグラフである。It is a graph which shows the gas chromatography of the ozone gas generated by the ultraviolet irradiation. 紫外線照射により発生したオゾンガスのオゾン濃度の推移を示すグラフである。It is a graph which shows the transition of the ozone concentration of ozone gas generated by ultraviolet irradiation. 紫外線照射によるカビの減少を示す図表である。It is a chart which shows the reduction of mold by ultraviolet irradiation. (A)は収穫後殺菌試験前のキャベツの外観を示し、(B)及び(C)は、殺菌試験後酸化障害が発現した後のキャベツの外観を示す外観図である。(A) shows the appearance of the cabbage before the post-harvest sterilization test, and (B) and (C) are external views showing the appearance of the cabbage after the development of oxidative damage after the sterilization test.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, and are merely explanatory examples.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.

幾つかの実施形態に係る生鮮品の保管装置10(10A、10B、10C、10D)は、夫々図1〜図4に示すように、生鮮品保管庫12を備え、生鮮品保管庫12の内部で生鮮品fがチルド状態以上の温度で保管される。生鮮品保管庫12の内部に、庫内温度をチルド状態以上の温度に保持する温度調整部14と、庫内に空気流aを発生させる空気流発生部16が設けられる。
また、庫内に紫外線を照射する照射部18が設けられ、照射部18から紫外線が空気流aに対して照射される。図5に示すように、照射部18は断続照射制御部20を備える。照射部18は、断続照射制御部20によって紫外線を断続的に照射するように制御される。
The perishables storage device 10 (10A, 10B, 10C, 10D) according to some embodiments includes a perishables storage 12 and the inside of the perishables storage 12, respectively, as shown in FIGS. The perishable product f is stored at a temperature higher than the chilled state. Inside the perishables storage 12, a temperature adjusting unit 14 for maintaining the temperature inside the refrigerator at a temperature equal to or higher than the chilled state and an air flow generating unit 16 for generating an air flow a in the refrigerator are provided.
Further, an irradiation unit 18 for irradiating ultraviolet rays is provided in the refrigerator, and ultraviolet rays are irradiated to the air flow a from the irradiation unit 18. As shown in FIG. 5, the irradiation unit 18 includes an intermittent irradiation control unit 20. The irradiation unit 18 is controlled by the intermittent irradiation control unit 20 to intermittently irradiate ultraviolet rays.

上記構成において、照射部18から空気流aに紫外線を照射することにより、生鮮品fの周囲にオゾンやOHラジカルなどのラジカルが生成される。生成したオゾン又はラジカル(以下「オゾン等」とも言う。)は空気流aにより生鮮品保管庫12の内部全域に拡散する。拡散したオゾン等によって庫内全域が殺菌され、カビなどの微生物の繁殖を抑制し、保管された生鮮品の腐敗を抑制できる。これによって、生鮮品の鮮度を長期間保持できる。
また、照射部18が断続照射制御部20によって紫外線を断続的に照射することで、生鮮品fの周囲に発生するオゾン等の濃度制御が容易になる。断続照射によって発生するオゾン等の濃度制御を行うことで、生鮮品fの殺菌効果を維持しつつ、オゾン等によって被る生鮮品fの酸化障害を抑制できる。
In the above configuration, radicals such as ozone and OH radicals are generated around the fresh product f by irradiating the air flow a with ultraviolet rays from the irradiation unit 18. The generated ozone or radicals (hereinafter, also referred to as “ozone or the like”) are diffused throughout the inside of the perishables storage 12 by the air flow a. The entire interior is sterilized by the diffused ozone, etc., the growth of microorganisms such as mold can be suppressed, and the spoilage of stored fresh products can be suppressed. As a result, the freshness of perishables can be maintained for a long period of time.
Further, when the irradiation unit 18 intermittently irradiates the ultraviolet rays with the intermittent irradiation control unit 20, it becomes easy to control the concentration of ozone or the like generated around the fresh product f. By controlling the concentration of ozone or the like generated by intermittent irradiation, it is possible to suppress the oxidation damage of the fresh product f suffered by ozone or the like while maintaining the bactericidal effect of the fresh product f.

また、温度調整部14によって、生鮮品fをチルド状態以上の温度に保持するので、生鮮品fの細胞中に氷結晶が形成するのを抑制できる。これによって、氷結晶の形成による細胞膜の損傷を抑制でき、生鮮品fを鮮度良く保管できる。
また、温度調整部14によって生鮮品保管庫12の内部を冷蔵、保温又は解凍を行うことのできる生鮮品fの適温に調整することで、生鮮品保管庫12を冷蔵庫、保温庫及び解凍庫等として利用可能になる。
Further, since the temperature adjusting unit 14 keeps the fresh product f at a temperature equal to or higher than the chilled state, it is possible to suppress the formation of ice crystals in the cells of the fresh product f. As a result, damage to the cell membrane due to the formation of ice crystals can be suppressed, and the fresh product f can be stored with good freshness.
Further, by adjusting the inside of the perishables storage 12 to an appropriate temperature of the perishables f that can be refrigerated, kept warm or thawed by the temperature adjusting unit 14, the perishables storage 12 can be refrigerated, kept warm, thawed or the like. Will be available as.

図示した実施形態では、図1〜4に示すように、温度調整部14は各機器がケーシング24の内部に内臓された空調ユニットで構成される。空気流発生部16は、ケーシング24の内部に設けられたファンで構成される。照射部18は、紫外線光源を内蔵したランプユニットで構成される。 In the illustrated embodiment, as shown in FIGS. 1 to 4, the temperature adjusting unit 14 is composed of an air conditioning unit in which each device is built in the casing 24. The air flow generating unit 16 is composed of a fan provided inside the casing 24. The irradiation unit 18 is composed of a lamp unit having a built-in ultraviolet light source.

幾つかの実施形態では、断続照射制御部20は、生鮮品fがオゾン等に曝される時間とオゾン等の濃度との積で求められる積算濃度(以下「CT値」とも言う。)に基づいて紫外線を断続照射するように照射部18を制御するものである。
生鮮品fは、オゾン等の濃度コントロールをしないと、オゾン等の酸化作用によって障害を受ける。例えば、農産物が受けるダメージは主に変色として現れる。これは酸化による細胞の壊死が原因である。ダメージは作物によって異なり、葉菜類はオゾン又はラジカルによって酸化障害を被りやすく、他方、果菜類は酸化障害を被りにくい。
本発明者等は、オゾン等の酸化作用の程度は、CT値によって決まることを見い出した。言い換えれば、オゾン等の酸化作用の程度はCT値に比例するとも言える。生鮮品がオゾン等に曝される時間は、実質的に照射部18によって紫外線が照射される時間と置き換えることができる。
In some embodiments, the intermittent irradiation control unit 20 is based on an integrated concentration (hereinafter, also referred to as “CT value”) obtained by multiplying the time when the fresh product f is exposed to ozone or the like and the concentration of ozone or the like. The irradiation unit 18 is controlled so as to intermittently irradiate the ultraviolet rays.
If the concentration of ozone or the like is not controlled, the fresh product f is damaged by the oxidizing action of ozone or the like. For example, damage to agricultural products appears primarily as discoloration. This is due to cell necrosis due to oxidation. Damage varies from crop to crop, with leafy vegetables vulnerable to oxidative damage due to ozone or radicals, while fruit vegetables are less susceptible to oxidative damage.
The present inventors have found that the degree of oxidizing action of ozone or the like is determined by the CT value. In other words, it can be said that the degree of oxidizing action of ozone and the like is proportional to the CT value. The time when the fresh product is exposed to ozone or the like can be substantially replaced with the time when the ultraviolet rays are irradiated by the irradiation unit 18.

紫外線の照射方法として、連続照射と断続照射とがある。カビなどの微生物に対し、連続照射のほうが少ないCT値で殺菌効果を高めることができる。この理由は、殺菌が不十分でカビなどの微生物が生きていた場合、断続照射ではオゾン等が生成されない時間帯で微生物の増殖が起こるためである。生鮮品を生鮮品保管庫12に保管する場合、目標とする期間腐敗を抑え、かつ色や食感等を変わらない状態にする必要がある一方で、オゾン等による酸化障害が起こらない状態にする必要がある。
上記実施形態では、CT値に基づいて紫外線を断続照射することで、オゾン等の発生量を正確に制御できる。そのため、生鮮品に対する酸化作用の程度を正確に調整できるので、生鮮品の表面を傷めずに殺菌効果を維持できる。
Irradiation methods of ultraviolet rays include continuous irradiation and intermittent irradiation. For microorganisms such as mold, continuous irradiation can enhance the bactericidal effect with a smaller CT value. The reason for this is that when microorganisms such as molds are alive due to insufficient sterilization, the growth of microorganisms occurs during a time period in which ozone or the like is not generated by intermittent irradiation. When perishables are stored in the perishables storage 12, it is necessary to suppress spoilage for a target period and keep the color, texture, etc. unchanged, while making sure that oxidation damage due to ozone or the like does not occur. There is a need.
In the above embodiment, the amount of ozone or the like generated can be accurately controlled by intermittently irradiating ultraviolet rays based on the CT value. Therefore, since the degree of oxidizing action on the fresh product can be accurately adjusted, the bactericidal effect can be maintained without damaging the surface of the fresh product.

幾つかの実施形態では、図6に示すように、断続照射制御部20によって、目標とする保管期間中に生鮮品fの表面が傷まず、かつ殺菌が可能なCT値の下限値と、生鮮品fの表面に酸化障害が現れるCT値の上限値との間にオゾン等の濃度を調整する。
連続照射の場合、保管期間によってはオゾン等が低濃度であっても、CT上限値を超えてしまう場合がある。例えば、生鮮品fが農産物の場合、農産物の多くは1カ月から数カ月の長い保管期間が要求される。オゾン等の濃度が0.1ppmであっても30日でCT値は4320ppm・minを超えるため、キャベツやレタスは酸化障害が現れる。他方、断続照射とすることで、保管装置の全域に渡りCT下限値とCT上限値との間に統制できる。
これによって、生鮮品の保管期間の全期間で、生鮮品の表面を傷めずに殺菌効果を維持できる。
In some embodiments, as shown in FIG. 6, the intermittent irradiation control unit 20 sets a lower limit of the CT value that does not damage the surface of the fresh product f during the target storage period and allows sterilization, and freshness. The concentration of ozone or the like is adjusted between the upper limit of the CT value at which oxidative damage appears on the surface of the product f.
In the case of continuous irradiation, depending on the storage period, even if the concentration of ozone or the like is low, the upper limit of CT may be exceeded. For example, when the perishable product f is an agricultural product, most of the agricultural products require a long storage period of one to several months. Even if the concentration of ozone or the like is 0.1 ppm, the CT value exceeds 4320 ppm · min in 30 days, so that cabbage and lettuce have oxidative damage. On the other hand, by using intermittent irradiation, it is possible to control between the CT lower limit value and the CT upper limit value over the entire area of the storage device.
As a result, the bactericidal effect can be maintained without damaging the surface of the perishable product during the entire storage period of the perishable product.

幾つかの実施形態では、図1〜図4に示すように、照射部18は200nm未満の単一波長の真空紫外線を放射可能なエキシマランプ又は希ガス蛍光ランプで構成される。
エキシマランプは誘電体バリア放電によって200nm未満の単一波長の真空紫外線を放射する。エキシマランプのうち、例えば、キセノンエキシマランプは波長172nmの真空紫外線を放射可能であり、ArFエキシマレーザは波長193nmの真空紫外線を放射可能である。
エキシマランプ又は希ガス蛍光ランプを用い、前記ランプから放射される空気中の酸素に強く吸収される200nm未満の単一波長の真空紫外線を、空気に照射することで、オゾン又はラジカルを効率良く生成できる。他方、上記波長域の真空紫外線は空気中のNには吸収されず、Nを乖離しないので、NOを発生しない。従って、生鮮品保管庫12の保管空間を構成する機材や保管される生鮮品を傷めるおそれがない。
In some embodiments, as shown in FIGS. 1-4, the irradiation unit 18 comprises an excimer lamp or a rare gas fluorescent lamp capable of emitting vacuum ultraviolet light having a single wavelength of less than 200 nm.
Excimer lamps emit single wavelength vacuum ultraviolet light less than 200 nm by dielectric barrier discharge. Among the excimer lamps, for example, the xenon excimer lamp can emit vacuum ultraviolet rays having a wavelength of 172 nm, and the ArF excimer laser can emit vacuum ultraviolet rays having a wavelength of 193 nm.
Efficiently generate ozone or radicals by irradiating the air with vacuum ultraviolet rays of a single wavelength of less than 200 nm, which is strongly absorbed by oxygen in the air radiated from the lamp, using an excimer lamp or a rare gas fluorescent lamp. it can. On the other hand, the vacuum ultraviolet rays in the above wavelength range are not absorbed by N 2 in the air and do not deviate from N 2 , so that NO X is not generated. Therefore, there is no risk of damaging the equipment constituting the storage space of the perishables storage 12 or the perishables to be stored.

また、波長200nm未満の単一波長の真空紫外線を放射するエキシマランプ又は希ガス蛍光ランプは、温度及び湿度に対する点灯依存性がなく、農産物の保管温度である5℃以下の低温度帯で速やかに点灯できると共に、高湿度環境でもオゾン又はラジカルを高効率で発生できるので、生鮮品保管庫12が解凍庫として用いられる場合、高湿度の庫内空間を速やかに殺菌できる。
また、電力供給と同時に速やかに点灯してオゾン等を発生し、電力停止と同時にこれらの発生が停止するため、オゾン等の濃度コントロールが容易である。
In addition, excimer lamps or rare gas fluorescent lamps that emit vacuum ultraviolet rays of a single wavelength with a wavelength of less than 200 nm do not depend on lighting for temperature and humidity, and can quickly be used in a low temperature range of 5 ° C or lower, which is the storage temperature of agricultural products. Since it can be turned on and ozone or radicals can be generated with high efficiency even in a high humidity environment, when the fresh product storage 12 is used as a thawing storage, the high humidity internal space can be sterilized quickly.
Further, since the light is turned on promptly at the same time as the power is supplied to generate ozone or the like, and the generation is stopped at the same time when the power is stopped, it is easy to control the concentration of ozone or the like.

一実施形態では、温度調整部14は、生鮮品fがタンパク質凝固点以下の温度域に加温できる加温部として構成される。
この実施形態によれば、温度調整部14によって、生鮮品保管庫12に保管された生鮮品fをタンパク質凝固点(例えば72℃)以下の温度域に加温することで、生鮮品保管庫12を解凍庫として有効に利用出来る。加温する温度の上限をタンパク質凝固点以下とすることで生鮮品fを変質させるおそれはない。
In one embodiment, the temperature adjusting unit 14 is configured as a heating unit capable of heating the fresh product f to a temperature range below the protein freezing point.
According to this embodiment, the perishable product storage 12 is heated by the temperature adjusting unit 14 to a temperature range below the protein freezing point (for example, 72 ° C.) of the perishable product f stored in the perishable product storage 12. It can be effectively used as a defroster. By setting the upper limit of the heating temperature to be equal to or lower than the protein freezing point, there is no risk of deteriorating the fresh product f.

一実施形態では、温度調整部14は、生鮮品fが冷蔵状態で若しくはチルド状態で保存できる冷気発生部として構成される。
この実施形態によれば、生鮮品fを冷蔵状態又はチルド状態で保存することで、生鮮品保管庫12を冷蔵庫又は保温庫として有効に利用出来る。
In one embodiment, the temperature adjusting unit 14 is configured as a cold air generating unit in which the perishable product f can be stored in a refrigerated state or a chilled state.
According to this embodiment, by storing the perishable product f in a refrigerated state or a chilled state, the perishable product storage 12 can be effectively used as a refrigerator or a heat insulating storage.

幾つかの実施形態では、図3及び図4に示すように、生鮮品fの周囲の空気流aを加湿するための加湿部22をさらに備える。
生鮮品が例えば食肉、魚、青果物等の場合、これらを低温状態で保存すると乾燥して劣化するおそれがあるため、加湿部22を設けることで、保管された生鮮品fの乾燥を抑制できる。
例示的な実施形態では、図3及び図4に示すように、加湿部22は、ケーシング24の底部に設けられた貯水槽32と、貯水槽32から加湿用水wを汲み上げ、ケーシング24の内部に形成された空気流路bに加湿用水wを散布する散水装置34を含む。
In some embodiments, as shown in FIGS. 3 and 4, a humidifying portion 22 for humidifying the air flow a around the fresh product f is further provided.
When the perishable product is, for example, meat, fish, fruits and vegetables, etc., if they are stored in a low temperature state, they may dry and deteriorate. Therefore, by providing the humidifying portion 22, it is possible to suppress the drying of the stored perishable product f.
In an exemplary embodiment, as shown in FIGS. 3 and 4, the humidifying portion 22 draws humidifying water w from the water storage tank 32 provided at the bottom of the casing 24 and the water storage tank 32, and enters the inside of the casing 24. A sprinkler 34 for sprinkling the humidifying water w into the formed air flow path b is included.

例示的な実施形態では、図1〜図4に示すように、温度調整部14は、空気流aの入口及び出口を有するケーシング24の内部に、ファンで構成された空気流発生部16、デフロスト及び温度調整用のヒータ26、及び庫外に設けられた冷凍機28から冷媒が供給される熱交換器30を有する。ケーシング24の内部に空気流路bが形成され、空気流路bに空気流aが形成される。空気流aはヒータ26によって加温され、あるいは熱交換器30によって冷却されることで、温度調整される。 In an exemplary embodiment, as shown in FIGS. 1 to 4, the temperature adjusting unit 14 includes an air flow generating unit 16 composed of a fan and a defrost inside a casing 24 having an inlet and an outlet for the air flow a. It also has a heater 26 for temperature adjustment, and a heat exchanger 30 to which a refrigerant is supplied from a refrigerator 28 provided outside the refrigerator. An air flow path b is formed inside the casing 24, and an air flow a is formed in the air flow path b. The temperature of the air flow a is adjusted by being heated by the heater 26 or cooled by the heat exchanger 30.

図1及び図2に示す実施形態では、ケーシング24は横向きに配置され、ケーシング24の内部で空気流aは横向きに流れる。図3及び図4に示す実施形態では、ケーシング24は縦向きに配置され、ケーシング24の内部で空気流aは縦向きに流れる。
冷凍機28は、例えば、生鮮品保管庫12の外部で、図1及び図2に示すように、生鮮品保管庫12の上壁に設けられ、あるいは図3及び図4に示すように、生鮮品保管庫12の側壁に隣接して配置される。
In the embodiment shown in FIGS. 1 and 2, the casing 24 is arranged sideways, and the air flow a flows sideways inside the casing 24. In the embodiment shown in FIGS. 3 and 4, the casing 24 is arranged vertically, and the air flow a flows vertically inside the casing 24.
The refrigerator 28 is provided, for example, outside the perishables storage 12 on the upper wall of the perishables storage 12 as shown in FIGS. 1 and 2, or as shown in FIGS. 3 and 4. It is arranged adjacent to the side wall of the product storage 12.

一実施形態では、図5に示すように、照射部18は、キセノンエキシマランプ又は希ガス蛍光ランプで構成された放電ランプ35で構成される。放電ランプ35は、例えば、波長200nm未満の真空紫外線を放射する放電ランプ光源36と、放電ランプ光源36から放射される真空紫外線により生成したオゾン等を拡散するファン38とを内蔵している。なお、ファン38の配置は省略してもよい。
例示的な実施形態では、放電ランプ35は生鮮品保管庫12の内部に形成される空気流aに面して配置され、放電ランプ35は紫外線照射窓40を有する。
放電ランプ光源36から真空紫外線を空気流aに向けて照射することで、空気流a中にオゾン等が発生し、発生したオゾン等は空気流aに乗って庫内全般に拡散し、生鮮品fを殺菌する。
In one embodiment, as shown in FIG. 5, the irradiation unit 18 is composed of a discharge lamp 35 composed of a xenon excimer lamp or a rare gas fluorescent lamp. The discharge lamp 35 includes, for example, a discharge lamp light source 36 that emits vacuum ultraviolet rays having a wavelength of less than 200 nm, and a fan 38 that diffuses ozone or the like generated by the vacuum ultraviolet rays emitted from the discharge lamp light source 36. The arrangement of the fan 38 may be omitted.
In an exemplary embodiment, the discharge lamp 35 is arranged to face the airflow a formed inside the perishables storage 12, and the discharge lamp 35 has an ultraviolet irradiation window 40.
By irradiating the air flow a with vacuum ultraviolet rays from the discharge lamp light source 36, ozone or the like is generated in the air flow a, and the generated ozone or the like is diffused throughout the refrigerator by the air flow a and is a fresh product. Sterilize f.

上記放電ランプから放射される紫外線の波長は、その放電室に封入された放電ガスによって決まる。例えば、放電ガスがアルゴン(Ar)のとき126nmとなり、放電ガスがクリプトン(Kr)のとき146nmとなり、放電ガスがキセノン(Xe)のとき、172nmとなる。 The wavelength of the ultraviolet rays radiated from the discharge lamp is determined by the discharge gas sealed in the discharge chamber. For example, when the discharge gas is argon (Ar), it is 126 nm, when the discharge gas is krypton (Kr), it is 146 nm, and when the discharge gas is xenon (Xe), it is 172 nm.

図1及び図3に示す実施形態では、照射部18としての放電ランプは生鮮品fの上方に配置され、紫外線照射窓40は空気流aを介して生鮮品fに向けられている。
図2に示す実施形態では、放電ランプ35は連続搬送式フリーザ44の上方に配置され、紫外線照射窓40は空気流aを介して連続搬送式フリーザ44に向けられている。
図4に示す実施形態では、放電ランプ35は生鮮品fの上方隅に配置され、紫外線照射窓40は空気流aに向けられている。
このように、紫外線照射窓40が空気流aに向けて配置されるので、生成したオゾン等を空気流aに乗せて庫内全域に拡散できる。これによって、庫内全域を殺菌できる。
In the embodiment shown in FIGS. 1 and 3, the discharge lamp as the irradiation unit 18 is arranged above the fresh product f, and the ultraviolet irradiation window 40 is directed to the fresh product f via the air flow a.
In the embodiment shown in FIG. 2, the discharge lamp 35 is arranged above the continuous transport freezer 44, and the ultraviolet irradiation window 40 is directed to the continuous transport freezer 44 via the air flow a.
In the embodiment shown in FIG. 4, the discharge lamp 35 is arranged in the upper corner of the perishable product f, and the ultraviolet irradiation window 40 is directed to the air flow a.
Since the ultraviolet irradiation window 40 is arranged toward the air flow a in this way, the generated ozone or the like can be placed on the air flow a and diffused throughout the entire chamber. As a result, the entire interior can be sterilized.

例示的な実施形態では、図1及び図3に示すように、紫外線照射窓40が生鮮品fに向けて配置されるので、紫外線が生鮮品fに直接照射され、生鮮品fの照射面に対して強い殺菌力を発揮できる。従って、放電ランプ35から放射される真空紫外線との相乗効果によって、保管された生鮮品全体の殺菌効果を高めることができる。 In an exemplary embodiment, as shown in FIGS. 1 and 3, the ultraviolet irradiation window 40 is arranged toward the fresh product f, so that the ultraviolet rays are directly applied to the fresh product f and are applied to the irradiation surface of the fresh product f. On the other hand, it can exert strong bactericidal power. Therefore, the synergistic effect with the vacuum ultraviolet rays radiated from the discharge lamp 35 can enhance the bactericidal effect of the entire stored fresh food.

例示的な実施形態では、図1〜図3に示すように、放電ランプ35は、温度調整部14のケーシング24の内部に形成される空気流路bを流れる空気流aに向けて真空紫外線を照射するので、発生したオゾン等を空気流aに乗って庫内全域に効率良く拡散できる。これによって、庫内空気全体を効率良く殺菌できる。
また、温度調整部14は加湿部22を有し、加湿部22で温度調整部14に導入される空気流aを加湿するので、庫内雰囲気を高湿度に保持でき、生鮮品fの乾燥を抑制できる。これによって、生鮮品fの歩留まり低下を抑制できる。
In an exemplary embodiment, as shown in FIGS. 1 to 3, the discharge lamp 35 emits vacuum ultraviolet rays toward the air flow a flowing through the air flow path b formed inside the casing 24 of the temperature adjusting unit 14. Since it is irradiated, the generated ozone or the like can be efficiently diffused throughout the inside of the refrigerator by riding on the air flow a. As a result, the entire air inside the refrigerator can be sterilized efficiently.
Further, since the temperature adjusting unit 14 has a humidifying unit 22 and the humidifying unit 22 humidifies the air flow a introduced into the temperature adjusting unit 14, the atmosphere inside the refrigerator can be maintained at a high humidity, and the fresh product f can be dried. Can be suppressed. As a result, it is possible to suppress a decrease in the yield of the perishable product f.

例示的な実施形態では、図1,図3及び図4に示すように、生鮮品fは青果物又はその切り身であり、生鮮品保管庫12の内部で段積みされたかご42に収納される。 In an exemplary embodiment, as shown in FIGS. 1, 3 and 4, the perishables f are fruits and vegetables or fillets thereof, which are stored in a stacked basket 42 inside the perishables storage 12.

一実施形態では、図2に示すように、生鮮品保管庫12の内部に連続搬送式フリーザ44が設置される。連続搬送式フリーザ44は、コンベア46を備え、生鮮品fはコンベア46で搬送中に連続的に凍結される。
この実施形態では、オゾン等の存在によって殺菌効果を有する生鮮品保管庫12の内部で生鮮品fを凍結するため、連続搬送式フリーザ44の稼動が終了した後でも、連続搬送式フリーザ44を構成する機材が生鮮品残渣によって汚染されるのを防ぐことができる。
In one embodiment, as shown in FIG. 2, a continuous transport freezer 44 is installed inside the perishables storage 12. The continuous transport type freezer 44 includes a conveyor 46, and the perishable product f is continuously frozen during transport on the conveyor 46.
In this embodiment, since the perishable product f is frozen inside the perishable product storage 12 having a bactericidal effect due to the presence of ozone or the like, the continuous perishable freezer 44 is configured even after the operation of the continuous perishable freezer 44 is completed. It is possible to prevent the equipment to be contaminated by the perishable residue.

一実施形態では、図5に示すように、生鮮品保管庫12の内部にオゾン等の濃度を検出するオゾン濃度センサ48が設けられ、オゾン濃度センサ48の検出値は断続照射制御部20に入力される。断続照射制御部20は上記検出値に基づいて放電ランプ35の動作を制御する。 In one embodiment, as shown in FIG. 5, an ozone concentration sensor 48 for detecting the concentration of ozone or the like is provided inside the fresh product storage 12, and the detected value of the ozone concentration sensor 48 is input to the intermittent irradiation control unit 20. Will be done. The intermittent irradiation control unit 20 controls the operation of the discharge lamp 35 based on the detected value.

幾つかの実施形態に係る保管方法は、図7に示すように、生鮮品保管工程S10と,空気流形成工程S12と、紫外線照射工程S14とを含む。
生鮮品保管工程S10では生鮮品保管庫12の内部で生鮮品fをチルド状態以上の温度で保管する。空気流形成工程S12では、生鮮品保管庫12に保管された生鮮品fの周囲に空気流aを形成する。紫外線照射工程S14では、空気流aに紫外線を断続的に照射してオゾン又はOHラジカルなどのラジカルを生成すると共に、オゾン等を空気流aに乗せて庫内全域に拡散させる。
As shown in FIG. 7, the storage method according to some embodiments includes a perishable product storage step S10, an air flow forming step S12, and an ultraviolet irradiation step S14.
In the perishables storage step S10, the perishables f are stored in the perishables storage 12 at a temperature equal to or higher than the chilled state. In the air flow forming step S12, an air flow a is formed around the perishables f stored in the perishables storage 12. In the ultraviolet irradiation step S14, the air flow a is intermittently irradiated with ultraviolet rays to generate radicals such as ozone or OH radicals, and ozone or the like is placed on the air flow a and diffused throughout the refrigerator.

これによって、庫内全域に拡散したオゾン等によって庫内全域が殺菌されるため、カビなどの微生物の繁殖が抑制され、保管された生鮮品fの腐敗を抑制できる。従って、生鮮品の鮮度を長期間保持できる。
また、紫外線照射工程S14において、紫外線を断続的に照射することで、生鮮品fの周囲に発生するオゾン又はラジカルの濃度制御が容易になる。断続照射により発生するオゾン等の濃度制御を行うことで、生鮮品fの殺菌効果を維持しつつ、オゾン等によって被る生鮮品fの酸化障害を抑制できる。
なお、生鮮品保管工程S10では、生鮮品fをチルド状態以上の温度で保管するので、生鮮品fの細胞中に氷結晶が形成するのを抑止でき、これによって、氷結晶の形成による細胞膜の損傷を抑制でき、生鮮品fを鮮度良く保管できる。
As a result, since the entire interior is sterilized by ozone or the like diffused throughout the interior, the growth of microorganisms such as mold can be suppressed, and the spoilage of the stored fresh product f can be suppressed. Therefore, the freshness of perishables can be maintained for a long period of time.
Further, in the ultraviolet irradiation step S14, by intermittently irradiating the ultraviolet rays, it becomes easy to control the concentration of ozone or radicals generated around the fresh product f. By controlling the concentration of ozone or the like generated by intermittent irradiation, it is possible to suppress the oxidation damage of the fresh product f suffered by ozone or the like while maintaining the bactericidal effect of the fresh product f.
In the perishable product storage step S10, since the perishable product f is stored at a temperature equal to or higher than the chilled state, it is possible to prevent the formation of ice crystals in the cells of the perishable product f, thereby forming the cell membrane due to the formation of ice crystals. Damage can be suppressed and fresh product f can be stored with good freshness.

一実施形態では、紫外線照射工程S14において、紫外線の照射時間とオゾン等の濃度との積で求められる積算濃度に基づいて、紫外線を断続照射する。
積算濃度に基づいて真空紫外線を断続照射することで、生鮮品fに対するオゾン等の発生量を、生鮮品fの表面を傷めずに殺菌効果を維持できる適量に制御できる。
In one embodiment, in the ultraviolet irradiation step S14, ultraviolet rays are intermittently irradiated based on an integrated concentration obtained by multiplying the irradiation time of ultraviolet rays and the concentration of ozone or the like.
By intermittently irradiating the fresh product f with vacuum ultraviolet rays based on the integrated concentration, the amount of ozone or the like generated with respect to the fresh product f can be controlled to an appropriate amount capable of maintaining the bactericidal effect without damaging the surface of the fresh product f.

一実施形態では、紫外線照射工程S14において、紫外線を断続照射させ、生鮮品fの周囲の積算濃度が、生鮮品fの殺菌効果が現れる下限値と生鮮品fの表面に酸化障害が現れる上限値との間の値になるように制御する。
積算濃度をCT下限値とCT上限値との間の値になるように、紫外線を断続照射することで、保管期間中全期間において生鮮品fの表面を傷めずに殺菌効果を維持できる。
In one embodiment, in the ultraviolet irradiation step S14, ultraviolet rays are intermittently irradiated, and the integrated concentration around the fresh product f is the lower limit value at which the bactericidal effect of the fresh product f appears and the upper limit value at which oxidation damage appears on the surface of the fresh product f. Control so that the value is between.
By intermittently irradiating ultraviolet rays so that the integrated concentration is between the CT lower limit value and the CT upper limit value, the bactericidal effect can be maintained without damaging the surface of the fresh product f during the entire storage period.

一実施形態では、紫外線照射工程S14において、200nm未満の波長域を有する真空紫外線を照射する。
空気中の酸素に強く吸収される200nm未満の単一波長の真空紫外線を空気に照射することで、オゾン等を効率良く生成できる。他方、上記波長の真空紫外線は空気中のNには吸収されず、Nを乖離しないので、NOを発生しない。従って、生鮮品保管庫12の保管空間を構成する機材や保管される生鮮品fを傷めるおそれがない。
In one embodiment, in the ultraviolet irradiation step S14, vacuum ultraviolet rays having a wavelength range of less than 200 nm are irradiated.
Ozone and the like can be efficiently generated by irradiating the air with vacuum ultraviolet rays having a single wavelength of less than 200 nm, which is strongly absorbed by oxygen in the air. On the other hand, the vacuum ultraviolet rays having the above wavelength are not absorbed by N 2 in the air and do not deviate from N 2 , so that NO X is not generated. Therefore, there is no risk of damaging the equipment constituting the storage space of the perishables storage 12 or the perishables f to be stored.

例示的な実施形態では、生鮮品fが青果物であり、生鮮品保管庫内で青果物を0℃以上5℃以下に冷却し、オゾン濃度を0.1ppm以上0.5ppm以下に調整する。これによって、生鮮品fの保管期間中生鮮品fの腐食を抑制できると共に、オゾン等による酸化障害を抑制できる。
また、生鮮品保管庫内を加湿して相対湿度を90%以上に調整する。これによって、保管期間中生鮮品fの乾燥を抑制できる。
In an exemplary embodiment, the perishables f are fruits and vegetables, and the fruits and vegetables are cooled to 0 ° C. or higher and 5 ° C. or lower in the fresh food storage, and the ozone concentration is adjusted to 0.1 ppm or more and 0.5 ppm or less. As a result, corrosion of the fresh product f can be suppressed during the storage period of the fresh product f, and oxidation damage due to ozone or the like can be suppressed.
In addition, the inside of the fresh food storage is humidified to adjust the relative humidity to 90% or more. Thereby, the drying of the fresh product f can be suppressed during the storage period.

一実施形態では、青果物のうち、レタス、キャベツのように表皮細胞が薄い葉菜類、花卉類又はキノコ類は、オゾン等による酸化障害を被りやすい。そこで、保管期間中上記葉菜類は、トマト、レモンのように表皮体で全体が***されている果実類に比して,CT値がCT下限値より高くCT下限値に近い値となるように上記波長の真空紫外線を断続照射する。
これによって、保管期間中、葉菜類、花卉類、キノコ類のうち特に切り口及びその周辺の酸化障害を抑制できる。
In one embodiment, among fruits and vegetables, leafy vegetables, flowers or mushrooms having thin epidermal cells such as lettuce and cabbage are susceptible to oxidative damage due to ozone and the like. Therefore, during the storage period, the above-mentioned leafy vegetables have a CT value higher than the lower limit value of CT and closer to the lower limit value of CT as compared with fruits such as tomatoes and lemons whose entire foreskin is covered with the epidermis. Intermittent irradiation with vacuum ultraviolet light of wavelength.
As a result, during the storage period, it is possible to suppress oxidative damage in and around the cut end of leafy vegetables, flowers and mushrooms.

一実施形態では、生鮮品fが生の魚肉、又は生の鶏肉、ターキ等の獣肉のいずれかであって、これらの肉体を少なくとも部分的に細胞膜と交差する方向に切断された切り身である場合、オゾン等の酸化障害を被りやすい。そこで、上記切り身の場合、保管期間中細胞膜に沿って切断された切り身の場合に比してCT値がCT下限値より高くCT下限値に近い値となるように上記波長の真空紫外線を断続照射する。
これによって、保管期間中、オゾン等の酸化障害を被りやすい切り身の酸化障害を抑制できる。
In one embodiment, when the fresh product f is either raw fish meat or raw chicken meat, meat such as turk, and fillets in which these bodies are cut at least partially in a direction intersecting the cell membrane. , Susceptible to oxidation damage such as ozone. Therefore, in the case of the fillet, the vacuum ultraviolet rays of the above wavelengths are intermittently irradiated so that the CT value is higher than the CT lower limit value and close to the CT lower limit value as compared with the case of the fillet cut along the cell membrane during the storage period. To do.
This makes it possible to suppress oxidative damage to fillets that are susceptible to oxidative damage such as ozone during the storage period.

一実施形態では、生鮮品fが生の魚肉、又は生の鶏肉、ターキ等の獣肉のいずれかであって、これらの肉体を少なくとも部分的に細胞膜に沿う方向に切断された切り身である場合、細胞膜と交差する方向に切断された切り身と比べてオゾン等の酸化障害を被りにくい。そこで、上記切り身の場合、CT値がCT上限値より低くCT上限値に近い値となるように上記波長の真空紫外線を断続照射する。
これによって、保管期間中、上記切り身の酸化障害を抑制しつつ殺菌効果を向上できる。
In one embodiment, when the fresh product f is either raw fish meat or raw chicken meat, meat such as turk, and fillets in which these bodies are at least partially cut along the cell membrane. Compared to fillets cut in the direction intersecting the cell membrane, they are less susceptible to oxidative damage such as ozone. Therefore, in the case of the fillet, the vacuum ultraviolet rays of the above wavelengths are intermittently irradiated so that the CT value is lower than the CT upper limit value and close to the CT upper limit value.
Thereby, during the storage period, the bactericidal effect can be improved while suppressing the oxidative damage of the fillet.

(1)庫内殺菌試験
保管装置として、図4に示す保管装置10(10D)を用いた。保管装置10(10D)は、加湿部22を有する温度調整部14を備えた生鮮品保管庫12を備えている。
図4に示すように、照射部18としての放電ランプ35は生鮮品fの上方隅に配置され、その紫外線照射窓40は空気流aに向けて配置されている。
紫外線照射窓40から波長200nm未満の真空紫外線が放射され、庫内を温度2℃、相対湿度95%以上に保持して庫内空気の殺菌試験を実施した。
また、庫内のオゾン濃度が0.3ppmになるように、断続照射制御部20によって放電ランプ35を点灯1秒、消灯10秒で繰り返し30分間断続点灯させた。
(1) In-house sterilization test As the storage device, the storage device 10 (10D) shown in FIG. 4 was used. The storage device 10 (10D) includes a perishables storage 12 including a temperature control unit 14 having a humidifying unit 22.
As shown in FIG. 4, the discharge lamp 35 as the irradiation unit 18 is arranged in the upper corner of the perishable product f, and the ultraviolet irradiation window 40 is arranged toward the air flow a.
Vacuum ultraviolet rays having a wavelength of less than 200 nm were radiated from the ultraviolet irradiation window 40, and the inside of the refrigerator was kept at a temperature of 2 ° C. and a relative humidity of 95% or more to carry out a sterilization test of the air inside the refrigerator.
In addition, the intermittent irradiation control unit 20 repeatedly turned on the discharge lamp 35 for 1 second and 10 seconds for turning it off for 30 minutes so that the ozone concentration in the refrigerator was 0.3 ppm.

図4に示すように、放電ランプ35の下方に段積みされたかご42の中に、上段に位置するA点、B点、及び中段に位置するC点にPDA培地(ポテトデキストロース寒天培地)を30分間開放してカビの量を計測した。
その結果を図8に示すように、殺菌運転後に菌数の減少を確認した。
なお、比較例として、水銀灯を使用し、波長185nmの紫外線を放射する紫外線ランプを用いて実施した試験では、水銀灯が低温のため点灯しなかった。
As shown in FIG. 4, PDA medium (potato dextrose agar medium) is placed at points A and B located at the upper stage and points C located at the middle stage in the basket 42 stacked below the discharge lamp 35. The amount of mold was measured after opening for 30 minutes.
As a result, as shown in FIG. 8, a decrease in the number of bacteria was confirmed after the sterilization operation.
As a comparative example, in a test conducted using a mercury lamp and an ultraviolet lamp that radiates ultraviolet rays having a wavelength of 185 nm, the mercury lamp did not light because of its low temperature.

(2)キャベツの保管試験
図4に示す保管装置10(10D)を用い、生鮮品保管庫12にキャベツを裸の状態で入れ、温度2℃、相対湿度95%以上の状態で2ヶ月間保管した。38日保管後残りの日数の間、放電ランプ35から波長200nm未満の紫外線を放射し、庫内のオゾン濃度が0.3ppmとなるように、点灯1秒、消灯10秒の間隔で1時間/日の断続照射を行った。
比較例として、放電ランプ35を作動させず、他は同様の条件でキャベツを2ヶ月間保管した。
(2) Storage test of cabbage Using the storage device 10 (10D) shown in FIG. 4, put the cabbage in the perishable storage 12 in a naked state and store it at a temperature of 2 ° C. and a relative humidity of 95% or more for 2 months. did. For the remaining days after storage for 38 days, ultraviolet rays with a wavelength of less than 200 nm are radiated from the discharge lamp 35, and the ozone concentration in the refrigerator is 0.3 ppm for 1 second at intervals of 1 second and 10 seconds for extinguishing. Intermittent irradiation of the day was performed.
As a comparative example, the discharge lamp 35 was not operated, and the cabbage was stored for 2 months under the same conditions as the others.

その結果、本実施例は2ヶ月間腐敗を低く抑えられた。一方、比較例は40日までは良い鮮度を保ったが、それ以降カビが発生し、急速に腐敗した。
2ヶ月でのカビの発生率は、本実施例が27%、比較例が90%と大きな差が見られ、また、重量歩留まりも本実施例のほうが良かった。
As a result, this example kept putrefaction low for two months. On the other hand, the comparative example maintained good freshness until 40 days, but after that, mold developed and it rapidly rotted.
The incidence of mold in 2 months was 27% in this example and 90% in comparative example, showing a large difference, and the weight yield was also better in this example.

(3)キャベツの表面殺菌試験
コンテナの内部に加湿部22を備えたクーラユニット(温度調整部)14を設置し、クーラユニット14の出口に放電ランプ35を配置した。そして、コンテナ内の温度を5℃、相対湿度を90%以上に保つと共に、オゾン濃度が0.35ppmとなるように、放電ランプ35を点灯1秒、消灯10秒に制御し、2時間/日の照射時間で10日間波長200nm未満の真空紫外線を放射した。
この結果、キャベツの表面及び軸部分の一般性菌及びカビの数が大幅に減少した。
(3) Surface sterilization test of cabbage A cooler unit (temperature adjusting unit) 14 provided with a humidifying unit 22 was installed inside the container, and a discharge lamp 35 was arranged at the outlet of the cooler unit 14. Then, while keeping the temperature inside the container at 5 ° C. and the relative humidity at 90% or more, the discharge lamp 35 is controlled to turn on for 1 second and turn off for 10 seconds so that the ozone concentration becomes 0.35 ppm, and 2 hours / day. Vacuum ultraviolet rays having a wavelength of less than 200 nm were emitted for 10 days at the irradiation time of.
As a result, the number of common fungi and mold on the surface and shaft of cabbage was significantly reduced.

(4)キャベツの色の変化試験(比較例)
上記試験(3)と同じ試験装置を用い、コンテナ内の温度及び相対湿度を上記試験(3)と同じ条件とし、生鮮品であるキャベツ周囲のオゾン濃度が2ppmとなるように、放電ランプ35を作動させた。放電ランプ35の点灯時間を点灯1秒、消灯1.5秒にセットし、24時間連続で9日間作動させた。その結果、キャベツの表面が変色した。
(4) Cabbage color change test (comparative example)
Using the same test equipment as in the above test (3), set the temperature and relative humidity in the container to the same conditions as in the above test (3), and set the discharge lamp 35 so that the ozone concentration around the fresh cabbage is 2 ppm. Activated. The lighting time of the discharge lamp 35 was set to 1 second for turning on and 1.5 seconds for turning off, and the discharge lamp 35 was operated continuously for 24 hours for 9 days. As a result, the surface of the cabbage was discolored.

<発生ガスの検査>
一実施形態に係る照射部18としての放電ランプ35は、図9に示すように、放電ガスが封入されている放電室36aから放射される真空紫外線が空間cに導入された大気中のNガスに吸収されず、Nガスを乖離しない。従って、窒素酸化物の発生を抑制できる。
図10は、放電ガスとしてキセノンを用いて波長172nmの真空紫外線を放射する放電ランプを用い、当該放電ランプを用いて発生させたオゾンガスをガスクロマトグラフィで分析した結果を示している。図中、ラインDは上記放電ランプを用いた場合を示し、ラインEは従来公知の放電式オゾナイザを用いてオゾンガスを発生させた場合を示している。図10に示すように、ラインDでは窒素酸化物の発生が抑制されている。
<Inspection of generated gas>
Discharge lamp 35 as illumination unit 18 according to one embodiment, as shown in FIG. 9, vacuum ultraviolet rays which a discharge gas is emitted from the discharge chamber 36a that is encapsulated in the air introduced into the space c N 2 not absorbed by the gas, it does not deviate the N 2 gas. Therefore, the generation of nitrogen oxides can be suppressed.
FIG. 10 shows the results of gas chromatography analysis of ozone gas generated by using a discharge lamp that radiates vacuum ultraviolet rays having a wavelength of 172 nm using xenon as the discharge gas. In the figure, line D shows a case where the discharge lamp is used, and line E shows a case where ozone gas is generated by using a conventionally known discharge type ozonizer. As shown in FIG. 10, the generation of nitrogen oxides is suppressed in line D.

(5)カビに対する照射試験
インキュベータ(保育器)の内部を温度20℃、相対湿度90%に保持し、供試菌株として青カビ(Penicillium属)を用いた。青カビは、菌糸に滅菌水10mlを入れ、胞子を掻き取り、各希釈倍率に希釈した後、PDA培地に100μLずつ塗布し、インキュベータの中に入れ、放電ランプから200nm未満の波長を有する真空紫外線を点灯時間1秒、消灯時間10秒の間隔で断続照射した。
図11は、インキュベータ内のオゾン濃度の推移を示す。図11におけるオゾン濃度の各山を図12では「処理区」と称している。図12は、処理区の数が増えるにつれて、即ち、CT値が増えるにつれてカビのコロニー(塊)数が減少していることを示している。
(5) Irradiation test against mold The inside of the incubator (incubator) was maintained at a temperature of 20 ° C. and a relative humidity of 90%, and blue mold (genus Penicillium) was used as a test strain. For blue mold, put 10 ml of sterile water in the hyphae, scrape off the spores, dilute to each dilution ratio, apply 100 μL to the PDA medium, put in the incubator, and emit vacuum ultraviolet rays having a wavelength of less than 200 nm from the discharge lamp. Irradiation was performed intermittently at intervals of 1 second for lighting time and 10 seconds for extinguishing time.
FIG. 11 shows the transition of the ozone concentration in the incubator. Each mountain of ozone concentration in FIG. 11 is referred to as a "treatment zone" in FIG. FIG. 12 shows that the number of mold colonies (masses) decreases as the number of treatment areas increases, that is, as the CT value increases.

上記試験条件で、供試菌糸として、黒カビ(Cladosporium属)及び大腸菌(Escherichia属)をさらに加えて試験した。CT値を13.3ppm・min(1日目)、36.8ppm・min(2日目)、42.5ppm・min(3日目)となるように調整した。
この結果、3つの供試菌糸とも減少し、特に、大腸菌の減少が著しかった。
Under the above test conditions, black mold (Cladosporium genus) and Escherichia coli (Escherichia genus) were further added as test hyphae for the test. The CT values were adjusted to 13.3 ppm · min (1st day), 36.8 ppm · min (2nd day), and 42.5 ppm · min (3rd day).
As a result, all three test hyphae decreased, and Escherichia coli decreased significantly.

(6)キャベツ保管試験
2℃の温度に保持された保管庫の中に収穫のキャベツを収納し、保管庫内のキャベツに放電ランプから200nm未満の波長を有する真空紫外線を点灯時間0.5秒、消灯時間20秒の間隔で30分間断続照射した。目標オゾン濃度は0.35ppmとした。30分間の断続照射でCT値は11.1ppm・minとなり、この断続照射を1日2回行い、28日後のCT値は610.5ppm・minとなった。
保管63日後のキャベツの状態は、カビの発生が少なく腐敗が抑制され、かつオゾンによる酸化障害も発現していなかった。従って、この試験では、キャベツの保管期間中CT値は下限値と上限値との間にあったことがわかる。
(6) Cabbage storage test The harvested cabbage is stored in a storage room kept at a temperature of 2 ° C, and the cabbage in the storage room is exposed to vacuum ultraviolet rays having a wavelength of less than 200 nm from a discharge lamp for 0.5 seconds. , The light was intermittently irradiated for 30 minutes at intervals of 20 seconds. The target ozone concentration was 0.35 ppm. After 30 minutes of intermittent irradiation, the CT value was 11.1 ppm · min, and this intermittent irradiation was performed twice a day, and after 28 days, the CT value was 610.5 ppm · min.
The state of the cabbage 63 days after storage showed that mold did not occur, putrefaction was suppressed, and oxidative damage due to ozone did not occur. Therefore, in this test, it can be seen that the CT value was between the lower limit value and the upper limit value during the storage period of the cabbage.

(7)キャベツ保管試験
2℃の温度に保持された保管庫の中に収穫後のキャベツを保管し、保管庫内で放電ランプから200nm未満の波長を有する真空紫外線を点灯時間0.5秒、消灯時間20秒の間隔で60分間断続照射した。目標オゾン濃度は0.35ppmとした。収穫後試験前のキャベツの外観を図13(A)に示す。
試験開始から29日間60分の断続照射を1日2回行ったところ、29日後のCT値は2919.53ppm・minに達し、全部のキャベツに酸化障害が発現した(第1ステージ)。この状態のキャベツの外観を図13(B)に示す。図13(B)において、キャベツの表面に酸化障害oが発現している。
第1ステージ後、断続照射時間を30分/回×1回/日に変更し、さらに29日間継続した(第2ステージ)。第2ステージにおけるCT値は1011.18ppm・minに達し、その結果、試験開始から第2ステージまでのCT値は3930.72ppm・minに達した。第2ステージ後のキャベツの外観は、図13(C)に示すように、酸化障害oはさらに激しくなっている。
(7) Cabbage storage test Store the harvested cabbage in a storage room kept at a temperature of 2 ° C., and illuminate the vacuum ultraviolet rays with a wavelength of less than 200 nm from the discharge lamp in the storage room for 0.5 seconds. Irradiation was performed intermittently for 60 minutes at intervals of 20 seconds. The target ozone concentration was 0.35 ppm. The appearance of the cabbage after harvesting and before the test is shown in FIG. 13 (A).
When intermittent irradiation for 60 minutes for 29 days from the start of the test was performed twice a day, the CT value reached 2919.53 ppm · min after 29 days, and oxidative damage appeared in all cabbage (stage 1). The appearance of the cabbage in this state is shown in FIG. 13 (B). In FIG. 13B, oxidative damage o is expressed on the surface of the cabbage.
After the first stage, the intermittent irradiation time was changed to 30 minutes / time × 1 time / day and continued for another 29 days (second stage). The CT value in the second stage reached 1011.18 ppm · min, and as a result, the CT value from the start of the test to the second stage reached 3930.72 ppm · min. As for the appearance of the cabbage after the second stage, as shown in FIG. 13C, the oxidative damage o is more severe.

上記試験は、キャベツを3グループに分けて実施し、第1ステージ終了後全部のグループで酸化焼けが発生した。
上記試験の結果から、CT上限値を2900ppm・min以下にする必要があることが分かる。
また、第1ステージ後において、カビの発生状況は、グループXが20%、グループYが10%、グループZが10%であった。また、第2ステージ後のカビの発生状況は、グループXが100%、グループYが57%、グループZが74%であった。このようにカビの発生が進んでいる原因は、CT上限値を超えるオゾン等の照射による酸化障害の発現が原因であると考えられる。
オゾン等はあまり浸透性がないため、生鮮品表面のカビを殺菌できるが、葉のように入り組んだ組織に生えるカビを完全に死滅させることはできない。オゾン等による酸化障害によって壊死した葉はいずれ腐ってカビが生えてくる。
The above test was carried out by dividing the cabbage into three groups, and after the completion of the first stage, oxidative burning occurred in all the groups.
From the results of the above test, it can be seen that the upper limit of CT needs to be 2900 ppm · min or less.
In addition, after the first stage, the mold occurrence status was 20% in group X, 10% in group Y, and 10% in group Z. The mold occurrence status after the second stage was 100% in group X, 57% in group Y, and 74% in group Z. It is considered that the cause of the progress of mold generation is the occurrence of oxidative damage due to irradiation with ozone or the like exceeding the upper limit of CT.
Ozone and the like are not very permeable, so they can sterilize mold on the surface of fresh produce, but they cannot completely kill mold that grows on intricate tissues such as leaves. Leaves that have become necrotic due to oxidative damage caused by ozone, etc. will eventually rot and grow mold.

なお、上記各実施例では、生鮮品保管庫内を0℃以上の温度に設定したが、本発明は、生鮮品保管庫内を0℃未満の低温度としても殺菌効果及び酸化障害の抑制効果を発揮できる。 In each of the above examples, the temperature inside the perishable storage was set to 0 ° C. or higher, but the present invention has a bactericidal effect and an effect of suppressing oxidative damage even when the temperature inside the perishable storage is set to a low temperature of less than 0 ° C. Can be demonstrated.

幾つかの実施形態によれば、紫外線を照射しても生鮮品保管庫の機材や保管生鮮品を痛めることなく、かつ保管庫に保管された生鮮品全体を効率良く殺菌でき、微生物の繁殖を抑制して生鮮品の腐敗を抑制し、生鮮品の鮮度を長期間保持できる。 According to some embodiments, the perishables stored in the perishables storage can be efficiently sterilized without damaging the equipment and the perishables stored in the perishables storage even when irradiated with ultraviolet rays, and the propagation of microorganisms can be promoted. It can suppress the spoilage of perishables and keep the freshness of perishables for a long time.

10(10A、10B、10C、10D) 保管装置
12 生鮮品保管庫
14 温度調整部
16 空気流発生部
18 照射部
20 断続照射制御部
22 加湿部
24 ケーシング
26 ヒータ
28 冷凍機
30 熱交換器
32 貯水槽
34 散水装置
35 放電ランプ
36 放電ランプ光源
38 ファン
40 紫外線照射窓
42 かご
44 連続搬送式フリーザ
46 コンベア
48 オゾン濃度センサ
a 空気流
b 空気流路
f 生鮮品
o 酸化障害
w 加湿用水
10 (10A, 10B, 10C, 10D) Storage device 12 Fresh goods storage 14 Temperature control unit 16 Air flow generator 18 Irradiation unit 20 Intermittent irradiation control unit 22 Humidification unit 24 Casing 26 Heater 28 Refrigerator 30 Heat exchanger 32 Water storage Tank 34 Sprinkler 35 Discharge lamp 36 Discharge lamp Light source 38 Fan 40 Ultraviolet irradiation window 42 Basket 44 Continuous transport freezer 46 Conveyor 48 Ozone concentration sensor a Air flow b Air flow path f Fresh product o Oxidation disorder w Humidification water

Claims (4)

保管庫内で生鮮品をチルド状態以上且つ10℃以下の温度で保管する生鮮品保管工程と、
前記生鮮品の周囲に空気流を形成する空気流形成工程と、
前記空気流を冷却可能な熱交換器と前記生鮮品との間に配置されたエキシマランプ又は希ガス蛍光ランプを含む照射部を用いて前記空気流に紫外線を断続的に照射してオゾン又はラジカルを生成すると共に、前記オゾンやラジカルを前記空気流により前記保管庫の庫内全域に拡散させる紫外線照射工程と、
を備え、
前記紫外線照射工程では、前記保管庫を閉じた状態において、前記生鮮品の前記保管庫内での保管期間中において、前記紫外線を照射するランプの点灯と消灯とを複数回繰り返す
ことを特徴とする生鮮品の保管方法。
The perishables storage process, in which perishables are stored in the storage at a temperature of chilled or higher and 10 ° C or lower ,
An air flow forming step of forming an air flow around the perishable product,
Ozone or radicals are intermittently irradiated to the air flow with ultraviolet rays using an irradiation unit including an excima lamp or a rare gas fluorescent lamp arranged between a heat exchanger capable of cooling the air flow and the fresh product. And an ultraviolet irradiation step in which the ozone and radicals are diffused throughout the inside of the storage by the air flow.
With
The ultraviolet irradiation step is characterized in that, in a state where the storage is closed, the lamp that irradiates the ultraviolet light is turned on and off a plurality of times during the storage period of the fresh food in the storage. How to store fresh produce.
前記紫外線照射工程は、
前記紫外線の照射時間と前記オゾン又はラジカルの濃度との積で求められる積算濃度に基づいて、前記紫外線を断続照射するものであることを特徴とする請求項1に記載の生鮮品の保管方法。
The ultraviolet irradiation step is
The method for storing fresh produce according to claim 1, wherein the ultraviolet rays are intermittently irradiated based on an integrated concentration obtained by multiplying the irradiation time of the ultraviolet rays and the concentration of ozone or radicals.
前記紫外線照射工程は、
前記生鮮品保管工程において前記紫外線を断続照射させ、前記生鮮品の周囲の前記積算濃度が、前記生鮮品の殺菌効果が現れる下限値と前記生鮮品の表面に酸化障害が現れる上限値との間の値になるように制御するものであることを特徴とする請求項2に記載の生鮮品の保管方法。
The ultraviolet irradiation step is
In the perishables storage step, the perishables are intermittently irradiated, and the integrated concentration around the perishables is between the lower limit at which the bactericidal effect of the perishables appears and the upper limit at which oxidative damage appears on the surface of the perishables. The method for storing fresh produce according to claim 2, wherein the value is controlled so as to be the value of.
前記紫外線は200nm未満の波長域を有する真空紫外線であることを特徴とする請求項1乃至3の何れか1項に記載の生鮮品の保管方法。 The method for storing fresh produce according to any one of claims 1 to 3, wherein the ultraviolet rays are vacuum ultraviolet rays having a wavelength range of less than 200 nm.
JP2018248472A 2015-05-29 2018-12-28 Perishables storage device and storage method Active JP6764925B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110929 2015-05-29
JP2015110929 2015-05-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017521939A Division JP6483820B2 (en) 2015-05-29 2016-05-30 Fresh product storage device and storage method

Publications (2)

Publication Number Publication Date
JP2019054824A JP2019054824A (en) 2019-04-11
JP6764925B2 true JP6764925B2 (en) 2020-10-07

Family

ID=57440635

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017521939A Active JP6483820B2 (en) 2015-05-29 2016-05-30 Fresh product storage device and storage method
JP2018248472A Active JP6764925B2 (en) 2015-05-29 2018-12-28 Perishables storage device and storage method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017521939A Active JP6483820B2 (en) 2015-05-29 2016-05-30 Fresh product storage device and storage method

Country Status (5)

Country Link
JP (2) JP6483820B2 (en)
KR (1) KR101980997B1 (en)
CN (1) CN107613787B (en)
RU (1) RU2666747C1 (en)
WO (1) WO2016194877A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194877A1 (en) * 2015-05-29 2016-12-08 株式会社前川製作所 Fresh product storage system and storage method
JP6752488B2 (en) * 2016-12-21 2020-09-09 アクア株式会社 Refrigerator with sterilizer and sterilizer
JP7145365B2 (en) * 2018-06-05 2022-10-03 独立行政法人国立高等専門学校機構 Sterilization or pest control system and sterilization or pest control method
KR102555716B1 (en) * 2019-07-01 2023-07-14 한국식품연구원 Plasma ozon gas processing system and method for hazards removal of grain
US20210018248A1 (en) * 2019-07-19 2021-01-21 Lee C. Ditzler System and method to inhibit microbial growth in mass storage of produce
JP7319206B2 (en) * 2020-01-31 2023-08-01 フクシマガリレイ株式会社 Defroster
JP2021188757A (en) * 2020-05-26 2021-12-13 日栄インテック株式会社 Freshness retention device
CN114793066B (en) 2021-01-26 2023-12-01 合肥美的电冰箱有限公司 Xenon lamp power supply, purifying device and refrigerating equipment
GB202114566D0 (en) * 2021-10-12 2021-11-24 Vitec Microgenix Ltd Transportation and storage of fresh produce

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521685U (en) * 1991-09-04 1993-03-23 三菱重工業株式会社 Freshness equipment
JP3775404B2 (en) * 1997-03-28 2006-05-17 三浦工業株式会社 Operating method of food machine with sterilization means
US5901564A (en) * 1997-12-08 1999-05-11 Comeau, Ii; Richard J. System for germicidal disinfecting of food inside of refrigerators using ultraviolet radiation
JPH11206316A (en) * 1998-01-29 1999-08-03 Mitsubishi Heavy Ind Ltd Device for retaining freshness of stored material and retention of freshness
US6066348A (en) * 1998-09-23 2000-05-23 American Air Liquide Inc. Method of disinfecting a foodstuff using gaseous ozone
JP3635945B2 (en) * 1998-10-30 2005-04-06 いすゞ自動車株式会社 Freshness holding device
JP2005318816A (en) * 2004-05-07 2005-11-17 Ishikawajima Harima Heavy Ind Co Ltd Sterilizer for powdery material
US20100236269A1 (en) * 2007-11-06 2010-09-23 Panasonic Corporation Refrigerator
JP2010193829A (en) 2009-02-26 2010-09-09 Mitsubishi Electric Air Conditioning & Refrigeration Plant Co Ltd Method and apparatus for food sterilization and storage
CN101524124B (en) * 2009-05-05 2011-12-21 刘传林 Harmless processing method of raw and fresh food
JP2013155995A (en) 2012-01-31 2013-08-15 Fujitsu General Ltd Humidifying device
JP2014025613A (en) 2012-07-25 2014-02-06 Hoshizaki Electric Co Ltd Sterilizer of cooling storage
JP2014055717A (en) * 2012-09-12 2014-03-27 Hitachi Appliances Inc Refrigerator
JP2014169254A (en) * 2013-03-04 2014-09-18 Nobuko Hagiwara Disinfection and freshness retention apparatus using ultrafine gas water, disinfection and freshness retention method, and perishable food or plant treated with the disinfection and freshness retention method
CN104522146A (en) * 2014-12-24 2015-04-22 中国科学院昆明植物研究所 Preservation method of tricholoma matsutake
WO2016194877A1 (en) * 2015-05-29 2016-12-08 株式会社前川製作所 Fresh product storage system and storage method

Also Published As

Publication number Publication date
JP2019054824A (en) 2019-04-11
KR101980997B1 (en) 2019-05-21
CN107613787B (en) 2021-03-30
WO2016194877A1 (en) 2016-12-08
KR20170137920A (en) 2017-12-13
CN107613787A (en) 2018-01-19
JP6483820B2 (en) 2019-03-13
RU2666747C1 (en) 2018-09-12
JPWO2016194877A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6764925B2 (en) Perishables storage device and storage method
KR101787459B1 (en) Method and apparatus for automatically setting the environment for aging vacuum packed meat according to the type of meat
JP2009039000A (en) Food drying method, and storehouse equipped with food drying means
CN105230770A (en) Fresh keeping storehouse with ultraviolet rays
JP2020094717A (en) refrigerator
WO2016021624A1 (en) Method and apparatus for drying foods, and food
JP6580968B2 (en) Food drying method and drying apparatus
ES2927796T3 (en) Procedure for regulating the atmosphere of a refrigerated room
JP6928504B2 (en) refrigerator
US20220061342A1 (en) Ingredient freezing system and method for producing frozen ingredient
JP2008161153A (en) Long-term preservation method for raw sweet potato
WO2010121113A1 (en) Systems and methods for controlled pervaporation in horticultural cellular tissue
CN113424864B (en) Method for killing microorganisms on surface of cold-chain food by using low-temperature carbon dioxide
Unni et al. 10 ChaptEr Use of pulsed Light in Food processing
CN210708781U (en) Edible mushroom fresh-keeping device
JP2005192448A (en) Freshness-retaining apparatus
Alexandre et al. Traditional and emerging technologies for strawberry processing
JP2017108680A (en) Garden stuff preservation apparatus and preservation method
DE102013010399B4 (en) Germ-free, temperature-controlled refrigerator
KR101468720B1 (en) Apparatus to recover freshness of frozen food
RU2262279C2 (en) Method for disinfecting of semi-finished meat product
MITELUŢ et al. Innovative preservation technologies for a sustainable food system
Giri et al. Thermophysical and Physicochemical Technologies for Drying of Food Products
JP2024032627A (en) Multi-functional led irradiation device
US20210018248A1 (en) System and method to inhibit microbial growth in mass storage of produce

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6764925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250