JP6756519B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP6756519B2
JP6756519B2 JP2016098612A JP2016098612A JP6756519B2 JP 6756519 B2 JP6756519 B2 JP 6756519B2 JP 2016098612 A JP2016098612 A JP 2016098612A JP 2016098612 A JP2016098612 A JP 2016098612A JP 6756519 B2 JP6756519 B2 JP 6756519B2
Authority
JP
Japan
Prior art keywords
control
power
vehicle
auxiliary load
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016098612A
Other languages
English (en)
Other versions
JP2017208898A (ja
Inventor
敏也 土生
敏也 土生
昇広 山田
昇広 山田
康資 岩瀬
康資 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016098612A priority Critical patent/JP6756519B2/ja
Publication of JP2017208898A publication Critical patent/JP2017208898A/ja
Application granted granted Critical
Publication of JP6756519B2 publication Critical patent/JP6756519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は電動車両に関し、より特定的には、回生制動システムを有する電動車両に関する。
従来より、電気自動車やハイブリッド自動車等の駆動用電動機を搭載した電動車両では、駆動用電動機が回生発電を伴う負トルクを発生することによって、車両制動力の一部または全部を賄う、回生ブレーキシステムが用いられている。
特開平6−165304号公報(特許文献1)では、障害物検出装置と連動させた回生ブレーキシステムにおいて、障害物の存在を検知した警報信号の発生時には、界磁コイルの電流値を最大値まで増加させることによる自動ブレーキングを行う制御が記載されている。
特開平6−165304号公報
しかしながら、特許文献1による自動ブレーキングでは、障害物に対する衝突の危険度が増加したときに回生制動力を最大限確保できる一方で、蓄電装置が過充電により劣化することが懸念される。特に、車載蓄電装置の適用が進められているリチウムイオン二次電池では、高充電状態が継続すると、リチウムイオン二次電池の負極におけるリチウム金属の析出によって、劣化が進行することが知られている。
一方で、油圧によって作動する機械式ブレーキと比較すると回生ブレーキは応答性が高いため、障害物への接近がセンサによって検出されているような場面では、回生ブレーキを最大限確保することが、衝突回避の点からは好ましい。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、回生ブレーキシステムを備えた車両において、センサによる走行中の物標検出時において、蓄電装置の過充電を回避した上で回生制動力を確保することである。
本発明による電動車両は、車輪と機械的に連結されたロータを有する駆動用電動機と、蓄電装置と、検出器と、複数の補機負荷と、制御装置とを備える。電力変換器は、駆動用電動機および蓄電装置の間に接続されて、蓄電装置の充放電を伴った双方向の電力変換によって駆動用電動機の出力を制御するように構成される。検出器は、車両外部の物標を検出するように構成される。複数の補機負荷は、駆動用電動機および蓄電装置の間の電力変換経路と電気的に接続されて、ユーザ操作に応じて作動する。制御装置は、駆動用電動機が回生発電によって車両の制動トルクを出力するように電力変換器を制御する回生制御を実行する。さらに、制御装置は、物標への衝突危険度を定量評価するためのパラメータ値を算出するとともに、衝突危険度の上昇に応じてパラメータ値が判定値を超えると、複数の補機負荷のうちの、ユーザ操作が入力されていない補機負荷のうちの少なくとも一部を作動する強制作動制御を伴って回生制御を実行する。
上記電動車両によれば、車外の物標に対する衝突危険度の上昇時には、補機負荷の強制作動制御を伴って回生制御を実行することができる。したがって、補機負荷全体での消費電力の増大により、蓄電装置を過充電から保護する制限範囲内での回生電力の上限値を緩和することができる。この結果、蓄電装置の過充電を回避した下で、回生制動力を確保することが可能となる。
好ましくは、制御装置は、強制作動制御の実行時において、蓄電装置の充電状態の継続に応じて、複数の補機負荷全体による消費電力を段階的に増加させる。
このようにすると、自動ブレーキのオン時に代表される連続的な回生制御の実行中に、蓄電装置の過充電保護のために回生制動力急峻に変化することを防止できる。
また好ましくは、制御装置は、所定の自動運転機能の作動中には、パラメータ値が判定値を超えても、強制作動制御を非実行とする。
このようにすると、オートクルーズコントロールによる減速に伴う先行車両との接近時や、パーキングアシスト制御中の隣接車両との接近等、むやみに補機負荷を作動させると車両周囲に悪影響を及ぼす虞がある場面では、強制作動制御をオフすることができる。
本発明によれば、回生ブレーキシステムを備えた車両において、センサによる走行中の物標検出時において、蓄電装置の過充電を回避した上で回生制動力を確保することができる。
本発明の実施の形態に従う電動車両の構成例を説明する概略ブロック図である。 本発明の実施の形態に従う電動車両における自動ブレーキの作動例を説明する概念図である。 本発明の実施の形態に従う電動車両における自動ブレーキの状態遷移図である。 本実施の形態に従う電動車両における補機負荷の強制作動制御を説明するフローチャートである。 補機負荷の強制作動制御の作動例を説明する概念図である。 回生制御中における蓄電装置の充電動作点の変化の一例を説明する概念図である。 本実施の形態の変形例に従う電動車両における補機負荷の強制作動制御を説明するフローチャートである。 オートクルーズコントロール(ACC)や渋滞アシストコントロール(TJA)の適用時における危険度パラメータの上昇例を説明する概念図である。 スピードマネジメントコントロールの適用時における危険度パラメータの上昇例を説明する概念図である。 パーキングアシストコントロールの適用時における危険度パラメータの上昇例を説明する概念図である。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では図中の同一または相当部分に同一符号を付して、その説明は原則的に繰返さないものとする。
図1は、本発明の実施の形態に従う電動車両の構成例を説明する概略ブロック図である。
図1を参照して、電動車両5は、動力源としてモータジェネレータ30およびエンジン40を備える。エンジン40は、ガソリン等の燃料燃焼による熱エネルギを変換した機械エネルギを発生する。エンジン40およびモータジェネレータ30のロータ(図示せず)は、動力分轄機構50を経由して車輪55と機械的に連結される。そして、モータジェネレータ30およびエンジン40が協調的に動作することによって、車輪55の回転力、すなわち、電動車両5の駆動力が発生される。すなわち、モータジェネレータ30は「駆動用電動機」として設けられる。
電動車両5は、さらに電源システム6を搭載する。電源システム6は、電動車両5に搭載された各機器に対して、高電圧および低電圧の2種類の電圧を供給するように構成される。電源システム6は、高電圧系の蓄電装置10と、SMR(System Main Relay)15と、電力制御ユニット(PCU)20と、制御装置100とを備える。
高電圧系の蓄電装置10は、たとえば、ニッケル水素やリチウムイオン等の再充電可能な二次電池で構成することができる。したがって、以下では、蓄電装置10をメインバッテリ10とも称する。メインバッテリ10の定格出力電圧は、たとえば、200(V)程度である。
なお、二次電池に代えて電気二重層キャパシタ等の他の蓄電素子によって、蓄電装置10を構成することも可能である。メインバッテリ10には、電圧、電流および温度を検出するためのセンサを含む監視ユニット11が配置される。監視ユニット11による検出値(電圧、電流および温度)は、制御装置100へ送出される。
メインバッテリ10の正極端子は電力線PLと電気的に接続され、メインバッテリ10の負極端子は電力線NLと接続される。SMR15は、電力線PLおよびNLに介挿接続される。PCU20は、SMR15を経由して、電力線PL,NLによってメインバッテリ10と電気的に接続される。したがって、SMR15の開放(オフ)により、メインバッテリ10を、PCU20を含む駆動系から電力的に切離すことができる。
電力線PLには、メインバッテリ10の電圧で作動する高電圧系の補機負荷80(1)〜80(m)が接続される(m:2以上の自然数)。たとえば、補機負荷80(1)〜8(m)には、図示しない、エアーコンディショナのコンプレッサ駆動用のインバータが含まれる。また、以下では、補機負荷80(1)〜80(m)を包括的に示す場合には、単に補機負荷80とも表記する。
PCU20は、メインバッテリ10およびモータジェネレータ30の間で双方向の電力変換を実行することにより、モータジェネレータ30の出力(トルク、回転数)を制御するように構成される。PCU20は、たとえば、直流/交流電力変換のためのインバータ(図示せず)を含んで構成される。あるいは、PCU20については、メインバッテリ10およびインバータ(図示せず)の間に、メインバッテリ10の出力電圧を昇圧可能なコンバータ(図示せず)をさらに配置するように構成することも可能である。
PCU20によって、モータジェネレータ30が正トルクを出力するように制御されることによって、電動車両5は前進方向の駆動力を発生することができる。あるいは、ブレーキペダル操作等による電動車両5の減速時には、車輪55に作用する負方向の動力によってモータジェネレータ30は回生発電することができる。たとえば、減速時には、PCU20は、制動トルク(車輪55の回転を妨げる方向のトルク)を発生するようにモータジェネレータ30の出力を制御する。PCU20は、モータジェネレータ30による回生発電電力をメインバッテリ10の充電電力に変換して、電力線PL,NL間に出力する。
さらに、電動車両5は、機械的な摩擦制動力を発生させる制動機構60を備える。制動機構60は、ブレーキキャリパ61と、円板形状のブレーキディスク62とを含む。ブレーキディスク62は、車輪55の駆動軸と回転軸が一致するように固定される。ブレーキキャリパ61は、図示しないホイールシリンダとブレーキパッドとを含む。ブレーキ油圧回路70からブレーキキャリパ61に油圧が供給されることによって、ホイールシリンダが作動する。作動したホイールシリンダがブレーキパッドをブレーキディスク62に押し付けることによって、ブレーキディスク62の回転が制限される。これにより、制動機構60は、制御装置100によって制御されたブレーキ油圧回路70からの油圧供給に応じて、機械的な車両制動力を発生する。以下では、制動機構60によって発生された制動力を、モータジェネレータ30による回生制動力と区別するために、機械制動力とも称する。電動車両5では、回生制動力および機械制動力の組み合わせによって、車両制動力を確保することができる。
制御装置100は、電子制御ユニット(ECU:Electronic Control Unit)で構成されて、電源システム6の動作を制御する。具体的には、制御装置100は、SMR15の開閉、PCU20の動作を制御する。さらに、制御装置100は、監視ユニット11からのメインバッテリ10の電圧、電流、温度の検出値に基づいて、メインバッテリ10の充放電および充電状態(SOC:State of Charge)を管理する。
アクセル開度センサ101は、アクセルペダル(図示せず)の開度(アクセル開度)を検出するとともに、検出結果を示す信号Acを出力する。ブレーキペダルセンサ102は、ブレーキペダル(図示せず)の操作状態を検出するとともに、検出結果を示す信号Brを出力する。車速センサ103は、電動車両5の速度を検出するとともに、検出結果を示す信号Vvを出力する。アクセル開度センサ101、ブレーキペダルセンサ102および、車速センサ103からの信号Ac,Br,Vvは、制御装置100へ入力される。制御装置100は、ユーザによるアクセルペダルおよびブレーキペダルの操作に応じた、駆動力または制動力が電動車両5に作用するように、モータジェネレータ30、エンジン40および、制動機構60の出力を制御する。これにより、ユーザ操作に沿った車両走行が実現される。
電源システム6は、さらに、メインバッテリ10の出力電圧よりも低電圧で動作する補機負荷の電源電圧を発生するための低電圧系の構成をさらに有する。具体的には、電源システム6は、低電圧系のための、DCDCコンバータ200、および、補機バッテリ250とを有する。補機バッテリ250の出力電圧は、たとえば12V程度である。
DCDCコンバータ200は、電力線PL上の直流電圧を降圧して、電源配線PXLおよび接地配線GL間へ出力する。DCDCコンバータ200の出力電圧は、制御装置100からの電圧指令値Vdc*に従って制御される。
補機バッテリ250の負極端子は接地配線GLと接続される。一方で、補機バッテリ250の正極端子は、電源配線PXLと電気的に接続される。さらに電源配線PXLには、低電圧系の補機負荷210(1)〜210(n)が接続される(n:2以上の自然数)。補機負荷(定電圧系)210(1)〜210(n)には、ヘッドランプ、テールランプおよびハザードランプ等の照明器具類、ワイパーやドア開閉用の小型モータ、クランション用のホーン、室内空調機器(ファン)、ならびに、オーディオ機器等が含まれる。さらに、電源配線PXLは、制御装置100とも接続される。すなわち、制御装置100についても、低電圧系の電源電圧によって作動する。以下では、補機負荷210(1)〜210(n)を包括的に示す場合には、単に補機負荷210とも表記する。
このように、高電圧系の補機負荷80および低電圧系の補機負荷210は、PCU20による、モータジェネレータ30およびメインバッテリ10間の電力変換経路上の電力線PL,NLと電気的に接続されている。したがって、補機負荷80,210の作動によって、メインバッテリ10の蓄積電力および/またはモータジェネレータ30による発電電力(回生電力)が消費される。
操作スイッチ105は、高電圧系の補機負荷80(1)〜80(m)および低電圧系の補機負荷210(1)〜210(n)の作動および停止を、ユーザが直接的または間接的に指示するためのスイッチ類を包括的に表記するものである。たとえば、操作スイッチ105は、ヘッドライト等の各照明器具の直接的な作動/停止を指令するスイッチや、車両周囲の照度等に応じた各照明器具の作動/停止の自動制御のオンオフを指令するスイッチを含む。
制御装置100は、補機負荷80(1)〜80(m),210(1)〜210(n)の作動を制御する。基本的には、操作スイッチ105に対するユーザ操作に応じて、制御装置100は、補機負荷80(1)〜80(m),210(1)〜210(n)の各々の作動および停止を制御する。
さらに、電動車両5には、ドライバが視覚および/または聴覚によって認識可能な警報を出力するための警報出力器120が設けられる。警報出力器120は、警告灯、スピーカ等によって構成され、制御装置100によって制御されて、ドライバに対して警報を出力する。
電動車両5には、さらに、車両外部の衝突対象物となる物標(歩行者、静止物体、先行車両または後続車両等を包括するもの)を検出するための物標検出センサ110が設けられる。物標検出センサ110は、「検出器」の実施例に対応し、車外の物標を検出可能であれば、任意の構成とすることができる。たとえば、ミリ波センサと、カメラ(単眼カメラまたはステレオカメラ)との組合せによって、物標を検出する構成が公知である。
制御装置100は、物標検出センサ110による検出結果に基づいて、電動車両5の物標に対する衝突危険度を定量化した危険度パラメータPdgを算出する。衝突危険度を定量化したパラメータとしては、衝突余裕時間(TTC:Time-To-Collision)、停止余裕度(MTC:Margin-To-Collision)、車間時間(THW:Time-Headway)、あるいは、視覚危険度(KdB)等が知られており、これらの指標を適宜採用して、危険度パラメータPdgを算出することができる。なお、本実施の形態では、危険度パラメータPdgは、値が高いほど衝突危険度が高いものとする。たとえば、衝突余裕時間の逆数(1/TTC)を、危険度パラメータPdgとすることができる。
電動車両5では、物標検出センサ110による検出結果に基づいて自動的に車両制動力を発生させる自動ブレーキ制御が実行される。
図2は、電動車両5における自動ブレーキの作動例を説明する概念図である。
図2を参照して、電動車両5の前方の静止した障害物300が物標として、物標検出センサ110(図1)によって検出される。時刻t1の時点では、障害物300までの距離が長いため、危険度パラメータPdgはほぼ0である。
その後、危険度パラメータPdgは、電動車両5が障害物300に接近するにつれて上昇する。時刻t2では、危険度パラメータPdgが閾値Pt1を超えることにより、警報出力器120(図1)を用いて、ドライバに対して警告を通知される。
時刻t3では、電動車両5が障害物300にさらに接近することにより、危険度パラメータPdgが閾値Pt2を超えるのに応じて、自動ブレーキがオンされる。自動ブレーキがオンされると、仮にドライバによってブレーキペダル(図示せず)が操作されていなくても、制御装置100による制動機構60および/またはモータジェネレータ30(PCU20)の制御によって、自動的に車両制動力が発生される。
時刻t3の時点で開始される自動ブレーキは、電動車両5を自動的に減速させるための比較的緩やかなブレーキである。時刻t4において、さらに危険度パラメータPdgが上昇して、閾値Pt3を超えると、衝突回避のために最大限の制動力が出力されるように、自動ブレーキが制御される。
図3には、電動車両5における自動ブレーキの状態遷移が示される。
図3に示されるように、自動ブレーキはデフォルト状態ではオフされる。そして、危険度パラメータPdgが閾値Pt2を超えると、起動条件が成立することによって、自動ブレーキがオンされる。一旦、自動ブレーキがオンされると、ブレーキペダルの操作に係わらず、危険度パラメータPdgの上昇に応じて、車両制動力が増大される。そして、自動ブレーキのオン後、電動車両5の停止が確認されると(Vv=0)、自動ブレーキはオフに復帰する。
自動ブレーキにおける車両制動力についても、図1で説明したように、制動機構60による機械制動力およびモータジェネレータ30による回生制動力の組み合わせによって出力することができる。回生制動力は機械制動力と比較して応答性が高いため、自動ブレーキでは、回生制動力を確保することが好ましい。
一方で、回生制動力の発生は、メインバッテリ10の充電電力の発生を伴うため、メインバッテリ10が過充電とならない範囲内に、回生制動力を制限する必要がある。一般的には、メインバッテリ10の状態(SOCや充電履歴)を考慮して、過充電が回避されるように充電電力上限値Winが設定される。そして、モータジェネレータ30のトルク指令値は、充電電力上限値Winを超える充電電力が発生しない範囲内で設定されることになる。ドライバのブレーキペダル操作に応じた車両制動力、または、自動ブレーキによって設定された車両制動力に対して、上記の制限を受ける回生制動力が不足する場合には、不足分を制動機構60によって発生することで、必要な車両制動力を確保することが可能となる。
特に、メインバッテリ10がリチウムイオン電池である場合には、過大な充電電流の発生、特に、継続的な充電電流の発生により、リチウムイオン二次電池の負極電位がリチウム基準電位まで低下することによって、リチウム金属が析出する虞がある。このため、単純なSOCや電池温度のみでなく、充電電流の履歴に基づいて充電電力上限値Winを設定することが好ましい。
このように、メインバッテリ10の保護のために回生制動力の確保が制限される一方で、危険度パラメータPdgの上昇により衝突危険度が高まっている状況では、応答性の高い回生制動力を活用して車両制動力を発生することが好ましい。したがって、本実施の形態に従う電動車両では、以下のように、補機負荷の強制作動制御を回生制御と組み合わせる。
図4は、本実施の形態に従う電動車両における補機負荷の強制作動制御を説明するフローチャートである。図4に示される制御処理は、制御装置100によって周期的に実行される。
図4を参照して、制御装置100は、ステップS100により、回生制御中であるか否かを判定する。モータジェネレータ30による回生制動力の発生時には、ステップS100はYES判定とされて、処理はステップS110に進められる。回生制御時には、図4とは別個の制御処理によって、機械制動力および回生制動力の配分を含む車両制動力の設定、ならびに、当該設定に従う制動機構60および/またはモータジェネレータ30(PCU20)の制御が実行される。車両制動力の設定には、図2および図3で説明した自動ブレーキ制御も反映される。
制御装置100は、ステップS110では、危険度パラメータPdgを閾値Ptと比較する。閾値Ptは、自動ブレーキ制御との連動のために、Pt>Pt2(たとえば、Pt=Pt3)に設定することが好ましい。なお、危険度パラメータPdgは、上記自動ブレーキ制御のために周期的に算出されている。
制御装置100は、Pdg>Ptの場合(S110のYES判定時)には、ステップS120に処理を進めて、補機負荷の強制作動制御をオンする。補機負荷の強制作動制御とは、図1に示された電圧系の補機負荷210(1)〜210(n)および補機負荷80(1)〜80(m)のうちから、車両走行に悪影響を及ぼさないものについて、操作スイッチ105によってユーザからの作動指令が入力されていなくても、制御装置100からの指令によって自動的に作動するものである。たとえば、図5に示されるように、低電圧系の補機負荷210(1)〜210(n)に含まれる、ヘッドライト91および/またはテールランプ92が強制的に作動(点灯)される。
制御装置100は、ステップS130により、メインバッテリ10の状態に基づいて、強制作動の対象とする補機負荷を決定する。たとえば、補機負荷の作動パターンを複数種類予め設定しておき、当該時点での充電余裕度に応じて作動パターンを選択することによって、強制作動の対象となる補機負荷を決定することができる。充電余裕度としては、充電電力上限値Winを用いてもよく、充電電流の履歴等に基づいて過充電の危険度を定量的に示すパラメータを別途定義してもよい。
ステップS130では、さらに、強制作動の対象となった補機負荷による消費電力が推定される。この消費電力は、上記の作動パターン毎に予め設定することができる。さらに、回生制御では、補機負荷による消費電力を考慮して、モータジェネレータ30が発生する回生トルク(すなわち、回生制動力)が設定される。
強制作動の対象となる補機負荷を増やして、補機負荷全体での消費電力を増加させるほど、回生制動による発電電力からメインバッテリ10の充電に回される電力が低下する。この結果、回生電力から補機負荷による消費電力を差し引いた電力が、充電電力上限値Winを超えない範囲内に回生電力を制限すればよくなるため、充電電力上限値Winを超える回生電力が発生するように、回生制動力を設定することも可能となる。すなわち、補機負荷の強制作動制御をオンすることによって、メインバッテリ10を過充電から保護するための回生制動力の上限値を緩和することができる。
制御装置100は、危険度パラメータPdgが閾値Ptを超えない場合(S110のNO判定時)には、ステップS140により、補機負荷の強制作動制御をオフする。この場合には、操作スイッチ105によるユーザ指令に応じて、補機負荷80(1)〜80(m),210(1)〜210(n)の各々の作動/停止が制御される。また、回生制御の非実行時(S100のNO判定時)においても、補機負荷の強制作動制御はオフされる。
このように、本実施の形態に従う電動車両では、車外の物標に対する衝突危険度の上昇時には、補機負荷の強制作動制御を伴って回生制御を実行することができる。したがって、補機負荷全体での消費電力の増大により、メインバッテリ10を過充電から保護する制限範囲内での回生電力の上限値を緩和することができる。この結果、蓄電装置の過充電を回避した下で、回生制動力を最大限確保することが可能となる。これにより、たとえば、自動ブレーキの作動時に回生制動力を確保することによって、蓄電装置の過充電からの保護と、衝突回避性能の向上とを両立することができる。
なお、図5の例のように、強制作動の対象をヘッドライト91および/またはテールランプ92とすると、衝突危険度が高まっている状況下で、車外に対する注意喚起を併せて実行することができる。
図6には、回生制御中におけるメインバッテリ10の動作点の変化例が示される。
図6を参照して、メインバッテリ10の充電時の動作点として、充電電力(電流)と当該電力(電流)での充電継続時間との組み合わせが示される。図6では、過充電危険度判定の一例として、各充電電力(充電電流)に対する充電継続時間の限界値の集合として、充電限界ライン500が設定される。
メインバッテリ10において、充電限界ライン500よりも下側領域での動作点での充電は、劣化進行が回避される安全使用領域での充電に相当する。一方で、充電限界ライン500よりも上部領域の動作点での充電は、メインバッテリ10の劣化進行が生じる虞がある、危険使用領域での充電に相当する。たとえば、リチウムイオン二次電池では、いわゆる充電深度を評価するための手法として、図6のような危険度判定が採用される。
電動車両5の回生制御が継続される場面では、メインバッテリ10は連続的に充電される。代表的には、自動ブレーキのオン時に、このような継続的な充電が実行される。まず、電力P1での充電がT1継続すると(充電動作点501)、危険使用領域での充電を回避するために、メインバッテリ10の充電電力をP2に低下させる。その後、電力P2での充電が継続することによって、メインバッテリ10が充電動作点502に到達すると、さらに充電電力をP3に低下することによって、危険使用領域での充電を回避することができる。しかしながら、回生制動力および機械制動力の応答性の差を考慮すると、この際に回生制動力の急峻な変化は回避することが好ましい。
したがって、充電動作点501からの充電電力の変化時に、補機負荷全体による消費電力をPx1からPx2に増加させるように、ステップS130(図4)による補機負荷の決定を行うことにより、充電電力の低下に伴う回生電力の低下、すなわち、回生制動力の低下を緩和することができる。
同様に、充電動作点502からの充電電力への変化時に、補機負荷全体による消費電力をPx2からPx3に増加させるように、ステップS130(図4)による補機負荷の決定を行うことにより、充電電力の低下に伴う回生電力の低下、すなわち、回生制動力の低下を緩和することができる。
このようにすると、自動ブレーキのオン時に代表される連続的な回生制御の実行中に、メインバッテリ10の過充電保護のために回生制動力が急峻に変化することを防止できる。
[変形例]
車両の自動運転支援制御として、種々の制御が提案されている。これらの自動運転支援制御では、カーブ接近時における車間保持のための減速や、駐車時の運転支援制御等、物標への接近時においても、衝突危険度が通常走行と比較してさほど高くないケースがある。
このようなケースに、上述のようにヘッドランプ等の補機負荷を強制的に作動させると、周囲に対して却って悪影響を及ぼす虞がある。このため、実施の形態の変形例として、所定の自動運転モードの適用時には、補機負荷の強制作動制御を非実行とする制御を説明する。
図7は、本実施の形態の変形例に従う電動車両における補機負荷の強制作動制御を説明するフローチャートである。図7に示される制御処理についても、制御装置100によって周期的に実行することができる。
図7を図4と比較して、実施の形態の変形例では、制御装置100は、回生制御中において(S100のYES判定時)、ステップS105により、所定の自動運転モードの適用中であるか否かが判定される。
制御装置100は、所定の自動運転モードの選択時(S105のYES判定時)には、ステップS140に処理を進めて、補機負荷の強制作動制御を非実行とする。これにより、危険度パラメータPdgが閾値Ptより高くなっても、補機負荷の強制作動制御は実行されなくなる。
たとえば、所定の運転モードには、図8に示されるオートクルーズコントロール(ACC)や渋滞アシストコントロール(TJA)、図9に示されるスピードマネジメントコントロール、ならびに、図10に示されるパーキングアシストコントロールが含まれる。
図8を参照して、オートクルーズコントロール(ACC)や渋滞アシストコントロール(TJA)の適用時には、電動車両5は、物標検出センサ110によって検出された先行車両5xに追従走行する。このため、カーブ走行時等、先行車両5xの減速時には、車間距離を調整するために自動減速が行われる。この際に、先行車両5xの接近に応じて、危険度パラメータPdgが上昇する。
図9を参照して、スピードマネジメントコントロールの適用時には、電動車両5は、急カーブへの接近時には、自動減速が行われる。この際に、ガードレール等の障害物5zへの接近に応じて、危険度パラメータPdgが上昇する。
図10を参照して、パーキングアシストコントロールの適用時には、電動車両5は、車両位置PS1からPS2に前進後、一旦後進走行した後、再び車両位置PS3へ前進した後、車両位置PS4まで後進走行するように、ドライバに対するガイダンスが提供される。このようなガイダンスに従って電動車両5を移動させる中で、隣接の車両5x,5yへの接近に応じて、危険度パラメータPdgが上昇する。
上述した図8〜図10のような場面での危険度パラメータPdgの上昇に応じて、ヘッドライト91の点灯等の強制的な補機負荷の作動制御をオンすると、車両周囲に対して違和感を与えることにより、却って円滑な車両運転を阻害する虞がある。したがって、図7に示された変形例では、上述のような所定の自動運転モードの適用時には、危険度パラメータの上昇に伴う補機負荷の強制作動制御をオフに維持する。これにより、上述した本実施の形態による効果に加えて、特定の自動運転モードの適用時における円滑な運転を実現することができる。
なお、本実施の形態では、電動車両5としてハイブリッド自動車を例示したが、駆動用電動機を搭載する構成であれば、エンジン40の搭載が省略された電気自動車、あるいは、燃料電池自動車によって、本発明が適用される電動車両5を構成することも可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
5 電動車両(自車)、5x,5y 他車両、5z,300 障害物、6 電源システム、10 メインバッテリ(蓄電装置)、11 監視ユニット、30 モータジェネレータ、40 エンジン、50 動力分轄機構、55 車輪、60 制動機構、61 ブレーキキャリパ、62 ブレーキディスク、70 ブレーキ油圧回路、80(1)〜80(m) 補機負荷(高電圧系)、91 ヘッドライト、92 テールランプ、100 制御装置、101 アクセル開度センサ、102 ブレーキペダルセンサ、103 車速センサ、105 操作スイッチ、110 物標検出センサ、120 警報出力器、200 コンバータ、210(1)〜210(n) 補機負荷(低電圧系)、250 補機バッテリ、500 充電限界ライン、GL 接地配線、NL,PL 電力線、PS1〜PS4 車両位置、PXL 電源配線、Pdg 危険度パラメータ、Pt,Pt1〜Pt3 閾値。

Claims (4)

  1. 車輪と機械的に連結されたロータを有する駆動用電動機と、
    蓄電装置と、
    前記駆動用電動機および前記蓄電装置の間に接続されて、前記蓄電装置の充放電を伴った双方向の電力変換によって前記駆動用電動機の出力を制御するための電力変換器と、
    車両外部の物標を検出するための検出器と、
    前記駆動用電動機および前記蓄電装置の間の電力変換経路と電気的に接続されて、ユーザ操作に応じて作動する複数の補機負荷と、
    前記駆動用電動機が回生発電によって車両の制動トルクを出力するように前記電力変換器を制御する回生制御を実行するための制御装置を備え、
    前記制御装置は、前記物標への衝突危険度を定量評価するためのパラメータ値を算出するとともに、前記衝突危険度の上昇に応じて前記パラメータ値が判定値を超えると、前記複数の補機負荷のうちの、前記ユーザ操作が入力されていない補機負荷のうちの少なくとも一部を作動する強制作動制御を伴って前記回生制御を実行する、電動車両。
  2. 前記制御装置は、前記強制作動制御の実行時において、前記蓄電装置の充電状態の継続に応じて、前記複数の補機負荷全体による消費電力を段階的に増加させる、請求項1記載の電動車両。
  3. 前記制御装置は、所定の自動運転モードの適用中には、前記パラメータ値が判定値を超えても、前記回生制御中における前記強制作動制御を非実行とする、請求項1または2記載の電動車両。
  4. 前記強制作動制御で作動される負荷は、ヘッドライトおよびテールランプの少なくとも一方を含む、請求項1〜3のいずれか1項に記載の電動車両。
JP2016098612A 2016-05-17 2016-05-17 電動車両 Active JP6756519B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098612A JP6756519B2 (ja) 2016-05-17 2016-05-17 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098612A JP6756519B2 (ja) 2016-05-17 2016-05-17 電動車両

Publications (2)

Publication Number Publication Date
JP2017208898A JP2017208898A (ja) 2017-11-24
JP6756519B2 true JP6756519B2 (ja) 2020-09-16

Family

ID=60417238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098612A Active JP6756519B2 (ja) 2016-05-17 2016-05-17 電動車両

Country Status (1)

Country Link
JP (1) JP6756519B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296463B1 (ko) * 2017-12-15 2021-09-02 닛산 지도우샤 가부시키가이샤 회생 브레이크 제어 방법 및 회생 브레이크 제어 장치
KR102019045B1 (ko) * 2017-12-18 2019-09-06 현대자동차 주식회사 친환경 차량의 타행 주행 제어 방법
JP6620390B2 (ja) * 2017-12-21 2019-12-18 本田技研工業株式会社 電動車両
JP6620389B2 (ja) * 2017-12-21 2019-12-18 本田技研工業株式会社 電動車両
JP7120052B2 (ja) * 2019-01-28 2022-08-17 株式会社デンソー 車載電源システムの制御装置
WO2023175884A1 (ja) * 2022-03-18 2023-09-21 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489420B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489418B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489414B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489421B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489417B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489416B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489419B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
JP7489415B2 (ja) 2022-03-18 2024-05-23 本田技研工業株式会社 運転支援装置、運転支援方法、およびプログラム
NO20221078A1 (en) * 2022-10-07 2024-04-08 Green Energy As Automotive battery with regenerated electric charging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496603A (ja) * 1990-08-08 1992-03-30 Aisin Aw Co Ltd 電動車両における衝突防止装置
JP2008162441A (ja) * 2006-12-28 2008-07-17 Nissan Motor Co Ltd 駆動力制御装置
WO2012140746A1 (ja) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 電動車両の電源装置およびその制御方法
JP6493656B2 (ja) * 2014-08-22 2019-04-03 三菱自動車工業株式会社 車両の制動装置

Also Published As

Publication number Publication date
JP2017208898A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6756519B2 (ja) 電動車両
JP5184406B2 (ja) 電気自動車の制御装置
US9381897B2 (en) Method for operating a vehicle and driver assistance device
JP4743121B2 (ja) 車両の衝突時ブレーキ配分制御装置
KR100419937B1 (ko) 하이브리드 전기 자동차의 회생 제어장치
JP5810232B1 (ja) 車両用制御装置
JP6919720B2 (ja) ハイブリッド車両の制御方法、及び、制御装置
KR20140059214A (ko) 차량의 감속 장치를 제어하기 위한 방법
JP6996151B2 (ja) 車両用制御装置
US20140277882A1 (en) Control Strategy For An Electric Machine In A Vehicle
JP6927328B2 (ja) ハイブリッド車両の制御方法、及び、制御装置
JP2011255824A (ja) ハイブリッド車の制御装置
JP2008289303A (ja) 電力制御装置
EP2953231B1 (en) Autonomous control system
JP6626519B2 (ja) 車両用制御装置
US20180362042A1 (en) Vehicle
KR20150071568A (ko) 자동 긴급 제동 방법 및 시스템
JP7181101B2 (ja) 車両用制御装置
JP7353337B2 (ja) 車両の制動制御装置および制動制御可能な車両
KR101525730B1 (ko) 하이브리드 전기자동차의 엔진발전 제어방법
JP6788546B2 (ja) 車両用制動システム
KR20100035941A (ko) 하이브리드 차량의 감속경고방법
JP2021097574A (ja) 電動車両
KR20160040913A (ko) 스마트 전기자동차 및 그 동작 방법
JP6044176B2 (ja) 車両用発電制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200827

R150 Certificate of patent or registration of utility model

Ref document number: 6756519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250