JP6279638B2 - Hexagonal boron nitride powder, method for producing the same, and cosmetics - Google Patents

Hexagonal boron nitride powder, method for producing the same, and cosmetics Download PDF

Info

Publication number
JP6279638B2
JP6279638B2 JP2016046202A JP2016046202A JP6279638B2 JP 6279638 B2 JP6279638 B2 JP 6279638B2 JP 2016046202 A JP2016046202 A JP 2016046202A JP 2016046202 A JP2016046202 A JP 2016046202A JP 6279638 B2 JP6279638 B2 JP 6279638B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
nitride powder
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016046202A
Other languages
Japanese (ja)
Other versions
JP2017160086A (en
Inventor
五十嵐 厚樹
厚樹 五十嵐
清太郎 小林
清太郎 小林
光永 敏勝
敏勝 光永
駿介 三谷
駿介 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016046202A priority Critical patent/JP6279638B2/en
Publication of JP2017160086A publication Critical patent/JP2017160086A/en
Application granted granted Critical
Publication of JP6279638B2 publication Critical patent/JP6279638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は六方晶窒化ホウ素粉末及びその製造方法に関する。また、本発明は該六方晶窒化ホウ素粉末を含む化粧料に関する。   The present invention relates to a hexagonal boron nitride powder and a method for producing the same. The present invention also relates to a cosmetic comprising the hexagonal boron nitride powder.

六方晶窒化ホウ素は黒鉛類似の層状構造を有し、潤滑性、熱伝導性、絶縁性、化学的安定性、耐熱衝撃性などの特性に優れ、これらの特性を活かして化粧料(化粧品ともいう)原料、固体潤滑剤、離型剤、樹脂やゴムの充填材、耐熱性を有する絶縁性焼結体などに応用されている。   Hexagonal boron nitride has a layered structure similar to graphite and is excellent in properties such as lubricity, thermal conductivity, insulation, chemical stability, and thermal shock resistance. Taking advantage of these properties, cosmetics (also called cosmetics) ) Applied to raw materials, solid lubricants, mold release agents, resin and rubber fillers, heat-resistant insulating sintered bodies, and the like.

特に化粧料原料用の六方晶窒化ホウ素粉末については、安全性、衛生性の観点から医薬部外品原料規格2006(以降、「外原規2006」という)にその規格が定められており、この中で、所定の手順で六方晶窒化ホウ素粉末を水に接触させた際に、許容できる溶出ホウ素量は、濃度基準で20mg/L以下と規定されている。水に溶出するホウ素(以降、「水溶性ホウ素化合物」という。)が、該規定を超えるように含まれる六方晶窒化ホウ素粉末は、これを原料として配合した化粧料の、肌への刺激性を高める可能性がある。   In particular, the hexagonal boron nitride powder for cosmetic raw materials is stipulated in the quasi-drug raw material standard 2006 (hereinafter referred to as “Kotohara Code 2006”) from the viewpoint of safety and hygiene. Among them, when the hexagonal boron nitride powder is brought into contact with water by a predetermined procedure, an allowable amount of eluted boron is defined as 20 mg / L or less on a concentration basis. The hexagonal boron nitride powder that contains boron solubilized in water (hereinafter referred to as “water-soluble boron compound”) exceeds the above-mentioned requirements is the skin irritation of cosmetics formulated with this as a raw material. There is a possibility to increase.

六方晶窒化ホウ素粉末から水溶性ホウ素化合物を低減する手段として、特許文献1には、六方晶窒化ホウ素粉末を低級アルコールやアセトン等の水可溶性有機溶媒またはその水溶液または界面活性剤水溶液中で攪拌洗浄し、低温かつ低酸素雰囲気下で乾燥する方法が、特許文献2には、六方晶窒化ホウ素粉末を水または熱水に分散させて水可溶性ホウ素化合物を洗浄除去し、乾燥させた後、アルコールを添加し、若しくはアルコール中に浸漬し、然る後再度乾燥させる方法が、さらに特許文献3には、六方晶窒化ホウ素粉末を、酸水溶液で洗浄し、乾燥した後、炭素と接触させないようにして、窒素雰囲気下、1800〜1950℃で1〜5時間熱処理する方法が開示されている。   As means for reducing water-soluble boron compounds from hexagonal boron nitride powder, Patent Document 1 discloses that hexagonal boron nitride powder is stirred and washed in a water-soluble organic solvent such as lower alcohol or acetone, an aqueous solution thereof, or an aqueous surfactant solution. The method of drying in a low temperature and low oxygen atmosphere is disclosed in Patent Document 2 in which hexagonal boron nitride powder is dispersed in water or hot water to wash and remove the water-soluble boron compound, and after drying, alcohol is added. A method of adding or immersing in alcohol and then drying again is further disclosed in Patent Document 3, in which hexagonal boron nitride powder is washed with an acid aqueous solution, dried, and not brought into contact with carbon. A method of heat treatment at 1800 to 1950 ° C. for 1 to 5 hours in a nitrogen atmosphere is disclosed.

特開昭63−33312号公報JP-A-63-33312 特開平1−157409号公報JP-A-1-157409 特開2004−35273号公報JP 2004-35273 A

しかしながら、特許文献1及び特許文献2に開示される方法では、洗浄処理で用いる界面活性剤や有機溶剤が六方晶窒化ホウ素粉末に微量残留した場合に、肌への刺激性が発現する可能性を否定できない。また、これらの技術は六方晶窒化ホウ素粉末中に存在していた水溶性ホウ素化合物を、洗浄して予め除去することを主眼としており、例えば六方晶窒化ホウ素粉末を保管している間に、水溶性ホウ素化合物が副生する傾向の大きさに着目した方法ではない。そのため、長期にわたる保管や使用を想定したような、高温かつ高湿度雰囲気中に、六方晶窒化ホウ素粉末を一定期間置いた試験を実施すると、該六方晶窒化ホウ素粉末と雰囲気中の水分とが反応して水溶性ホウ素化合物の副生が進行し、「外原規2006」の規格を逸脱してしまう現象が見られ、実用的な耐久性に関する課題は残存していた。   However, in the methods disclosed in Patent Document 1 and Patent Document 2, there is a possibility that irritation to the skin appears when a small amount of the surfactant or organic solvent used in the cleaning treatment remains in the hexagonal boron nitride powder. I can't deny it. In addition, these techniques are mainly intended to remove in advance the water-soluble boron compound present in the hexagonal boron nitride powder by washing. For example, while the hexagonal boron nitride powder is being stored, It is not a method that focuses on the magnitude of the tendency of by-product boron compounds to be by-produced. Therefore, when a test is performed in which a hexagonal boron nitride powder is placed for a certain period in a high temperature and high humidity atmosphere that is assumed to be stored or used for a long time, the hexagonal boron nitride powder reacts with moisture in the atmosphere. As a result, a by-product of the water-soluble boron compound progressed, and a phenomenon that deviated from the standard of “External Code 2006” was observed, and a problem regarding practical durability remained.

また、特許文献3に示される方法は、窒化ホウ素粉末の耐加水分解性を向上させる効果があるが、長期保管性に対しては未だ改善の余地が残されている。また、高温での再焼成が必要になるため製造工程が複雑になり、六方晶窒化ホウ素粉末が高額になる問題があった。   Moreover, although the method shown by patent document 3 is effective in improving the hydrolysis resistance of boron nitride powder, the room for improvement is still left with respect to long-term storage property. In addition, since refiring at a high temperature is required, the manufacturing process becomes complicated, and there is a problem that the hexagonal boron nitride powder is expensive.

上記事情に鑑み、本発明は製造直後のみならず長期保管後に至るまで、水に溶出するホウ素の量が抑制された六方晶窒化ホウ素粉末、及び該六方晶窒化ホウ素粉末を含む化粧料を提供する。   In view of the above circumstances, the present invention provides a hexagonal boron nitride powder in which the amount of boron eluted in water is suppressed not only immediately after production but also after long-term storage, and a cosmetic containing the hexagonal boron nitride powder. .

本発明は一側面において、波数815±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I1と、波数3420±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I2との比の値r(=I1/I2)が1000以上であり、かつ黒鉛化指数が3.2以下である六方晶窒化ホウ素粉末である。 In one aspect of the present invention, the maximum peak intensity I 1 of an infrared absorption spectrum that appears within a wave number of 815 ± 10 cm −1 and the maximum peak of an infrared absorption spectrum that appears within a wave number of 3420 ± 10 cm −1. This is a hexagonal boron nitride powder having a ratio r (= I 1 / I 2 ) of strength I 2 of 1000 or more and a graphitization index of 3.2 or less.

本発明に係る六方晶窒化ホウ素粉末の一実施形態においては、平均粒子径が1μm以上45μm以下、タップ密度が0.3g/cm3以上1.0g/cm3以下である。 In one embodiment of the hexagonal boron nitride powder according to the present invention, the average particle size is 1 μm or more and 45 μm or less, and the tap density is 0.3 g / cm 3 or more and 1.0 g / cm 3 or less.

本発明に係る六方晶窒化ホウ素粉末の別の一実施形態においては、医薬部外品原料規格2006に準拠して測定される溶出ホウ素が20mg/L以下である。   In another embodiment of the hexagonal boron nitride powder according to the present invention, the eluted boron measured according to the Quasi-drug raw material standard 2006 is 20 mg / L or less.

本発明は別の一側面において、ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の合計100質量部と、0.9質量部以上20質量部以下の焼結助剤粉末とを含む混合粉末を、1700〜2200℃の最高温度で焼成することにより粗六方晶窒化ホウ素を得る工程と、前記工程で得られた粗六方晶窒化ホウ素を回転羽根タイプの衝突型粉砕機を用いて最大周速50m/s以下で粉砕処理する工程と、前記粉砕処理された粗六方晶窒化ホウ素を洗浄液で洗浄し、次いで乾燥する工程と、を含む六方晶窒化ホウ素粉末の製造方法である。   In another aspect of the present invention, a mixed powder comprising a total of 100 parts by mass of a boron-containing compound powder and a nitrogen-containing compound powder, and 0.9 to 20 parts by mass of sintering aid powder. Are obtained by firing at a maximum temperature of 1700 to 2200 ° C. to obtain a crude hexagonal boron nitride, and the crude hexagonal boron nitride obtained in the above step is subjected to a maximum peripheral speed using a rotary blade type collision type pulverizer. A method for producing hexagonal boron nitride powder, comprising: a step of pulverizing at 50 m / s or less; and a step of washing the pulverized crude hexagonal boron nitride with a cleaning liquid and then drying.

本発明に係る六方晶窒化ホウ素粉末の製造方法の一実施形態においては、ホウ素を含む化合物がホウ酸であり、窒素を含む化合物がメラミンであり、焼結助剤が炭酸カルシウム及び/又は炭酸ナトリウムである。   In one embodiment of the method for producing hexagonal boron nitride powder according to the present invention, the compound containing boron is boric acid, the compound containing nitrogen is melamine, and the sintering aid is calcium carbonate and / or sodium carbonate. It is.

本発明は更に別の一側面において、本発明に係る六方晶窒化ホウ素粉末を含む化粧料である。   In still another aspect, the present invention is a cosmetic containing the hexagonal boron nitride powder according to the present invention.

本発明の完成により、製造直後のみならず長期保管後に至るまで、水に溶出するホウ素の量が抑制された六方晶窒化ホウ素粉末を提供することができる。本発明に係る六方晶窒化ホウ素粉末の好ましい一実施形態によれば、製造直後のみならず長期保管後に到るまで、水に溶出するホウ素の量を「外原規2006」の規定を満たすように抑制可能である。さらに該六方晶窒化ホウ素粉末を化粧料原料として使用したときに肌への刺激性が高まる可能性の少ない化粧料を提供することができる。   By completing the present invention, it is possible to provide a hexagonal boron nitride powder in which the amount of boron eluted in water is suppressed not only immediately after production but also after long-term storage. According to a preferred embodiment of the hexagonal boron nitride powder according to the present invention, the amount of boron eluted in water not only immediately after manufacture but also after long-term storage is set to satisfy the provisions of “External Code 2006”. It can be suppressed. Furthermore, when the hexagonal boron nitride powder is used as a cosmetic raw material, it is possible to provide a cosmetic that is less likely to increase irritation to the skin.

<六方晶窒化ホウ素粉末>
本発明の一側面に係る六方晶窒化ホウ素粉末は一実施形態において、波数815±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I1と、波数3420±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I2との比の値r(=I1/I2)が1000以上であり、かつ黒鉛化指数が3.2以下である。
<Hexagonal boron nitride powder>
In one embodiment, the hexagonal boron nitride powder according to one aspect of the present invention has a maximum peak intensity I 1 of an infrared absorption spectrum that appears within a wave number of 815 ± 10 cm −1 and a wave number of 3420 ± 10 cm −1 . The value r (= I 1 / I 2 ) of the ratio with the maximum peak intensity I 2 of the infrared absorption spectrum appearing therein is 1000 or more, and the graphitization index is 3.2 or less.

以下に、本発明に係る六方晶窒化ホウ素粉末を実施するためのより詳しい説明として、六方晶窒化ホウ素粉末を得るための製造方法、該六方晶窒化ホウ素粉末のホウ素溶出特性、赤外線吸収スペクトル、及び黒鉛化指数などの特性及びその測定方法について説明する。   Hereinafter, as a more detailed description for carrying out the hexagonal boron nitride powder according to the present invention, a production method for obtaining a hexagonal boron nitride powder, boron elution characteristics of the hexagonal boron nitride powder, an infrared absorption spectrum, and The characteristics such as graphitization index and the measuring method will be described.

<六方晶窒化ホウ素粉末の製造方法>
本発明の六方晶窒化ホウ素粉末の製造方法の例としては、ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末(以下、ホウ素を含む化合物と窒素を含む化合物とを併せて出発原料ということもある)の合計100質量部と、0.9質量部以上20質量部以下のアルカリ土類金属化合物や希土類化合物など、焼成時における出発原料の六方晶窒化ホウ素への変換を促進する焼結助剤の粉末と、本発明の目的を逸脱しない範囲において、必要に応じて出発原料や焼結助剤以外の、単体や化合物を含む混合粉末を、窒素、ヘリウム、アルゴン、アンモニア等の不活性雰囲気下で焼成して、粗六方晶窒化ホウ素となし、これに回転羽根タイプの衝突型粉砕機による粉砕処理を加えた後、洗浄液で洗浄することによる不純物除去処理を加えてから乾燥する工程を含む製造方法が挙げられる。
<Method for producing hexagonal boron nitride powder>
As an example of the method for producing hexagonal boron nitride powder of the present invention, a powder of a compound containing boron and a powder of a compound containing nitrogen (hereinafter, a compound containing boron and a compound containing nitrogen may be referred to as a starting material. Sintering aids that promote the conversion of starting materials to hexagonal boron nitride during firing, such as alkaline earth metal compounds and rare earth compounds in a total of 100 parts by weight and 0.9 parts by weight to 20 parts by weight In a range that does not deviate from the object of the present invention, a mixed powder containing simple substances and compounds other than the starting materials and sintering aids, if necessary, under an inert atmosphere such as nitrogen, helium, argon, ammonia, etc. After calcination in the form of crude hexagonal boron nitride, a pulverization process using a rotary blade type collision pulverizer is performed, and then an impurity removal process is performed by washing with a cleaning liquid, followed by drying. Manufacturing method comprising the like.

ここでホウ素を含む化合物としては、ホウ酸、酸化ホウ素、ホウ砂などを好ましく、特にホウ酸を好ましく用いることができる。また、窒素を含む化合物としては、シアンジアミド、メラミン、尿素などを好ましく、特にメラミンを好ましく選択することができる。さらに焼結助剤の好ましい具体例としては、炭酸ナトリウム、炭酸カルシウムなどの炭酸塩を挙げることができる。また、出発原料や焼結助剤以外に添加できる単体や化合物の例としては、炭素などの還元性物質を挙げることができる。なお、粗六方晶窒化ホウ素を製造するための出発原料や焼結助剤として用いる各種化合物等は一種類に限定する必要はなく、複数種類の化合物等を同時に使用することもできる。また、出発原料中に含まれるホウ素原子と窒素原子のモル比率は、必ずしも5:5に固定する必要はなく、反応性や収率に応じて、ホウ素原子と窒素原子のモル比率を、好ましくは2:8〜8:2の範囲で、さらに好ましくは3:7〜7:3の範囲で適宜変えることが可能である。   Here, as the compound containing boron, boric acid, boron oxide, borax and the like are preferable, and boric acid can be particularly preferably used. Further, as the nitrogen-containing compound, cyandiamide, melamine, urea and the like are preferable, and melamine can be particularly preferably selected. Furthermore, preferable specific examples of the sintering aid include carbonates such as sodium carbonate and calcium carbonate. Examples of simple substances or compounds that can be added in addition to the starting materials and sintering aids include reducing substances such as carbon. Note that the starting materials for producing the crude hexagonal boron nitride and the various compounds used as the sintering aid need not be limited to one type, and a plurality of types of compounds can be used simultaneously. Moreover, the molar ratio of the boron atom and the nitrogen atom contained in the starting material is not necessarily fixed at 5: 5, and the molar ratio of the boron atom and the nitrogen atom is preferably set according to the reactivity and the yield. It can be appropriately changed within the range of 2: 8 to 8: 2, more preferably within the range of 3: 7 to 7: 3.

さらに赤外線吸収スペクトルのピーク強度比rの値や黒鉛化指数は、粗六方晶窒化ホウ素粉末合成時の焼結助剤の配合量、及び焼成温度によって変化する。出発原料の100質量部に対する焼結助剤の配合割合は少なくとも0.9質量部以上、好ましくは1.0質量部以上、さらに好ましくは1.1質量部以上であることが望ましい。また、化粧料への適用を考慮すると、出発原料の100質量部に対する焼結助剤の配合割合は多くとも20質量部以下、好ましくは15質量部以下、さらに好ましくは12質量部以下であることが望ましい。焼結助剤の配合割合が0.9質量部未満であると、焼結に伴って進行するべき出発原料から六方晶窒化ホウ素への変換反応が進まずに、ピーク強度比rが1000未満、黒鉛化指数が3.2を超える値となりやすく、実際に長期保管してみると「外原規2006」の規定を外れるほどの水溶性ホウ素化合物の増加を招くことがある。逆に、焼結助剤の配合割合が20質量部を超えると六方晶窒化ホウ素の結晶成長が進みすぎて微粉砕が困難になり、該粉末の平均粒子径が45μmを超える可能性が高く、このような六方晶窒化ホウ素粉末を原料として用いた化粧料では、肌への触感にざらつきが発生したり、外観上のぎらつきが強くなり、化粧料用原料として相応しくない。   Furthermore, the value of the peak intensity ratio r and the graphitization index of the infrared absorption spectrum vary depending on the blending amount of the sintering aid during the synthesis of the crude hexagonal boron nitride powder and the firing temperature. The mixing ratio of the sintering aid to 100 parts by mass of the starting material is at least 0.9 parts by mass, preferably 1.0 parts by mass or more, and more preferably 1.1 parts by mass or more. In consideration of application to cosmetics, the blending ratio of the sintering aid to 100 parts by mass of the starting material is at most 20 parts by mass, preferably 15 parts by mass or less, more preferably 12 parts by mass or less. Is desirable. When the mixing ratio of the sintering aid is less than 0.9 parts by mass, the conversion reaction from the starting material that should proceed with sintering to hexagonal boron nitride does not proceed, and the peak intensity ratio r is less than 1000, The graphitization index tends to be a value exceeding 3.2, and when actually stored for a long period of time, there may be an increase in the amount of water-soluble boron compounds that are outside the provisions of “External Code 2006”. On the other hand, if the mixing ratio of the sintering aid exceeds 20 parts by mass, crystal growth of hexagonal boron nitride proceeds excessively and pulverization becomes difficult, and the average particle diameter of the powder is likely to exceed 45 μm. A cosmetic using such a hexagonal boron nitride powder as a raw material is not suitable as a raw material for cosmetics because it feels rough to the skin and has a strong appearance.

該混合粉末を焼成するときの最高温度としては、1700℃以上2200℃以下の範囲の温度が好ましく、1800℃以上2000℃以下の範囲の温度がより好ましく設定される。焼成温度の最高値が1700℃未満であると六方晶窒化ホウ素への変換が進み難くなるためピーク強度比rが1000未満、黒鉛化指数が3.2を超える値となりやすく、長期保管後の水溶性ホウ素化合物の量が増えるため好ましくない。焼成温度の最高値が2200℃を超えると、六方晶窒化ホウ素の結晶成長が進みすぎるため微粉砕が困難になり、化粧料用原材料として実用上好ましくない。   As the maximum temperature when the mixed powder is fired, a temperature in the range of 1700 ° C. to 2200 ° C. is preferable, and a temperature in the range of 1800 ° C. to 2000 ° C. is more preferably set. When the maximum firing temperature is less than 1700 ° C., conversion to hexagonal boron nitride is difficult to proceed, so that the peak intensity ratio r is less than 1000 and the graphitization index tends to exceed 3.2. This is not preferable because the amount of the functional boron compound increases. When the maximum firing temperature exceeds 2200 ° C., the crystal growth of hexagonal boron nitride proceeds excessively, so that fine pulverization becomes difficult, which is not preferable as a raw material for cosmetics.

六方晶窒化ホウ素粉末の焼成温度は一定に保持しても、連続的または不連続的に変化させても良く、昇温冷却時の速度にも制限はないが、焼成時間が短すぎると焼成が不十分となり、黒鉛化指数が3.2を超える可能性があるため、2時間以上が好ましく、4時間以上がより好ましい。また、該粉末混合物を焼成する装置類については特に制限はないが、該粉末混合物を収納する容器には、例えば六方晶窒化ホウ素製の容器を用いることができ、加熱装置には、例えば電気ヒータを用いた焼成炉を用いることができる。   The firing temperature of the hexagonal boron nitride powder may be kept constant, or may be changed continuously or discontinuously, and there is no restriction on the rate of heating and cooling. Since it becomes insufficient and the graphitization index may exceed 3.2, it is preferably 2 hours or longer, more preferably 4 hours or longer. There are no particular restrictions on the apparatus for firing the powder mixture, but a container made of hexagonal boron nitride, for example, can be used as the container for storing the powder mixture, and an electric heater, for example, can be used as the heating apparatus. A firing furnace using can be used.

また、出発原料を混合して粉末混合物となしてから焼成が終了するまでの間に、本発明の目的を逸脱しない範囲内で、さらに加熱、冷却、加湿、乾燥、及び洗浄の操作を加えることも可能である。   Further, heating, cooling, humidification, drying, and washing operations are added within a range that does not depart from the object of the present invention after the starting materials are mixed to form a powder mixture and the firing is completed. Is also possible.

焼成が終了して得られた六方晶窒化ホウ素(以降、粗六方晶窒化ホウ素という)を粉砕する装置や条件が、赤外線吸収スペクトルデータや黒鉛化指数に影響を及ぼす場合があり、本発明に係る六方晶窒化ホウ素粉末を得る上では、回転羽根タイプの衝突型粉砕機を用いることが望ましい。ここでいう回転羽根タイプの衝撃型粉砕機とは、被粉砕物を回転翼に衝突させて粉砕する方式で、粉砕羽の最大周速が低速の粉砕機であり、例えば粉砕羽根の最大周速を50m/秒以下に、好ましくは35m/秒以下に設定することができる粉砕機である。粉砕機による粉砕は大きく衝突、剪断、磨砕の三つに分類されるところ、回転羽根タイプの衝突型粉砕機を使用することにより、剪断や磨砕による過粉砕が防止できる。具体的な装置の例として特に限定はないが、例えばホソカワミクロン社製、マイクロパルベライザー(商標名)として販売されている製品を好ましく使用することができる。回転羽根タイプの衝突型粉砕機を使用して粉砕することで、ピーク強度I2を抑えることができ、ひいてはピーク強度比rを高めることができるという利点が得られる。 An apparatus and conditions for pulverizing hexagonal boron nitride (hereinafter referred to as crude hexagonal boron nitride) obtained after calcination may affect infrared absorption spectrum data and graphitization index. In order to obtain hexagonal boron nitride powder, it is desirable to use a rotary blade type collision type pulverizer. The rotary blade type impact type pulverizer here is a method of pulverizing the object to be crushed by colliding with the rotary blade, and the maximum peripheral speed of the pulverization blade is a low speed pulverizer. Is a pulverizer which can be set to 50 m / sec or less, preferably 35 m / sec or less. Pulverization by a pulverizer is roughly classified into three types: collision, shearing, and grinding. By using a rotary blade type collision-type pulverizer, excessive pulverization due to shearing or grinding can be prevented. Although there is no limitation in particular as an example of a specific apparatus, For example, the product currently sold as a micro pulverizer (trademark) by Hosokawa Micron Corporation can be used preferably. By crushing using a rotary blade type collision type crusher, the peak intensity I 2 can be suppressed, and the peak intensity ratio r can be increased.

粉砕した粗六方晶窒化ホウ素粉末中には、六方晶窒化ホウ素以外の不純物や水溶性ホウ素化合物(以降、まとめて不純物等という)が含まれている可能性があるため、洗浄液を用いた洗浄により不純物等を除去してから固液分離して乾燥し、最終的に本発明の六方晶窒化ホウ素粉末を得ることができる。ここでいう洗浄液とは、水、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液のいずれかであることが望ましい。水は、例えば5〜95℃の冷水、温水または熱水を用いることができ、この場合、不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用することができる。酸性物質としては、例えば塩酸、硝酸等の無機酸を挙げることができる。有機溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロピルアルコールやアセトン等の水溶性の有機溶媒を好ましく使用することができる。粗六方晶窒化ホウ素粉末と洗浄液とを接触させる方法にも特に制限はないが、粗六方晶窒化ホウ素粉末を、洗浄液中に浸漬して撹拌したり、粗六方晶窒化ホウ素粉末に、洗浄液をスプレーしたりして洗浄する方法等がある。   The pulverized crude hexagonal boron nitride powder may contain impurities other than hexagonal boron nitride and water-soluble boron compounds (hereinafter collectively referred to as impurities). After removing impurities and the like, solid-liquid separation and drying are performed, and finally the hexagonal boron nitride powder of the present invention can be obtained. The cleaning liquid here is preferably any one of water, an aqueous solution containing an acidic substance, an organic solvent, and a mixed liquid of an organic solvent and water. As the water, for example, cold water, hot water or hot water of 5 to 95 ° C. can be used. In this case, water having an electric conductivity of 1 mS / m or less is used from the viewpoint of avoiding secondary contamination of impurities. Can do. Examples of the acidic substance include inorganic acids such as hydrochloric acid and nitric acid. As the organic solvent, for example, a water-soluble organic solvent such as methanol, ethanol, propanol, isopropyl alcohol, and acetone can be preferably used. The method for bringing the crude hexagonal boron nitride powder into contact with the cleaning liquid is not particularly limited, but the crude hexagonal boron nitride powder is immersed in the cleaning liquid and stirred, or the cleaning liquid is sprayed onto the crude hexagonal boron nitride powder. There are methods such as cleaning.

洗浄終了後、固液分離してから乾燥する場合、固液分離の方法にも特に限定はなく、例えばデカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機またはそれらを組み合わせた装置を用いることができる。   In the case of drying after solid-liquid separation after washing, there is no particular limitation on the method of solid-liquid separation, for example, decantation, suction filter, pressure filter, rotary filter, sedimentation separator or the like. A combined device can be used.

さらに固液分離後の粗六方晶窒化ホウ素粉末の乾燥方法にも特に制限はないが、使用できる乾燥装置の一例を示せば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機またはそれらの組み合わせであり、乾燥機の設定温度は30℃以上250℃以下、好ましくは200℃以下、乾燥機内の圧力は10-6kPaA以上101.3kPaA以下、好ましくは5kPaA以下である。 Further, there is no particular limitation on the method for drying the crude hexagonal boron nitride powder after solid-liquid separation, but examples of the drying apparatus that can be used include a shelf dryer, a fluidized bed dryer, a spray dryer, and a rotary dryer. A dryer, a belt-type dryer or a combination thereof, the set temperature of the dryer is 30 ° C. or more and 250 ° C. or less, preferably 200 ° C. or less, and the pressure in the dryer is 10 −6 kPaA or more and 101.3 kPaA or less, preferably 5 kPaA It is as follows.

洗浄、固液分離、乾燥はそれぞれ1回でも良いし、同じ方法または異なる方法を組み合わせて複数回実施しても構わない。   Washing, solid-liquid separation, and drying may each be performed once, or may be performed multiple times by combining the same method or different methods.

本発明は、赤外線吸収スペクトルデータに関する特徴と、黒鉛化指数の範囲を規定し、それを満たす六方晶窒化ホウ素粉末が、水に溶出するホウ素濃度に係る「外原規2006」の規定である溶出ホウ素が20mg/L以下(20ppm以下)を、製造直後のみならず長期保管後にも満たすことが可能であることを見出し、より安全な六方晶窒化ホウ素粉末を市場に供給できることにより完成に至ったものである。赤外線吸収スペクトル及びその測定方法、黒鉛化指数及びその測定方法、水に溶出するホウ素の測定方法、さらに長期保管の方法を以下に記す。   The present invention defines the characteristics relating to infrared absorption spectrum data and the range of graphitization index, and the hexagonal boron nitride powder satisfying the characteristics is the stipulation of “External Code 2006” relating to the boron concentration eluted in water. Boron was found to be able to satisfy 20 mg / L or less (20 ppm or less) not only immediately after production but also after long-term storage, and was completed by being able to supply safer hexagonal boron nitride powder to the market It is. The infrared absorption spectrum and its measurement method, graphitization index and its measurement method, the method of measuring boron eluted in water, and the method of long-term storage are described below.

<赤外線吸収スペクトルの測定方法>
本発明に係る六方晶窒化ホウ素粉末の赤外線吸収スペクトルは、フーリエ変換赤外分光分析装置を用いて測定することができる。なお、本発明において赤外線吸収スペクトルの強度データは、クベルカ−ムンク変換したものとする。
<Measurement method of infrared absorption spectrum>
The infrared absorption spectrum of the hexagonal boron nitride powder according to the present invention can be measured using a Fourier transform infrared spectrometer. In the present invention, the infrared absorption spectrum intensity data is subjected to Kubelka-Munk conversion.

<ピーク強度比rの算出方法>
本発明における、赤外線吸収スペクトルのピーク強度比rは、以下の方法で算出した値である。即ち、該ピーク強度比rは、測定により得られた六方晶窒化ホウ素粉末の赤外線吸収スペクトルのデータにおいて、波数815±10cm-1の範囲内に出現するピークの最大値をI1、波数3420±10cm-1の範囲内に出現するピークの最大値をI2として、それぞれのピーク強度をベースラインからピーク最大値までの高さ(任意単位)として求め、以下に示す数1で示される式に代入して算出した値である。
<Calculation method of peak intensity ratio r>
In the present invention, the peak intensity ratio r of the infrared absorption spectrum is a value calculated by the following method. That is, the peak intensity ratio r, in the data of the infrared absorption spectrum of the hexagonal boron nitride powder obtained by the measurement, the maximum value of the peak appearing in the range of wave number 815 ± 10cm -1 I 1, wave number 3420 ± The maximum value of the peak appearing in the range of 10 cm −1 is defined as I 2 , and each peak intensity is obtained as the height (arbitrary unit) from the baseline to the peak maximum value. The value calculated by substitution.

ベースラインは波数500cm-1及び3500cm-1における2点の赤外線吸収スペクトル値を結んだ直線とする。
なお、815±10cm-1の範囲内に出現するピークは、B−N面外振動の吸収に由来し、3420±10cm-1の範囲内に出現するピークは、B−NH2の伸縮振動の吸収に由来すると考えられ、製造条件により変化するが、本発明者らの鋭意検討により、それらのピーク強度比rは、長期保管時の六方晶窒化ホウ素粉末中の水溶性ホウ素化合物の増加量を予測できる指標となることを見出し、本発明の六方晶窒化ホウ素粉末におけるピーク強度比rは1000以上であることが必要であり、好ましくは1100以上、さらに好ましくは1200以上、さらにより好ましくは1300以上、さらにより好ましくは1400以上、さらにより好ましくは1500以上、さらにより好ましくは1600以上、さらにより好ましくは1700以上であることが見出された。ピーク強度比rが1000より小さいと、長期保管後に水に溶出するホウ素の量が増加しやすくなる傾向がある。なお、ピーク強度比rは大きいほど、長期保管中に増加する溶出ホウ素量は少ないため、特にその上限値を設ける必要は無いが、本発明に係る六方晶窒化ホウ素粉末におけるピーク強度比rは典型的には5000以下であり、より典型的には4000以下であり、更により典型的には3000以下である。
Baseline and a straight line connecting the infrared absorption spectral values at two points in the wave number 500 cm -1 and 3500 cm -1.
The peak appearing in the range of 815 ± 10 cm −1 is derived from the absorption of BN out-of-plane vibration, and the peak appearing in the range of 3420 ± 10 cm −1 is the stretching vibration of B—NH 2 . Although it is considered to be derived from absorption and changes depending on the production conditions, the peak intensity ratio r is determined by the inventors' diligent study, and the amount of water-soluble boron compound in the hexagonal boron nitride powder during long-term storage is increased. The peak intensity ratio r in the hexagonal boron nitride powder of the present invention needs to be 1000 or more, preferably 1100 or more, more preferably 1200 or more, and even more preferably 1300 or more. , Even more preferably 1400 or higher, even more preferably 1500 or higher, even more preferably 1600 or higher, even more preferably 1700 or higher. Rukoto has been found. If the peak intensity ratio r is smaller than 1000, the amount of boron eluted in water after long-term storage tends to increase. The larger the peak intensity ratio r, the smaller the amount of boron eluted during long-term storage. Therefore, there is no need to set an upper limit, but the peak intensity ratio r in the hexagonal boron nitride powder according to the present invention is typical. Typically 5000 or less, more typically 4000 or less, and even more typically 3000 or less.

<黒鉛化指数>
六方晶窒化ホウ素粉末は、黒鉛と類似の結晶構造を有しており、粉末X線回折測定を利用し、黒鉛と同様の方法で、その黒鉛化指数を算出することができる。即ち、黒鉛化指数は、X線回折スペクトルの(100)面に由来するピークの面積S1、(101)面に由来するピークの面積S2、及び(102)面に由来するピークの面積S3の各値を、(数2)に代入することによって算出できることが示され(J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962))ており、これを六方晶窒化ホウ素に適用したものである。
<Graphitization index>
The hexagonal boron nitride powder has a crystal structure similar to that of graphite, and its graphitization index can be calculated by the same method as graphite using powder X-ray diffraction measurement. That is, the graphitization index is the peak area S 1 derived from the (100) plane of the X-ray diffraction spectrum, the peak area S 2 derived from the (101) plane, and the peak area S derived from the (102) plane. It is shown that it can be calculated by substituting each value of 3 into (Equation 2) (J. Thomas, et.al, J. Am. Chem. Soc. 84, 4619 (1962)). This is applied to crystalline boron nitride.

なお、本発明では、S1は六方晶窒化ホウ素の(100)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=40度以上42.5度以下のピークの面積である。同様にS2は六方晶窒化ホウ素の(101)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=43度以上45度以下のピークの面積である。S3は六方晶窒化ホウ素の(102)面のX線回折スペクトルに相当するピークの面積(積分強度比)であり、具体的には2θ=48度以上52度以下のピークの面積である。なお、各ピークの面積を求めるにあたり、2θ=38度及び54度における各値を直線で結んでベースラインを作成し、ベースラインを基準として各ピーク面積を算出した。 In the present invention, S 1 is the peak area (integrated intensity ratio) corresponding to the X-ray diffraction spectrum of the (100) plane of hexagonal boron nitride, specifically 2θ = 40 degrees or more and 42.5 degrees. It is the area of the following peaks. Similarly, S 2 is the peak area (integral intensity ratio) corresponding to the X-ray diffraction spectrum of the (101) plane of hexagonal boron nitride. Specifically, the peak area is 2θ = 43 degrees or more and 45 degrees or less. is there. S 3 is the peak area (integral intensity ratio) corresponding to the X-ray diffraction spectrum of the (102) plane of hexagonal boron nitride, specifically, the peak area of 2θ = 48 degrees to 52 degrees. In determining the area of each peak, a baseline was created by connecting the values at 2θ = 38 degrees and 54 degrees with a straight line, and each peak area was calculated based on the baseline.

黒鉛化指数は六方晶窒化ホウ素粉末の結晶性の指標となり、高結晶性で、かつ粒子が十分に成長した場合には、粒子が配向しやすくなるため、六方晶窒化ホウ素粉末の黒鉛化指数は小さくなる傾向がある。本発明者らは、ピーク強度比rを先述したように1000以上に制御すると共に、黒鉛化指数を3.2以下に制御することで、長期保管した六方晶窒化ホウ素粉末中の水溶性ホウ素化合物の含有量が著しく少なくなる傾向があることを見出した。本発明に係る六方晶窒化ホウ素粉末の一実施形態においては、黒鉛化指数は3.2以下であり、好ましくは3.0以下であり、より好ましくは2.0以下であり、更により好ましくは1.5以下であり、最も好ましくは、1.0以下である。黒鉛化指数が3.2より大きいと保管中に水溶性ホウ素量が増加しやすくなる傾向があり、長期保管後に「外原規2006」の規定を満足することが困難となる。また、一方では六方晶窒化ホウ素粉末が嵩高くなる傾向を示す。   The graphitization index is an index of the crystallinity of the hexagonal boron nitride powder, and when it is highly crystalline and the particles are sufficiently grown, the particles are easily oriented, so the graphitization index of the hexagonal boron nitride powder is There is a tendency to become smaller. The inventors of the present invention controlled the peak intensity ratio r to 1000 or more as described above, and controlled the graphitization index to 3.2 or less so that the water-soluble boron compound in the hexagonal boron nitride powder stored for a long period of time. It has been found that the content of is apt to be significantly reduced. In one embodiment of the hexagonal boron nitride powder according to the present invention, the graphitization index is 3.2 or less, preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.5 or less, and most preferably 1.0 or less. If the graphitization index is larger than 3.2, the amount of water-soluble boron tends to increase during storage, and it becomes difficult to satisfy the provisions of “External Code 2006” after long-term storage. On the other hand, the hexagonal boron nitride powder tends to be bulky.

<平均粒子径>
本発明に係る六方晶窒化ホウ素粉末の一実施形態においては、平均粒子径が1μm以上であり、好ましくは3μm以上、さらに好ましくは4μm以上であり、また、本発明に係る六方晶窒化ホウ素粉末の一実施形態においては、平均粒子径が45μm以下であり、好ましくは40μm以下、さらに好ましくは35μm以下である。なお、本発明における平均粒子径は、レーザー回折光散乱法による粒度分布測定において、体積基準の累積粒度分布の累積値50%の粒子径である。一般に平均粒子径は測定方法により変わる可能性があり、本発明では、六方晶窒化ホウ素粉末60mgを、15gの0.2質量%ヘキサメタリン酸水溶液中に加え、ホモジナイザーにより300Wの出力で180秒間分散処理させた後の分散液を用いて、粒度分布測定器により計測した値である。平均粒子径が1μm未満では、六方晶窒化ホウ素粉末が嵩高くなり、工程における粉末のハンドリングが難しくなる。平均粒子径が45μmを超えると、例えばこれを用いた化粧料の、肌への触感にざらつきが発生したり、外観上のぎらつきが強くなったりするため化粧料原料として好ましくない。また、平均粒子径が大きくなるほど、タップ密度が高くなる傾向がある。
<Average particle size>
In one embodiment of the hexagonal boron nitride powder according to the present invention, the average particle size is 1 μm or more, preferably 3 μm or more, more preferably 4 μm or more, and the hexagonal boron nitride powder according to the present invention In one embodiment, the average particle size is 45 μm or less, preferably 40 μm or less, more preferably 35 μm or less. The average particle size in the present invention is a particle size of 50% of the cumulative value of the volume-based cumulative particle size distribution in the particle size distribution measurement by the laser diffraction light scattering method. In general, the average particle size may vary depending on the measurement method. In the present invention, 60 mg of hexagonal boron nitride powder is added to 15 g of a 0.2 mass% hexametaphosphoric acid aqueous solution, and dispersed for 180 seconds at a power of 300 W by a homogenizer. It is the value measured by the particle size distribution measuring device using the dispersion liquid after the treatment. When the average particle diameter is less than 1 μm, the hexagonal boron nitride powder becomes bulky, and handling of the powder in the process becomes difficult. If the average particle diameter exceeds 45 μm, for example, a cosmetic using the same may cause roughness in the touch to the skin or increase glare in appearance, which is not preferable as a cosmetic raw material. Moreover, there exists a tendency for a tap density to become high, so that an average particle diameter becomes large.

<タップ密度>
本発明に係る六方晶窒化ホウ素粉末のタップ密度は0.3〜1.0g/cm3であることが好ましい。本発明でいうタップ密度とは、タップ密度測定器(例:ホソカワミクロン社製、パウダーテスター PT−E型)を用い、100cm3の専用容器に六方晶窒化ホウ素粉末を仮充填してから、タッピングタイム180秒、タッピング回数180回、タップリフト18mmの条件で容器をタッピングして衝撃で固めた後、容器上部の余分な六方晶窒化ホウ素粉末をブレードで擦りきり、数3の式に測定した各質量値を代入することにより求めたものである。
<Tap density>
The tap density of the hexagonal boron nitride powder according to the present invention is preferably 0.3 to 1.0 g / cm 3 . The tap density referred to in the present invention is a tapping time after temporarily filling hexagonal boron nitride powder in a 100 cm 3 dedicated container using a tap density measuring device (eg, powder tester PT-E type manufactured by Hosokawa Micron). After tapping the container under the conditions of 180 seconds, tapping frequency of 180 times, and tap lift of 18 mm and solidifying by impact, excess hexagonal boron nitride powder on the top of the container was scraped with a blade, and each mass measured according to the formula 3 It is obtained by assigning a value.

本発明の六方晶窒化ホウ素粉末においては、タップ密度は0.3g/cm3以上1.0g/cm3以下が好ましく、0.3g/cm3以上0.5g/cm3以下がより好ましい。タップ密度が0.3g/cm3未満の六方晶窒化ホウ素粉末では、これを用いた化粧料の、容器への充填性が低下する。タップ密度が1.0g/cm3を超えるような粒成長が進みすぎた六方晶窒化ホウ素粉末は、触感としてざらつきが発生したり、外観上でのぎらつきが強くなったりするため化粧料原料として好ましくない。 In hexagonal boron nitride powder of the present invention, the tap density is preferably 0.3 g / cm 3 or more 1.0 g / cm 3 or less, 0.3 g / cm 3 or more 0.5 g / cm 3 or less is more preferable. In the hexagonal boron nitride powder having a tap density of less than 0.3 g / cm 3 , the filling property of the cosmetic using the powder into the container is lowered. Hexagonal boron nitride powder that has grown too much such that the tap density exceeds 1.0 g / cm 3 is rough as a tactile sensation. It is not preferable.

<本発明の六方晶窒化ホウ素粉末を用いた化粧料>
本発明は別の一側面において、本発明の六方晶窒化ホウ素粉末を含む化粧料である。化粧料の一例を示せば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、マスカラであるが、中でもファンデーション、アイシャドーに本発明の六方晶窒化ホウ素粉末が特に良く適合する。本発明の六方晶窒化ホウ素粉末の化粧料への好適な添加量は0.1質量%以上70質量%以下である。
<Cosmetics using the hexagonal boron nitride powder of the present invention>
In another aspect, the present invention is a cosmetic containing the hexagonal boron nitride powder of the present invention. Examples of cosmetics are foundations (powder foundation, liquid foundation, cream foundation), face powder, point makeup, eye shadow, eyeliner, manicure, lipstick, blusher, mascara. The inventive hexagonal boron nitride powder is particularly well suited. A suitable addition amount of the hexagonal boron nitride powder of the present invention to the cosmetic is 0.1% by mass or more and 70% by mass or less.

以下、実施例及び比較例により、本発明に係る六方晶窒化ホウ素粉末をさらに詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   Hereinafter, the hexagonal boron nitride powder according to the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
表1に記載したように、ホウ酸粉末(和光純薬社製、純度99.5質量%以上)100g、及びメラミン粉末(和光純薬社製、純度99.0質量%以上)90gと、炭酸カルシウム(和光純薬社製、純度99.5質量%以上)2gの各出発原料及び焼結助剤をそれぞれ秤量し、アルミナ製乳鉢を用いて10分間混合した。作製した粉末混合物を恒温恒湿機(ADVANTEC社製、AGX−225)に入れ、80℃、相対湿度95%で1時間加湿し、その後、120℃で1時間乾燥した。
これを六方晶窒化ホウ素製の容器(容積約500cm3)に入れ、炉室内容積が約16000cm3の電気炉(東海高熱工業社製、TV−200)内に配し、炉室内への窒素ガス流量を16L(25℃における体積)/分として、10℃/分の割合で室温から昇温し、1000℃で2時間保持したのち、さらに10℃/分の割合で昇温し、焼成温度の最高値である2000℃まで到達させてから4時間温度を保持した。その後、加熱を止めて自然冷却させ、温度が100℃以下まで下がった時点で電気炉を開放して、粗六方晶窒化ホウ素(粉砕前)を回収した。これを回転羽根型の衝突型粉砕機(ホソカワミクロン社製、マイクロパルベライザーAP−2DH型)を用いて回転数2300rpm(粉砕羽の最大周速35m/秒)の条件で粉砕し、粗六方晶窒化ホウ素の粉末となした。粉砕機出口の分級スクリーンの目開きは直径5mmとした。
さらに該粗六方晶窒化ホウ素の粉末中に含まれる不純物を除くため、5質量%希硝酸500gあたり30gの割合で該粉末を投入し、室温で60分攪拌した後、吸引ろ過により固液分離し、ろ液が中性になるまで水(電気伝導度1mS/m)を入れ替えて洗浄した。洗浄後の粉末は乾燥機で120℃で3時間一旦乾燥した後、さらに製造直後において水に溶出するホウ素の量を低減するため、水洗浄と乾燥を繰り返し、実施例1の六方晶窒化ホウ素粉末を得た。
Example 1
As described in Table 1, 100 g of boric acid powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5 mass% or more), 90 g of melamine powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0 mass% or more), carbonic acid Each starting material and sintering aid of 2 g of calcium (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5% by mass or more) were weighed and mixed for 10 minutes using an alumina mortar. The produced powder mixture was put into a thermo-hygrostat (ADVANTEC, AGX-225), humidified at 80 ° C. and 95% relative humidity for 1 hour, and then dried at 120 ° C. for 1 hour.
This was placed in a hexagonal made of boron nitride container (volume of about 500 cm 3), an electric furnace of the furnace chamber volume of about 16000Cm 3 (Tokaikonetsukogyo Co., TV-200) placed in the nitrogen gas into the furnace chamber With a flow rate of 16 L (volume at 25 ° C.) / Min, the temperature was raised from room temperature at a rate of 10 ° C./min. After holding at 1000 ° C. for 2 hours, the temperature was further raised at a rate of 10 ° C./min. The temperature was maintained for 4 hours after reaching the maximum value of 2000 ° C. Thereafter, the heating was stopped to allow natural cooling, and when the temperature dropped to 100 ° C. or lower, the electric furnace was opened, and crude hexagonal boron nitride (before pulverization) was recovered. This was pulverized using a rotary blade-type collision type pulverizer (manufactured by Hosokawa Micron Corporation, micro-pulverizer AP-2DH type) at a rotational speed of 2300 rpm (maximum peripheral speed of pulverized blades: 35 m / sec), and crude hexagonal boron nitride Of powder. The opening of the classification screen at the exit of the pulverizer was 5 mm in diameter.
Further, in order to remove impurities contained in the crude hexagonal boron nitride powder, the powder was added at a rate of 30 g per 500 g of 5% by mass diluted nitric acid, stirred at room temperature for 60 minutes, and then solid-liquid separated by suction filtration. The water (electric conductivity 1 mS / m) was replaced and washed until the filtrate became neutral. The washed powder is once dried at 120 ° C. for 3 hours in a dryer, and then further washed with water and dried in order to reduce the amount of boron eluted in water immediately after production, and the hexagonal boron nitride powder of Example 1 is used. Got.

<赤外線吸収スペクトルのピーク強度比の算出>
実施例1で作製した六方晶窒化ホウ素粉末の赤外線吸収スペクトルは、フーリエ変換赤外分光分析装置(パーキンエルマー社製、Spectrum One型、拡散反射アクセサリーGX付き)を用いて測定した。即ち、該六方晶窒化ホウ素粉末をそのまま被検体として用い、波数450〜4000cm-1の範囲を、波数分解能4cm-1、積算回数10回の条件で、拡散反射法による六方晶窒化ホウ素粉末の赤外線吸収スペクトルを測定した。この測定結果を基にして算出したピーク強度比rの値は、表2に記載した。
<Calculation of peak intensity ratio of infrared absorption spectrum>
The infrared absorption spectrum of the hexagonal boron nitride powder prepared in Example 1 was measured using a Fourier transform infrared spectroscopic analyzer (manufactured by Perkin Elmer, Spectrum One type, with diffuse reflection accessory GX). That is, using the hexagonal boron nitride powder as it is the subject, the range of wave number 450~4000Cm -1, wavenumber resolution 4 cm -1, with accumulated number ten conditions, infrared hexagonal boron nitride powder by diffusion reflection method Absorption spectrum was measured. The peak intensity ratio r calculated based on this measurement result is shown in Table 2.

<黒鉛化指数の測定>
実施例1で作製した六方晶窒化ホウ素粉末の黒鉛化指数を、高出力粉末X線回折装置(ブルカー・エイエックスエス社製、D8 ADVANCE Super Speed)を用いて測定した。六方晶窒化ホウ素粉末を100kNでプレス成形し、10×15×3mmのサンプルを被検体とし、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAの条件とした。黒鉛化指数の値は、表2に記載した。
<Measurement of graphitization index>
The graphitization index of the hexagonal boron nitride powder produced in Example 1 was measured using a high-power powder X-ray diffractometer (D8 ADVANCE Super Speed, manufactured by Bruker AXS). Hexagonal boron nitride powder was press-molded at 100 kN, a sample of 10 × 15 × 3 mm was used as an object, a CuKα ray was used as an X-ray source, a tube voltage was 45 kV, and a tube current was 360 mA. The graphitization index values are listed in Table 2.

<平均粒子径の測定>
実施例1で作製した六方晶窒化ホウ素粉末の分散液を上述した方法で作製し、粒度分布測定機(日機装社製、MT3300EX型)で六方晶窒化ホウ素粉末の平均粒子径を測定した。水の屈折率には1.33を用い、窒化ホウ素粉末の屈折率は1.80として、一回当たりの測定時間は30秒とした。この測定結果は表2に記載した。
<Measurement of average particle diameter>
The dispersion of the hexagonal boron nitride powder produced in Example 1 was produced by the method described above, and the average particle size of the hexagonal boron nitride powder was measured with a particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., MT3300EX type). The refractive index of water was 1.33, the refractive index of the boron nitride powder was 1.80, and the measurement time per time was 30 seconds. The measurement results are shown in Table 2.

<タップ密度の測定>
実施例1で作製した六方晶窒化ホウ素粉末のタップ密度は、タップ密度測定器(ホソカワミクロン社製、パウダーテスター PT−E型)を用いて測定した。即ち、100cm3の専用容器に六方晶窒化ホウ素粉末を仮充填してから、タッピングタイム180秒、タッピング回数180回、タップリフト18mmの条件で容器をタッピングして衝撃で固めた後に余剰分を擦りきりして測定した、擦りきり後の容器を含む全体質量を基に算出した値であり、表2に示した。
<Measurement of tap density>
The tap density of the hexagonal boron nitride powder prepared in Example 1 was measured using a tap density measuring device (Powder Tester PT-E, manufactured by Hosokawa Micron Corporation). That is, after a hexagonal boron nitride powder is temporarily filled in a 100 cm 3 special container, the container is tapped under the conditions of a tapping time of 180 seconds, a tapping frequency of 180 times, and a tap lift of 18 mm, and then hardened by impact, and then the excess is rubbed. Table 2 shows values calculated based on the total mass including the container after rubbing, measured by cutting.

<溶出ホウ素量の測定>
実施例1で作製した六方晶窒化ホウ素の、製造直後、及び長期保管後の水に溶出するホウ素の量は、「外原規2006」に基づく方法で抽出し、ICP発光分光分析装置で測定した。
即ち、製造直後の六方晶窒化ホウ素粉末2.5gをフッ素系樹脂製ビーカーにとり、エタノール10mLを加えてよくかき混ぜ、更に水40mLを加えてよくかき混ぜた後、フッ素系樹脂製時計皿をのせ、50℃で1時間加温した。冷却後、該ビーカーの内容物をろ過したろ液と、少量の水による残留物の洗液とを合わせた回収液を採取した。
該回収液を、孔径0.22μmのメンブレンフィルターでろ過して「テフロン(登録商標)」製ビーカーにとり、この中に硫酸(47.5質量%)1mLを加えた。さらにホットプレート上で10分間煮沸し、冷後、この液をポリエチレン製メスフラスコに入れ、更にビーカーを少量の水で洗い、この水洗液も当該ポリエチレン製メスフラスコに移し、さらに水を追加して正確に50mLとし、これを試料溶液とした。試料溶液のホウ素量を吸光光度測定法で測定した。
なお、本発明では、六方晶窒化ホウ素粉末の、長期保管後に水に溶出するホウ素量は、六方晶窒化ホウ素粉末を、40℃、75%RHに設定した高温高湿機内で6ヶ月間保持した後に取り出して測定した値とした。これらの結果は表2に記載した。なお、実施例1の条件で焼成及び粉砕することにより得られた洗浄前の粗六方晶窒化ホウ素粉末について溶出ホウ素量を測定した結果を参考例として合わせて掲載した。
<Measurement of eluted boron amount>
The amount of boron eluted in the water immediately after production and after long-term storage of the hexagonal boron nitride produced in Example 1 was extracted by a method based on “Outer Code 2006” and measured with an ICP emission spectrometer. .
That is, 2.5 g of hexagonal boron nitride powder immediately after production was placed in a fluororesin beaker, 10 mL of ethanol was added and mixed well, 40 mL of water was further added and stirred, and then a fluororesin watch glass was placed on the flask. Warm for 1 hour at ° C. After cooling, a collected liquid was collected by combining the filtrate obtained by filtering the contents of the beaker and the washing liquid of the residue with a small amount of water.
The recovered liquid was filtered through a membrane filter having a pore diameter of 0.22 μm and taken in a “Teflon (registered trademark)” beaker, and 1 mL of sulfuric acid (47.5 mass%) was added thereto. Boil on a hot plate for 10 minutes, and after cooling, place this solution in a polyethylene measuring flask, wash the beaker with a small amount of water, transfer this washing solution to the polyethylene measuring flask, and add more water. It was exactly 50 mL, and this was used as a sample solution. The amount of boron in the sample solution was measured by spectrophotometry.
In the present invention, the amount of boron eluted from the hexagonal boron nitride powder after long-term storage was maintained for 6 months in a high-temperature and high-humidity machine where the hexagonal boron nitride powder was set at 40 ° C. and 75% RH. The value was taken out and measured later. These results are listed in Table 2. In addition, the result of having measured the amount of dissolved boron about the crude hexagonal boron nitride powder before washing | cleaning obtained by baking and grind | pulverizing on the conditions of Example 1 was published together as a reference example.

(実施例2〜12、比較例1〜4)
実施例1の焼結助剤の出発原料に対する質量割合、焼結助剤の種類、焼成温度の最高値、粉砕機の種類を、表1に示したように変更して、実施例2〜12、比較例1〜4の六方晶窒化ホウ素粉末を作製した。なお、実施例9及び実施例10では、粉砕機の回転数をそれぞれ1840rpm及び3220rpmに設定して、最大周速を28m/秒及び49m/秒とした。また、比較例3では、衝撃・磨砕・剪断型の粉砕機(ホソカワミクロン社製、スーパーミクロンミルM52NC型)を用い、粉砕羽の最大周速を実施例1に合わせるように回転数を調整し、2500rpmの条件で粉砕した。これらの六方晶窒化ホウ素粉末は実施例1と同じ方法により、赤外線吸収スペクトルのピーク強度比r、黒鉛化指数、平均粒子径、タップ密度、製造直後及び長期保管後の水に溶出したホウ素量を測定した。これらの測定結果は表2に併せて記載した。
(Examples 2 to 12, Comparative Examples 1 to 4)
The mass ratio of the sintering aid of Example 1 to the starting material, the type of sintering aid, the highest firing temperature, and the type of pulverizer were changed as shown in Table 1, and Examples 2 to 12 were changed. The hexagonal boron nitride powders of Comparative Examples 1 to 4 were produced. In Examples 9 and 10, the speed of the pulverizer was set to 1840 rpm and 3220 rpm, respectively, and the maximum peripheral speed was set to 28 m / second and 49 m / second. In Comparative Example 3, an impact / grinding / shearing type pulverizer (manufactured by Hosokawa Micron Co., Ltd., Supermicron Mill M52NC type) was used, and the rotation speed was adjusted so that the maximum peripheral speed of the pulverized blades was matched with Example 1. Grinding was performed at 2500 rpm. These hexagonal boron nitride powders were subjected to the same method as in Example 1 to obtain the peak intensity ratio r of the infrared absorption spectrum, graphitization index, average particle diameter, tap density, and the amount of boron eluted in water immediately after production and after long-term storage. It was measured. These measurement results are also shown in Table 2.

表1と表2の実施例と比較例の条件及び結果が示すように、本発明により、製造直後及び長期保管時における溶出ホウ素量が少ない六方晶窒化ホウ素粉末を得られることがわかる。
比較例1では焼結助剤の添加量が少なすぎたことで、比較例2では焼成温度が低かったことで、出発原料から六方晶窒化ホウ素への変換反応が十分に進まなかったことでピーク強度比rが1000未満、黒鉛化指数が3.2を超える値となり、長期保管後の溶出ホウ素量が増加した。比較例3では粉砕方法が不適切であったため、黒鉛化指数は適切であったがピーク強度比rが1000未満となり、長期保管後の溶出ホウ素量が増加した。比較例4はピーク強度比rは1000以上であったが、焼結助剤を使用しなかったことで、黒鉛化指数が大きくなったため、長期保管後の溶出ホウ素量が増加した。
As shown by the conditions and results of Examples and Comparative Examples in Tables 1 and 2, it can be seen that the present invention can obtain hexagonal boron nitride powder with a small amount of eluted boron immediately after production and during long-term storage.
In Comparative Example 1, the amount of sintering aid added was too small. In Comparative Example 2, the firing temperature was low, and the conversion reaction from the starting material to hexagonal boron nitride did not proceed sufficiently. The strength ratio r was less than 1000 and the graphitization index exceeded 3.2, and the amount of dissolved boron after long-term storage increased. In Comparative Example 3, since the pulverization method was inappropriate, the graphitization index was appropriate, but the peak intensity ratio r was less than 1000, and the amount of dissolved boron after long-term storage increased. In Comparative Example 4, the peak intensity ratio r was 1000 or more, but since the graphitization index was increased by not using the sintering aid, the amount of dissolved boron after long-term storage increased.

本発明の実施により、長期保管時において溶出ホウ素量の増加が少なく、充填性に優れた六方晶窒化ホウ素粉末を提供することができるので、ファンデーション、アイシャドー等の化粧料の原料として好適に用いられる。   By carrying out the present invention, it is possible to provide a hexagonal boron nitride powder with a small increase in the amount of dissolved boron during long-term storage and excellent filling properties, so it is suitably used as a raw material for cosmetics such as foundations and eye shadows. It is done.

Claims (6)

波数815±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I1と、波数3420±10cm-1の範囲内に出現する赤外吸収スペクトルの最大ピーク強度I2との比の値r(=I1/I2)が1000以上であり、かつ黒鉛化指数が3.2以下である六方晶窒化ホウ素粉末。 The ratio between the maximum peak intensity I 1 of the infrared absorption spectrum that appears in the range of wave number 815 ± 10 cm −1 and the maximum peak intensity I 2 of the infrared absorption spectrum that appears in the range of wave number 3420 ± 10 cm −1 Hexagonal boron nitride powder having a value r (= I 1 / I 2 ) of 1000 or more and a graphitization index of 3.2 or less. 平均粒子径が1μm以上45μm以下、タップ密度が0.3g/cm3以上1.0g/cm3以下である請求項1に記載の六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder according to claim 1, having an average particle size of 1 µm to 45 µm and a tap density of 0.3 g / cm 3 to 1.0 g / cm 3 . 医薬部外品原料規格2006に準拠して測定される溶出ホウ素が20mg/L以下である請求項1又は2に記載の六方晶窒化ホウ素粉末。   The hexagonal boron nitride powder according to claim 1 or 2, wherein the eluted boron measured according to the quasi-drug raw material standard 2006 is 20 mg / L or less. ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末の合計100質量部と、0.9質量部以上20質量部以下の焼結助剤粉末とを含む混合粉末を、1700〜2200℃の最高温度で焼成することにより粗六方晶窒化ホウ素を得る工程と、前記工程で得られた粗六方晶窒化ホウ素を回転羽根タイプの衝突型粉砕機を用いて最大周速50m/s以下で粉砕処理する工程と、前記粉砕処理された粗六方晶窒化ホウ素を洗浄液で洗浄し、次いで乾燥する工程と、を含む六方晶窒化ホウ素粉末の製造方法。   A mixed powder containing a total of 100 parts by mass of a compound powder containing boron and a compound powder containing nitrogen, and 0.9 to 20 parts by mass of a sintering aid powder, a maximum temperature of 1700 to 2200 ° C. A step of obtaining crude hexagonal boron nitride by firing at a step, and a step of pulverizing the crude hexagonal boron nitride obtained in the step at a maximum peripheral speed of 50 m / s or less using a rotary blade type collision type pulverizer And a step of washing the pulverized crude hexagonal boron nitride with a washing liquid and then drying the hexagonal boron nitride powder. ホウ素を含む化合物がホウ酸であり、窒素を含む化合物がメラミンであり、焼結助剤が炭酸カルシウム及び/又は炭酸ナトリウムである請求項4に記載の六方晶窒化ホウ素粉末の製造方法。   The method for producing a hexagonal boron nitride powder according to claim 4, wherein the compound containing boron is boric acid, the compound containing nitrogen is melamine, and the sintering aid is calcium carbonate and / or sodium carbonate. 請求項1〜3のいずれか一項に記載の六方晶窒化ホウ素粉末を含む化粧料。   Cosmetics containing the hexagonal boron nitride powder according to any one of claims 1 to 3.
JP2016046202A 2016-03-09 2016-03-09 Hexagonal boron nitride powder, method for producing the same, and cosmetics Active JP6279638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016046202A JP6279638B2 (en) 2016-03-09 2016-03-09 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046202A JP6279638B2 (en) 2016-03-09 2016-03-09 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Publications (2)

Publication Number Publication Date
JP2017160086A JP2017160086A (en) 2017-09-14
JP6279638B2 true JP6279638B2 (en) 2018-02-14

Family

ID=59852989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046202A Active JP6279638B2 (en) 2016-03-09 2016-03-09 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Country Status (1)

Country Link
JP (1) JP6279638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210261413A1 (en) * 2018-06-29 2021-08-26 Denka Company Limited Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625308B1 (en) * 2018-08-07 2019-12-25 水島合金鉄株式会社 Hexagonal boron nitride powder
WO2020031913A1 (en) * 2018-08-07 2020-02-13 水島合金鉄株式会社 Hexagonal boron nitride powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880201B2 (en) * 1998-06-19 2007-02-14 電気化学工業株式会社 Boron nitride powder and method for producing the same
JP3844455B2 (en) * 2002-06-28 2006-11-15 電気化学工業株式会社 Hexagonal boron nitride powder, method for producing the same, application
JP2010042963A (en) * 2008-08-18 2010-02-25 Kaneka Corp Manufacture method of hexagonal boron nitride
JP5105372B2 (en) * 2009-02-03 2012-12-26 独立行政法人物質・材料研究機構 Boron nitride spherical nanoparticles and production method thereof
JP6109466B2 (en) * 2011-02-25 2017-04-05 水島合金鉄株式会社 Hexagonal boron nitride powder for cosmetics and method for producing the same
KR20140095049A (en) * 2011-11-02 2014-07-31 가부시키가이샤 가네카 Process for continuous production of boron nitride powder
WO2014049956A1 (en) * 2012-09-28 2014-04-03 水島合金鉄株式会社 Highly water-repellent and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210261413A1 (en) * 2018-06-29 2021-08-26 Denka Company Limited Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member

Also Published As

Publication number Publication date
JP2017160086A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6745293B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JP6734239B2 (en) Hexagonal boron nitride powder and cosmetics
JP7002196B2 (en) Hexagonal boron nitride powder and cosmetics
JP6279638B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JP7204732B2 (en) Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics
JP6695560B1 (en) Composite oxide powder, method for producing composite oxide powder, method for producing solid electrolyte body, and method for producing lithium ion secondary battery
Singh et al. Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach
Narayanan et al. Effect of excess Li on the structural and electrical properties of garnet-type Li6La3Ta1. 5Y0. 5O12
JP7241247B2 (en) Method for producing hexagonal boron nitride powder and sintered boron nitride
Meddouri et al. Effect of cerium on structural and optical properties of ZnO aerogel synthesized in supercritical methanol
Suresh et al. Synthesis and characterization of Pb+ doped MgO nanocrystalline particles
KR20140028003A (en) Titanium raw material for lithium titanate production and method for producing lithium titanate using same
JP2021102540A (en) Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP7372140B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7431577B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
WO2022264335A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
Wan et al. Hydrothermal synthesis and phase stability of Pb stabilized ZrO2 nanoparticles
Wei et al. Preparation and properties of nanocrystal SmBO3 by nitrate-citrate sol-gel combustion method
RU2467983C1 (en) Method of producing nanocrystalline powder and ceramic materials based on mixed oxides of rare-earth elements and subgroup ivb metals
JP7372141B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
CN105314977A (en) Method for preparing calcium copper titanate
RU2700062C1 (en) Method of producing nanostructured powders of solid solutions based on yttrium-aluminum garnet with rare-earth element oxides
WO2022264326A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same
WO2018230473A1 (en) Trivalent metal-doped hexagonal plate-shaped zinc oxide and method for producing same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250