JP6745344B2 - パターン形成方法、積層体の製造方法および電子デバイスの製造方法 - Google Patents

パターン形成方法、積層体の製造方法および電子デバイスの製造方法 Download PDF

Info

Publication number
JP6745344B2
JP6745344B2 JP2018537191A JP2018537191A JP6745344B2 JP 6745344 B2 JP6745344 B2 JP 6745344B2 JP 2018537191 A JP2018537191 A JP 2018537191A JP 2018537191 A JP2018537191 A JP 2018537191A JP 6745344 B2 JP6745344 B2 JP 6745344B2
Authority
JP
Japan
Prior art keywords
group
resin composition
pattern
photosensitive resin
negative photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018537191A
Other languages
English (en)
Other versions
JPWO2018043262A1 (ja
Inventor
犬島 孝能
孝能 犬島
勝志 伊藤
勝志 伊藤
ステファン ヴァンクロースター
ステファン ヴァンクロースター
哲 村山
哲 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2018043262A1 publication Critical patent/JPWO2018043262A1/ja
Application granted granted Critical
Publication of JP6745344B2 publication Critical patent/JP6745344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、パターン形成方法、積層体の製造方法および電子デバイスの製造方法に関する。
ポリイミドは、耐熱性及び絶縁性に優れるため、電子デバイスの絶縁層などに用いられている。また、ポリイミドは溶剤への溶解性が低いため、環化反応前の前駆体(ポリイミド前駆体)の状態で支持体などに適用した後、加熱してポリイミド前駆体を環化して硬化膜を形成することも行われている。
例えば、特許文献1、2には、ポリイミド前駆体と光重合開始剤とを含むネガ型感光性樹脂組成物を用いてパターンを形成することが記載されている。
特開2011−191749号公報 特開2014−201695号公報
ネガ型感光性樹脂組成物を用いてパターンを形成するにあたって、近年においては、段差を有する支持体上に形成したネガ型感光性樹脂組成物層に対してパターンを形成したり、ネガ型感光性樹脂組成物層を複数積層して2種以上のパターン形成を行うこともある。このような場合、厚みの異なる2種以上のパターンを形成することになる。厚みの異なる2種以上のパターンを形成する場合においては、パターンの厚さ毎にマスクおよび露光量を変えて行う方法が用いられている。しかしながら、この場合、露光工程を複数回行う必要があり、工程数が嵩んでいた。また、パターン間の厚み差が大きくなるに伴い、所望のパターン形状を形成しにくい傾向にあった。
なお、特許文献1、2には、厚さの異なるパターンを形成することに関する記載や示唆はない。
よって、本発明の目的は、厚さの異なる2種以上のパターンを、幅広い露光量にて解像性良く形成できるパターン形成方法、積層体の製造方法および電子デバイスの製造方法を提供することにある。
上記課題のもと、発明者が検討を行った結果、以下に示すパターン形成方法により上記課題を解決できることを見出し本発明を完成するに至った。本発明は以下を提供する。
<1> 樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成し、ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、
同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5〜10倍であり、
ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる、パターン形成方法。
<2> 支持体上にネガ型感光性樹脂組成物層を2層以上積層し、2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成する、<1>に記載のパターン形成方法。
<3> 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.75〜8倍である、<1>または<2>に記載のパターン形成方法。
<4> 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの2〜6倍である、<1>または<2>に記載のパターン形成方法。
<5> ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値の差が900mJ/cm以上であるネガ型感光性樹脂組成物を用いる、<1>〜<4>のいずれか1つに記載のパターン形成方法。
<6> 樹脂がポリイミド前駆体である、<1>〜<5>のいずれか1つに記載のパターン形成方法。
<7> ポリイミド前駆体が、下記式(1)で表される、<6>に記載のパターン形成方法;
式(1)中、A21およびA22は、それぞれ独立に、酸素原子または‐NH‐を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24はそれぞれ独立に、水素原子または1価の有機基を表す。
<8> 式(1)中、R23およびR24の少なくとも一方が、ラジカル重合性基を含む、<7>に記載のパターン形成方法。
<9> 式(1)における、R22は、芳香環を含む4価の基である、<7>または<8>に記載のパターン形成方法。
<10> 更に、金属層を形成する工程を含む、<1>〜<9>のいずれか1つに記載のパターン形成方法。
<11> <1>〜<10>のいずれか1つに記載のパターン形成方法を含む、積層体の製造方法。
<12> <1>〜<10>のいずれか1つに記載のパターン形成方法を含む、電子デバイスの製造方法。
本発明により、厚さの異なる2種以上のパターンを、幅広い露光量にて解像性良く形成できるパターン形成方法、積層体の製造方法および電子デバイスの製造方法を提供することが可能になった。
厚さの異なるパターンを説明する概略図である。 図1に示すパターンの形成工程を示す図である。 積層体の一実施形態の構成を示す概略図である。 電子デバイスの一実施形態の構成を示す概略図である。 段差を有するSi基板上に、ネガ型感光性樹脂組成物を適用した状態を示す図である。
以下に記載する本発明における構成要素の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アリル」は、「アリル」および「メタリル」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィー(GPC)測定に従い、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC−8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ−L、TSKgel Super HZM−M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。溶離液は特に述べない限り、THF(テトラヒドロフラン)を用いるものとする。また、検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
<パターン形成方法>
本発明のパターン形成方法は、樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いてネガ型感光性樹脂組成物層を形成し、ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5〜10倍であり、ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いることを特徴とする。
本発明によれば、ネガ型感光性樹脂組成物として、上述の露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いることで、幅広い露光量にて、上述の厚さの異なる2種以上のパターンを同時にかつ解像性良く形成できる。このため、少ない工程数で、厚みの異なるパターンを解像性良く形成できる。また、幅広い露光量にて上記のパターンを形成できるので、感光性組成物の経時での性能変動(例えば低感度化)や、装置のバラツキなどが生じても、所望のパターンを得られるという効果も期待できる。なお、本発明において、厚さの異なる2種以上のパターンを同時に形成するとは、1回の露光および現像の操作により、厚さの異なる2種以上のパターンを形成することを意味する。
本発明において、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値および最小値は、以下により定義される値である。パターン解像において、露光時における露光量が低すぎるとネガ型感光性樹脂組成物層の硬化が十分に進まず、所望のパターンを解像できない。また、露光量が高すぎるとマスク周縁部の未露光部分の硬化が進んでパターン太りが発生し、所望のサイズのパターンを解像できない。ネガ型感光性樹脂組成物を支持体に適用し、乾燥して厚さ15μmのネガ型感光性樹脂組成物層を形成し、厚さ15μmのネガ型感光性樹脂組成物層に対して露光量を変動させて露光し、未露光部を現像除去して厚さ15μm、線幅15μm以下(好ましくは線幅15μm)のパターンを形成した際において、露光時における露光量を変動させて露光し、厚さ15μm、線幅15μm以下(好ましくは線幅15μm)のパターンを解像可能な露光量のうち、最も低露光量の値を、露光量の最小値と定義し、最も高露光量の値を露光量の最大値とする。例えば、100mJ/cmまでの露光量では上記のパターンを解像できるものの、100mJ/cmを下回ると、硬化が十分に進まず、上記のパターンを解像できない場合は、100mJ/cmが露光量の最小値となる。また、例えば、1000mJ/cmまでの露光量では上記のパターンを解像できるものの、1000mJ/cmを超えると、パターン太りが発生して上記のパターンを解像できない場合は、1000mJ/cmが露光量の最大値となる。露光に使用される光(放射線)としては、可視光線、紫外線、遠紫外線、荷電粒子線、X線等の放射線を適宜に選択して使用することができるが、波長が190〜450nmの範囲にある光(放射線)が好ましい。例えば、ステッパー等の露光装置を用い、1μmから15μmまで、1μmごとの四方のベイヤーパターンを有するマスクを介してパターン露光することが好ましい。露光に際して用いることができる光(放射線)としては、g線、i線等の紫外線が好ましく、i線がより好ましい。
なお、本発明において、パターンの線幅とは、ネガ型感光性樹脂組成物層の現像除去部(ネガパターン)の線幅のことである。また、本発明において、下地の露出幅が、マスク寸法の0.8〜1.2倍である場合を、所望のサイズのパターンを解像できたとする。例えば、15μmの線幅のマスクを使用してパターンを形成した場合、下地の露出幅が、15±3μmである場合を、線幅15μmのパターンを解像できたとする。
本発明のパターン形成方法で用いるネガ型感光性樹脂組成物は、上述の露光量の最大値と最小値との差が600mJ/cm以上であり、700mJ/cm以上であることが好ましく、800mJ/cm以上であることがより好ましく、900mJ/cm以上であることが更に好ましい。上限は、特に限定はないが、各工程に必要な時間を短縮できるという理由から、1800mJ/cm以下であることが好ましく、1700mJ/cm以下であることがより好ましく、1600mJ/cm以下であることが更に好ましい。また、ネガ型感光性樹脂組成物については、上述の露光量の最大値および最小値から選ばれる少なくとも一方(好ましくは上述の露光量の最小値)は、50〜500mJ/cmの範囲(より好ましくは100〜400mJ/cmの範囲)にあることが好ましい。上述の露光量の最大値および最小値の両方が10〜2000mJ/cmの範囲(より好ましくは50〜1800mJ/cmの範囲)にあることが特に好ましい。
ネガ型感光性樹脂組成物における上述の露光量の最大値と最小値との差を600mJ/cmに調整する方法としては、樹脂と光重合開始剤の比率を調整する方法が挙げられる。また、樹脂とラジカル重合性化合物とを併用した場合においては、樹脂とラジカル重合性化合物と光重合開始剤との比率を調整することも好ましい。例えば、樹脂とラジカル重合開始剤の比率(質量比)で5:1〜10:1の範囲で調整し、ラジカル重合開始剤と光重合開始剤との比率(質量比)で2:1〜8:1の範囲で調整することも好ましい。
また、本発明において、同時に形成する厚さの異なるパターンにおける、最も厚いパターンの厚さ、および、最も薄いパターンの厚さとは、ネガ型現像によって形成されるパターンの厚さを意味する。例えば、図1における、A1、B1およびC1がパターンの厚みであり、図1におけるB1が最も厚いパターンの厚さに相当し、図1におけるA1が最も薄いパターンの厚さに相当する。図1における符号10はネガ型感光性樹脂組成物を用いて形成される樹脂層であり、符号20は支持体や金属層などの構造物である。図1に示すパターンは、凹凸等の段差を有する支持体20上にネガ型感光性樹脂組成物層11を形成し(図2(A))、次いで、パターンを有するマスク50を介して露光し(図2(B))、ついで、未露光部分を現像して除去して(図2(C))、所望のパターンを形成することができる。
本発明において、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5〜10倍であり、1.75〜8倍であることが好ましく、2〜6倍であることがより好ましい。なお、本発明においてパターンの厚みは、硬化後のパターンの厚みを意味する。
本発明のパターン形成方法によって形成されるパターンの厚みは、0.05〜100μmであることが好ましい。上限は、90μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。下限は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることが更に好ましい。
本発明において、同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、0.1〜100μmであることが好ましい。上限は、90μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることが更に好ましい。下限は、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることが更に好ましい。
本発明において、同時に形成する厚さの異なるパターンのうち、最も薄いパターンの厚さは、0.05〜75μmであることが好ましい。上限は、50μm以下であることが好ましく、30μm以下であることがより好ましい。下限は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、3μm以上であることが更に好ましい。
本発明のパターン形成方法は、支持体上に上述のネガ型感光性樹脂組成物層を2層以上積層し、2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成することが好ましい。ネガ型感光性樹脂組成物層を2層以上積層した場合、下地となる支持体の凹凸などに起因してネガ型感光性樹脂組成物層の厚みにばらつきが生じることがある。このため、より厚み差の大きいパターンを形成することがあるが、本発明によれば、このような場合においても、厚さの異なる2種以上のパターンを同時にかつ解像性良く形成できる。
以下、本発明のパターン形成方法について具体的に説明する。
本発明のパターンの製造方法は、樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成する工程(ネガ型感光性樹脂組成物層形成工程)を含む。本発明では、ネガ型感光性樹脂組成物として、上述の露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用いる。ネガ型感光性樹脂組成物の詳細については後述する。
支持体の種類は、用途に応じて適宜定めることができる。例えば、無機基板、樹脂基板、樹脂複合材料基板などが挙げられる。無機基板としては、例えばガラス基板、石英基板、シリコン基板、シリコンナイトライド(窒化シリコン)基板、および、それらのような基板上にモリブデン、チタン、アルミニウム、銅などを蒸着した複合基板が挙げられる。樹脂基板としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンスルフィド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド、オレフィン、セルロース、エピスルフィド化合物等の合成樹脂からなる基板が挙げられる。これらの基板は、上記の形態のまま用いられる場合は少なく、通常、最終製品の形態によって、例えば薄膜トランジスタ(TFT)素子のような多層積層構造が形成されている。なお、金属層などを有するネガ型感光性樹脂組成物層の表面に、更にネガ型感光性樹脂組成物層を形成する場合においては、金属層やネガ型感光性樹脂組成物層が支持体となる。
支持体へのネガ型感光性樹脂組成物の適用方法としては、塗布が好ましい。具体的な適用方法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法、およびインクジェット法などが例示される。ネガ型感光性樹脂組成物層の厚さの均一性の観点から、より好ましくはスピンコート法である。スピンコート法の場合、例えば、500〜5000rpmの回転数で、10秒〜1分程度適用することができる。
ネガ型感光性樹脂組成物層の厚さは、加熱後の膜厚が0.05〜100μmとなるように塗布することが好ましく、1〜50μmとなるように塗布することがより好ましい。また、形成されるネガ型感光性樹脂組成物層の厚さは、必ずしも均一である必要はない。例えば、図1に示すように、凹凸のある表面上にネガ型感光性樹脂組成物層を形成する場合、厚さの異なるネガ型感光性樹脂組成物層となることがある。
ネガ型感光性樹脂組成物層形成工程では、支持体上に形成したネガ型感光性樹脂組成物層に対し、乾燥を行ってもよい。乾燥温度は50〜150℃が好ましく、70〜130℃がより好ましく、90〜110℃がさらに好ましい。乾燥時間は、30秒〜20分が好ましく、1〜10分がより好ましく、3〜7分が更に好ましい。
本発明のパターン形成方法は、ネガ型感光性樹脂組成物層に対して露光および現像を行ってパターンを形成する工程を含む。具体的には、ネガ型感光性樹脂組成物層に対してパターン状に露光する露光工程、および、露光された樹脂組成物層の未露光部分を現像して除去することによってパターンを形成する現像工程を含む。そして、本発明では、ネガ型感光性樹脂組成物層に対して露光および現像を行って厚さの異なる2種以上のパターンを同時に形成する。厚さの異なる2種以上のパターンを同時に形成するには、凹凸等の段差のある支持体上にネガ型感光性樹脂組成物層を形成し、厚さの異なるネガ型感光性樹脂組成物層に対して、同時に露光および現像を行ってパターンを形成する方法が挙げられる。凹凸等の段差のある支持体としては、表面に金属層などの構造物が形成された支持体などが挙げられる。
露光工程において、ネガ型感光性樹脂組成物層への露光は、例えば、波長365nmでの露光エネルギー換算で50〜10000mJ/cmにて行うことが好ましく、100〜8000mJ/cmにて行うことがより好ましい。露光波長は、190〜1000nmの範囲で適宜定めることができ、240〜550nmが好ましい。
現像工程において、ネガ型感光性樹脂組成物層の現像は現像液を用いて行うことが好ましい。現像液としては、特に制限なく使用できる。溶剤が好ましい。現像液に用いる溶剤としては、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類などの有機溶剤が挙げられる。これらの詳細については、後述する樹脂組成物の欄で説明する溶剤が挙げられる。なかでも3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートが好ましく、シクロペンタノン、γ−ブチロラクトンがより好ましい。
現像時間としては、10秒〜5分が好ましい。現像時の温度は、特に定めるものではないが、20〜40℃で行うことができる。現像液を用いた処理の後、さらに、リンスを行ってもよい。リンスは、現像液とは異なる溶剤で行うことが好ましい。例えば、樹脂組成物に含まれる溶剤を用いてリンスすることができる。リンス時間は、5秒〜1分が好ましい。
本発明のパターン形成方法は、現像工程により得られたパターンを加熱する加熱工程を含むことが好ましい。加熱工程では、ポリイミド前駆体の環化反応が進行する。また、ネガ型感光性樹脂組成物がラジカル重合性化合物等のラジカル重合性成分を含む場合においては、未反応のラジカル重合性成分の硬化なども進行する。これにより、耐熱性などに優れたパターンを形成することができる。
加熱工程における最高加熱温度(加熱時の最高温度)としては、100〜500℃が好ましく、140〜400℃がより好ましく、160〜350℃がさらに好ましい。
加熱は、20〜150℃の温度から最高加熱温度まで1〜12℃/分の昇温速度で行うことが好ましく、2〜10℃/分がより好ましく、3〜10℃/分がさらに好ましい。昇温速度を1℃/分以上とすることにより、高い生産性を確保しつつ、アミンの過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、得られる膜の残存応力を緩和することができる。
加熱開始時の温度は、20〜150℃が好ましく、20℃〜130℃がより好ましく、25℃〜120℃がさらに好ましい。加熱開始時の温度は、最高加熱温度まで加熱を開始する際の温度のことをいう。例えば、ネガ型感光性樹脂組成物を支持体上に適用した後、乾燥させる場合、この乾燥後の温度が加熱開始温度である。加熱工程では、例えば、ネガ型感光性樹脂組成物に含まれる溶剤の沸点よりも30〜200℃低い温度から徐々に昇温させることが好ましい。
加熱工程においては、最高加熱温度に到達した後、10〜360分間加熱することが好ましく、20〜300分間加熱することがさらに好ましく、30〜240分間加熱することが特に好ましい。
加熱工程における加熱は段階的に行ってもよい。例として、25℃から180℃までは3℃/分で昇温し、180℃にて60分置き、180℃から200℃までは2℃/分で昇温し、200℃にて120分置く、といった工程が挙げられる。
加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気で行うことがポリイミド前駆体等の分解を防ぐ点で好ましい。酸素濃度は、50体積ppm以下が好ましく、20体積ppm以下がより好ましい。
加熱工程を終えたのち、冷却することが好ましい。冷却速度としては、1〜5℃/分であることが好ましい。
本発明のパターン形成方法は、金属層を形成する工程(金属層形成工程)を含んでいてもよい。金属層としては、特に限定なく、既存の金属種を使用することができる。例えば、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金およびタングステンが挙げられ、銅およびアルミニウムが好ましく、銅がより好ましい。金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007−157879号公報、特表2001−521288号公報、特開2004−214501号公報、特開2004−101850号公報に記載された方法を使用することができる。例えば、フォトリソグラフィ、リフトオフ、電解メッキ、無電解メッキ、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィおよびエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解メッキとを組み合わせたパターニング方法が挙げられる。
金属層の厚さとしては、最も厚い部分で0.1〜50μmが好ましく、1〜10μmがより好ましい。
本発明のパターン形成方法において、金属層形成工程を含む場合、更に、金属層及びネガ型感光性樹脂組成物層の少なくとも一部を表面活性化処理する工程(表面活性化処理工程)を含んでいてもよい。表面活性化処理は、金属層の少なくとも一部のみに行ってもよいし、上記現像工程後(加熱工程をさらに行う場合は加熱工程後)のネガ型感光性樹脂組成物層の少なくとも一部のみに行っても良いし、金属層およびネガ型感光性樹脂組成物層の両方について、それぞれ、少なくとも一部に行ってもよい。
表面活性化処理は、通常、金属層を形成した後に行うが、上記現像工程後(加熱工程をさらに行う場合は加熱工程後)のネガ型感光性樹脂組成物層に表面活性化処理を行ってから、金属層を形成してもよい。
表面活性化処理は、金属層の少なくとも一部について行うことが好ましく、金属層のうち、表面にネガ型感光性樹脂組成物層を形成する領域の一部または全部に表面活性化処理を行うことが好ましい。このように、金属層の表面に表面活性化処理を行うことにより、その表面に設けられるネガ型感光性樹脂組成物層との密着性を向上させることができる。
また、表面活性化処理は、ネガ型感光性樹脂組成物層の一部または全部についても行うことが好ましい。このように、ネガ型感光性樹脂組成物層の表面に表面活性化処理を行うことにより、表面活性化処理した表面に設けられる金属層やネガ型感光性樹脂組成物層との密着性を向上させることができる。
表面活性化処理としては、各種原料ガス(酸素、水素、アルゴン、窒素、窒素/水素混合ガス、アルゴン/酸素混合ガスなど)のプラズマ処理、コロナ放電処理、CF/O、NF/O、SF、NF、NF/Oによるエッチング処理、紫外線(UV)オゾン法による表面処理、塩酸水溶液に浸漬して酸化皮膜を除去した後にアミノ基とチオール基を少なくとも一種有する化合物を含む有機表面処理剤への浸漬処理、ブラシを用いた機械的な粗面化処理から選択され、プラズマ処理が好ましく、特に原料ガスに酸素を用いた酸素プラズマ処理が好ましい。コロナ放電処理の場合、エネルギーは、500〜200000J/mが好ましく、1000〜100000J/mがより好ましく、10000〜50000J/mが最も好ましい。
本発明のパターン形成方法は、金属層を形成した後、再度、上述したネガ型感光性樹脂組成物層形成工程、上述した露光工程、上述した現像工程および上述した加熱工程を、この順番で行うことが好ましい。また、加熱工程後に、更に上述した金属層形成工程を行うことも好ましい。このようにすることで、樹脂層と金属層とが交互に積層した積層体を形成することができる。
<ネガ型感光性樹脂組成物(樹脂組成物)>
次に、本発明のパターン形成方法に用いるネガ型感光性樹脂組成物について説明する。以下、ネガ型感光性樹脂組成物を樹脂組成物ともいう。
本発明のパターン形成方法に用いるネガ型感光性樹脂組成物は、樹脂と光重合開始剤とを含む。本発明におけるネガ型感光性樹脂組成物は、樹脂がラジカル重合性基を含むか、あるいは、樹脂以外のラジカル重合性化合物を含むことが好ましい。以下、ネガ型感光性樹脂組成物の各成分について詳細に説明する。
<<樹脂>>
本発明における樹脂組成物は、樹脂を含む。樹脂としては、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリイミド、ポリベンゾオキサゾール、エポキシ樹脂、フェノール樹脂などが挙げられる。本発明において樹脂はポリイミド前駆体であることが好ましい。ポリイミド前駆体としては、式(1)で表される繰り返し単位を含むポリイミド前駆体であることが好ましい。
式(1)
式(1)中、A21およびA22は、それぞれ独立に、酸素原子または−NH−を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24は、それぞれ独立に、水素原子または1価の有機基を表す。
21およびA22は、それぞれ独立に酸素原子または−NH−を表し、酸素原子が好ましい。
21は、2価の有機基を表す。2価の有機基としては、直鎖または分岐の脂肪族基、環状の脂肪族基およびアリール基を含む基が例示され、炭素数2〜20の直鎖または分岐の脂肪族基、炭素数6〜20の環状の脂肪族基、炭素数6〜20のアリール基、または、これらの組み合わせからなる基が好ましく、炭素数6〜20のアリール基からなる基がより好ましい。アリール基の例としては、下記が挙げられる。
式中、Aは、単結合、または、フッ素原子で置換されていてもよい炭素数1〜10の炭化水素基、−O−、−C(=O)−、−S−、−S(=O)−および−NHCO−、並びにこれらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1〜3のアルキレン基、−O−、−C(=O)−、−S−、−SO−から選択される基であることがより好ましく、−CH−、−O−、−S−、−SO−、−C(CF−、−C(CH−から選択される2価の基であることがさらに好ましい。
具体的には、R21は、以下のジアミンのアミノ基の除去後に残存するジアミン残基などが挙げられる。
1,2−ジアミノエタン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタンおよび1,6−ジアミノヘキサン;1,2−または1,3−ジアミノシクロペンタン、1,2−、1,3−または1,4−ジアミノシクロヘキサン、1,2−、1,3−または1,4−ビス(アミノメチル)シクロヘキサン、ビス−(4−アミノシクロヘキシル)メタン、ビス−(3−アミノシクロヘキシル)メタン、4,4’−ジアミノ−3,3’−ジメチルシクロヘキシルメタンおよびイソホロンジアミン;m−およびp−フェニレンジアミン、ジアミノトルエン、4,4’−および3,3’−ジアミノビフェニル、4,4’−および3,3’−ジアミノジフェニルエーテル、4,4’−および3,3’−ジアミノジフェニルメタン、4,4’−および3,3’−ジアミノジフェニルスルホン、4,4’−および3,3’−ジアミノジフェニルスルフィド、4,4’−および3,3’−ジアミノベンゾフェノン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)プロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3−アミノ−4−ヒドロキシフェニル)スルホン、ビス(4−アミノ−3−ヒドロキシフェニル)スルホン、4,4’−ジアミノパラテルフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(2−アミノフェノキシ)フェニル]スルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、9,10−ビス(4−アミノフェニル)アントラセン、3,3’−ジメチル−4,4’−ジアミノジフェニルスルホン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノオクタフルオロビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9−ビス(4−アミノフェニル)−10−ヒドロアントラセン、3,3’,4,4’−テトラアミノビフェニル、3,3’,4,4’−テトラアミノジフェニルエーテル、1,4−ジアミノアントラキノン、1,5−ジアミノアントラキノン、3,3−ジヒドロキシ−4,4’−ジアミノビフェニル、9,9’−ビス(4−アミノフェニル)フルオレン、4,4’−ジメチル−3,3’−ジアミノジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、2,4−および2,5−ジアミノクメン、2,5−ジメチル−p−フェニレンジアミン、アセトグアナミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,4,6−トリメチル−m−フェニレンジアミン、ビス(3−アミノプロピル)テトラメチルジシロキサン、2,7−ジアミノフルオレン、2,5−ジアミノピリジン、1,2−ビス(4−アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5−ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,4−ビス(4−アミノフェニル)オクタフルオロブタン、1,5−ビス(4−アミノフェニル)デカフルオロペンタン、1,7−ビス(4−アミノフェニル)テトラデカフルオロヘプタン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(2−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−3−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’−ビス(3−アミノ−5−トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2−ビス[4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’−テトラメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’−ヘキサフルオロトリジンおよび4,4’’’−ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミン。
また、下記に示すジアミン(DA−1)〜(DA−18)のアミノ基の除去後に残存するジアミン残基もR21の例として挙げられる。
また、2つ以上のアルキレングリコール単位を主鎖にもつジアミンのアミノ基の除去後に残存するジアミン残基もR21の例として挙げられる。好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれかまたは両方を一分子中にあわせて2つ以上含むジアミン残基であり、より好ましくは芳香環を含まないジアミン残基である。例としては、ジェファーミン(登録商標)KH−511、ED−600、ED−900、ED−2003、EDR−148、EDR−176、D−200、D−400、D−2000、D−4000(以上商品名、HUNTSMAN(株)製)、1−(2−(2−(2−アミノプロポキシ)エトキシ)プロポキシ)プロパン−2−アミン、1−(1−(1−(2−アミノプロポキシ)プロパン−2−イル)オキシ)プロパン−2−アミンなどが挙げられるが、これらに限定されない。ジェファーミン(登録商標)KH−511、ED−600、ED−900、ED−2003、EDR−148、EDR−176の構造を以下に示す。
上記において、x、y、zは平均値である。
式(1)中、R22は4価の有機基を表し、芳香環を含む4価の基であることが好ましく、下記式(1−1)または式(1−2)で表される基がより好ましい。
式(1−1)
式(1−1)中、R112は、単結合、または、フッ素原子で置換されていてもよい炭素数1〜10の炭化水素基、−O−、−CO−、−S−、−SO2−および−NHCO−、並びにこれらの組み合わせから選択される基であることが好ましく、単結合、または、フッ素原子で置換されていてもよい炭素数1〜3のアルキレン基、−O−、−CO−、−S−および−SO−から選択される2価の基であることがより好ましく、−CH−、−C(CF−、−C(CH−、−O−、−CO−、−S−および−SO−からなる群から選択される2価の基がさらに好ましい。
式(1−2)
22は、テトラカルボン酸二無水物から酸無水物基を除去した後に残存するテトラカルボン酸残基などが挙げられる。具体的には、以下のテトラカルボン酸二無水物から酸無水物基を除去した後に残存しているテトラカルボン酸残基などが挙げられる。
ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’−ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,7−ナフタレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3−ジフェニルヘキサフルオロプロパン−3,3,4,4−テトラカルボン酸二無水物、1,4,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ジフェニルテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,8,9,10−フェナントレンテトラカルボン酸二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、および1,2,3,4−ベンゼンテトラカルボン酸二無水物、並びに、これらの炭素数1〜6のアルキル誘導体および炭素数1〜6のアルコキシ誘導体から選ばれる少なくとも1種のテトラカルボン酸二無水物。
また、下記に示すテトラカルボン酸二無水物(DAA−1)〜(DAA−5)から酸無水物基を除去した後に残存しているテトラカルボン酸残基も、R22の例として挙げられる。
アルカリ現像液への溶解度の観点からは、R22はOH基を有することが好ましい。より具体的には、R22として、上記(DAA−1)〜(DAA−5)から無水物基の除去後に残存しているテトラカルボン酸残基が挙げられる。
式(1)において、R23およびR24は、それぞれ独立に、水素原子または1価の有機基を表す。R23およびR24が表す1価の有機基としては、直鎖または分岐のアルキル基、環状アルキル基、芳香族基を含む基、ラジカル重合性基などが挙げられる。本発明において、R23およびR24の少なくとも一方は、ラジカル重合性基を含む基であることが好ましい。この態様によれば、本発明の効果がより顕著に得られる傾向にある。また、このポリイミド前駆体を含む感光性樹脂組成物は、ネガ型感光性樹脂組成物として好ましく用いることができる。ラジカル重合性基としては、エチレン性不飽和結合を有する基などが挙げられる。ラジカル重合性基の具体例としては、ビニル基、(メタ)アリル基、下記式(III)で表される基などが挙げられる。
式(III)において、R200は、水素原子またはメチル基を表し、メチル基がより好ましい。
式(III)において、R201は、炭素数2〜12のアルキレン基、−CHCH(OH)CH−または炭素数4〜30のポリオキシアルキレン基を表す。好適なR201の例としては、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1,2−ブタンジイル基、1,3−ブタンジイル基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基、−CHCH(OH)CH−が挙げられ、エチレン基、プロピレン基、トリメチレン基、−CHCH(OH)CH−がより好ましい。R200がメチル基で、R201がエチレン基である組み合わせが特に好ましい。
直鎖または分岐のアルキル基の炭素数は1〜30が好ましい。具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、1−エチルペンチル基、および2−エチルヘキシル基が挙げられる。
環状のアルキル基は、単環の環状アルキル基であってもよく、多環の環状アルキル基であってもよい。単環の環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基が挙げられる。多環の環状アルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基およびピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が好ましい。
芳香族基としては、置換または無置換のベンゼン環基、ナフタレン環基、ペンタレン環基、インデン環基、アズレン環基、ヘプタレン環基、インダセン環基、ペリレン環基、ペンタセン環基、アセナフテン環基、フェナントレン環基、アントラセン環基、ナフタセン環基、クリセン環基、トリフェニレン環基、フルオレン環基、ビフェニル環基、ピロール環基、フラン環基、チオフェン環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ピリジン環基、ピラジン環基、ピリミジン環基、ピリダジン環基、インドリジン環基、インドール環基、ベンゾフラン環基、ベンゾチオフェン環基、イソベンゾフラン環基、キノリジン環基、キノリン環基、フタラジン環基、ナフチリジン環基、キノキサリン環基、キノキサゾリン環基、イソキノリン環基、カルバゾール環基、フェナントリジン環基、アクリジン環基、フェナントロリン環基、チアントレン環基、クロメン環基、キサンテン環基、フェノキサチイン環基、フェノチアジン環基またはフェナジン環基が挙げられる。ベンゼン環基が好ましい。
式(1)において、A22が酸素原子であってR23が水素原子である場合、および/またはA21が酸素原子であってR24が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N−ジメチルアミノプロピルメタクリレートが挙げられる。
また、アルカリ現像の場合、解像性を向上させる点から、ポリイミド前駆体は、構造単位中にフッ素原子を有することが好ましい。フッ素原子により、アルカリ現像の際に膜の表面に撥水性が付与され、表面からの浸み込みなどを抑えることができる。ポリイミド前駆体中のフッ素原子含有量は10質量%以上が好ましく、また、アルカリ水溶液に対する溶解性の点から20質量%以下が好ましい。
また、基板との密着性を向上させる目的で、ポリイミド前駆体はシロキサン構造を有する脂肪族基を共重合してもよい。具体的には、ジアミン成分として、ビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
また、樹脂組成物の保存安定性を向上させるため、ポリイミド前駆体の主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。これらのうち、モノアミンを用いることがより好ましい。モノアミンの好ましい化合物としては、アニリン、2−エチニルアニリン、3−エチニルアニリン、4−エチニルアニリン、5−アミノ−8−ヒドロキシキノリン、1−ヒドロキシ−7−アミノナフタレン、1−ヒドロキシ−6−アミノナフタレン、1−ヒドロキシ−5−アミノナフタレン、1−ヒドロキシ−4−アミノナフタレン、2−ヒドロキシ−7−アミノナフタレン、2−ヒドロキシ−6−アミノナフタレン、2−ヒドロキシ−5−アミノナフタレン、1−カルボキシ−7−アミノナフタレン、1−カルボキシ−6−アミノナフタレン、1−カルボキシ−5−アミノナフタレン、2−カルボキシ−7−アミノナフタレン、2−カルボキシ−6−アミノナフタレン、2−カルボキシ−5−アミノナフタレン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、4−アミノサリチル酸、5−アミノサリチル酸、6−アミノサリチル酸、2−アミノベンゼンスルホン酸、3−アミノベンゼンスルホン酸、4−アミノベンゼンスルホン酸、3−アミノ−4,6−ジヒドロキシピリミジン、2−アミノフェノール、3−アミノフェノール、4−アミノフェノール、2−アミノチオフェノール、3−アミノチオフェノール、4−アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
ポリイミド前駆体は、式(1)で表される繰り返し単位と、他のポリイミド前駆体である他の繰り返し単位とからなっていてもよい。
他の繰り返し単位を含む場合、ポリイミド前駆体における、他の繰り返し単位の割合は、1〜60モル%であることが好ましく、5〜50モル%であることがより好ましい。
本発明におけるポリイミド前駆体は、式(1)で表される繰り返し単位を含むポリイミド前駆体以外の、他のポリイミド前駆体を実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、樹脂組成物に含まれる上記の他のポリイミド前駆体の含有量が、ポリイミド前駆体の含有量の3質量%以下であることをいう。
ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは20000〜28000であり、より好ましくは22000〜27000であり、さらに好ましくは23000〜25000である。ポリイミド前駆体の分散度(Mw/Mn)は、特に定めるものではないが、1.0以上であることが好ましく、2.5以上であることがより好ましく、2.8以上であることがさらに好ましい。ポリイミド前駆体の分散度の上限値は特に定めるものではないが、例えば、4.5以下が好ましく、3.4以下とすることもできる。
樹脂組成物における樹脂の含有量は、樹脂組成物の全固形分に対し20〜100質量%が好ましく、50〜99質量%がより好ましく、60〜99質量%がさらに好ましく、70〜99質量%が特に好ましい。
樹脂組成物におけるポリイミド前駆体の含有量は、樹脂組成物の全固形分に対し20〜100質量%が好ましく、50〜99質量%がより好ましく、60〜99質量%がさらに好ましく、70〜99質量%が特に好ましい。
また、本発明では、ポリイミド前駆体以外の樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは、例えば、樹脂組成物に含まれるポリイミド前駆体以外の樹脂の含有量が、ポリイミド前駆体の含有量の3質量%以下であることをいう。
<<ラジカル重合性化合物>>
本発明における樹脂組成物は、更に、ラジカル重合性化合物を含有していてもよい。ラジカル重合性化合物を含有させることにより、ネガ型感光性樹脂組成物として好ましく用いることができる。更には、より耐熱性に優れた硬化膜を形成することができる。ラジカル重合性化合物としては、エチレン性不飽和結合を有する化合物が好ましく、エチレン性不飽和結合を有する基を2個以上含む化合物であることがより好ましい。ラジカル重合性化合物は、例えば、モノマー、プレポリマー、オリゴマーおよびそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。エチレン性不飽和結合を有する基としては、スチリル基、ビニル基、(メタ)アクリロイル基および(メタ)アリル基が好ましく、(メタ)アクリロイル基がより好ましい。なお、本発明におけるラジカル重合性化合物は、上述した樹脂とは異なる成分である。
本発明において、モノマータイプのラジカル重合性化合物(以下、ラジカル重合性モノマーともいう)は、高分子化合物とは異なる化合物である。ラジカル重合性モノマーは、典型的には、低分子化合物であり、分子量2000以下の低分子化合物であることが好ましく、分子量1500以下の低分子化合物であることがより好ましく、分子量900以下の低分子化合物であることがさらに好ましい。なお、ラジカル重合性モノマーの分子量は、通常、100以上である。
また、オリゴマータイプのラジカル重合性化合物は、典型的には比較的低い分子量の重合体であり、10個から100個のラジカル重合性モノマーが結合した重合体であることが好ましい。分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)法でのポリスチレン換算の重量平均分子量が、2000〜20000であることが好ましく、2000〜15000がより好ましく、2000〜10000であることがさらに好ましい。
本発明におけるラジカル重合性化合物の官能基数は、1分子中におけるラジカル重合性基の数を意味する。樹脂組成物は、解像性の観点から、ラジカル重合性基を2個以上含む2官能以上のラジカル重合性化合物を少なくとも1種含むことが好ましく、2〜4官能のラジカル重合性化合物を少なくとも1種含むことがより好ましい。
ラジカル重合性化合物としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシル基、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016−027357号公報の段落0113〜0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
ラジカル重合性化合物としては、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48−41708号公報、特公昭50−6034号公報、特開昭51−37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレートおよびこれらの混合物を挙げることができる。また、特開2008−292970号公報の段落0254〜0257に記載の化合物も好適である。
ラジカル重合性化合物としては、特開2010−160418号公報、特開2010−129825号公報、特許第4364216号公報等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物、カルド樹脂も使用することが可能である。さらに、その他の例としては、特公昭46−43946号公報、特公平1−40337号公報、特公平1−40336号公報に記載の特定の不飽和化合物や、特開平2−25493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61−22048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。さらに日本接着協会誌 vol.20、No.7、300〜308ページ(1984年)に光重合性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
上記のほか、下記一般式(MO−1)〜(MO−5)で表される化合物も好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。
上記の各式において、nは0〜14の整数であり、mは0〜8の整数である。分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。
上記式(MO−1)〜(MO−5)で表される化合物の各々において、複数のRの内の少なくとも1つは、−OC(=O)CH=CH、または、−OC(=O)C(CH)=CHで表される基を表す。
上記式(MO−1)〜(MO−5)で表される化合物の具体例としては、特開2007−269779号公報の段落0248〜0251に記載されている化合物が挙げられる。
また、特開平10−62986号公報において式(1)および式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、ラジカル重合性化合物として用いることができる。さらに、特開2015−187211号公報の段落0104〜0131に記載の化合物もラジカル重合性化合物として用いることができ、これらの内容は本明細書に組み込まれる。
ラジカル重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D−330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D−320;日本化薬(株)製、A−TMMT:新中村化学工業社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D−310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A−DPH;新中村化学工業製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。また、上記式(MO−1)、式(MO−2)のペンタエリスリトール誘導体および/またはジペンタエリスリトール誘導体も好ましい例として挙げられる。また、サートマー社製のSR209を用いることもできる。
ラジカル重合性化合物は、カルボキシル基、スルホ基、リン酸基等の酸基を有していてもよい。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーである、M−510、M−520などが挙げられる。酸基を有するラジカル重合性化合物の好ましい酸価としては、0.1〜40mgKOH/gであり、特に好ましくは5〜30mgKOH/gである。上記化合物の酸価が上記範囲であれば、製造や取扱性に優れ、さらには、現像性に優れる。また、ラジカル重合性が良好である。
ラジカル重合性化合物としては、カプロラクトン構造を有する化合物を用いることもできる。カプロラクトン構造を有する化合物としては、分子内にカプロラクトン構造を有する限り特に限定されるものではないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε−カプロラクトンをエステル化することにより得られる、ε−カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(C)で表される化合物が好ましい。
式(C)
式中、6個のRは全てが下記式(D)で表される基であるか、または6個のRのうち1〜5個が下記式(D)で表される基であり、残余が下記式(E)で表される基である。
式(D)
式中、Rは水素原子またはメチル基を示し、mは1または2を示し、「*」は結合手であることを示す。
式(E)
式中、Rは水素原子またはメチル基を示し、「*」は結合手であることを示す。
このようなカプロラクトン構造を有する化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA−20(上記式(C)〜(E)においてm=1、式(D)で表される基の数=2、Rが全て水素原子である化合物)、DPCA−30(同式、m=1、式(D)で表される基の数=3、Rが全て水素原子である化合物)、DPCA−60(同式、m=1、式(D)で表される基の数=6、Rが全て水素原子である化合物)、DPCA−120(同式においてm=2、式(D)で表される基の数=6、Rが全て水素原子である化合物)等を挙げることができる。
ラジカル重合性化合物としては、下記一般式(i)または(ii)で表される化合物の群から選択される少なくとも1種であることも好ましい。
式(i)および式(ii)中、Eは、各々独立に、−((CHCHO)−、または−((CHCH(CH)O)−を表し、yは、各々独立に0〜10の整数を表し、Xは、各々独立に、(メタ)アクリロイル基、水素原子、またはカルボキシル基を表す。
式(i)中、(メタ)アクリロイル基の合計は3個または4個であり、mは各々独立に0〜10の整数を表し、各mの合計は0〜40の整数である。但し、各mの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
式(ii)中、(メタ)アクリロイル基の合計は5個または6個であり、nは各々独立に0〜10の整数を表し、各nの合計は0〜60の整数である。但し、各nの合計が0の場合、Xのうちいずれか1つはカルボキシル基である。
式(i)中、mは、0〜6の整数が好ましく、0〜4の整数がより好ましい。また、各mの合計は、2〜40の整数が好ましく、2〜16の整数がより好ましく、4〜8の整数が特に好ましい。
式(ii)中、nは、0〜6の整数が好ましく、0〜4の整数がより好ましい。また、各nの合計は、3〜60の整数が好ましく、3〜24の整数がより好ましく、6〜12の整数が特に好ましい。
式(i)または式(ii)中の−((CHCHO)−または−((CHCH(CH)O)−は、酸素原子側の末端がXに結合する形態が好ましい。特に、式(ii)において、6個のX全てがアクリロイル基である形態が好ましい。
式(i)および式(ii)で表される化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR−494、日本化薬株式会社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA−60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA−330などが挙げられる。
ラジカル重合性化合物としては、特公昭48−41708号公報、特開昭51−37193号公報、特公平2−32293号公報、特公平2−16765号公報に記載されているウレタンアクリレート類や、特公昭58−49860号公報、特公昭56−17654号公報、特公昭62−39417号公報、特公昭62−39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。また、特開昭63−277653号公報、特開昭63−260909号公報、特開平1−105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性モノマー類を用いることもできる。
市販品としては、ウレタンオリゴマーUAS−10、UAB−140(山陽国策パルプ社製)、NKエステルM−40G、NKエステル4G、NKエステルM−9300、NKエステルA−9300、UA−7200(新中村化学工業(株)製)、DPHA−40H(日本化薬(株)製)、UA−306H、UA−306T、UA−306I、AH−600、T−600、AI−600(共栄社化学(株)製)、ブレンマーPME400(日油(株)製)などが挙げられる。
ラジカル重合性化合物としては、耐熱性の観点から、下記式で表される部分構造を有することが好ましい。ただし、式中の*は連結手である。
上記部分構造を有する化合物の具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレートなどが挙げられる。
樹脂組成物において、ラジカル重合性化合物の含有量は、良好なラジカル重合性と耐熱性の観点から、樹脂組成物の全固形分に対して、1〜50質量%が好ましい。下限は5質量%以上がより好ましい。上限は、30質量%以下がより好ましい。
また、ポリイミド前駆体とラジカル重合性化合物との質量割合(ポリイミド前駆体/ラジカル重合性化合物)は、98/2〜10/90が好ましく、95/5〜30/70がより好ましく、90/10〜50/50がさらに好ましい。ポリイミド前駆体とラジカル重合性化合物との質量割合が上記範囲であれば、硬化性および耐熱性により優れた硬化膜を形成できる。ラジカル重合性化合物は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
<<光重合開始剤>>
本発明における樹脂組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては、光カチオン重合開始剤、光ラジカル重合開始剤などが挙げられ、光ラジカル重合開始剤が好ましい。本発明における樹脂組成物が光ラジカル重合開始剤を含むことにより、樹脂組成物を半導体ウエハなどの支持体に適用して樹脂組成物層を形成した後、光を照射することで、ラジカルに起因する硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクするパターンを持つフォトマスクを介して樹脂組成物層を露光することで、電極などのパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。光重合開始剤は、約300〜800nm(好ましくは330〜500nm)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary−5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016−027357号公報の段落0165〜0182の記載を参酌でき、この内容は本明細書に組み込まれる。また、ケトン化合物としては、例えば、特開2015−087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。
光重合開始剤としては、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物およびメタロセン化合物も好適に用いることができる。より具体的には、例えば、特開平10−291969号公報に記載の光重合開始剤、特許第4225898号に記載の光重合開始剤も用いることができる。
α−ヒドロキシケトン化合物としては、IRGACURE−184(IRGACUREは登録商標)、DAROCUR−1173、IRGACURE−500、IRGACURE−2959、IRGACURE−127(商品名:いずれもBASF社製)を用いることができる。
α−アミノケトン化合物としては、市販品であるIRGACURE−907、IRGACURE−369、および、IRGACURE−379(商品名:いずれもBASF社製)を用いることができる。α−アミノケトン化合物としては、365nmまたは405nm等の波長光源に吸収極大波長がマッチングされた特開2009−191179号公報に記載の化合物も用いることができる。
アシルホスフィン化合物としては、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE−819やIRGACURE−TPO(商品名:いずれもBASF社製)を用いることができる。
メタロセン化合物としては、IRGACURE−784(BASF社製)などが例示される。
光重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、熱塩基発生剤としても働くため、特に好ましい。
オキシム化合物の具体例としては、特開2001−233842号公報に記載の化合物、特開2000−80068号公報に記載の化合物、特開2006−342166号公報に記載の化合物を用いることができる。好ましいオキシム化合物としては、例えば、3−ベンゾオキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイルオキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、および2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN−1919((株)ADEKA製、特開2012−14052号公報に記載の光重合開始剤2)も好適に用いられる。また、TR−PBG−304(常州強力電子新材料有限公司製)、アデカアークルズNCI−831およびアデカアークルズNCI−930(ADEKA社製)も用いることができる。また、DFI−091(ダイトーケミックス株式会社製)を用いることができる。さらに、また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010−262028号公報に記載されている化合物、特表2014−500852号公報の段落0345に記載されている化合物24、36〜40、特開2013−164471号公報の段落0101に記載されている化合物(C−3)などが挙げられる。
最も好ましいオキシム化合物としては、特開2007−269779号公報に示される特定置換基を有するオキシム化合物や、特開2009−191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
光重合開始剤としては、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン−ベンゼン−鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、および、3−アリール置換クマリン化合物から選ばれる少なくとも1種が好ましく、トリハロメチルトリアジン化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物およびアセトフェノン化合物から選ばれる少なくとも1種がより好ましく、トリハロメチルトリアジン化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマーおよびベンゾフェノン化合物から選ばれる少なくとも1種が更に好ましく、メタロセン化合物またはオキシム化合物がより一層好ましく、オキシム化合物が特に好ましい。
また、光重合開始剤は、ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’−テトラアルキル−4,4’−ジアミノベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパノン−1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
式(I)中、R50は、炭素数1〜20のアルキル基;1個以上の酸素原子によって中断された炭素数2〜20のアルキル基;炭素数1〜12のアルコキシ基;フェニル基;炭素数1〜20のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2〜12のアルケニル基、1個以上の酸素原子によって中断された炭素数2〜18のアルキル基および炭素数1〜4のアルキル基の少なくとも1つで置換されたフェニル基;またはビフェニリルであり、R51は、式(II)で表される基であるか、R50と同じ基であり、R52〜R54は各々独立に炭素数1〜12のアルキル、炭素数1〜12のアルコキシまたはハロゲンである。
式(II)
式中、R55〜R57は、上記式(I)のR52〜R54と同じである。
また、光重合開始剤は、国際公開WO2015/125469号の段落0048〜0055に記載の化合物を用いることもできる。
光重合開始剤の含有量は、樹脂組成物の全固形分に対し0.1〜30質量%が好ましく、より好ましくは0.1〜20質量%であり、さらに好ましくは0.1〜10質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<重合禁止剤>>
本発明における樹脂組成物は、重合禁止剤を含むことが好ましい。重合禁止剤としては、例えば、ヒドロキノン、p−メトキシフェノール、ジ−tert−ブチル−p−クレゾール、ピロガロール、p−tert−ブチルカテコール、p−ベンゾキノン、ジフェニル−p−ベンゾキノン、4,4′−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2′−メチレンビス(4−メチル−6−tert−ブチルフェノール)、N−ニトロソ−N−フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N−ニトロソジフェニルアミン、N−フェニルナフチルアミン、エチレンジアミン四酢酸、1,2−シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6−ジ−tert−ブチル−4−メチルフェノール、5−ニトロソ−8−ヒドロキシキノリン、1−ニトロソ−2−ナフトール、2−ニトロソ−1−ナフトール、2−ニトロソ−5−(N−エチル−N−スルフォプロピルアミノ)フェノール、N−ニトロソ−N−(1−ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4−ヒドロキシ−3,5−tert−ブチル)フェニルメタンなどが好適に用いられる。また、特開2015−127817号公報の段落0060に記載の重合禁止剤、および、国際公開WO2015/125469号の段落0031〜0046に記載の化合物を用いることもできる。
樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、樹脂組成物の全固形分に対して、0.01〜5質量%が好ましい。重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<光塩基発生剤>>
本発明における樹脂組成物は、光塩基発生剤を含んでいてもよい。光塩基発生剤とは、露光により塩基を発生するものであり、常温常圧の通常の条件下では活性を示さないが、外部刺激として電磁波の照射と加熱が行なわれると、塩基(塩基性物質)を発生するものであれば特に限定されるものではない。
光塩基発生剤の含有量は、所望のパターンを形成できるものであれば特に限定されるものではなく、一般的な含有量とすることができる。光塩基発生剤の含有量は、樹脂組成物100質量部に対して、0.01質量部以上30質量部未満の範囲内であることが好ましく、0.05質量部〜25質量部の範囲内であることがより好ましく、0.1質量部〜20質量部の範囲内であることがさらに好ましい。
本発明においては、光塩基発生剤として公知の化合物を用いることができる。例えば、M.Shirai, and M.Tsunooka, Prog.Polym.Sci.,21,1(1996);角岡正弘,高分子加工,46,2(1997);C.Kutal,Coord.Chem.Rev.,211,353(2001);Y.Kaneko,A.Sarker, and D.Neckers,Chem.Mater.,11,170(1999);H.Tachi,M.Shirai, and M.Tsunooka,J.Photopolym.Sci.Technol.,13,153(2000);M.Winkle, and K.Graziano,J.Photopolym.Sci.Technol.,3,419(1990);M.Tsunooka,H.Tachi, and S.Yoshitaka,J.Photopolym.Sci.Technol.,9,13(1996);K.Suyama,H.Araki,M.Shirai,J.Photopolym.Sci.Technol.,19,81(2006)に記載されているように、遷移金属化合物錯体や、アンモニウム塩などの構造を有するものや、アミジン部分がカルボン酸と塩を形成することで潜在化されたもののように、塩基成分が塩を形成することにより中和されたイオン性の化合物や、カルバメート誘導体、オキシムエステル誘導体、アシル化合物などのウレタン結合やオキシム結合などにより塩基成分が潜在化された非イオン性の化合物を挙げることができる。また、WPBG−266(和光純薬工業(株)製)を用いることも好ましい。
光塩基発生剤から発生する塩基性物質は特に限定されないが、アミノ基を有する化合物、特にモノアミンや、ジアミンなどのポリアミン、また、アミジンなどが挙げられる。
発生する塩基性物質は、より塩基性度の高いアミノ基を有する化合物が好ましい。ポリイミド前駆体のイミド化における脱水縮合反応等に対する触媒作用が強く、より少量の添加で、より低い温度での脱水縮合反応等における触媒効果の発現が可能となるからである。つまりは、発生した塩基性物質の触媒効果が大きい為、樹脂組成物としての見た目の感度が向上する。上記触媒効果の観点からアミジン、脂肪族アミンであることが好ましい。
光塩基発生剤は、構造中に塩を含まない光塩基発生剤であることが好ましい。光塩基発生剤において発生する塩基部分の窒素原子上に電荷がないことが好ましい。光塩基発生剤は、発生する塩基が共有結合を用いて潜在化されていることが好ましく、塩基の発生機構が、発生する塩基部分の窒素原子と隣接する原子との間の共有結合が切断されて塩基が発生する化合物であることがより好ましい。構造中に塩を含まない光塩基発生剤であると、光塩基発生剤を中性にすることができるため、溶剤溶解性が良好であり、ポットライフが向上する。このような理由から、本発明で用いられる光塩基発生剤から発生するアミンは、1級アミンまたは2級アミンが好ましい。
また、上記のような理由から、光塩基発生剤は、前述のように発生する塩基が共有結合を用いて潜在化されていることが好ましい。また、発生する塩基がアミド結合、カルバメート結合、オキシム結合を用いて潜在化されていることがより好ましい。
光塩基発生剤としては、特開2009−80452号公報および国際公開WO2009/123122号に記載された桂皮酸アミド構造を有する光塩基発生剤、特開2006−189591号公報および特開2008−247747号公報に記載されたカルバメート構造を有する光塩基発生剤、特開2007−249013号公報および特開2008−003581号公報に記載されたオキシム構造、カルバモイルオキシム構造を有する光塩基発生剤を用いることもできる。
その他、光塩基発生剤としては、特開2012−93746号公報の段落番号0185〜0188、0199〜0200および0202に記載の化合物、特開2013−194205号公報の段落番号0022〜0069に記載の化合物、特開2013−204019号公報の段落番号0026〜0074に記載の化合物、並びにWO2010/064631号公報の段落番号0052に記載の化合物が挙げられる。
<<熱塩基発生剤>>
本発明における樹脂組成物は、熱塩基発生剤を含んでいてもよい。熱塩基発生剤としては、40℃以上に加熱すると塩基を発生する酸性化合物(A1)、および、pKa1が0〜4のアニオンとアンモニウムカチオンとを有するアンモニウム塩(A2)から選ばれる少なくとも一種を含むことが好ましい。ここで、pKa1とは、多価の酸の第一のプロトンの解離定数(Ka)の対数表示(−Log10Ka)を示す。
上記酸性化合物(A1)および上記アンモニウム塩(A2)は、加熱すると塩基を発生するので、これらの化合物から発生した塩基により、ポリイミド前駆体などの環化反応を促進でき、ポリイミド前駆体などの環化を低温で行うことができる。また、これらの化合物は、塩基により環化して硬化するポリイミド前駆体などと共存させても、加熱しなければポリイミド前駆体などの環化が殆ど進行しないので、保存安定性に優れた樹脂組成物を調製することができる。
なお、本明細書において、酸性化合物とは、化合物を容器に1g採取し、イオン交換水とテトラヒドロフランとの混合液(質量比は水/テトラヒドロフラン=1/4)を50mL加えて、室温で1時間攪拌し、得られた溶液をpHメーターを用いて、20℃にて測定したpH値が7未満である化合物を意味する。
酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度は、40℃以上が好ましく、120〜200℃がより好ましい。塩基発生温度の上限は、190℃以下がより好ましく、180℃以下がさらに好ましく、165℃以下が一層好ましい。塩基発生温度の下限は、130℃以上がさらに好ましく、135℃以上が一層好ましい。
酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が120℃以上であれば、保存中に塩基が発生しにくいので、安定性に優れた樹脂組成物を調製することができる。酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が200℃以下であれば、ポリイミド前駆体などの環化温度を低くすることができる。塩基発生温度は、例えば、示差走査熱量測定を用い、化合物を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、ピーク温度を塩基発生温度として測定することができる。
熱塩基発生剤により発生する塩基は、2級アミンまたは3級アミンが好ましく、3級アミンがより好ましい。3級アミンは、塩基性が高いので、ポリイミド前駆体などの環化温度をより低くすることができる。また、熱塩基発生剤により発生する塩基の沸点は、80℃以上であることが好ましく、100℃以上であることがより好ましく、140℃以上であることが最も好ましい。また、発生する塩基の分子量は、80〜2000が好ましい。下限は100以上がより好ましい。上限は500以下がより好ましい。なお、分子量の値は、構造式から求めた理論値である。
上記酸性化合物(A1)は、アンモニウム塩および後述する式(A1)で表される化合物から選ばれる1種以上を含むことが好ましい。
上記アンモニウム塩(A2)は、酸性化合物であることが好ましい。なお、上記アンモニウム塩(A2)は、40℃以上(好ましくは120〜200℃)に加熱すると塩基を発生する酸性化合物を含む化合物であってもよいし、40℃以上(好ましくは120〜200℃)に加熱すると塩基を発生する酸性化合物以外の化合物であってもよい。
本発明において、アンモニウム塩とは、下記式(101)、または式(102)で表されるアンモニウムカチオンと、アニオンとの塩を意味する。アニオンは、アンモニウムカチオンのいずれかの一部と共有結合を介して結合していてもよく、アンモニウムカチオンの分子外に有ってもよいが、アンモニウムカチオンの分子外に有ることが好ましい。なお、アニオンが、アンモニウムカチオンの分子外に有るとは、アンモニウムカチオンとアニオンが共有結合を介して結合していない場合をいう。以下、カチオン部の分子外のアニオンを対アニオンともいう。
上記式中、R〜Rは、それぞれ独立に、水素原子または炭化水素基を表し、式Rは炭化水素基を表す。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成してもよい。
本発明において、アンモニウム塩は、pKa1が0〜4のアニオンとアンモニウムカチオンとを有することが好ましい。アニオンのpKa1の上限は、3.5以下がより好ましく、3.2以下がさらに好ましい。下限は、0.5以上がより好ましく、1.0以上がさらに好ましい。アニオンのpKa1が上記範囲であれば、ポリイミド前駆体などを低温で環化でき、さらには、樹脂組成物の安定性を向上できる。pKa1が4以下であれば、熱塩基発生剤の安定性が良好で、加熱なしに塩基が発生することを抑制でき、樹脂組成物の安定性が良好である。pKa1が0以上であれば、発生した塩基が中和されにくく、ポリイミド前駆体などの環化効率が良好である。
アニオンの種類は、カルボン酸アニオン、フェノールアニオン、リン酸アニオンおよび硫酸アニオンから選ばれる1種が好ましく、塩の安定性と熱分解性を両立させられるという理由からカルボン酸アニオンがより好ましい。すなわち、アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩がより好ましい。
カルボン酸アニオンは、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンが好ましく、2価のカルボン酸のアニオンがより好ましい。この態様によれば、樹脂組成物の安定性、硬化性および現像性をより向上できる熱塩基発生剤とすることができる。特に、2価のカルボン酸のアニオンを用いることで、樹脂組成物の安定性、硬化性および現像性をさらに向上できる。
本発明において、カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンであることが好ましい。pKa1は、3.5以下がより好ましく、3.2以下がさらに好ましい。この態様によれば、樹脂組成物の安定性をより向上できる。
ここでpKa1とは、酸の第一解離定数の逆数の対数を表し、Determination of Organic Structures by Physical Methods(著者:Brown, H. C., McDaniel, D. H., Hafliger, O., Nachod, F. C.; 編纂:Braude, E. A., Nachod, F. C.; Academic Press, New York, 1955)や、Data for Biochemical Research(著者:Dawson, R.M.C.et al; Oxford, Clarendon Press, 1959)に記載の値を参照することができる。これらの文献に記載の無い化合物については、ACD/pKa(ACD/Labs製)のソフトを用いて構造式より算出した値を用いることとする。
本発明において、カルボン酸アニオンは、下記式(X1)で表されることが好ましい。
式(X1)において、EWGは、電子求引性基を表す。
本発明において電子求引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫による総説、有機合成化学協会誌第23巻第8号(1965)P.631−642に詳しく説明されている。なお、本発明の電子求引性基は、上記文献に記載された置換基に限定されるものではない。
σmが正の値を示す置換基の例としては、例えば、CF基(σm=0.43)、CFCO基(σm=0.63)、HC≡C基(σm=0.21)、CH=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、HNCOCH基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す。
本発明において、EWGは、下記式(EWG−1)〜(EWG−6)で表される基であることが好ましい。
式中、Rx1〜Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、水酸基またはカルボキシル基を表し、Arはアリール基を表す。
本発明において、カルボン酸アニオンは、下記式(X)で表されるものも好ましい。
式(X)において、L10は、単結合、または、アルキレン基、アルケニレン基、アリーレン基、−NR−およびこれらの組み合わせから選ばれる2価の連結基を表し、Rは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
カルボン酸アニオンの具体例としては、マレイン酸アニオン、フタル酸アニオン、N−フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンが挙げられる。これらを好ましく用いることができる。
アンモニウムカチオンは、下記一般式(Y1−1)〜(Y1−6)のいずれかで表されることが好ましい。
上記一般式において、R101は、n価の有機基を表し、
102〜R111は、それぞれ独立に、水素原子、または、炭化水素基を表し、
150およびR151は、それぞれ独立に、炭化水素基を表し、
104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよく、
Ar101およびAr102は、それぞれ独立に、アリール基を表し、
nは、1以上の整数を表し、
mは、0〜5の整数を表す。
104とR105、R104とR150、R107とR108、および、R109とR110は、互いに結合して環を形成していてもよい。環としては、脂肪族環(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、多環であってもよい。上記の基が結合して環を形成する場合の連結基としては、−CO−、−O−、−NH−、2価の脂肪族基、2価のアリール基およびそれらの組み合わせからなる群より選ばれる2価の連結基が挙げられる。形成される環の具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環などが挙げられる。
本発明において、アンモニウムカチオンは、式(Y1−1)または式(Y1−2)で表される構造が好ましく、式(Y1−1)または式(Y1−2)で表され、R101がアリール基である構造がより好ましく、式(Y1−1)で表され、R101がアリール基である構造が特に好ましい。すなわち、本発明において、アンモニウムカチオンは、下記式(Y)で表されることがより好ましい。
式(Y)中、Ar10は、芳香族基を表し、R11〜R15は、それぞれ独立に、水素原子または炭化水素基を表し、R14とR15は互いに結合して環を形成していてもよく、nは、1以上の整数を表す。
11およびR12は、それぞれ独立に、水素原子または炭化水素基を表す。炭化水素基としては、特に限定はないが、アルキル基、アルケニル基またはアリール基が好ましい。
11およびR12は、水素原子が好ましい。
13〜R15は、水素原子または炭化水素基を表す。
炭化水素基としては、上述したR11、R12で説明した炭化水素基が挙げられる。R13〜R15は、特にアルキル基が好ましく、好ましい態様もR11、R12で説明したものと同じである。
14とR15は、互いに結合して環を形成していてもよい。環としては、環状脂肪族(非芳香性の炭化水素環)、芳香環、複素環などが挙げられる。環は単環であってもよく、多環であってもよい。R14とR15が結合して環を形成する場合の連結基としては、−CO−、−O−、−NH−、2価の脂肪族基、2価の芳香族基およびそれらの組み合わせからなる群より選ばれる2価の連結基が挙げられる。形成される環の具体例としては、例えば、ピロリジン環、ピロール環、ピペリジン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、カルバゾール環などが挙げられる。
13〜R15は、R14とR15が互いに結合して環を形成しているか、あるいは、R13が、炭素数5〜30(より好ましくは炭素数6〜18)の直鎖アルキル基であり、R14およびR15が、それぞれ独立に炭素数1〜3(より好ましくは炭素数1または2)のアルキル基であることが好ましい。この態様によれば、沸点の高いアミン種を発生しやすくすることができる。
また、発生するアミン種の塩基性や沸点の観点から、R13とR14とR15の炭素原子の総数が7〜30であることが好ましく、10〜20であることがより好ましい。
また、沸点の高いアミン種を発生しやすいという理由から、式(Y)における「−NR131415」の化学式量は、80〜2000が好ましく、100〜500がより好ましい。
また、銅などの金属層との密着性をより向上させるための実施形態として、式(Y)において、R13およびR14がメチル基またはエチル基であり、R15が炭素数5以上の直鎖、分岐または環状のアルキル基であるか、アリール基である形態が挙げられる。R13およびR14がメチル基であり、R15が炭素数5〜20の直鎖アルキル基、炭素数6〜17の分岐アルキル基、炭素数6〜10の環状アルキル基またはフェニル基であることが好ましく、R13およびR14がメチル基であり、R15が炭素数5〜10の直鎖アルキル基、炭素数6〜10の分岐アルキル基、炭素数6〜8の環状アルキル基またはフェニル基であることがより好ましい。このようにアミン種の疎水性を低くすることで、銅などの金属層上にアミンが付着した場合であっても、金属層とポリイミドなどとの親和性を高めることができる。
本発明において、酸性化合物は、下記式(A1)で表される化合物であることも好ましい。この化合物は、室温では酸性であるが、加熱により、カルボキシル基が脱炭酸または、脱水環化して失われることで、それまで中和され不活性化していたアミン部位が活性となることにより、塩基性となる。以下、式(A1)について説明する。
式(A1)
式(A1)において、Aはp価の有機基を表し、Rは1価の有機基を表し、Lは(m+1)価の連結基を表し、mは1以上の整数を表し、pは1以上の整数を表す。
式(A1)中、Aはp価の有機基を表す。有機基としては、脂肪族基、芳香族基などが挙げられ、芳香族基が好ましい。Aを芳香族基とすることにより、より低温で、沸点の高い塩基を発生しやすくできる。発生する塩基の沸点を高くすることにより、ポリイミド前駆体などの硬化時の加熱による揮発または分解を抑制し、ポリイミド前駆体などの環化をより効果的に進行させることができる。
1価の脂肪族基としては、例えば、アルキル基、アルケニル基等が挙げられる。
アルキル基の炭素数は、1〜30が好ましく、1〜20がより好ましく、1〜10がさらに好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。アルキル基は、置換基を有していてもよく、無置換であってもよい。アルキル基の具体例としては、メチル基、エチル基、tert−ブチル基、ドデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基等が挙げられる。
アルケニル基の炭素数は、2〜30が好ましく、2〜20がより好ましく、2〜10がさらに好ましい。アルケニル基は直鎖、分岐、環状のいずれであってもよい。アルケニル基は、置換基を有していてもよく、無置換であってもよい。アルケニル基としては、ビニル基、(メタ)アリル基等が挙げられる。
2価以上の脂肪族基としては、上記の1価の脂肪族基から水素原子を1個以上除いた基が挙げられる。
芳香族基は、単環であってもよく、多環であってもよい。芳香族基は、ヘテロ原子を含む芳香族複素環基であってもよい。芳香族基は、置換基を有していてもよく、無置換であってもよい。無置換が好ましい。芳香族基の具体例としては、ベンゼン環基、ナフタレン環基、ペンタレン環基、インデン環基、アズレン環基、ヘプタレン環基、インダセン環基、ペリレン環基、ペンタセン環基、アセナフテン環基、フェナントレン環基、アントラセン環基、ナフタセン環基、クリセン環基、トリフェニレン環基、フルオレン環基、ビフェニル環基、ピロール環基、フラン環基、チオフェン環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ピリジン環基、ピラジン環基、ピリミジン環基、ピリダジン環基、インドリジン環基、インドール環基、ベンゾフラン環基、ベンゾチオフェン環基、イソベンゾフラン環基、キノリジン環基、キノリン環基、フタラジン環基、ナフチリジン環基、キノキサリン環基、キノキサゾリン環基、イソキノリン環基、カルバゾール環基、フェナントリジン環基、アクリジン環基、フェナントロリン環基、チアントレン環基、クロメン環基、キサンテン環基、フェノキサチイン環基、フェノチアジン環基、および、フェナジン環基が挙げられ、ベンゼン環基が最も好ましい。
芳香族基は、複数の芳香環が、単結合または後述する連結基を介して連結していてもよい。連結基としては、例えば、アルキレン基が好ましい。アルキレン基は、直鎖、分岐のいずれも好ましい。複数の芳香環が単結合または連結基を介して連結した基の具体例としては、ビフェニル基、ジフェニルメタン基、ジフェニルプロパン基、ジフェニルイソプロパン基、トリフェニルメタン基、テトラフェニルメタン基などが挙げられる。
が表す有機基が有していてもよい置換基の例としては、例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基およびtert−ブトキシ基等のアルコキシ基;フェノキシ基およびp−トリルオキシ基等のアリールオキシ基;メトキシカルボニル基及びブトキシカルボニル基等のアルコキシカルボニル基;フェノキシカルボニル基等のアリールオキシカルボニル基;アセトキシ基、プロピオニルオキシ基およびベンゾイルオキシ基等のアシルオキシ基;アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基およびメトキサリル基等のアシル基;メチルスルファニル基およびtert−ブチルスルファニル基等のアルキルスルファニル基;フェニルスルファニル基およびp−トリルスルファニル基等のアリールスルファニル基;メチル基、エチル基、tert−ブチル基およびドデシル基等のアルキル基;フッ化アルキル基等のハロゲン化アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびアダマンチル基等のシクロアルキル基;フェニル基、p−トリル基、キシリル基、クメニル基、ナフチル基、アンスリル基およびフェナントリル基等のアリール基;水酸基;カルボキシル基;ホルミル基;スルホ基;シアノ基;アルキルアミノカルボニル基;アリールアミノカルボニル基;スルホンアミド基;シリル基;アミノ基;モノアルキルアミノ基;ジアルキルアミノ基;アリールアミノ基;ジアリールアミノ基;チオキシ基;またはこれらの組み合わせが挙げられる。
は(m+1)価の連結基を表す。連結基としては特に限定されず、―COO−、−OCO−、−CO−、−O−、−S―、−SO―、―SO−、アルキレン基(好ましくは炭素数1〜10の直鎖または分岐アルキレン基)、シクロアルキレン基(好ましくは炭素数3〜10のシクロアルキレン基)、アルケニレン基(好ましくは炭素数210の直鎖または分岐アルケニレン基)、またはこれらの複数が連結した連結基などを挙げることができる。連結基の総炭素数は、3以下が好ましい。連結基は、アルキレン基、シクロアルキレン基、アルケニレン基が好ましく、直鎖または分岐アルキレン基がより好ましく、直鎖アルキレン基がさらに好ましく、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
は1価の有機基を表す。1価の有機基としては、脂肪族基、芳香族基などが挙げられる。脂肪族基、芳香族基については、上述したAで説明したものが挙げられる。Rが表す1価の有機基は、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
は、カルボキシル基を有する基であることが好ましい。すなわち、Rは、下記式で表される基が好ましい。
−L−(COOH)
式中、Lは(n+1)価の連結基を表し、nは1以上の整数を表す。
が表す連結基は、上述したLで説明した基が挙げられ、好ましい範囲も同様であり、エチレン基またはメチレン基が特に好ましく、メチレン基が最も好ましい。
nは1以上の整数を表し、1または2が好ましく、1がより好ましい。nの上限は、Lが表す連結基が取り得る置換基の最大数である。nが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。更には、樹脂組成物の安定性を向上できる。
mは1以上の整数を表し、1または2が好ましく、1がより好ましい。mの上限は、Lが表す連結基が取り得る置換基の最大数である。mが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。さらには、樹脂組成物の安定性を向上できる。
pは、1以上の整数を表し、1または2が好ましく、1がより好ましい。pの上限は、Aが表す有機基が取り得る置換基の最大数である。pが1であれば、200℃以下の加熱により、沸点の高い3級アミンを発生しやすい。
本発明において、式(A1)で表される化合物は、下記式(1a)で表される化合物であることが好ましい。
式(1a)中、Aはp価の有機基を表し、Lは(m+1)価の連結基を表し、Lは(n+1)価の連結基を表し、mは1以上の整数を表し、nは1以上の整数を表し、pは1以上の整数を表す。
一般式(1a)のA、L、L、m、nおよびpは、一般式(A1)で説明した範囲と同義であり、好ましい範囲も同様である。
本発明において、式(A1)で表される化合物は、N−アリールイミノ二酢酸であることが好ましい。N−アリールイミノ二酢酸は、一般式(A1)におけるAが芳香族基であり、LおよびLがメチレン基であり、mが1であり、nが1であり、pが1である化合物である。N−アリールイミノ二酢酸は、120〜200℃にて、沸点の高い3級アミンを発生しやすい。
以下に、熱塩基発生剤の具体例を記載するが、本発明はこれらに限定されるものではない。これらは、それぞれ単独でまたは2種以上を混合して用いることができる。以下の式中におけるMeは、メチル基を表す。以下に示す化合物のうち、(A−1)〜(A−11)、(A−18)、(A−19)が、上記式(A1)で表される化合物である。以下に示す化合物のうち、(A−1)〜(A−11)、(A−18)〜(A−26)がより好ましく、(A−1)〜(A−9)、(A−18)〜(A−21)、(A−23)、(A−24)がさらに好ましい。
本発明で用いる熱塩基発生剤としては、特願2015−034388号明細書の段落番号0015〜0055に記載の化合物も好ましく用いられ、これらの内容は本明細書に組み込まれる。
熱塩基発生剤を用いる場合、樹脂組成物における熱塩基発生剤の含有量は、樹脂組成物の全固形分に対し、0.1〜50質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
熱塩基発生剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<<熱ラジカル重合開始剤>>
本発明における樹脂組成物は、熱ラジカル重合開始剤を含んでいてもよい。熱ラジカル重合開始剤としては、公知の熱ラジカル重合開始剤を用いることができる。熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性化合物などの重合反応を開始または促進させる化合物である。熱ラジカル重合開始剤を添加することによって、ポリイミド前駆体などの環化反応を進行させる際に、重合性化合物などの重合反応を進行させることができる。また、ポリイミド前駆体がラジカル重合性基を含む場合は、ポリイミド前駆体の環化と共に、ポリイミド前駆体の重合反応を進行させることもできるので、より高耐熱化が達成できることとなる。
熱ラジカル重合開始剤としては、芳香族ケトン類、オニウム塩化合物、過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アゾ系化合物等が挙げられる。中でも、過酸化物またはアゾ系化合物がより好ましく、過酸化物が特に好ましい。
本発明で用いる熱ラジカル重合開始剤は、10時間半減期温度が90〜130℃であることが好ましく、100〜120℃であることがより好ましい。
具体的には、特開2008−63554号公報の段落番号0074〜0118に記載されている化合物が挙げられる。
市販品では、パーブチルZおよびパークミルD(日油(株)製)を好適に用いることができる。
樹脂組成物が熱ラジカル重合開始剤を含有する場合、熱ラジカル重合開始剤の含有量は、樹脂組成物の全固形分に対し0.1〜50質量%が好ましく、0.1〜30質量%がより好ましく、0.1〜20質量%が特に好ましい。また、重合性化合物100質量部に対し、熱ラジカル重合開始剤を0.1〜50質量部含むことが好ましく、0.5〜30質量部含むことがより好ましい。この態様によれば、より耐熱性に優れた硬化膜を形成しやすい。熱ラジカル重合開始剤は1種のみでもよいし、2種以上であってもよい。熱ラジカル重合開始剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<防錆剤>>
本発明における樹脂組成物には、防錆剤を含有することが好ましい。樹脂組成物が防錆剤を含むことにより、金属層(金属配線)由来の金属イオンが樹脂組成物層内へ移動することを効果的に抑制できる。防錆剤としては、特開2013−15701号公報の段落0094に記載の防錆剤、特開2009−283711号公報の段落0073〜0076に記載の化合物、特開2011−59656号公報の段落0052に記載の化合物、特開2012−194520号公報の段落0114、0116および0118に記載の化合物などを使用することができる。具体的には、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H−ピラン環および6H−ピラン環、トリアジン環)を有する化合物、チオ尿素類およびメルカプト基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。なかでも、トリアゾール、ベンゾトリアゾール等のトリアゾール系化合物、テトラゾール、ベンゾテトラゾール等のテトラゾール系化合物が好ましく、1,2,4−トリアゾール、1,2,3−ベンゾトリアゾール、5−メチル−1H−ベンゾトリアゾール、1H−テトラゾール、5−メチル−1H−テトラゾール、5−フェニル−1H−テトラゾールがより好ましく、1H−テトラゾールが最も好ましい。市販品としては、KEMITEC BT−C(ケミプロ化成(株)製、1,2,3−ベンゾトリアゾール)、1HT(東洋紡(株)製、1H−テトラゾール)、P5T(東洋紡(株)製、5−フェニル−1H−テトラゾール)などが挙げられる。また、KEMINOX 179(ケミプロ化成(株)製)を用いることも好ましい。
樹脂組成物が防錆剤を含有する場合、防錆剤の含有量は樹脂100質量部に対して0.1〜10質量部が好ましく、0.2〜5質量部がより好ましい。防錆剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<<シランカップリング剤>
本発明における樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるためシランカップリング剤を含んでいることが好ましい。シランカップリング剤の例としては、特開2014−191002号公報の段落0062〜0073に記載の化合物、国際公開WO2011/080992A1号の段落0063〜0071に記載の化合物、特開2014−191252号公報の段落0060〜0061に記載の化合物、特開2014−41264号公報の段落0045〜0052に記載の化合物、国際公開WO2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011−128358号公報の段落0050〜0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、2−((3−(トリエトキシシリル)プロピル)カルバモイル)安息香酸、トリエトキシシリルプロピルマレインアミド酸、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。市販品としては、KBM−602(信越化学工業(株)製、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン)などを用いることもできる。
シランカップリング剤の含有量は、樹脂100質量部に対して0.1〜30質量部であることが好ましく、0.5〜15質量部であることがより好ましい。シランカップリング剤の含有量を0.1質量部以上とすることで得られる膜の金属層との接着性が良好となり、シランカップリング剤の含有量を30質量部以下とすることで得られる膜の耐熱性、機械特性が良好となる。シランカップリング剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<<溶剤>>
本発明において、樹脂組成物を塗布によって層状にする場合、樹脂組成物に溶剤を配合することが好ましい。溶剤としては、公知の溶剤を任意に使用できる。例えば、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類などの化合物が挙げられる。
エステル類として、例えば、酢酸エチル、酢酸−n−ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン、ε−カプロラクトン、δ−バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3−アルキルオキシプロピオン酸アルキルエステル類(例えば3−アルキルオキシプロピオン酸メチル、3−アルキルオキシプロピオン酸エチル等(例えば、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル等))、2−アルキルオキシプロピオン酸アルキルエステル類(例えば、2−アルキルオキシプロピオン酸メチル、2−アルキルオキシプロピオン酸エチル、2−アルキルオキシプロピオン酸プロピル等(例えば、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル))、2−アルキルオキシ−2−メチルプロピオン酸メチルおよび2−アルキルオキシ−2−メチルプロピオン酸エチル(例えば、2−メトキシ−2−メチルプロピオン酸メチル、2−エトキシ−2−メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2−オキソブタン酸メチル、2−オキソブタン酸エチル等が好適に挙げられる。
エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適に挙げられる。
ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−ヘプタノン、3−ヘプタノン、N−メチル−2−ピロリドン等が好適に挙げられる。
芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等が好適に挙げられる。
スルホキシド類としてジメチルスルホキシド等が好適に挙げられる。
溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。なかでも、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。ジメチルスルホキシドとγ−ブチロラクトンとの併用が特に好ましい。
樹脂組成物が溶剤を有する場合、溶剤の含有量は、塗布性の観点から、樹脂組成物の全固形分濃度が5〜80質量%になる量とすることが好ましく、5〜70質量%がさらに好ましく、10〜60質量%が特に好ましい。溶剤含有量は、所望の厚さと塗布方法によって調節すればよい。例えば塗布方法がスピンコートやスリットコートであれば上記範囲の固形分濃度となる溶剤の含有量が好ましい。スプレーコートであれば0.1質量%〜50質量%になる量とすることが好ましく、1.0質量%〜25質量%とすることが好ましい。塗布方法によって溶剤量を調節することで、所望の厚さの樹脂組成物層を均一に形成することができる。
溶剤は1種のみでもよいし、2種以上であってもよい。溶剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
また、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N,N−ジメチルアセトアミドおよびN,N−ジメチルホルムアミドの含有量は、膜強度の観点から、樹脂組成物の全質量に対して5質量%未満が好ましく、1質量%未満がより好ましく、0.5質量%未満がさらに好ましく、0.1質量%未満が一層好ましい。
<<増感色素>>
本発明における樹脂組成物は、増感色素を含んでいてもよい。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、熱塩基発生剤、光塩基発生剤、熱ラジカル重合開始剤、光重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱塩基発生剤、光塩基発生剤、熱ラジカル重合開始剤、光重合開始剤は化学変化を起こして分解し、ラジカル、酸或いは塩基を生成する。増感色素の詳細については、特開2016−027357号公報の段落0161〜0163の記載を参酌でき、この内容は本明細書に組み込まれる。樹脂組成物が増感色素を含む場合、増感色素の含有量は、樹脂組成物の全固形分に対し、0.01〜20質量%が好ましく、0.1〜15質量%がより好ましく、0.5〜10質量%がさらに好ましい。増感色素は、1種単独で用いてもよいし、2種以上を併用してもよい。
<<連鎖移動剤>>
本発明における樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683−684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、GeHを有する化合物群が用いられる。これらは、低活性のラジカル種に水素供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成し得る。特に、チオール化合物(例えば、2−メルカプトベンズイミダゾール類、2−メルカプトベンズチアゾール類、2−メルカプトベンズオキサゾール類、3−メルカプトトリアゾール類、5−メルカプトテトラゾール類等)を好ましく用いることができる。樹脂組成物が連鎖移動剤を含有する場合、連鎖移動剤の含有量は、樹脂組成物の全固形分100質量部に対し、好ましくは0.01〜20質量部、より好ましくは1〜10質量部、さらに好ましくは1〜5質量部である。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<界面活性剤>>
本発明における樹脂組成物には、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。また、下記界面活性剤も好ましい。
樹脂組成物が界面活性剤を含有する場合、界面活性剤の含有量は、樹脂組成物の全固形分に対して、0.001〜2.0質量%が好ましく、より好ましくは0.005〜1.0質量%である。界面活性剤は1種のみでもよいし、2種以上であってもよい。界面活性剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<高級脂肪酸誘導体>>
本発明における樹脂組成物には、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で組成物の表面に偏在させてもよい。樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、樹脂組成物の全固形分に対して、0.1〜10質量%が好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<その他の添加剤>>
本発明における樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種添加物、例えば、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は樹脂組成物の固形分の3質量%以下とすることが好ましい。
<<<その他の含有物質についての制限>>>
本発明における樹脂組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がさらに好ましく、0.6質量%未満が特に好ましい。
本発明における樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
また、樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、樹脂組成物を構成する原料に対してフィルター濾過を行う、装置内をポリテトラフロロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
本発明における樹脂組成物は、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が特に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩化物イオンおよび臭化物イオンの合計がそれぞれ上記範囲であることが好ましい。
<樹脂組成物の調製>
樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
また、樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。フィルターの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列または並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径および/または材質が異なるフィルターを組み合わせて使用しても良い。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であっても良い。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は0.05MPa以上0.3MPa以下が好ましい。
フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行っても良い。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせても良い。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
<積層体の製造方法>
次に、本発明の積層体の製造方法について説明する。本発明の積層体の製造方法は、上述した本発明のパターン形成方法を含む。
本発明の積層体の製造方法は、ネガ型感光性樹脂組成物層形成工程、露光工程、現像工程および加熱工程を行って支持体上に樹脂層のパターンを形成した後、金属層形成工程と、ネガ型感光性樹脂組成物層形成工程、露光工程、現像工程および加熱工程をこの順で行うパターン形成工程とを、交互に2〜7回行うことが好ましく、2〜5回行うことがより好ましい。このようにすることで、ネガ型感光性樹脂組成物層から形成される樹脂層と金属層とが交互に複数積層した多層配線構造の積層体を製造することができる。また、このような多層配線構造の積層体においては、厚み差の大きいパターンを形成することが多い。特に、樹脂層の積層数が多くなるに伴い、より厚み差の大きいパターンを形成することが多くなる。また、従来の方法では工程数が大幅に増えて手間を要する傾向がある。また、樹脂層の積層数が多くなるに伴い、支持体などに反りが生じやすく、従来の方法ではパターンの均一性を保つことが難しい傾向にあった。これに対し、本発明によれば、このような多層配線構造の積層体においても、樹脂層(ネガ型感光性樹脂組成物層)に対して効率よくパターンを形成できる。このため、このような積層体の製造において本発明のパターン形成方法を用いることで、本発明の効果がより顕著に発揮されやすい。
図3は、多層配線構造の積層体の一例を示した図である。図中の符号500は、積層体を示し、符号201〜204は樹脂層を示し、符号301〜303は金属層を示している。また、図2における符号Aが本発明のパターン形成方法により形成された、同時に形成する厚さの異なるパターンのうち最も薄いパターンの厚さであり、符号Bが、同時に形成する厚さの異なるパターンのうち最も厚いパターンの厚さである。
図3に示す積層体について説明する。樹脂層201には所望のパターンが形成されている。このパターンはネガ型現像によって形成されている。樹脂層201の表面には金属層301が形成されている。この金属層301は樹脂層201に形成された溝401の表面の一部を覆うように形成されている。
金属層301上には、樹脂層202が形成されている。樹脂層202には所望のパターンが形成されて金属層301の一部が樹脂層202から露出している。このパターンはネガ型現像によって形成されている。樹脂層202の表面には金属層302が形成されている。この金属層302は樹脂層202に形成された溝402の表面の一部を覆うように形成され、樹脂層202から露出した金属層301と電気的に接続している。
金属層302上には、樹脂層203が形成されている。樹脂層203には所望のパターンが形成されて、金属層302の一部が樹脂層203から露出している。このパターンはネガ型現像によって形成されている。樹脂層203の表面には金属層303が形成されている。この金属層303は樹脂層203に形成された溝403の表面の一部を覆うように形成されており、樹脂層203から露出した金属層302と電気的に接続している。
金属層303上には、樹脂層204が形成されている。樹脂層204には所望のパターンが形成されて、金属層303の一部が樹脂層204から露出している。また、図3では金属層302の一部も樹脂層204から露出している。
この積層体は、樹脂層201〜204が絶縁膜として働き、金属層301〜303が配線層として機能する。このような積層体は、電子デバイスにおける再配線層として好ましく用いることができる。
<電子デバイスの製造方法>
次に、本発明の電子デバイスの製造方法を説明する。本発明の電子デバイスの製造方法は、上述した本発明のパターン形成方法を含む。本発明のパターン形成方法を適用して得られる電子デバイスの一実施形態について図面を用いて説明する。図4に示す電子デバイス100は、いわゆる3次元実装デバイスであり、複数の半導体素子(半導体チップ)101a〜101dが積層した積層体101が、配線基板120上に配置されている。なお、この実施形態では、半導体素子(半導体チップ)の積層数が4層である場合を中心に説明するが、半導体素子(半導体チップ)の積層数は特に限定されるものではなく、例えば、2層、8層、16層、32層等であってもよい。また、1層であってもよい。
複数の半導体素子101a〜101dは、いずれもシリコン基板等の半導体ウエハからなる。
最上段の半導体素子101aは、貫通電極を有さず、その一方の面に電極パッド(図示せず)が形成されている。
半導体素子101b〜101dは、貫通電極102b〜102dを有し、各半導体素子の両面には、貫通電極に一体に設けられた接続パッド(図示せず)が設けられている。
積層体101は、貫通電極を有さない半導体素子101aと、貫通電極102b〜102dを有する半導体素子101b〜101dとをフリップチップ接続した構造を有している。
すなわち、貫通電極を有さない半導体素子101aの電極パッドと、これに隣接する貫通電極102bを有する半導体素子101bの半導体素子101a側の接続パッドが、半田バンプ等の金属バンプ103aで接続され、貫通電極102bを有する半導体素子101bの他側の接続パッドが、それに隣接する貫通電極102cを有する半導体素子101cの半導体素子101b側の接続パッドと、半田バンプ等の金属バンプ103bで接続されている。同様に、貫通電極102cを有する半導体素子101cの他側の接続パッドが、それに隣接する貫通電極102dを有する半導体素子101dの半導体素子101c側の接続パッドと、半田バンプ等の金属バンプ103cで接続されている。
各半導体素子101a〜101dの間隙には、アンダーフィル層110が形成されており、各半導体素子101a〜101dは、アンダーフィル層110を介して積層している。
積層体101は、配線基板120上に積層されている。
配線基板120としては、例えば樹脂基板、セラミックス基板、ガラス基板等の絶縁基板を基材として用いた多層配線基板が使用される。樹脂基板を適用した配線基板120としては、多層銅張積層板(多層プリント配線板)等が挙げられる。
配線基板120の一方の面には、表面電極120aが設けられている。
配線基板120と積層体101との間には、再配線層105が形成された絶縁層115が配置されており、配線基板120と積層体101とは、再配線層105を介して電気的に接続されている。絶縁層115は、本発明のパターン形成方法を用いて形成してなるものである。絶縁層115は、図3に示すような多層配線構造の積層体であってもよい。
再配線層105の一端は、半田バンプ等の金属バンプ103dを介して、半導体素子101dの再配線層105側の面に形成された電極パッドに接続されている。また、再配線層105の他端は、配線基板の表面電極120aと、半田バンプ等の金属バンプ103eを介して接続している。
そして、絶縁層115と積層体101との間には、アンダーフィル層110aが形成されている。また、絶縁層115と配線基板120との間には、アンダーフィル層110bが形成されている。
以下、本発明を実施例によりさらに具体的に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。NMRは、核磁気共鳴の略称である。
(合成例1)
[ピロメリット酸二無水物、4,4’−オキシジアニリンおよびベンジルアルコールからのポリイミド前駆体(P−1:ラジカル重合性基を有さないポリイミド前駆体)の合成]
14.06g(64.5ミリモル)のピロメリット酸二無水物(140℃で12時間乾燥)と、14.22g(131.58ミリモル)のベンジルアルコールとを、50mlのN−メチルピロリドンに懸濁させ、モレキュラーシーブで乾燥させた。懸濁液を100℃で3時間加熱した。加熱を開始してから数分後に透明な溶液が得られた。反応混合物を室温に冷却し、21.43g(270.9ミリモル)のピリジンおよび90mlのN−メチルピロリドンを加えた。次いで、反応混合物を−10℃に冷却し、温度を−10±4℃に保ちながら16.12g(135.5ミリモル)のSOClを10分かけて加えた。SOClを加えている間、粘度が増加した。50mlのN−メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mlのN−メチルピロリドンに11.08g(58.7ミリモル)の4,4’−オキシジアニリンを溶解させた溶液を、20〜23℃で20分かけて反応混合物に滴下した。次いで、反応混合物を室温で1晩撹拌した。次いで、5リットルの水の中でポリイミド前駆体を沈殿させ、水−ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体を濾取し、再度4リットルの水に投入してさらに30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体を減圧下で、45℃で3日間乾燥し、下記式で表される繰り返し単位を含むポリイミド前駆体(P−1)を得た。
(合成例2)
[ピロメリット酸二無水物、4,4’−オキシジアニリンおよび2−ヒドロキシエチルメタクリレートからのポリイミド前駆体(P−2:ラジカル重合性基を有するポリイミド前駆体)の合成]
14.06g(64.5ミリモル)のピロメリット酸二無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2−ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライム(ジエチレングリコールジメチルエーテル)とを混合し、60℃の温度で18時間撹拌して、ピロメリット酸と2−ヒドロキシエチルメタクリレートとのジエステルを製造した。次いで、得られたジエステルをSOClにより塩素化した後、合成例1と同様の方法で4,4’−オキシジアニリンでポリイミド前駆体に変換し、合成例1と同様の方法で、下記式で表される繰り返し単位を含むポリイミド前駆体(P−2)を得た。
(合成例3)
[4,4’−オキシジフタル酸無水物、4,4’−オキシジアニリンおよび2−ヒドロキシエチルメタクリレートからのポリイミド前駆体(P−3:ラジカル重合性基を有するポリイミド前駆体)の合成]
20.0g(64.5ミリモル)の4,4’−オキシジフタル酸無水物(140℃で12時間乾燥した)と、18.6g(129ミリモル)の2−ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライムとを混合し、60℃の温度で18時間撹拌して、4,4’−オキシジフタル酸と2−ヒドロキシエチルメタクリレートとのジエステルを製造した。次いで、得られたジエステルをSOClにより塩素化した後、合成例1と同様の方法で4,4’−オキシジアニリンでポリイミド前駆体に変換し、合成例1と同様の方法で、下記式で表される繰り返し単位を含むポリイミド前駆体(P−3)を得た。
(合成例4)
[4,4’−オキシジフタル酸無水物、および4,4’−オキシジアニリンからのポリイミド前駆体(P−4:カルボキシル基を有するポリイミド前駆体)の合成]
20.0g(64.5ミリモル)の4,4’−オキシジフタル酸無水物(140℃で12時間乾燥した)を180mlのNMP(N−メチル−2−ピロリドン)に溶解させて、さらに21.43g(270.9ミリモル)のピリジンを加えて、反応液を−10℃に冷却し、温度を−10±4℃に保ちながら、11.08g(58.7ミリモル)の4,4’−オキシジアニリンをNMP100mlに溶解させた溶解液を30分かけて滴下し、次いで反応混合液を室温で1晩撹拌した。次いで、5リットルの水に投入してポリイミド前駆体を沈殿させ、水−ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体を濾取し、再度4リットルの水に投入してさらに30分間撹拌し、再び濾取した。次いで、得られたポリイミド前駆体を減圧下、45℃で3日間乾燥して、下記式で表される繰り返し単位を含むポリイミド前駆体(P−4)を得た。
(合成例5)[アクリル系ポリマー(P−6)の合成]
27.0g(153.2ミリモル)のベンジルメタクリレート、20g(157.3ミリモル)のN−イソプロピルメタクリルアミド、39g(309.2ミリモル)のメタクリル酸アリル、13g(151.0ミリモル)のメタクリル酸、重合開始剤(V−601、和光純薬工業製)3.55g(15.4ミリモル)、および3−メトキシ−2−プロパノール300gを混合した。混合液を、窒素雰囲気下、75℃に加熱した3−メトキシ−2−プロパノール300gの中に、2時間かけて滴下した。滴下終了後、さらに窒素雰囲気下、75℃で2時間撹拌した。反応終了後、5リットルの水に投入してポリマーを沈殿させて、5000rpmの速度で15分間撹拌した。アクリル樹脂を濾取し、再度4リットルの水に投入してさらに30分間撹拌し、再び濾取した。次いで、得られたアクリル樹脂を減圧下、45℃で3日間乾燥して、下記式で表されるアクリル系ポリマー(P−6)を得た。
<ネガ型感光性樹脂組成物の調製>
下記記載の成分を混合し、均一な溶液として、ネガ型感光性樹脂組成物の塗布液を調製した。
(組成)
樹脂:下記表に記載の質量部
ラジカル重合性化合物:下記表に記載の質量部
光ラジカル重合開始剤:下記表に記載の質量部
シランカップリング剤:下記表に記載の質量部
防錆剤:下記表に記載の質量部
重合禁止剤:下記表に記載の質量部
塩基発生剤:下記表に記載の質量部
溶剤1(ジメチルスルホキシド):100質量部
溶剤2(γ−ブチロラクトン):25質量部
<ネガ型感光性組成物の解像性の評価>
Si基板上に、ネガ型感光性樹脂組成物を塗布して、塗布膜を形成した。次いで、100℃のホットプレートを用いて240秒間加熱処理を行い膜厚15μmのネガ型感光性樹脂組成物層を形成した。次いで、ネガ型感光性樹脂組成物層に対し、ステッパー露光装置FPA−3000i5+(Canon(株)製)を使用して、15μm四方のベイヤーを有するパターンマスクを介してi線(365nmの波長の光)を100〜1000mJ/cmにて100mJ/cmずつ露光量を変化させて照射し、次いで、露光後のネガ型感光性樹脂組成物層が形成されているSi基板をスピン・シャワー現像機(DW−30型;(株)ケミトロニクス製)の水平回転テーブル上に載置し、シクロペンタノンを用いて23℃で60秒間現像を行なって未露光部を現像除去してパターンを形成した。ネガ型感光性組成物の解像性を以下の基準で評価した。なお、下地基板の露出幅が15μm±3μmである場合を、線幅15μmのパターン(15μm四方のパターン)を解像可能であるとした。
A:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が900mJ/cm以上である。
B:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上900mJ/cm未満である。
C:厚さ15μm、線幅15μmのパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm未満である。
表に記載した略称は以下の通りである。
(樹脂)
P−1〜P−4:合成例1〜4で合成したポリイミド前駆体(P−1)〜(P−4)
P−5:Matrimid5218(Huntsman Corporation製、閉環型ポリイミド)
P−6:合成例5で合成したアクリル系ポリマー(P−6)
P−7:ポリメタクリル酸メチル(Mw=15000、シグマアルドリッチジャパン合同会社製)
(ラジカル重合性化合物)
B−1:SR209(サートマー社製、テトラエチレングリコールジアクリレート)
B−2:NKエステルA−9300(新中村化学工業(株)製、エトキシ化イソシアヌル酸トリアクリレート)
B−3:A−TMMT(新中村化学工業(株)製、ペンタエリスリトールテトラアクリレート)
B−4:A−DPH(新中村化学工業(株)製、ジペンタエリスリトールヘキサアクリレート)
(光ラジカル重合開始剤)
C−1:IRGACURE OXE 01(BASF社製、オキシム化合物)
C−2:IRGACURE OXE 02(BASF社製、オキシム化合物)
C−3:IRGACURE−784(BASF製、メタロセン化合物)
C−4:アデカアークルズNCI−831((株)ADEKA製、オキシム化合物)
(シランカップリング剤)
D−1:KBM−602(信越化学工業(株)製、アミノ基を有するシラン化合物)
D−2:2−((3−(トリエトキシシリル)プロピル)カルバモイル)安息香酸(Aquila Pharmatech LLC製、カルボキシル基を有するシラン化合物)
D−3:トリエトキシシリルプロピルマレインアミド酸(Gelest,Inc製、カルボキシル基を有するシラン化合物)
(防錆剤)
E−1:KEMITEC BT−C(ケミプロ化成(株)製、1,2,3−ベンゾトリアゾール)
E−2:1HT(東洋紡(株)製、1H−テトラゾール)
E−3:P5T(東洋紡(株)製、5−フェニル−1H−テトラゾール)
(重合禁止剤)
F−1:4−メトキシフェノール
F−2:pーベンゾキノン
F−3:1−ニトロソ−2−ナフトール
(塩基発生剤)
A−1、A−21、A−40:下記構造の化合物(熱塩基発生剤)
A−43:WPBG−266(和光純薬工業(株)製、光塩基発生剤。加熱によって分解して塩基を発生する化合物でもある)
<パターン形成方法>
図5に示す段差を有するSi基板(t1〜t8=2μm、t9=0.5μm、t10=0.5μm、t11=1μm)上に、ネガ型感光性樹脂組成物を塗布し、一番厚い箇所で塗布膜の乾燥後の膜厚T1が20μmになるように、塗布回転数を調整して塗膜を形成し、100℃のホットプレートを用いて240秒間加熱処理を行い、ネガ型感光性樹脂組成物層を形成した。ネガ型感光性樹脂組成物層に対し、ステッパー露光装置FPA−3000i5+(Canon(株)製)を使用して、15μm四方のベイヤーを有するパターンマスクを介してi線(365nmの波長の光)を100〜1000mJ/cmにて100mJ/cmずつ露光量を変化させて照射した。次いで、露光後のネガ型感光性樹脂組成物層が形成されているSi基板をスピン・シャワー現像機(DW−30型;(株)ケミトロニクス製)の水平回転テーブル上に載置してシクロペンタノンを用いて23℃で60秒間現像を行ない、未露光部を現像除去した。次いで、窒素オーブンにて230℃で180分間加熱処理を実施することで、Si基板の各段差上にパターンを形成した。なお、図5において形成されるパターンの厚みは、2μm、3μm、3.5μm、4μm、6μm、8μm、10μm、12μm、14μm、16μm、18μm、20μmである。
<解像性の評価>
以下の基準で解像性を評価した。なお、現像後における下地基板の露出幅が15μm±3μmである場合を、線幅15μmのパターン(15μm四方のパターン)を解像可能であるとした。
A:厚さ2〜20μmの範囲にて、線幅15μmのパターンを形成できた。
B:厚さ2〜16μmの範囲にて、線幅15μmのパターンを形成できたが、厚さ16μmを超える部分において、線幅15μmのパターンを形成できなかった。
C:厚さ2〜12μmの範囲にて、線幅15μmのパターンを形成できたが、厚さ12μmを超える部分において、線幅15μmのパターンを形成できなかった。
D:上記A〜Cのいずれにも該当しない。
厚さ2〜20μmのいずれにおいても、線幅15μmのパターンを形成できなかった。
上記表に示す通り実施例は、幅広い露光量にて、厚みの異なるパターンを解像性良く形成することができた。
10:樹脂層
11:ネガ型感光性樹脂組成物層
20:支持体
50:マスク
100:電子デバイス
101a〜101d:半導体素子
101:積層体
102b〜102d:貫通電極
103a〜103e:金属バンプ
105:再配線層
110、110a、110b:アンダーフィル層
115:絶縁層
120:配線基板
120a:表面電極
201〜204:樹脂層
301〜303:金属層
401〜403:溝
500:積層体

Claims (12)

  1. 樹脂および光重合開始剤を含むネガ型感光性樹脂組成物を用いて支持体上にネガ型感光性樹脂組成物層を形成し、前記ネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成するパターン形成方法であって、
    同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.5〜10倍であり、
    前記ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値との差が600mJ/cm以上であるネガ型感光性樹脂組成物を用い、
    前記樹脂がポリイミド前駆体であり、
    前記露光と同じ波長の露光における、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最小値が50〜500mJ/cm である、パターン形成方法。
  2. 前記ネガ型感光性樹脂組成物がラジカル重合性化合物を含み、前記ネガ型感光性樹脂組成物における前記樹脂と前記ラジカル重合性化合物の質量比が5:1〜10:1であり、前記ネガ型感光性樹脂組成物における前記ラジカル重合性化合物と前記光重合開始剤の質量比が2:1〜8:1である、請求項1に記載のパターン形成方法。
  3. 支持体上に前記ネガ型感光性樹脂組成物層を2層以上積層し、前記2層以上積層したネガ型感光性樹脂組成物層に対して露光および現像を行って、厚さの異なる2種以上のパターンを同時に形成する、請求項1または2に記載のパターン形成方法。
  4. 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの1.75〜8倍である、請求項1〜3のいずれか1項に記載のパターン形成方法。
  5. 同時に形成する厚さの異なるパターンのうち、最も厚いパターンの厚さは、最も薄いパターンの厚さの2〜6倍である、請求項1〜3のいずれか1項に記載のパターン形成方法。
  6. 前記ネガ型感光性樹脂組成物として、厚さ15μm、線幅15μm以下のパターンを解像可能な露光量の最大値と最小値の差が900mJ/cm以上であるネガ型感光性樹脂組成物を用いる、請求項1〜のいずれか1項に記載のパターン形成方法。
  7. 前記ポリイミド前駆体が、下記式(1)で表される、請求項1〜6のいずれか1項に記載のパターン形成方法;
    式(1)中、A21およびA22は、それぞれ独立に、酸素原子または‐NH‐を表し、R21は、2価の有機基を表し、R22は、4価の有機基を表し、R23およびR24はそれぞれ独立に、水素原子または1価の有機基を表す。
  8. 前記式(1)中、R23およびR24の少なくとも一方が、ラジカル重合性基を含む、請求項7に記載のパターン形成方法。
  9. 前記式(1)における、R22は、芳香環を含む4価の基である、請求項7または8に記載のパターン形成方法。
  10. 更に、金属層を形成する工程を含む、請求項1〜9のいずれか1項に記載のパターン形成方法。
  11. 請求項1〜10のいずれか1項に記載のパターン形成方法を含む、積層体の製造方法。
  12. 請求項1〜10のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。
JP2018537191A 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法 Active JP6745344B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016170211 2016-08-31
JP2016170211 2016-08-31
PCT/JP2017/030218 WO2018043262A1 (ja) 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018043262A1 JPWO2018043262A1 (ja) 2019-04-18
JP6745344B2 true JP6745344B2 (ja) 2020-08-26

Family

ID=61301791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537191A Active JP6745344B2 (ja) 2016-08-31 2017-08-24 パターン形成方法、積層体の製造方法および電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP6745344B2 (ja)
TW (1) TWI732926B (ja)
WO (1) WO2018043262A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936930A (zh) * 2018-03-29 2020-11-13 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2020054226A1 (ja) * 2018-09-10 2020-03-19 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020179671A1 (ja) * 2019-03-06 2020-09-10 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
TW202128839A (zh) 2019-11-21 2021-08-01 日商富士軟片股份有限公司 圖案形成方法、光硬化性樹脂組成物、積層體的製造方法及電子元件的製造方法
JP7451969B2 (ja) 2019-11-29 2024-03-19 Hdマイクロシステムズ株式会社 樹脂組成物、硬化物の製造方法、硬化物、カバーコート層、表面保護膜及び電子部品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697023A (ja) * 1992-09-16 1994-04-08 Fujitsu Ltd 半導体装置の製造方法
JP2993419B2 (ja) * 1996-01-30 1999-12-20 日本電気株式会社 露光方法および露光装置
JPH10256149A (ja) * 1997-03-14 1998-09-25 Nec Corp レジストパターンの形成方法
JP2001033983A (ja) * 1999-07-15 2001-02-09 Mitsubishi Electric Corp パターン形成方法およびこれを用いた半導体装置の製造方法、並びに半導体装置
JP4614503B2 (ja) * 2000-06-21 2011-01-19 旭化成イーマテリアルズ株式会社 感光性ポリイミド前駆体の製造方法
JP2005202066A (ja) * 2004-01-14 2005-07-28 Fuji Photo Film Co Ltd 感光性転写シート、感光性積層体、画像パターンを形成する方法、配線パターンを形成する方法
KR101658374B1 (ko) * 2013-01-25 2016-09-22 롬엔드하스전자재료코리아유한회사 컬럼 스페이서 및 블랙 매트릭스를 동시에 구현할 수 있는 착색 감광성 수지 조성물
JP6306296B2 (ja) * 2013-07-09 2018-04-04 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物およびフレキシブルプリント配線板
JP6414060B2 (ja) * 2013-07-23 2018-10-31 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、それを用いたパターン形成方法及び電子部品

Also Published As

Publication number Publication date
JPWO2018043262A1 (ja) 2019-04-18
TWI732926B (zh) 2021-07-11
TW201826024A (zh) 2018-07-16
WO2018043262A1 (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6255096B2 (ja) 熱塩基発生剤、熱硬化性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
KR101877276B1 (ko) 감광성 수지 조성물, 경화막, 경화막의 제조 방법 및 반도체 디바이스
WO2018025738A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
JP6745344B2 (ja) パターン形成方法、積層体の製造方法および電子デバイスの製造方法
WO2018043467A1 (ja) 樹脂組成物およびその応用
JPWO2018151195A1 (ja) 感光性樹脂組成物、複素環含有ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP6650517B2 (ja) 硬化膜の製造方法、積層体の製造方法および半導体素子の製造方法
JP6633767B2 (ja) 積層体の製造方法および電子デバイスの製造方法
JP6481032B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP6751159B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
JP6704048B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
JP6764480B2 (ja) 膜の製造方法、積層体の製造方法および電子デバイスの製造方法
JPWO2018003725A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2017209176A1 (ja) 積層体の製造方法、半導体素子の製造方法および積層体
JP6808829B2 (ja) 感光性樹脂組成物、ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法および半導体デバイス
WO2018225676A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイスおよび化合物
WO2020054226A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP7261818B2 (ja) パターン形成方法、感光性樹脂組成物、硬化膜、積層体、及び、デバイス
WO2019189112A1 (ja) 積層体の製造方法および熱硬化性有機膜形成用組成物
WO2020116336A1 (ja) 感光性樹脂組成物、パターン形成方法、硬化膜、積層体、及び、デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250