JP6745293B2 - Hexagonal boron nitride powder, method for producing the same, and cosmetics - Google Patents

Hexagonal boron nitride powder, method for producing the same, and cosmetics Download PDF

Info

Publication number
JP6745293B2
JP6745293B2 JP2018062351A JP2018062351A JP6745293B2 JP 6745293 B2 JP6745293 B2 JP 6745293B2 JP 2018062351 A JP2018062351 A JP 2018062351A JP 2018062351 A JP2018062351 A JP 2018062351A JP 6745293 B2 JP6745293 B2 JP 6745293B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
powder
less
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062351A
Other languages
Japanese (ja)
Other versions
JP2018165241A (en
Inventor
黒川 史裕
史裕 黒川
隆貴 松井
隆貴 松井
光永 敏勝
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63921656&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6745293(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JP2018165241A publication Critical patent/JP2018165241A/en
Application granted granted Critical
Publication of JP6745293B2 publication Critical patent/JP6745293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は六方晶窒化ホウ素粉末に関する。また、本発明は前記六方晶窒化ホウ素粉末を含む化粧料に関する。 The present invention relates to hexagonal boron nitride powder. The present invention also relates to cosmetics containing the hexagonal boron nitride powder.

六方晶窒化ホウ素は黒鉛類似の層状構造を有し、潤滑性、熱伝導性、絶縁性、化学的安定性、耐熱衝撃性などの特性に優れ、これらの特性を活かして化粧料(化粧品ともいう)原料、固体潤滑剤や離型剤、樹脂やゴムの充填材、耐熱性を有する絶縁性焼結体などに応用されている。 Hexagonal boron nitride has a layered structure similar to graphite, and has excellent properties such as lubricity, thermal conductivity, insulation, chemical stability, and thermal shock resistance. Utilizing these properties, cosmetics (also called cosmetics ) Applied to raw materials, solid lubricants and mold release agents, fillers of resins and rubbers, heat-resistant insulating sinters, etc.

特に化粧料原料用の六方晶窒化ホウ素については、安全性、衛生性の観点から医薬部外品原料規格2006(以下、「外原規2006」という)にその規格が定められており、この中で、所定の手順で六方晶窒化ホウ素を水に接触させた際に、水に溶出しても許容できるホウ素は、濃度基準で20ppm以下までと規定されている。水に溶出するホウ素(以下、水溶性ホウ素化合物という)を、前記規定を超えて含む六方晶窒化ホウ素は、これを原料として配合した化粧料の、肌への刺激性を高める可能性があるため不適とされている。 Especially for hexagonal boron nitride used as a raw material for cosmetics, from the viewpoint of safety and hygiene, the standard is defined in the Quasi-drug Raw Material Standard 2006 (hereinafter referred to as “External Code 2006”). In addition, when hexagonal boron nitride is brought into contact with water according to a predetermined procedure, the allowable amount of boron even if eluted in water is specified to be 20 ppm or less based on the concentration. Hexagonal boron nitride that contains water-eluting boron (hereinafter referred to as water-soluble boron compound) in excess of the above regulations may increase the irritation to the skin of cosmetics formulated using this as a raw material. Is unsuitable.

なお六方晶窒化ホウ素においては、その製造過程中に水溶性ホウ素化合物が副生する傾向があるため、「外原規2006」の規格から逸脱する可能性があるが、水溶性ホウ素化合物を低減する手段として、特許文献1には、六方晶窒化ホウ素を低級アルコールやアセトン等の水可溶性有機溶媒、又はその水溶液、又は界面活性剤水溶液中で攪拌洗浄し、低温かつ低酸素雰囲気下で乾燥する方法が、特許文献2には、六方晶窒化ホウ素を水または熱水に分散させて水溶性ホウ素化合物を洗浄除去し、乾燥させた後、アルコールを添加し、若しくはアルコール中に浸漬し、然る後再度乾燥させる方法が、さらに特許文献3には、六方晶窒化ホウ素を、酸水溶液で洗浄し、乾燥した後、炭素と接触させないようにして、1800〜1950℃の窒素雰囲気下において、1〜5時間熱処理する方法が開示されている。 In the hexagonal boron nitride, a water-soluble boron compound tends to be produced as a by-product during the manufacturing process, and thus there is a possibility that the water-soluble boron compound may deviate from the standard of “External Regulation 2006”, but the water-soluble boron compound is reduced. As a means, Patent Document 1 discloses a method in which hexagonal boron nitride is washed by stirring in a water-soluble organic solvent such as lower alcohol or acetone, or an aqueous solution thereof, or a surfactant aqueous solution, and dried under a low-temperature and low-oxygen atmosphere. However, in Patent Document 2, hexagonal boron nitride is dispersed in water or hot water to wash and remove the water-soluble boron compound, and after drying, alcohol is added or the product is immersed in alcohol, and then, A method of drying again is further disclosed in Patent Document 3, in which hexagonal boron nitride is washed with an aqueous acid solution, dried, and then kept in contact with carbon in a nitrogen atmosphere at 1800 to 1950° C. for 1 to 5 times. A method of heat treating for a time is disclosed.

なお化粧料に六方晶窒化ホウ素粉末を配合する目的としては、化粧料への滑り性、伸び性、隠ぺい性、光沢性の付与等がある。六方晶窒化ホウ素は主にファンデーションに用いられており、その塗り伸び性、肌のカバー力(隠ぺい力)が特に求められる特性である。これらの特性には六方晶窒化ホウ素の粒子形態、具体的には平均粒子径やアスペクト比(長径/厚さ)が影響し、一例として特許文献4が挙げられる。 The purpose of blending the hexagonal boron nitride powder with the cosmetic is to impart slipperiness, extensibility, hiding power, gloss to the cosmetic. Hexagonal boron nitride is mainly used for foundations, and its coating extensibility and skin covering power (hiding power) are properties that are particularly required. These characteristics are affected by the particle morphology of hexagonal boron nitride, specifically, the average particle diameter and the aspect ratio (major axis/thickness), and Patent Document 4 can be cited as an example.

特開昭63−33312号公報JP-A-63-33312 特開平1−157409号公報JP-A-1-157409 特開2004−35273号公報JP 2004-35273 A 特開2014−94878号公報JP, 2014-94878, A

しかしながら、特許文献1及び特許文献2に開示される六方晶窒化ホウ素粉末の製造方法では、洗浄処理で用いる界面活性剤や有機溶剤が六方晶窒化ホウ素粉末に微量残留する場合があり、肌への刺激性が発現する可能性を否定できない。また、六方晶窒化ホウ素を、日本国内にて医薬品部外原料として用いる場合には、「外原規2006」の溶出ホウ素に関する規定を満たす必要がある。また、特許文献3に示される方法は、高温での再焼成が必要になるため製造工程が複雑になり、六方晶窒化ホウ素粉末が高額になる問題があった。一方で、今日の化粧料用六方晶窒化ホウ素粉末への要求は高まっており、例えばファンデーションの高い塗り伸び性や肌のカバー力、及び塗り伸ばす際の触感、とくにざらつき感がないことが求められている。これらを満たす視点に立った場合、特許文献4に示される六方晶窒化ホウ素粉末では、依然不十分であった。 However, in the method for producing the hexagonal boron nitride powder disclosed in Patent Document 1 and Patent Document 2, a small amount of the surfactant or the organic solvent used in the cleaning treatment may remain in the hexagonal boron nitride powder, which may cause skin damage. The possibility of irritability cannot be ruled out. Further, when hexagonal boron nitride is used as a quasi-drug raw material in Japan, it is necessary to satisfy the regulation of eluted boron in “External Regulation 2006”. Further, the method disclosed in Patent Document 3 has a problem that the manufacturing process is complicated because the re-firing at a high temperature is required and the hexagonal boron nitride powder becomes expensive. On the other hand, today's demands for hexagonal boron nitride powder for cosmetics are increasing, and it is required, for example, that the coating has a high foundation stretchability and skin covering power, and a touch feeling at the time of spreading, particularly no rough feeling. ing. From the viewpoint of satisfying these requirements, the hexagonal boron nitride powder shown in Patent Document 4 was still insufficient.

そのため本発明では、例えばファンデーション等の塗り伸び性や肌のカバー力に関わる、滑り性を向上させ、またざらつき感を低減させることができる、六方晶窒化ホウ素粉末を、好ましくは「外原規2006」の規定を満たす化粧料原料用の六方晶窒化ホウ素粉末を提供することを目的とした。 Therefore, in the present invention, for example, hexagonal boron nitride powder, which can improve the slipperiness related to the coating extensibility such as foundation and the covering power of the skin, and can reduce the rough feeling, is preferably “External Source 2006”. The object of the present invention is to provide a hexagonal boron nitride powder as a raw material for cosmetics that satisfies the requirement of ".

即ち本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)平均粒子径が3μm以上20μm以下かつ最大粒子径が250μm以下であり、比表面積が1m/g以上10m/g以下、一次粒子の粉末X線回折法による黒鉛化指数が2.0以下であり、さらに平均摩擦係数が0.90以下、前記平均摩擦係数の変動値が0.015以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が20ppm以下である六方晶窒化ホウ素粉末。
(2)比表面積が1m/g以上2.5m/g以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が10ppm以下である、(1)記載の六方晶窒化ホウ素粉末。
(3)化粧料原料用である、(1)または(2)記載の六方晶窒化ホウ素粉末。
(4)(3)記載の六方晶窒化ホウ素粉末を含む化粧料。
(5)第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、0.9質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1600〜2200℃、焼成時間2時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた粗六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む、(1)または(2)に記載の六方晶窒化ホウ素粉末の製造方法。
(6)第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、2.0質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1680〜2200℃、焼成時間3時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた前記六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む、(2)に記載の六方晶窒化ホウ素粉末の製造方法。
That is, the present invention adopts the following means in order to solve the above problems.
(1) The average particle diameter is 3 μm or more and 20 μm or less and the maximum particle diameter is 250 μm or less, the specific surface area is 1 m 2 /g or more and 10 m 2 /g or less, and the graphitization index of the primary particles by the powder X-ray diffraction method is 2. 0 or less, the average friction coefficient is 0.90 or less, the variation value of the average friction coefficient is 0.015 or less, and the dissolved boron concentration measured according to the quasi-drug raw material standard 2006 is 20 ppm or less. A hexagonal boron nitride powder.
(2) The hexagonal crystal according to (1), which has a specific surface area of 1 m 2 /g or more and 2.5 m 2 /g or less, and an eluted boron concentration of 10 ppm or less measured according to the quasi drug raw material standard 2006. Boron nitride powder.
(3) The hexagonal boron nitride powder according to (1) or (2), which is used as a raw material for cosmetics.
(4) A cosmetic containing the hexagonal boron nitride powder according to (3).
(5) Low crystalline hexagonal crystal obtained by firing a mixed powder of a compound powder containing boron and a compound powder containing nitrogen as the first firing condition at 600 to 1300° C. under an inert atmosphere and/or an ammonia atmosphere. The maximum temperature of the mixed powder containing 100 parts by mass of the obtained low crystalline hexagonal boron nitride powder and 0.9 parts by mass or more and 20 parts by mass or less of the sintering aid powder was used as the second firing condition. A step of obtaining a crude hexagonal boron nitride by firing under a firing condition of 1600 to 2200° C. and a firing time of 2 hours or more; and a step of washing and drying the obtained crude hexagonal boron nitride and removing coarse particles with a sieve. The method for producing a hexagonal boron nitride powder according to (1) or (2), which comprises:
(6) Low crystalline hexagonal crystals obtained by firing a mixed powder of a compound powder containing boron and a compound powder containing nitrogen as the first firing condition at 600 to 1300° C. under an inert atmosphere and/or an ammonia atmosphere. The maximum temperature of the mixed powder containing 100 parts by mass of the obtained low crystalline hexagonal boron nitride powder and 2.0 parts by mass or more and 20 parts by mass or less of the sintering aid powder as the second firing condition A step of obtaining crude hexagonal boron nitride by firing under firing conditions of 1680 to 2200° C. and a firing time of 3 hours or more; and a step of washing the obtained hexagonal boron nitride, drying and removing coarse particles with a sieve. The method for producing a hexagonal boron nitride powder according to (2), including.

本発明により、例えばファンデーションの滑り性を向上させ、またざらつき感を低減させることができ、溶出ホウ素が少なく化粧料原料用として好ましい特性を有する六方晶窒化ホウ素粉末を得ることができる。 According to the present invention, it is possible to obtain a hexagonal boron nitride powder which can improve the slipperiness of a foundation and can reduce the feeling of roughness, and has a small amount of eluted boron and favorable properties as a raw material for cosmetics.

<六方晶窒化ホウ素粉末>
本発明の一側面に係る六方晶窒化ホウ素粉末は、平均粒子径が3μm以上20μm以下かつ最大粒子径が250μm以下であり、比表面積が1m/g以上10m/g以下、一次粒子の粉末X線回折法による黒鉛化指数が2.0以下であり、さらに平均摩擦係数が0.90以下、前記平均摩擦係数の変動値が0.015以下である六方晶窒化ホウ素粉末である。
<Hexagonal boron nitride powder>
The hexagonal boron nitride powder according to one aspect of the present invention has an average particle size of 3 μm or more and 20 μm or less and a maximum particle size of 250 μm or less, a specific surface area of 1 m 2 /g or more and 10 m 2 /g or less, and a powder of primary particles. It is a hexagonal boron nitride powder having a graphitization index of 2.0 or less by an X-ray diffraction method, an average friction coefficient of 0.90 or less, and a variation value of the average friction coefficient of 0.015 or less.

以下に、本発明の六方晶窒化ホウ素粉末についてさらに詳しい説明を記載する。 Hereinafter, the hexagonal boron nitride powder of the present invention will be described in more detail.

<平均粒子径>
本発明の六方晶窒化ホウ素の平均粒子径は3μm以上20μm以下であり、好ましくは6μm以上15μm以下である。平均粒子径が3μm未満では、六方晶窒化ホウ素の特性が活かされず、これを原料に用いた化粧料の滑り性は不十分となる。但し平均粒子径が20μmを超えると、滑り性には問題がないが、外観上のぎらつきが強くなったりするため、化粧料原料としては好ましくなくなる。なお本発明における平均粒子径は、レーザー回折散乱法による粒度分布測定において、体積基準の累積流動分布の累積値50%の粒子径である。一般に平均粒子径は測定条件により変わる可能性があり、本発明では、六方晶窒化ホウ素粉末60mgを、15gの0.2質量%ヘキサメタリン酸水溶液に加え、ホモジナイザーにより300Wの出力で180秒間分散処理させた後の分散液を用いて、粒度分布測定機により計測した値である。
<Average particle size>
The hexagonal boron nitride of the present invention has an average particle size of 3 μm or more and 20 μm or less, preferably 6 μm or more and 15 μm or less. When the average particle diameter is less than 3 μm, the characteristics of hexagonal boron nitride are not utilized, and the cosmetics using this as a raw material have insufficient slipperiness. However, when the average particle size exceeds 20 μm, there is no problem in slipperiness, but glare on the appearance becomes strong, which is not preferable as a raw material for cosmetics. In addition, the average particle diameter in the present invention is a particle diameter of 50% of the cumulative value of the volume-based cumulative flow distribution in the particle size distribution measurement by the laser diffraction scattering method. Generally, the average particle size may change depending on the measurement conditions. In the present invention, 60 mg of hexagonal boron nitride powder is added to 15 g of a 0.2 mass% hexametaphosphoric acid aqueous solution, and dispersed by a homogenizer at an output of 300 W for 180 seconds. It is a value measured by a particle size distribution measuring device using the dispersion liquid after being heated.

<最大粒子径>
本発明の六方晶窒化ホウ素粉末の最大粒子径は250μm以下である。最大粒子径が250μmを超えるような粗大粒子が僅かでも存在すると、その粗大粒子により、例えばファンデーションを塗り伸ばす際にざらつき感を感じるようになり、化粧料の原料用として好ましくない。なお本発明における最大粒子径は、レーザー回折散乱法による粒度分布測定において、体積基準の累積流動分布の累積値100%に相当する粒子径である。なお最大粒子は一次粒子の凝集体であることもあるため、平均粒子径の測定条件、すなわちホモジナイザーによる分散処理を行うとこの凝集体が崩壊し、正しい結果が反映されない。そこで本発明において最大粒子径を測定する場合は、六方晶窒化ホウ素粉末60mgを、15gの0.2質量%ヘキサメタリン酸水溶液に加え、攪拌棒で1分間手混合したスラリーを、粒度分布測定機より計測した値とした。
<Maximum particle size>
The maximum particle size of the hexagonal boron nitride powder of the present invention is 250 μm or less. If there are even a few coarse particles having a maximum particle size of more than 250 μm, the coarse particles cause a feeling of roughness when the foundation is spread, which is not preferable as a raw material for cosmetics. The maximum particle size in the present invention is a particle size corresponding to 100% of the cumulative value of the volume-based cumulative flow distribution in the particle size distribution measurement by the laser diffraction scattering method. Since the largest particles may be aggregates of primary particles, if the measurement conditions of the average particle diameter, that is, the dispersion treatment with a homogenizer are performed, the aggregates collapse and the correct results are not reflected. Therefore, in the present invention, when measuring the maximum particle size, 60 mg of hexagonal boron nitride powder was added to 15 g of a 0.2 mass% hexametaphosphoric acid aqueous solution, and a slurry was obtained by hand mixing for 1 minute with a stirrer using a particle size distribution analyzer. The measured value was used.

<比表面積>
本発明の六方晶窒化ホウ素の比表面積は1m/g以上10m/g以下であり、好ましくは1m/g以上5m/g以下、より好ましくは1m/g以上2.5m/g以下である。前記比表面積が1m/g未満では、粒子径が大きくなることを意味し、滑り性には問題ないが、外観上のぎらつきが強くなったりするため、化粧料の原料用としては好ましくなくなる。比表面積が10m/gを超えると、滑り性が不十分になる上に、「外原規2006」で規定される溶出ホウ素濃度が20ppmを超えてしまう。また比表面積が2.5m/gを超えると、「外原規2006」で規定される溶出ホウ素濃度が10ppmを超えてしまう傾向がある。なおここで言う比表面積は、ガス吸着現象を利用した、一般に市販されている測定装置を用い、BET1点法により算出された値を用いることができる。
<Specific surface area>
The specific surface area of hexagonal boron nitride of the present invention is not more than 1 m 2 / g or more 10 m 2 / g, preferably from 1 m 2 / g or more 5 m 2 / g or less, more preferably 1 m 2 / g or more 2.5 m 2 / g or less. When the specific surface area is less than 1 m 2 /g, it means that the particle size becomes large, and there is no problem in slipperiness, but glare on the appearance becomes strong, so that it is not preferable as a raw material for cosmetics. .. When the specific surface area exceeds 10 m 2 /g, the slidability becomes insufficient, and the concentration of eluted boron specified in “External Regulations 2006” exceeds 20 ppm. Further, if the specific surface area exceeds 2.5 m 2 /g, the concentration of eluted boron defined in “External Regulation 2006” tends to exceed 10 ppm. The specific surface area referred to here can be a value calculated by the BET one-point method using a generally commercially available measuring device utilizing a gas adsorption phenomenon.

<六方晶窒化ホウ素の黒鉛化指数>
本発明に係る六方晶窒化ホウ素の黒鉛化指数は、2.0以下である。黒鉛化指数はGI(GGraphitization Indexの略)値とも呼ばれ、ここでは六方晶窒化ホウ素の結晶化の程度を示す指数であり、数値が小さいほど結晶化が進んでいることを示す。黒鉛化指数が2.0を超えてしまうと、六方晶窒化ホウ素粉末表面の水可容性ホウ素化合物を除去しても、溶出ホウ素の測定中に六方晶窒化ホウ素粉末が加水分解し、新たに水可容性ホウ素化合物が生成してしまい溶出ホウ素が20ppmを超えてしまう。黒鉛化指数が1.1を超えてしまうと溶出ホウ素が10ppmを超えてしまう。黒鉛化指数は、粗六方晶窒化ホウ素合成時の焼結助剤の配合量、及び焼成温度によって制御することができるが、これについては後に記載する。焼結助剤が少ないと六方晶窒化ホウ素の結晶化が進まないため、溶出ホウ素量の増加を招き、また焼結助剤が多すぎると六方晶窒化ホウ素粉末の粒成長が進みすぎ、例えばこれを用いた化粧料の、肌への触感にざらつきが発生したり、外観上のぎらつきが強くなるため化粧料原料として好ましくない。なお溶出ホウ素濃度が20ppmを超えた六方晶窒化ホウ素粉末は、保管中に溶出ホウ素が減少することはなく、「外原規2006」の規定値を超えてしまい、これを原料として配合した化粧料の、肌への刺激性を高める可能性がある。
<Graphization index of hexagonal boron nitride>
The hexagonal boron nitride according to the present invention has a graphitization index of 2.0 or less. The graphitization index is also called a GI (abbreviation of GGraphitization Index) value, and is an index showing the degree of crystallization of hexagonal boron nitride, and the smaller the value, the more the crystallization progresses. If the graphitization index exceeds 2.0, even if the water-soluble boron compound on the surface of the hexagonal boron nitride powder is removed, the hexagonal boron nitride powder is hydrolyzed during the measurement of the eluted boron, and a new A water-acceptable boron compound is produced, and the amount of eluted boron exceeds 20 ppm. When the graphitization index exceeds 1.1, the eluted boron exceeds 10 ppm. The graphitization index can be controlled by the amount of the sintering aid compounded during the synthesis of the crude hexagonal boron nitride and the firing temperature, which will be described later. Crystallization of hexagonal boron nitride does not proceed with a small amount of sintering aid, which leads to an increase in the amount of eluted boron, and when the amount of sintering aid is too large, the grain growth of hexagonal boron nitride powder proceeds too much, for example, this It is not preferable as a raw material for cosmetics, since the cosmetics using the above will cause the skin to become rough to the touch and will have a strong glare on the appearance. In addition, the hexagonal boron nitride powder having an elution boron concentration of more than 20 ppm does not decrease the elution boron during storage and exceeds the specified value of “External Regulations 2006”. , May increase skin irritation.

以下に黒鉛化指数の測定方法を記す。六方晶窒化ホウ素粉末は、黒鉛と類似の結晶構造を有しており、粉末X線回折法を利用し、黒鉛と同様の方法で、その黒鉛化指数を算出することができる。即ち、黒鉛化指数は、X線回折スペクトルの(100)面に由来するピークの面積S、(101)面に由来するピークの面積S、及び(102)面に由来するピークの面積Sの各値を、(式1)に代入することによって算出することができることが示され(J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962))ており、これを六方晶窒化ホウ素に適用したものである。
黒鉛化指数=(S+S)/S(式1)
The method of measuring the graphitization index will be described below. The hexagonal boron nitride powder has a crystal structure similar to that of graphite, and its graphitization index can be calculated by a method similar to that of graphite using a powder X-ray diffraction method. That is, the graphitization index is the area S 1 of the peak derived from the (100) plane of the X-ray diffraction spectrum, the area S 2 of the peak derived from the (101) plane, and the area S of the peak derived from the (102) plane. It is shown that each value of 3 can be calculated by substituting it into (Equation 1) (J. Thomas, et. al, J. Am. Chem. Soc. 84, 4619 (1962)), This is applied to hexagonal boron nitride.
Graphitization index=(S 1 +S 2 )/S 3 (equation 1)

ここで(式1)におけるSは、六方晶窒化ホウ素の(100)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=40度以上42.5度以下のピークの面積である。同様にSは六方晶窒化ホウ素の(101)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=43度以上45度以下のピークの面積である。Sは六方晶窒化ホウ素の(102)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=48度以上52度以下のピークの面積である。なお、各ピークの面積を求めるにあたり、2θ=38度及び54度における各値を直線で結んでベースラインを作成し、ベースラインを基準として各ピーク面積を算出した。 Here, S 1 in (Equation 1) is the area (integrated intensity ratio) of the peak corresponding to the X-ray diffraction spectrum of the (100) plane of hexagonal boron nitride, and specifically 2θ=40 degrees or more 42. The area of the peak is 5 degrees or less. Similarly, S 2 is the area of the peak (integrated intensity ratio) corresponding to the X-ray diffraction spectrum of the (101) plane of hexagonal boron nitride, and specifically, the area of the peak at 2θ=43 degrees or more and 45 degrees or less. is there. S 3 is the area (integrated intensity ratio) of the peak corresponding to the X-ray diffraction spectrum of the (102) plane of hexagonal boron nitride, and is specifically the area of the peak at 2θ=48 degrees or more and 52 degrees or less. In obtaining the area of each peak, a baseline was created by connecting the respective values at 2θ=38° and 54° with a straight line, and each peak area was calculated based on the baseline.

黒鉛化指数は六方晶窒化ホウ素の結晶性の指標となり、高結晶性でかつ粒子が十分に成長した場合には、粒子が配向しやすくなるため、六方晶窒化ホウ素粉末の黒鉛化指数は小さくなる傾向がある。化粧料として用いた場合の塗り伸び性に影響する。本発明の六方晶窒化ホウ素の黒鉛化指数は2.0以下であり、好ましくは1.6以下、更に好ましくは1.1以下である。黒鉛化指数が2.0を超えると、六方晶窒化ホウ素の結晶化が不十分となり、滑り性が不十分となる。 The graphitization index is an index of the crystallinity of hexagonal boron nitride, and if the crystallinity is high and the particles grow sufficiently, the particles tend to be oriented, so the graphitization index of the hexagonal boron nitride powder becomes small. Tend. Affects coating spreadability when used as a cosmetic. The hexagonal boron nitride of the present invention has a graphitization index of 2.0 or less, preferably 1.6 or less, more preferably 1.1 or less. When the graphitization index exceeds 2.0, the hexagonal boron nitride is insufficiently crystallized and the slipperiness is insufficient.

<平均摩擦係数、平均摩擦係数の変動値>
本発明の六方晶窒化ホウ素粉末の平均摩擦係数(以降MIUと称す)は0.90以下、好ましくは0.80以下である。また平均摩擦係数の変動値(以降MMDと称す)は0.015以下、好ましくは0.010以下である。MIUが0.90を超えると、滑り性が不十分となる。またMMDが0.015を超えると、ざらつき感を強く感じるようになり化粧料として好ましくない。なお本発明でいうMIU及びMMDは、摩擦感テスター(KES−SE、カトーテックス社製)を用いて測定した値である。その測定は、肌に見立てた人工皮革(サプラーレ、出光テクノファイン社製)上に六方晶窒化ホウ素粉末を0.2g乗せて、その上に前記摩擦感テスターのセンサー部(10mm角シリコン)を当て、摩擦感テスターの測定条件として、感度:H、試験台移動速度:1mm/sec、静荷重:25gfを設定してMIU及びMMDを計測する方法を採用した。なお計測は5回測定を行い、得られた測定結果の平均値をMIU、MMDとした。
<Average friction coefficient, fluctuation value of average friction coefficient>
The hexagonal boron nitride powder of the present invention has an average friction coefficient (hereinafter referred to as MIU) of 0.90 or less, preferably 0.80 or less. Further, the variation value of the average friction coefficient (hereinafter referred to as MMD) is 0.015 or less, preferably 0.010 or less. When MIU exceeds 0.90, slipperiness becomes insufficient. Further, when the MMD exceeds 0.015, a rough feeling is strongly felt, which is not preferable as a cosmetic. The MIU and MMD in the present invention are values measured using a friction tester (KES-SE, manufactured by Kato Tex Co., Ltd.). The measurement was carried out by placing 0.2 g of hexagonal boron nitride powder on artificial leather (suprare, manufactured by Idemitsu Technofine Co., Ltd.) that looked like the skin, and applying the sensor section (10 mm square silicon) of the friction tester on it. As a measurement condition of the friction tester, a method of measuring MIU and MMD by setting sensitivity: H, test table moving speed: 1 mm/sec, static load: 25 gf was adopted. The measurement was performed 5 times, and the average value of the obtained measurement results was set as MIU and MMD.

<溶出ホウ素>
六方晶窒化ホウ素から溶出するホウ素は、肌への刺激性を示すため、所定量以下に低減する必要がある。溶出ホウ素は「外原規2006」に準拠した方法で行い、その値は20ppm以下である必要がある。溶出ホウ素濃度の値は小さいほど好ましいが、実際には好ましい値は16ppm以下、さらに好ましくは10ppm以下である。溶出ホウ素濃度が20ppmを超えると、肌への刺激性を示す恐れがある。
<Eluted boron>
Boron that elutes from hexagonal boron nitride is irritating to the skin, and therefore needs to be reduced to a predetermined amount or less. The elution of boron is carried out by the method according to “External Regulation 2006”, and its value needs to be 20 ppm or less. The smaller the value of the eluted boron concentration is, the more preferable it is, but in reality, the preferable value is 16 ppm or less, more preferably 10 ppm or less. If the concentration of dissolved boron exceeds 20 ppm, it may cause irritation to the skin.

<六方晶窒化ホウ素の製造方法>
本発明の六方晶窒化ホウ素粉末の製造方法の例としては、ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末(以下、ホウ素を含む化合物と窒素を含む化合物とを併せて出発原料ということもある)と、アルカリ金属化合物及び/又はアルカリ土類金属などの焼成時における出発原料の六方晶窒化ホウ素への変換を促進する焼結助剤の粉末と、本発明の目的を逸脱しない範囲において、必要に応じて出発原料や焼結助剤以外の、単体や化合物を含む混合粉末を、第一焼成条件として窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、これを更に第二焼成条件として窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び又はアンモニア雰囲気下で1600〜2200℃で焼成して粗六方晶窒化ホウ素となし、これを洗浄液で洗浄することによる不純物除去処理を加えてから乾燥し、分級する工程を含む製造方法が挙げられる。ここで、焼結助剤の配合は、出発原料に配合して第一焼成条件で焼成しても良いし、低結晶性六方晶窒化ホウ素に配合し第二焼成条件で焼成しても良いが、好ましくは、第一焼成条件で焼成し得られた低結晶性六方晶窒化ホウ素に焼結助剤を配合し、第二焼成条件で焼成する。
<Method for producing hexagonal boron nitride>
As an example of the method for producing the hexagonal boron nitride powder of the present invention, a powder of a compound containing boron and a powder of a compound containing nitrogen (hereinafter, a compound containing boron and a compound containing nitrogen are also referred to as starting materials. A), a powder of a sintering aid that promotes conversion of a starting material to hexagonal boron nitride during firing of an alkali metal compound and/or an alkaline earth metal, and the like, within a range not departing from the object of the present invention, 600 to 1300° C. under an inert atmosphere of nitrogen, helium, argon or the like as a first firing condition, and/or an ammonia atmosphere, as a first firing condition, if necessary, a mixed powder containing a simple substance or a compound other than a starting material or a sintering aid. To form low crystalline hexagonal boron nitride, which is further subjected to second baking conditions under an inert atmosphere of nitrogen, helium, argon or the like and/or under an ammonia atmosphere at 1600 to 2200° C. An example of the method is a method of producing crystalline boron nitride, which is subjected to an impurity removal treatment by washing with a washing liquid, followed by drying and classification. Here, the sintering aid may be blended in the starting material and fired under the first firing condition, or may be blended in the low crystalline hexagonal boron nitride and fired under the second firing condition. Preferably, a low-crystallinity hexagonal boron nitride obtained by firing under the first firing condition is mixed with a sintering aid and fired under the second firing condition.

前記ホウ素を含む化合物としては、ホウ酸、酸化ホウ素、ホウ砂などを好ましく、特にホウ酸を好ましく用いることができる。また、前記窒素を含む化合物としては、シアンジアミド、メラミン、尿素などを好ましく、特にメラミンを好ましく選択することができる。さらに焼結助剤の好ましい具体例としては、炭酸リチウム、炭酸ナトリウムなどの炭酸塩を挙げることができる。また、出発原料や焼結助剤以外に添加できる単体や化合物の例としては、炭素などの還元性物質を挙げることができる。なお、粗六方晶窒化ホウ素を製造するための出発原料や焼結助剤として用いる各種化合物等は一種類に限定する必要はなく、複数種類の化合物等を同時に使用することもできる。また、出発原料中に含まれるホウ素原子と窒素原子のモル比率は、必ずしも5:5に固定する必要はなく、反応性や収率に応じて、ホウ素原子と窒素原子のモル比率を、好ましくは2:8〜8:2の範囲で、さらに好ましくは3:7〜7:3の範囲で適宜変えることが可能である。 As the compound containing boron, boric acid, boron oxide, borax, etc. are preferable, and boric acid can be particularly preferably used. As the nitrogen-containing compound, cyandiamide, melamine, urea and the like are preferable, and melamine can be particularly preferably selected. Further, preferable specific examples of the sintering aid include carbonates such as lithium carbonate and sodium carbonate. Further, as an example of a simple substance or a compound that can be added in addition to the starting material and the sintering aid, a reducing substance such as carbon can be cited. It should be noted that the starting material for producing the crude hexagonal boron nitride and various compounds used as a sintering aid are not limited to one kind, and a plurality of kinds of compounds can be used at the same time. Further, the molar ratio of the boron atom and the nitrogen atom contained in the starting material does not necessarily have to be fixed at 5:5, and the molar ratio of the boron atom and the nitrogen atom is preferably set in accordance with the reactivity and the yield. It can be appropriately changed within the range of 2:8 to 8:2, and more preferably within the range of 3:7 to 7:3.

さらに黒鉛化指数、すなわち六方晶窒化ホウ素の結晶性は、第二焼成条件における粗六方晶窒化ホウ素粉末合成時の焼結助剤の配合量、及び焼成温度によって変化する。焼結助剤の種類としては炭酸ナトリウム、炭酸カルシウムなどを好ましく用いることができる。原料の100質量部に対する焼結助剤の配合割合は少なくとも0.9質量部以上、好ましくは1.0質量部以上、さらに好ましくは2.0質量部以上であることが望ましい。また、化粧料への適用を考慮すると、出発原料の100質量部に対する焼結助剤の配合割合は多くとも20質量部以下、好ましくは15質量部以下、さらに好ましくは12質量部以下であることが望ましい。焼結助剤の配合割合が0.9質量部未満であると、焼結に伴って進行するべき出発原料から六方晶窒化ホウ素への変換反応が進まずに、黒鉛化指数が2.0を超える値となりやすく、化粧料としての滑り性が不十分となる。逆に、焼結助剤の配合割合が20質量部を超えると六方晶窒化ホウ素の結晶成長が進みすぎて微粉砕が困難になり、六方晶窒化ホウ素粉末の平均粒子径が20μmを超える可能性が高く、このような六方晶窒化ホウ素粉末を原料として用いた化粧料では、外観上のぎらつきが強くなり、化粧料用原料として相応しくない。 Further, the graphitization index, that is, the crystallinity of hexagonal boron nitride changes depending on the blending amount of the sintering aid when synthesizing the crude hexagonal boron nitride powder under the second firing condition and the firing temperature. As the type of sintering aid, sodium carbonate, calcium carbonate or the like can be preferably used. The mixing ratio of the sintering aid to 100 parts by mass of the raw material is at least 0.9 parts by mass or more, preferably 1.0 part by mass or more, and more preferably 2.0 parts by mass or more. In consideration of application to cosmetics, the mixing ratio of the sintering aid to 100 parts by mass of the starting material is 20 parts by mass or less, preferably 15 parts by mass or less, and more preferably 12 parts by mass or less. Is desirable. If the mixing ratio of the sintering aid is less than 0.9 parts by mass, the conversion reaction from the starting material to hexagonal boron nitride that should proceed with sintering does not proceed and the graphitization index is 2.0. The value tends to exceed, and the slipperiness as a cosmetic becomes insufficient. On the contrary, if the mixing ratio of the sintering aid exceeds 20 parts by mass, the crystal growth of the hexagonal boron nitride will proceed excessively and fine pulverization will be difficult, and the average particle diameter of the hexagonal boron nitride powder may exceed 20 μm. Therefore, cosmetics using such a hexagonal boron nitride powder as a raw material have strong external glare and are not suitable as a raw material for cosmetics.

第二焼成条件での焼成において、前記混合粉末を焼成するときの最高温度としては、1600℃以上2200℃以下の範囲の温度が好ましく、1680℃以上2200℃以下の範囲の温度がより好ましく設定される。焼成温度の最高値が1600℃未満であると六方晶窒化ホウ素への変換が進み難くなるため黒鉛化指数が2.0を超える値となりやすく、化粧料としての滑り性が不十分となるため好ましくない。焼成温度の最高値が2200℃を超えると、六方晶窒化ホウ素の結晶成長が進みすぎるため微粉砕が困難になり、化粧料用原材料として実用上好ましくない。 In the firing under the second firing condition, the maximum temperature when firing the mixed powder is preferably in the range of 1600°C or higher and 2200°C or lower, and more preferably in the range of 1680°C or higher and 2200°C or lower. R. When the maximum firing temperature is less than 1600° C., conversion to hexagonal boron nitride is difficult to proceed, the graphitization index tends to exceed 2.0, and the slipperiness as a cosmetic becomes insufficient, which is preferable. Absent. If the maximum firing temperature exceeds 2200° C., the crystal growth of hexagonal boron nitride will proceed too much, making fine pulverization difficult, which is not practically preferable as a raw material for cosmetics.

第二焼成条件での焼成において、焼成温度は一定に保持しても、連続的または不連続的に変化させても良く、昇温冷却時の速度にも制限はないが、焼成時間が短すぎると焼成が不十分となり、黒鉛化指数が2.0を超える可能性があるため、2時間以上が好ましく、3時間以上がより好ましい。また、前記粉末混合物を焼成する装置類については特に制限はないが、前記粉末混合物を収納する容器には、例えば六方晶窒化ホウ素製の容器を用いることができ、加熱装置には、例えば電気ヒータを用いた焼成炉を用いることができる。 In the firing under the second firing condition, the firing temperature may be kept constant or may be changed continuously or discontinuously, and there is no limitation on the rate of temperature rising and cooling, but the firing time is too short. Since firing is insufficient and the graphitization index may exceed 2.0, it is preferably 2 hours or longer and more preferably 3 hours or longer. Further, there is no particular limitation on the apparatus for firing the powder mixture, but a container made of hexagonal boron nitride, for example, can be used as the container for storing the powder mixture, and the heating device can be, for example, an electric heater. It is possible to use a firing furnace using.

また、出発原料を混合して粉末混合物となしてから焼成が終了するまでの間に、本発明の目的を逸脱しない範囲内で、さらに加熱、冷却、加湿、乾燥、及び洗浄の操作を加えることも可能である。 Further, during the period from the mixing of the starting materials to form a powder mixture and the end of the firing, further heating, cooling, humidifying, drying, and washing operations are added within a range not departing from the object of the present invention. Is also possible.

第二焼成条件による焼成が終了して得られた粗六方晶窒化ホウ素を粉砕する装置に特に規定はないが、粉砕条件によっては得られた六方晶窒化ホウ素の比表面積が上昇し、滑り性が不十分となる上に、溶出ホウ素量が20ppmを超えてしまう恐れがある。 The apparatus for pulverizing the crude hexagonal boron nitride obtained after the firing under the second firing condition is not particularly specified, but the specific surface area of the obtained hexagonal boron nitride is increased depending on the pulverization conditions, and the slip property is In addition to being insufficient, the amount of eluted boron may exceed 20 ppm.

粉砕した粗六方晶窒化ホウ素粉末中には、六方晶窒化ホウ素以外の不純物や水溶性ホウ素化合物(以降、まとめて不純物等という)が含まれている可能性があるため、洗浄液を用いた洗浄により不純物等を除去してから固液分離して乾燥し、最終的に本発明の六方晶窒化ホウ素粉末を得ることができる。ここでいう洗浄液とは、水、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液のいずれかであることが望ましい。水は、例えば5〜95℃の冷水、温水または熱水を用いることができ、この場合、不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用することができる。酸性物質としては、例えば塩酸、硝酸等の無機酸を挙げることができる。有機溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロピルアルコールやアセトン等の水溶性の有機溶媒を好ましく使用することができる。粗六方晶窒化ホウ素粉末と洗浄液とを接触させる方法にも特に制限はないが、粗六方晶窒化ホウ素粉末を、洗浄液中に浸漬して撹拌したり、粗六方晶窒化ホウ素粉末に、洗浄液をスプレーしたりして洗浄する方法等がある。 The crushed crude hexagonal boron nitride powder may contain impurities other than hexagonal boron nitride and water-soluble boron compounds (hereinafter collectively referred to as impurities). After removing impurities and the like, solid-liquid separation and drying are performed to finally obtain the hexagonal boron nitride powder of the present invention. The cleaning liquid here is preferably any one of water, an aqueous solution containing an acidic substance, an organic solvent, and a mixed liquid of an organic solvent and water. As the water, for example, cold water, hot water or hot water of 5 to 95° C. can be used, and in this case, water having an electric conductivity of 1 mS/m or less is used from the viewpoint of avoiding secondary contamination of impurities. You can Examples of the acidic substance include inorganic acids such as hydrochloric acid and nitric acid. As the organic solvent, for example, water-soluble organic solvents such as methanol, ethanol, propanol, isopropyl alcohol and acetone can be preferably used. The method of contacting the crude hexagonal boron nitride powder and the cleaning liquid is not particularly limited, but the crude hexagonal boron nitride powder is immersed in the cleaning liquid and stirred, or the crude hexagonal boron nitride powder is sprayed with the cleaning liquid. There are methods such as washing and washing.

洗浄終了後、固液分離してから乾燥する場合、固液分離の方法にも特に限定はなく、例えばデカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機またはそれらの組み合わせた装置を用いることができる。 When the solid-liquid separation is followed by drying after the completion of washing, the solid-liquid separation method is not particularly limited, and examples thereof include decantation, a suction filter, a pressure filter, a rotary filter, a sedimentation separator, or a separator thereof. A combination of devices can be used.

さらに固液分離後の粗六方晶窒化ホウ素粉末の乾燥方法にも特に制限はないが、使用できる乾燥装置の一例を示せば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機またはそれらの組み合わせであり、乾燥機の設定温度は30℃以上250℃以下、好ましくは200℃以下、乾燥機内の圧力は10−6kPaA以上101.3kPaA以下、好ましくは5kPaA以下である。 Further, the method for drying the crude hexagonal boron nitride powder after solid-liquid separation is not particularly limited, but if an example of a drying device that can be used is shown, a shelf dryer, a fluidized bed dryer, a spray dryer, a rotary dryer. Machine, belt-type dryer or a combination thereof, the set temperature of the dryer is 30° C. or higher and 250° C. or lower, preferably 200° C. or lower, and the pressure in the dryer is 10 −6 kPaA or higher and 101.3 kPaA or lower, preferably 5 kPaA. It is the following.

洗浄、固液分離、乾燥はそれぞれ1回でも良いし、同じ方法または異なる方法を組み合わせて複数回実施しても構わない。 The washing, solid-liquid separation, and drying may be performed once, or may be performed multiple times by combining the same method or different methods.

さらに粗大粒子(主に一次粒子の凝集により生成)を除去するために、乾燥後の粗六方晶窒化ホウ素粉末を分級することが望ましい。分級の方法は篩が好ましく、ミルや風力分級では六方晶窒化ホウ素粉末に割れや欠けが発生し、溶出ホウ素が増加する。つまり篩で分級を行えば、篩後に洗浄を行わなくても良い。篩の目開きは最大粒子径以下、すなわち250μm以下を用いることが望ましい。なお250μmより更に小さい篩目開きを用いることで、最大粒子径を更に低減できる。 Further, in order to remove coarse particles (mainly generated by aggregation of primary particles), it is desirable to classify the crude hexagonal boron nitride powder after drying. A sieve is preferably used as the classification method, and cracking or chipping occurs in the hexagonal boron nitride powder in the mill or air classification, and the eluted boron increases. In other words, if classification is performed with a sieve, washing does not have to be performed after the sieve. It is desirable to use the mesh size of the sieve of not more than the maximum particle size, that is, 250 μm or less. The maximum particle size can be further reduced by using a sieve opening smaller than 250 μm.

以上、製造条件についてまとめる。すなわち、第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、0.9質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1600〜2200℃、焼成時間2時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた粗六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む、製造方法により、平均粒子径が3μm以上20μm以下かつ最大粒子径が250μm以下であり、比表面積が1m/g以上10m/g以下、一次粒子の粉末X線回折法による黒鉛化指数が2.0以下であり、さらに平均摩擦係数が0.90以下、前記平均摩擦係数の変動値が0.015以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が20ppm以下である六方晶窒化ホウ素粉末を製造することができる。 The manufacturing conditions are summarized above. That is, the mixed powder of the compound powder containing boron and the compound powder containing nitrogen as the first firing condition is fired at 600 to 1300° C. under an inert atmosphere such as nitrogen, helium, or argon, and/or an ammonia atmosphere. To obtain low crystalline hexagonal boron nitride, and 100 parts by mass of the obtained powder of low crystalline hexagonal boron nitride, and a mixed powder containing 0.9 parts by mass or more and 20 parts by mass or less of a sintering aid powder. (2) a step of obtaining crude hexagonal boron nitride by firing under the firing conditions of a maximum temperature of 1600 to 2200° C. and a firing time of 2 hours or more, and the obtained crude hexagonal boron nitride is washed, dried, and sieved. A powder X-ray of primary particles having an average particle size of 3 μm or more and 20 μm or less and a maximum particle size of 250 μm or less, a specific surface area of 1 m 2 /g or more and 10 m 2 /g or less, according to a production method including a step of removing coarse particles. The graphitization index by the diffractometry is 2.0 or less, the average friction coefficient is 0.90 or less, the variation value of the average friction coefficient is 0.015 or less, and further measured according to the quasi-drug raw material standard 2006. A hexagonal boron nitride powder having an eluted boron concentration of 20 ppm or less can be produced.

さらに、第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、2.0質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1680〜2200℃、焼成時間3時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた前記六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む製造方法により、平均粒子径が3μm以上20μm以下、かつ最大粒子径が250μm以下であり、一次粒子の粉末X線回折法による黒鉛化指数が2.0以下であり、さらに平均摩擦係数が0.90以下、前記平均摩擦係数の変動値が0.015以下を満足し、さらに好ましい比表面積が1m/g以上2.5m/g以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が10ppm以下である六方晶窒化ホウ素粉末を得ることができる。 Further, as a first firing condition, a mixed powder of a powder of a compound containing boron and a powder of a compound containing nitrogen is fired at 600 to 1300° C. under an inert atmosphere of nitrogen, helium, argon or the like and/or an ammonia atmosphere. To obtain low crystalline hexagonal boron nitride, and 100 parts by mass of the obtained powder of low crystalline hexagonal boron nitride, and a mixed powder containing 2.0 parts by mass or more and 20 parts by mass or less of a sintering aid powder. (2) a step of obtaining a crude hexagonal boron nitride by firing under the firing conditions of a maximum temperature of 1680 to 2200° C. and a firing time of 3 hours or more, and the obtained hexagonal boron nitride is washed, dried and sieved. By a production method including a step of removing coarse particles, the average particle diameter is 3 μm or more and 20 μm or less, the maximum particle diameter is 250 μm or less, and the graphitization index of primary particles by a powder X-ray diffraction method is 2.0 or less, Furthermore, the average coefficient of friction is 0.90 or less, the fluctuation value of the average coefficient of friction is 0.015 or less, and the more preferable specific surface area is 1 m 2 /g or more and 2.5 m 2 /g or less, and further quasi drug raw materials. A hexagonal boron nitride powder having an eluted boron concentration of 10 ppm or less measured according to the standard 2006 can be obtained.

<本発明の六方晶窒化ホウ素粉末を用いた化粧料>
本発明は別の一側面において、本発明の六方晶窒化ホウ素粉末を含む化粧料である。化粧料の一例を示せば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、マスカラであるが、中でもファンデーション、アイシャドーに本発明の六方晶窒化ホウ素粉末が特に良く適合する。本発明の六方晶窒化ホウ素粉末の化粧料への好適な添加量は0.1質量%以上70質量%以下である。
<Cosmetics using the hexagonal boron nitride powder of the present invention>
The present invention, in another aspect, is a cosmetic containing the hexagonal boron nitride powder of the present invention. Examples of cosmetics are foundations (powder foundation, liquid foundation, cream foundation), face powder, point makeup, eye shadow, eyeliner, manicure, lipstick, blusher and mascara. The inventive hexagonal boron nitride powder is particularly well suited. The preferable addition amount of the hexagonal boron nitride powder of the present invention to the cosmetic is 0.1% by mass or more and 70% by mass or less.

以下、本発明を実施例、比較例をあげて更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

<実施例1>
ホウ酸粉末(純度99.8質量%以上、関東化学社製)100.0g、及びメラミン粉末(純度99.0質量%以上、和光純薬社製)90.0gの各出発原料をそれぞれ秤量し、アルミナ製乳鉢を用いて10分間混合した。作製した粉末混合物を恒温恒湿機(AGX−225、ADVANTEC社製)に入れ、80℃、相対湿度95%で1時間加湿し、その後、120℃で1時間乾燥した。これを六方晶窒化ホウ素製の容器(容積約500cm)に入れ、炉室内容積が約16000cmの電気炉(TV−200、東海高熱工業社製)内に配し、炉室内への窒素ガス流量を16L(25℃における体積)/分として、10℃/分の割合で室温から昇温し、1回目の焼成温度の最高値である1000℃で2時間保持したのち、加熱を止めて自然冷却させ、温度が100℃以下まで下がった時点で電気炉を開放した。
<Example 1>
100.0 g of boric acid powder (purity 99.8% by mass or more, manufactured by Kanto Chemical Co., Inc.) and 90.0 g of melamine powder (purity 99.0% by mass or more, manufactured by Wako Pure Chemical Industries, Ltd.) were weighed. , Using an alumina mortar for 10 minutes. The prepared powder mixture was placed in a thermo-hygrostat (AGX-225, manufactured by ADVANTEC), humidified at 80° C. and 95% relative humidity for 1 hour, and then dried at 120° C. for 1 hour. This was placed in a vessel made of hexagonal boron nitride (volume of about 500 cm 3), an electric furnace of the furnace chamber volume of about 16000cm 3 (TV-200, Tokaikonetsukogyo Inc.) placed in the nitrogen gas into the furnace chamber The flow rate was 16 L (volume at 25° C.)/min, the temperature was raised from room temperature at a rate of 10° C./min, and the temperature was maintained at 1000° C., which is the maximum value of the first firing temperature, for 2 hours, then the heating was stopped and the heating was continued After cooling, the electric furnace was opened when the temperature dropped to 100° C. or lower.

得られた低結晶性六方晶窒化ホウ素100.0質量部(この場合100.0g)に、炭酸ナトリウム(純度99.5質量%以上、和光純薬社製)を3.0質量部(この場合3.0g)を秤量して添加し、アルミナ製乳鉢を用いて10分間混合した。さらに上述の電気炉内に配し、炉室内への窒素ガス流量を16L(25℃における体積)/分として、10℃/分の割合で昇温し、焼成温度の最高値である1700℃まで到達させてから4時間温度を保持して2回目の焼成を実施した。その後、加熱を止めて自然冷却させ、温度が100℃以下まで下がった時点で電気炉を開放して、粗六方晶窒化ホウ素(粉砕前)を回収した。これをアルミナ製乳鉢で3分間粉砕し、粗六方晶窒化ホウ素の粉末となした。なお、1回目及び2回目の焼成に関する条件を表1に記載した。 To 100.0 parts by mass (100.0 g in this case) of the obtained low crystalline hexagonal boron nitride, 3.0 parts by mass of sodium carbonate (purity: 99.5% by mass or more, manufactured by Wako Pure Chemical Industries, Ltd.) (in this case) 3.0 g) was weighed and added, and mixed using an alumina mortar for 10 minutes. Further, it is placed in the above-mentioned electric furnace, the nitrogen gas flow rate into the furnace chamber is set to 16 L (volume at 25° C.)/min, and the temperature is raised at a rate of 10° C./min until the maximum firing temperature of 1700° C. After reaching the temperature, the temperature was maintained for 4 hours to perform the second firing. After that, the heating was stopped and the mixture was naturally cooled, and when the temperature dropped to 100° C. or lower, the electric furnace was opened to recover crude hexagonal boron nitride (before pulverization). This was pulverized in an alumina mortar for 3 minutes to obtain a powder of crude hexagonal boron nitride. The conditions for the first and second firings are shown in Table 1.

さらに前記の粗六方晶窒化ホウ素の粉末中に含まれる不純物を除くため、5質量%希硝酸500gあたり30gの割合で、前記粗六方晶窒化ホウ素の粉末を投入し、室温で60分攪拌した後、吸引ろ過により固液分離し、ろ液が中性になるまで水(電気伝導度1mS/m)を入れ替えて洗浄した。洗浄後の粉末は乾燥機で120℃で3時間一旦乾燥した後、得られた粉末を、超音波振動篩(KFS−1000、興和工業所社製)を用いて、目開き250μmで篩い、実施例1の六方晶窒化ホウ素粉末を得た。なお、ここで使用した篩の目開きの数値も表1に記載した。 Further, in order to remove impurities contained in the powder of the crude hexagonal boron nitride, the powder of the crude hexagonal boron nitride was added at a ratio of 30 g per 500 g of 5 mass% dilute nitric acid, and the mixture was stirred at room temperature for 60 minutes. Then, solid-liquid separation was performed by suction filtration, and water (electric conductivity 1 mS/m) was replaced and washed until the filtrate became neutral. The washed powder was once dried in a dryer at 120° C. for 3 hours, and then the obtained powder was sieved with an ultrasonic vibration sieve (KFS-1000, manufactured by Kowa Kogyo Co., Ltd.) with a mesh opening of 250 μm. A hexagonal boron nitride powder of Example 1 was obtained. The numerical values of the openings of the screen used here are also shown in Table 1.

<平均粒子径、最大粒子径>
実施例1で作製した六方晶窒化ホウ素粉末の分散液を用い、粒度分布測定機(MT3300EX型、日機装社製)で六方晶窒化ホウ素粉末の平均粒子径及び最大粒子径を測定した。水の屈折率は1.33とし、六方晶窒化ホウ素粉末の屈折率は1.80として、一回当たりの測定時間は30秒とした。この結果は表3に記載した。
<Average particle size, maximum particle size>
Using the dispersion liquid of the hexagonal boron nitride powder prepared in Example 1, the average particle diameter and the maximum particle diameter of the hexagonal boron nitride powder were measured with a particle size distribution measuring device (MT3300EX type, manufactured by Nikkiso Co., Ltd.). The refractive index of water was 1.33, the refractive index of hexagonal boron nitride powder was 1.80, and the measurement time per measurement was 30 seconds. The results are shown in Table 3.

<比表面積>
実施例1で作製した六方晶窒化ホウ素粉末の比表面積を、比表面積測定装置(カンターソーブ、ユアサアイオニクス社製)を用いて、BET1点法により測定した。なお測定に際しては、試料1gを300℃、15分間乾燥脱気してから測定に供した。この結果は表3に記載した。
<Specific surface area>
The specific surface area of the hexagonal boron nitride powder produced in Example 1 was measured by a BET one-point method using a specific surface area measuring device (Cantersorb, manufactured by Yuasa Ionics Inc.). At the time of measurement, 1 g of the sample was dried and degassed at 300° C. for 15 minutes and then subjected to the measurement. The results are shown in Table 3.

<黒鉛化指数>
実施例1で作製した六方晶窒化ホウ素粉末の黒鉛化指数を、高出力粉末X線回折装置(D8ADVANCE Super Speed、ブルカー・エイエックスエス社製)を用いて測定した。このとき六方晶窒化ホウ素粉末を100kNでプレス成形し、10×15×3mmのサンプルを被検体とし、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAの条件とした。この結果は表3に記載した。
<Graphization index>
The graphitization index of the hexagonal boron nitride powder produced in Example 1 was measured using a high-power powder X-ray diffractometer (D8ADVANCE Super Speed, manufactured by Bruker AXS KK). At this time, hexagonal boron nitride powder was press-molded at 100 kN, a sample of 10×15×3 mm was used as a test object, CuKα rays were used as an X-ray source, a tube voltage was 45 kV, and a tube current was 360 mA. The results are shown in Table 3.

<平均摩擦係数(MIU)、平均摩擦係数の変動値(MMD)>
実施例1で作製した六方晶窒化ホウ素粉末0.2gを人工皮革(サプラーレ、出光テクノファイン製)に乗せ、摩擦感テスター(カトーテックス製、KES−SE)を用いて、感度:H、試験台移動速度:1mm/sec、センサー:10mm□シリコン、静荷重:25gfの条件で測定した。5回測定を行い、得られた測定結果の平均値を算出した。この結果は表3に記載した。
<Average friction coefficient (MIU), variation value of average friction coefficient (MMD)>
0.2 g of hexagonal boron nitride powder produced in Example 1 was placed on artificial leather (suprare, manufactured by Idemitsu Technofine), and a friction tester (manufactured by Kato Tex, KES-SE) was used to detect sensitivity: H, test table. The moving speed was 1 mm/sec, the sensor was 10 mm□ silicon, and the static load was 25 gf. The measurement was performed 5 times, and the average value of the obtained measurement results was calculated. The results are shown in Table 3.

<溶出ホウ素濃度>
実施例1で作製した六方晶窒化ホウ素粉末の、製造直後、及び長期保管後の水に溶出するホウ素の量は、基本的に「外原規2006」に基づく方法で抽出し、ICP発光分光分析装置で測定した。 即ち、製造直後の六方晶窒化ホウ素粉末2.5gをフッ素系樹脂製ビーカーにとり、エタノール10mlを加えてよくかき混ぜ、更に水40mlを加えてよくかき混ぜた後、フッ素系樹脂製時計皿をのせ、50℃で1時間加温した。冷却後、前記ビーカーの内容物をろ過したろ液と、少量の水による残留物の洗液とを合わせた回収液を採取した。この回収液を、孔径0.22μmのメンブレンフィルターでろ過して「石英」製ビーカーにとり、この中に硫酸(47.5質量%)2ml を加えた。さらにホットプレート上で10分間煮沸し、冷却後、この液をポリエチレン製メスフラスコに入れ、更にビーカーを少量の水で洗い、この水洗液も前記ポリエチレン製メスフラスコに移し、さらに水を追加して正確に100mlとし、これを試料溶液とした。試料溶液のホウ素量をICP発光分光分析装置 (ICPE−9000、島津製作所製)で測定した。この結果は表3に記載した。
<Elution boron concentration>
The amount of boron eluted into water of the hexagonal boron nitride powder produced in Example 1 immediately after production and after long-term storage was basically extracted by a method based on “External Regulation 2006”, and ICP emission spectroscopy analysis was performed. It was measured by the device. That is, 2.5 g of hexagonal boron nitride powder immediately after production is placed in a fluororesin beaker, 10 ml of ethanol is added and well stirred, 40 ml of water is further added and well stirred, and then a fluororesin watch glass is put on the beaker, and Heated at 0°C for 1 hour. After cooling, a collected solution was collected, which was a combination of a filtrate obtained by filtering the contents of the beaker and a washing solution of the residue with a small amount of water. The recovered liquid was filtered through a membrane filter having a pore diameter of 0.22 μm and placed in a “quartz” beaker, and 2 ml of sulfuric acid (47.5% by mass) was added thereto. After boiling on a hot plate for 10 minutes and cooling, this solution is put into a polyethylene measuring flask, the beaker is washed with a small amount of water, this washing solution is also transferred to the polyethylene measuring flask, and water is further added. Exactly 100 ml was used as a sample solution. The amount of boron in the sample solution was measured with an ICP emission spectroscopy analyzer (ICPE-9000, manufactured by Shimadzu Corporation). The results are shown in Table 3.

<滑り性、ざらつき感評価>
実施例1で作製した六方晶窒化ホウ素粉末35質量%に、タルク(EX−15、ヤマグチマイカ社製)8質量%、顔料(LY−S、ヤマグチマイカ社製)8質量%、マイカ(セリサイトFSN、三信鉱工社製)35質量%、流動パラフィン(ハイコールM−352、カネダ社製)14質量%を混合し、化粧料(ファンデーション)を作製した。この結果は表3に記載した。
<Evaluation of slipperiness and roughness>
35% by mass of the hexagonal boron nitride powder prepared in Example 1, 8% by mass of talc (EX-15, manufactured by Yamaguchi Mica Co., Ltd.), 8% by mass of pigment (LY-S, manufactured by Yamaguchi Mica Co., Ltd.), mica (serisite) FSN (manufactured by Sanshin Minko Co., Ltd.) 35% by mass and liquid paraffin (Hicol M-352, manufactured by Kaneda Co.) 14% by mass were mixed to prepare a cosmetic (foundation). The results are shown in Table 3.

前記ファンデーションについて10名の被験者に1ヶ月間使用してもらい、化粧料としての使い心地を次の評価基準にて評価した。
(滑り性)
効果あり:滑り性に優れ、ファンデーションがスムーズに塗れる(3点)
従来同等:滑り性は普通で、ファンデーションの塗り心地も普通(2点)
改善なし:滑り性が悪く、ファンデーションが塗りづらい(1点)
(ざらつき感)
効果あり:塗った際にざらつき感を感じない(3点)
従来同等:塗った際にざらつき感をやや感じる(2点)
改善なし:塗った際にざらつき感を感じる(1点)
全被験者の評価結果の平均値を求め、表3に記載した。また使用した被験者が気になった点があれば表3のその他の欄に記載した。なお気になった点がなかった場合は横線(−)とした。ファンデーションとして実際に使い心地の良い方が、評価点は高くなるが、滑り性、ざらつき感については共に平均点が2.0以上になれば本発明について効果ありと判定した。
The foundation was used by 10 subjects for 1 month, and the feeling of use as a cosmetic was evaluated according to the following evaluation criteria.
(Sliding property)
Effective: excellent in slipperiness and smooth foundation (3 points)
Same as before: Normal slipperiness and normal foundation application comfort (2 points)
No improvement: Sliding property is poor and foundation is difficult to apply (1 point)
(Roughness)
Effective: No roughness when applied (3 points)
Equivalent to conventional: Feels a little rough when applied (2 points)
No improvement: Feels rough when applied (1 point)
The average value of the evaluation results of all the subjects was calculated and listed in Table 3. In addition, if there is any concern about the subject who used it, it is described in the other columns of Table 3. If there were no points of concern, a horizontal line (-) was used. Although the evaluation points were higher when the foundation was actually more comfortable to use, it was judged that the present invention is effective when the average points of both slipperiness and roughness are 2.0 or more.

<実施例2>
実施例1のふるい目開きを106μmに変更した以外は、実施例1と同じ条件で製造を行い、実施例2の六方晶窒化ホウ素粉末を作製した。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値を表1に記載した。また評価結果については表3に記載した。
<Example 2>
A hexagonal boron nitride powder of Example 2 was produced by carrying out the production under the same conditions as in Example 1 except that the sieve opening of Example 1 was changed to 106 μm. Table 1 shows the conditions for the first and second firings and the numerical values of the openings of the sieves used. The evaluation results are shown in Table 3.

<実施例3〜7、比較例1〜5>
実施例1の焼結助剤の低結晶性六方晶窒化ホウ素に対する質量割合、焼成温度の最高値、焼成時間を変更して、実施例3〜7、比較例1〜5の六方晶窒化ホウ素粉末を作製した。これらの評価は実施例1と同じ項目及び条件で行った。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値は、実施例3〜7については表1に、比較例1〜5については表2に記載した。またこれらの評価結果に関し、実施例3〜7については表3に、比較例1〜5については表4に記載した。
<Examples 3 to 7, Comparative Examples 1 to 5>
The hexagonal boron nitride powders of Examples 3 to 7 and Comparative Examples 1 to 5 were changed by changing the mass ratio of the sintering aid of Example 1 to low crystalline hexagonal boron nitride, the maximum firing temperature, and the firing time. Was produced. These evaluations were performed under the same items and conditions as in Example 1. The conditions regarding the first and second firings and the numerical values of the openings of the sieves used are shown in Table 1 for Examples 3 to 7 and Table 2 for Comparative Examples 1 to 5. Regarding these evaluation results, Examples 3 to 7 are shown in Table 3 and Comparative Examples 1 to 5 are shown in Table 4.

<実施例8>
焼結助剤に炭酸カルシウム(純度99.5質量%以上、関東化学社製)を用いた以外は、実施例1と同じ条件で、実施例8の六方晶窒化ホウ素粉末を作製し、評価した。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値は表1に記載した。また評価結果は表3に記載した。
<Example 8>
A hexagonal boron nitride powder of Example 8 was prepared and evaluated under the same conditions as in Example 1 except that calcium carbonate (purity 99.5 mass% or more, manufactured by Kanto Chemical Co., Inc.) was used as a sintering aid. .. The conditions for the first and second firings and the numerical values of the openings of the used sieves are shown in Table 1. The evaluation results are shown in Table 3.

<比較例6>
焼結助剤を添加しなかった以外は、実施例1と同じ条件で、比較例6の六方晶窒化ホウ素粉末を作製し、評価した。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値は表2に記載した。また評価結果は表4に記載した。
<Comparative example 6>
A hexagonal boron nitride powder of Comparative Example 6 was prepared and evaluated under the same conditions as in Example 1 except that the sintering aid was not added. Table 2 shows the conditions for the first and second firings, and the numerical values of the openings of the used sieves. The evaluation results are shown in Table 4.

<比較例7>
実施例1にて篩を実施しなかった以外は、実施例1と同じ条件で、比較例7の六方晶窒化ホウ素粉末を作製し、評価した。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値は表2に記載した。また評価結果は表4に記載した。
<Comparative Example 7>
A hexagonal boron nitride powder of Comparative Example 7 was prepared and evaluated under the same conditions as in Example 1 except that no sieving was performed in Example 1. Table 2 shows the conditions for the first and second firings, and the numerical values of the openings of the used sieves. The evaluation results are shown in Table 4.

<比較例8>
実施例1にて分級方法を篩ではなく風力分級にした以外は、実施例1と同じ条件で、比較例8の六方晶窒化ホウ素粉末を作製し、評価した。なお、1回目及び2回目の焼成に関する条件、及び使用した篩の目開きの数値は表2に記載した。また評価結果は表4に記載した。
<Comparative Example 8>
A hexagonal boron nitride powder of Comparative Example 8 was prepared and evaluated under the same conditions as in Example 1, except that the classification method in Example 1 was air classification instead of sieving. Table 2 shows the conditions for the first and second firings, and the numerical values of the openings of the used sieves. The evaluation results are shown in Table 4.

Figure 0006745293
Figure 0006745293

Figure 0006745293
Figure 0006745293

Figure 0006745293
Figure 0006745293

Figure 0006745293
Figure 0006745293

表3、4に示される評価結果から、本発明の六方晶窒化ホウ素を含むファンデーションは、滑り性が向上しまたざらつき感が低減されており、本発明の六方晶窒化ホウ素粉末は、ファンデーション、アイシャドー等の化粧料原料用の窒化ホウ素粉末として好ましく用いられることが示された。

From the evaluation results shown in Tables 3 and 4, the foundation containing the hexagonal boron nitride of the present invention has improved slipperiness and reduced roughness, and the hexagonal boron nitride powder of the present invention is It has been shown that it is preferably used as a boron nitride powder for a cosmetic material such as shadow.

Claims (6)

平均粒子径が3μm以上20μm以下かつ最大粒子径が250μm以下であり、比表面積が1m/g以上10m/g以下、一次粒子の粉末X線回折法による黒鉛化指数が2.0以下であり、さらに平均摩擦係数が0.90以下、前記平均摩擦係数の変動値が0.015以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が20ppm以下である六方晶窒化ホウ素粉末。 The average particle diameter is 3 μm or more and 20 μm or less and the maximum particle diameter is 250 μm or less, the specific surface area is 1 m 2 /g or more and 10 m 2 /g or less, and the graphitization index of primary particles by the powder X-ray diffraction method is 2.0 or less. A hexagonal crystal having an average friction coefficient of 0.90 or less, a variation value of the average friction coefficient of 0.015 or less, and an elution boron concentration of 20 ppm or less measured in accordance with Quasi-drug Raw Material Standard 2006. Boron nitride powder. 比表面積が1m/g以上2.5m/g以下、さらに医薬部外品原料規格2006に準拠して測定される溶出ホウ素濃度が10ppm以下である、請求項1記載の六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder according to claim 1, which has a specific surface area of 1 m 2 /g or more and 2.5 m 2 /g or less, and an elution boron concentration of 10 ppm or less measured according to the quasi drug raw material standard 2006. .. 化粧料原料用である、請求項1または2記載の六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder according to claim 1 or 2, which is used as a raw material for cosmetics. 請求項3記載の六方晶窒化ホウ素粉末を含む化粧料。 A cosmetic containing the hexagonal boron nitride powder according to claim 3. 第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、0.9質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1600〜2200℃、焼成時間2時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた粗六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む、請求項1または2に記載の六方晶窒化ホウ素粉末の製造方法。 As a first firing condition, a mixed powder of a powder of a compound containing boron and a powder of a compound containing nitrogen is fired at 600 to 1300° C. under an inert atmosphere and/or an ammonia atmosphere to obtain a low crystalline hexagonal boron nitride. None, the mixed powder containing 100 parts by mass of the obtained powder of low crystalline hexagonal boron nitride and 0.9 parts by mass or more and 20 parts by mass or less of the sintering aid powder as the second firing conditions has a maximum temperature of 1600 to 2200. The method includes a step of obtaining crude hexagonal boron nitride by firing under firing conditions of ℃ and firing time of 2 hours or more, and a step of washing the obtained crude hexagonal boron nitride, drying, and removing coarse particles by sieving. Item 3. A method for producing a hexagonal boron nitride powder according to Item 1 or 2. 第一焼成条件としてホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の混合粉末を、不活性雰囲気下、及び又はアンモニア雰囲気下で600〜1300℃で焼成して低結晶性六方晶窒化ホウ素となし、得られた低結晶性六方晶窒化ホウ素の粉末100質量部と、2.0質量部以上20質量部以下の焼結助剤粉末を含む混合粉末を第二焼成条件として最高温度1680〜2200℃、焼成時間3時間以上の焼成条件で焼成することにより粗六方晶窒化ホウ素を得る工程と、得られた前記六方晶窒化ホウ素を洗浄、乾燥し、篩により粗大粒子を除く工程を含む、請求項2に記載の六方晶窒化ホウ素粉末の製造方法。

As a first firing condition, a mixed powder of a powder of a compound containing boron and a powder of a compound containing nitrogen is fired at 600 to 1300° C. under an inert atmosphere and/or an ammonia atmosphere to obtain a low crystalline hexagonal boron nitride. None, the mixed powder containing 100 parts by mass of the obtained powder of low crystalline hexagonal boron nitride and 2.0 parts by mass or more and 20 parts by mass or less of the sintering aid powder was used as the second firing condition, and the maximum temperature was 1680 to 2200. A step of obtaining crude hexagonal boron nitride by firing under firing conditions of ℃ and firing time of 3 hours or more, and a step of washing the obtained hexagonal boron nitride, drying, and removing coarse particles by sieving, Item 3. A method for producing a hexagonal boron nitride powder according to Item 2.

JP2018062351A 2017-03-28 2018-03-28 Hexagonal boron nitride powder, method for producing the same, and cosmetics Active JP6745293B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062947 2017-03-28
JP2017062947 2017-03-28

Publications (2)

Publication Number Publication Date
JP2018165241A JP2018165241A (en) 2018-10-25
JP6745293B2 true JP6745293B2 (en) 2020-08-26

Family

ID=63921656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062351A Active JP6745293B2 (en) 2017-03-28 2018-03-28 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Country Status (1)

Country Link
JP (1) JP6745293B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220041445A1 (en) * 2019-03-01 2022-02-10 Tokuyama Corporation Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
JPWO2020195298A1 (en) * 2019-03-28 2020-10-01
CN114302858A (en) * 2019-08-28 2022-04-08 株式会社德山 Modified boron nitride powder
JP7372143B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372139B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics
JP7372141B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7431577B2 (en) * 2019-12-25 2024-02-15 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372140B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
KR20230135679A (en) * 2021-03-24 2023-09-25 덴카 주식회사 Hexagonal boron nitride powder, and resin composition
KR20240021268A (en) 2021-06-16 2024-02-16 덴카 주식회사 Hexagonal boron nitride powder and manufacturing method thereof, and cosmetics and manufacturing method thereof
KR20240021889A (en) * 2021-06-16 2024-02-19 덴카 주식회사 Hexagonal boron nitride powder and manufacturing method thereof, cosmetics and manufacturing method thereof, and quality evaluation method
CN117500750A (en) 2021-06-16 2024-02-02 电化株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
CA3231795A1 (en) * 2021-09-27 2023-03-30 Masaomi Kuroda Hexagonal boron nitride powder for filler
WO2023120092A1 (en) * 2021-12-21 2023-06-29 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
WO2023204140A1 (en) * 2022-04-21 2023-10-26 デンカ株式会社 Boron nitride powder, method for producing same, and heat-dissipating sheet
WO2023210483A1 (en) * 2022-04-26 2023-11-02 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
JP2002020235A (en) * 2000-06-29 2002-01-23 Asahi Glass Co Ltd Cosmetic in which hollow glass spherical material is formulated
JP3844455B2 (en) * 2002-06-28 2006-11-15 電気化学工業株式会社 Hexagonal boron nitride powder, method for producing the same, application
JP4152920B2 (en) * 2004-06-02 2008-09-17 電気化学工業株式会社 Boron nitride powder and its use
JP2006131472A (en) * 2004-11-09 2006-05-25 Denki Kagaku Kogyo Kk Method for manufacturing ceramic sintered compact
JP5065198B2 (en) * 2008-08-04 2012-10-31 株式会社カネカ Method for producing hexagonal boron nitride
JP5707052B2 (en) * 2010-04-27 2015-04-22 電気化学工業株式会社 Resin composite composition and use thereof
JP6109466B2 (en) * 2011-02-25 2017-04-05 水島合金鉄株式会社 Hexagonal boron nitride powder for cosmetics and method for producing the same
US20170151135A9 (en) * 2012-09-28 2017-06-01 Mizushima Ferroalloy Co., Ltd. Highly water repellent and highly oil absorbent boron nitride powder, method for manufacturing the same, and cosmetic
JP6297848B2 (en) * 2014-01-30 2018-03-20 水島合金鉄株式会社 Hexagonal boron nitride powder for cosmetics and cosmetics

Also Published As

Publication number Publication date
JP2018165241A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6745293B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JP6734239B2 (en) Hexagonal boron nitride powder and cosmetics
JP7002196B2 (en) Hexagonal boron nitride powder and cosmetics
JP7204732B2 (en) Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics
TW201446656A (en) Process for the preparation of lithium titanium spinel and its use
EP1144736B1 (en) Agglomeration of silicon powders
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
JP6279638B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JPS6156170B2 (en)
WO2022264335A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
JP2021102540A (en) Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP7372140B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7431577B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP2021116205A (en) Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP7372141B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
KR101893144B1 (en) Friction material comprising potassium titanate and method for preparing the same by melting method
CN117460691A (en) Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
WO2022264327A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetics and method for manufacturing same
JP7238359B2 (en) Method for producing alkali metal niobate particles
JP7088773B2 (en) Plate-shaped zinc oxide powder and cosmetics containing it
KR102662015B1 (en) Boron nitride powder, method for producing boron nitride powder, and cosmetics
WO2022224674A1 (en) Hexagonal boron nitride powder for cosmetics, and cosmetic
TW202300443A (en) Hexagonal boron nitride powder and method for producing same, and cosmetic material and method for producing same
Khamman et al. Preparation of perovskite nanopowders by vibro-milling technique
TW202304808A (en) Hexagonal boron nitride powder and method for producing same, and cosmetic material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190301

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250