JP2006131472A - Method for manufacturing ceramic sintered compact - Google Patents

Method for manufacturing ceramic sintered compact Download PDF

Info

Publication number
JP2006131472A
JP2006131472A JP2004324571A JP2004324571A JP2006131472A JP 2006131472 A JP2006131472 A JP 2006131472A JP 2004324571 A JP2004324571 A JP 2004324571A JP 2004324571 A JP2004324571 A JP 2004324571A JP 2006131472 A JP2006131472 A JP 2006131472A
Authority
JP
Japan
Prior art keywords
powder
sintering
raw material
boron nitride
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324571A
Other languages
Japanese (ja)
Inventor
Junichi Suzaki
純一 須崎
Hiroshi Yokota
博 横田
Fumio Tokunaga
文夫 徳永
Shojiro Watanabe
祥二郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004324571A priority Critical patent/JP2006131472A/en
Publication of JP2006131472A publication Critical patent/JP2006131472A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a ceramic sintered compact containing titanium diboride and boron nitride as essential ingredients by increasing productivity. <P>SOLUTION: A method for manufacturing the ceramic sintered compact comprises compacting a raw material powder which contains boron nitride powder having the maximum values of the frequency particle distribution at the area of 0.5-5 μm and at the area of 5-50 μm, and titanium diboride powder, and, thereafter, sintering the compacted raw material powder in a non-oxidizing atmosphere. In this case, preferably the raw material powder further contains sintering aids selected from an aluminum nitride powder, aluminum nitride powder and a calcium oxide powder and/or strontium oxide powder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミックス焼結体の製造方法に関する。詳しくは、例えば金属蒸発用容器の製造に適するセラミックス焼結体を生産性良く製造する方法に関する。   The present invention relates to a method for producing a ceramic sintered body. Specifically, the present invention relates to a method for manufacturing a ceramic sintered body suitable for manufacturing a metal evaporation container with high productivity.

従来、二硼化チタンと窒化ホウ素を含むセラミックス焼結体で構成された金属蒸発用容器(以下、「ボート」ともいう。)を、真空下で通電加熱し、アルミニウム等の金属線材を間欠的又は連続的にボートに供給しながら金属を蒸発させ、フィルム等に金属を蒸着させることが行われている。ボートには、二硼化チタンと窒化ホウ素を主成分とする2成分系ボートと、この2成分系ボートに更に窒化アルミニウムを含有させた3成分系ボートが知られているが、これらには一長一短がある。2成分系ボートは、3成分系ボートに比べて熱衝撃性と溶融金属に対する耐食性に優れているが、加熱時に放出するガス量が多くなる傾向があり、3成分系ボートにはこの逆の傾向がある。   Conventionally, a metal evaporation vessel (hereinafter also referred to as a “boat”) composed of a ceramic sintered body containing titanium diboride and boron nitride is heated and energized under vacuum, and a metal wire such as aluminum is intermittently supplied. Alternatively, the metal is evaporated while being continuously supplied to the boat, and the metal is deposited on a film or the like. Two-component boats mainly composed of titanium diboride and boron nitride and three-component boats in which aluminum nitride is further added to the two-component boat are known as boats. There is. Two-component boats are superior to three-component boats in terms of thermal shock resistance and corrosion resistance to molten metal, but there is a tendency for the amount of gas released during heating to increase, and for ternary boats, the opposite is true. There is.

ボートは、二硼化チタン粉末と窒化ホウ素粉末を含む原料粉末を成形後、常圧焼結するか、又はホットプレス焼結して製造されている。原料粉末には、焼結性を高めるため、例えば酸化カルシウム等の焼結助剤を存在させることもある(特許文献1、特許文献2)。しかしながら、2成分系ボート、3成分系ボートのいずれにあっても、焼き付き現象等によって、焼結後にボートを型から容易に外すことができないことがあり、また離型したものは表面を平滑にするために研削量を多くする必要があった。これらのため、ボートの生産性が十分とはいえなかった。
特開2001−302352号公報 特開2003−300779号公報
The boat is manufactured by molding a raw material powder containing titanium diboride powder and boron nitride powder and then sintering at normal pressure or hot press sintering. In order to enhance the sinterability, the raw material powder may contain a sintering aid such as calcium oxide (Patent Document 1, Patent Document 2). However, in any of the two-component boat and the three-component boat, the boat may not be easily removed from the mold after sintering due to a seizure phenomenon or the like. In order to do so, it was necessary to increase the amount of grinding. For these reasons, the productivity of the boat was not sufficient.
JP 2001-302352 A JP 2003-300779 A

本発明の目的は、二硼化チタンと窒化ホウ素を必須成分とするセラミックス焼結体を生産性を高めて製造する方法を提供することである。   An object of the present invention is to provide a method for producing a ceramic sintered body having titanium diboride and boron nitride as essential components with increased productivity.

本発明は、頻度粒度分布において0.5〜5μmの領域と5〜50μmの領域とに極大値を有する窒化ホウ素粉末と、二硼化チタン粉末とを含有してなる原料粉末を成形した後、非酸化性雰囲気下、焼結することを特徴とするセラミックス焼結体の製造方法である。   In the present invention, after molding a raw material powder containing a boron nitride powder having a maximum value in a region of 0.5 to 5 μm and a region of 5 to 50 μm in a frequency particle size distribution, and a titanium diboride powder, A method for producing a ceramic sintered body characterized by sintering in a non-oxidizing atmosphere.

本発明においては、原料粉末が、更に窒化アルミニウム粉末、又は窒化アルミニウム粉末と酸化カルシウム粉末及び/又は酸化ストロンチウム粉末からなる焼結助剤とを含むことが好ましい。とくに、原料粉末の割合が、窒化ホウ素粉末30〜60質量%、二硼化チタンを40〜60質量%、窒化アルミニウム粉末を20質量%以下(0%を含む)特に3〜15質量%、焼結助剤10質量%以下(0%を含む)特に0.5〜8質量%であることが好ましい。さらには、焼結が、温度1700〜2200℃下の常圧焼結又はホットプレス焼結であることが好ましい。   In the present invention, it is preferable that the raw material powder further contains an aluminum nitride powder, or a sintering aid comprising an aluminum nitride powder and a calcium oxide powder and / or a strontium oxide powder. In particular, the proportion of the raw material powder is 30 to 60% by mass of boron nitride powder, 40 to 60% by mass of titanium diboride, 20% by mass or less (including 0%) of aluminum nitride powder, especially 3 to 15% by mass, The binder is 10% by mass or less (including 0%), and particularly preferably 0.5 to 8% by mass. Furthermore, the sintering is preferably atmospheric pressure sintering or hot press sintering at a temperature of 1700 to 2200 ° C.

本発明によれば、ボートに好適なセラミックス焼結体を生産性を高めて製造することができる。また、得られたセラミックス焼結体はより均質となり、例えば相対密度のバラツキが小さくなるので抵抗値がより均質となる効果も期待できる。   According to the present invention, a ceramic sintered body suitable for a boat can be manufactured with increased productivity. In addition, the obtained ceramic sintered body becomes more homogeneous, and for example, the effect of making the resistance value more uniform can be expected because the variation in relative density becomes smaller.

本発明の製造方法は、原料粉末の調製・成形・焼結からなっており、原料粉末の配合割合を変えることによって、それに応じた2成分系ボート、3成分系ボートの製造に適合するセラミックス焼結体を製造することができる。原料粉末の配合割合を違えても、その成形・焼結の条件を特に変更する必要がない。   The production method of the present invention comprises preparation, molding, and sintering of raw material powders, and by changing the blending ratio of the raw material powders, ceramic firing suitable for the production of two-component boats and three-component boats corresponding to them. A knot can be produced. Even if the mixing ratio of the raw material powder is changed, it is not necessary to change the molding and sintering conditions.

原料粉末の成形・焼結は、ホットプレス焼結又は常圧焼結によって行われる。相対密度が90%以上のセラミックス焼結体を容易に製造するには、ホットプレス焼結する場合、その一軸加圧力は20Mpa以上が好ましく、また常圧焼結する場合は、その成形体は50MPa以下の一軸加圧又は冷間等方圧加圧で成型することが好ましい。また、焼結は、ホットプレス焼結、常圧焼結のいずれの場合も、窒素、ヘリウム、アルゴン、真空等の非酸化性雰囲気下、温度1700〜2200℃であることが好ましい。   The raw powder is formed and sintered by hot press sintering or normal pressure sintering. In order to easily produce a ceramic sintered body having a relative density of 90% or more, when hot press sintering, the uniaxial pressure is preferably 20 Mpa or more. It is preferable to mold by the following uniaxial pressing or cold isostatic pressing. Moreover, it is preferable that sintering is temperature 1700-2200 degreeC in non-oxidizing atmospheres, such as nitrogen, helium, argon, and a vacuum, in any case of hot press sintering and atmospheric pressure sintering.

本発明で用いる原料粉末は、窒化ホウ素とホウ化チタン粉末を必須成分とし、窒化アルミニウム粉末と焼結助剤粉末は任意成分とする。窒化アルミニウム粉末の存否によって2成分系ボート、3成分系ボートの製造に適合するセラミックス焼結体が製造される。   The raw material powder used in the present invention includes boron nitride and titanium boride powder as essential components, and aluminum nitride powder and sintering aid powder as optional components. Depending on the presence or absence of the aluminum nitride powder, a ceramic sintered body suitable for manufacturing a two-component boat and a three-component boat is manufactured.

本発明の特徴は、用いる窒化ホウ素粉末の粒度構成にあり、頻度粒度分布において0.5〜5μmの領域と5〜50μmの領域とに極大値を有するものである。0.5〜5μmの領域に極大値を有する窒化ホウ素粉末(以下、「微細BN粉末」ともいう。)は、5〜50μmの領域とに極大値を有する窒化ホウ素粉末(以下、「粗大BN粉末」ともいう。)の隙間に容易に入り込むことができるので、窒化ホウ素粉末はより密充填された状態で焼結されることになり、焼結後のセラミックス焼結体の離型性が良くなって離型後の加工処理量を少なくすることができる。また、相対密度が高まり、そのバラツキも小さくなるので、セラミックス焼結体の抵抗値がより均質となる効果が期待できる。   The feature of the present invention lies in the particle size constitution of the boron nitride powder to be used, and has a maximum value in the region of 0.5 to 5 μm and the region of 5 to 50 μm in the frequency particle size distribution. Boron nitride powder having a maximum value in the region of 0.5 to 5 μm (hereinafter also referred to as “fine BN powder”) is a boron nitride powder having a maximum value in the region of 5 to 50 μm (hereinafter referred to as “coarse BN powder”). The boron nitride powder is sintered in a more closely packed state, and the releasability of the sintered ceramic body after sintering is improved. Thus, the processing amount after mold release can be reduced. Further, since the relative density is increased and the variation is reduced, an effect of making the resistance value of the ceramic sintered body more uniform can be expected.

本発明においては、窒化ホウ素粉末をより大きな密充填状態で焼結させるために、微細BN粉末と粗大BN粉末の双モード分布が必要である。双モード分布であっても、その一方の極大値を示す領域が上記範囲内にないと、例えば微細BN粉末の極大値を示す領域が0.5μm未満にあると、所期の目的を十分に達成することができない。特に好ましい極大値を示す領域は、微細BN粉末が1〜3μm、粗大BN粉末が10〜30μmである。   In the present invention, in order to sinter boron nitride powder in a larger close-packed state, a bimodal distribution of fine BN powder and coarse BN powder is required. Even in the bimodal distribution, if the region showing one maximum value is not within the above range, for example, if the region showing the maximum value of the fine BN powder is less than 0.5 μm, the intended purpose is sufficiently achieved. Cannot be achieved. The regions exhibiting particularly preferred maximum values are 1 to 3 μm for fine BN powder and 10 to 30 μm for coarse BN powder.

また、これと同様な理由によって、窒化ホウ素粉末中の0.5〜5μmの領域の粒子の割合は30〜80質量%特に40〜60質量%で、5μm超〜50μmの領域の粒子の割合は20〜70質量%特に40〜60質量%であること、0.5μm未満の粒子の含有率が10質量%以下であること、80μm以上の粒子含有率が1質量%以下であること、及び平均粒径が3〜15μmであることから選ばれた実施態様の少なくとも1以上を備えていることが好ましい。   For the same reason, the proportion of particles in the region of 0.5 to 5 μm in the boron nitride powder is 30 to 80% by weight, particularly 40 to 60% by weight, and the proportion of particles in the region of more than 5 μm to 50 μm is 20 to 70% by mass, especially 40 to 60% by mass, the content of particles less than 0.5 μm is 10% by mass or less, the content of particles of 80 μm or more is 1% by mass or less, and average It is preferable to include at least one of the embodiments selected from the particle size of 3 to 15 μm.

窒化ホウ素粉末の粒度分布は、レーザー回折散乱法によって測定することができる。粒度分布測定機としては、例えばベックマンコールター社製商品名「モデルLS−230」等を用いることができる。   The particle size distribution of the boron nitride powder can be measured by a laser diffraction scattering method. As the particle size distribution measuring instrument, for example, “Brand Model Bone” manufactured by Beckman Coulter, Inc. can be used.

本発明で用いる窒化ホウ素粉末は、微細BN粉末と粗大BN粉末をあらかじめ製造しておき、それらを適宜混合することによって製造することができる。微細BN粉末と粗大BN粉末は、例えば以下に従って窒化ホウ素粉末を製造し、それを分級又は造粒、更には窒化ホウ素焼結体を粉砕することなどによって製造することができる。   The boron nitride powder used in the present invention can be produced by producing fine BN powder and coarse BN powder in advance and mixing them appropriately. The fine BN powder and the coarse BN powder can be produced, for example, by producing a boron nitride powder according to the following, and classifying or granulating it, and further pulverizing a boron nitride sintered body.

窒化ホウ素粉末は、例えば硼砂と尿素の混合物をアンモニア雰囲気中で800℃以上で加熱する方法、硼酸又は酸化ホウ素と燐酸カルシウムの混合物をアンモニウム、ジシアンジアミド等の含窒素化合物を1600℃以上に加熱する方法等によって製造することができ、通常、平均粒子径が30μm以下のものが製造される。窒化ホウ素粉末の酸素量は3%未満であることが好ましい。酸素量は、窒化ホウ素粉末を真空中又は非酸化性雰囲気中で熱処理する方法、メタノール洗浄して酸化ホウ素を除去する方法等によって減少させることができる。   Boron nitride powder is prepared, for example, by heating a mixture of borax and urea in an ammonia atmosphere at 800 ° C. or higher, or heating a mixture of boric acid or boron oxide and calcium phosphate to 1600 ° C. or higher with a nitrogen-containing compound such as ammonium or dicyandiamide. The average particle diameter is usually 30 μm or less. The oxygen content of the boron nitride powder is preferably less than 3%. The amount of oxygen can be reduced by a method of heat-treating boron nitride powder in vacuum or in a non-oxidizing atmosphere, a method of removing boron oxide by washing with methanol, or the like.

本発明で用いられる二硼化チタン粉末、窒化アルミニウム粉末、焼結助剤粉末は特別なものである必要はなく市販品で十分である。いずれの粉末も、純度は98質量%以上、酸素量が2質量%以下、平均粒子径が15μm以下であることが好ましい。   The titanium diboride powder, aluminum nitride powder, and sintering aid powder used in the present invention do not need to be special, and commercially available products are sufficient. Any of the powders preferably has a purity of 98% by mass or more, an oxygen content of 2% by mass or less, and an average particle size of 15 μm or less.

ボート用セラミックス焼結体を製造するためには、原料粉末中の窒化ホウ素粉末の割合が30〜60質量%、二硼化チタン粉末が40〜60質量%、窒化アルミニウム粉末が20質量%以下特に3〜10質量%、焼結助剤10質量%以下特に0.3〜8質量%であることが好ましい。   In order to produce a ceramic sintered body for boats, the proportion of the boron nitride powder in the raw material powder is 30 to 60% by mass, the titanium diboride powder is 40 to 60% by mass, and the aluminum nitride powder is 20% by mass or less. It is preferable that they are 3-10 mass%, sintering auxiliary agent 10 mass% or less, especially 0.3-8 mass%.

焼結助剤を例示すれば、例えば酸化カルシウム、炭酸カルシウム、水酸化カルシウム、酸化ストロンチウム、炭酸ストロンチウム、水酸化ストロンチウム、酸化バリウム、炭酸バリウム、水酸化バリウム、等である。これらの中でも、酸化カルシウムは焼結条件を緩和できる作用が最も大きいので好ましく、また酸化ストロンチウムは原料粉末中の酸化物(例えば酸化ホウ素等)に由来するガス発生を抑制する作用が最も大きいので好ましい。   Examples of the sintering aid include calcium oxide, calcium carbonate, calcium hydroxide, strontium oxide, strontium carbonate, strontium hydroxide, barium oxide, barium carbonate, barium hydroxide, and the like. Among these, calcium oxide is preferable because it has the greatest effect of relaxing the sintering conditions, and strontium oxide is preferable because it has the greatest effect of suppressing gas generation derived from oxides (for example, boron oxide) in the raw material powder. .

原料粉末の調合は、ボールミル、振動ボールミル、ヘンシェルミキサー、ボールトンミル等の混合機で行われ、成形後焼結される。成形に先立ち、混合原料粉末は0.5〜2mmに造粒しておくことが好ましく、これによって相対密度90%以上の実現が容易となる。造粒方法としては、例えばスプレードライヤー法、転動造粒法等の湿式造粒法、混合原料粉末を圧縮成型後粗砕整粒する乾式造粒法等を用いることができるが、原料粉末の酸化をできるだけ抑えるには乾式造粒が好ましい。   The raw material powder is mixed in a mixer such as a ball mill, a vibration ball mill, a Henschel mixer, or a ball ton mill, and sintered after molding. Prior to molding, the mixed raw material powder is preferably granulated to 0.5 to 2 mm, which facilitates the realization of a relative density of 90% or more. As the granulation method, for example, a wet granulation method such as a spray dryer method or a tumbling granulation method, a dry granulation method in which a mixed raw material powder is granulated after compression molding, etc. can be used. Dry granulation is preferred to suppress oxidation as much as possible.

実施例1〜7 比較例1〜4
ホウ酸、メラミン、及び炭酸カルシウム(いずれも試薬特級)を、質量比70:50:5の割合で混合し、窒素ガス雰囲気中、室温から1400℃までを1時間で昇温し、1400℃で3時間保持してから2000℃までを4時間で昇温し、2000℃で2時間保持した後、室温まで冷却して窒化ホウ素粉末を製造した。これを粉砕し、篩い分けして、表1に示される粒径に単一の頻度極大値を有する微細BN粉末A〜E及び粗大BN粉末eを製造した。
Examples 1-7 Comparative Examples 1-4
Boric acid, melamine, and calcium carbonate (all reagent grades) are mixed at a mass ratio of 70: 50: 5, and the temperature is raised from room temperature to 1400 ° C. over 1 hour in a nitrogen gas atmosphere. After maintaining for 3 hours, the temperature was raised to 2000 ° C. over 4 hours, kept at 2000 ° C. for 2 hours, and then cooled to room temperature to produce boron nitride powder. This was pulverized and sieved to produce fine BN powders A to E and coarse BN powder e having a single frequency maximum in the particle size shown in Table 1.

一方、市販の窒化ホウ素粉末(電気化学工業社製商品名「デンカボロンナイトライドSP」)を篩い分けして、表1に示される粒径に単一の頻度極大値を有する粗大BN粉末a〜dを製造した。   On the other hand, commercially available boron nitride powder (trade name “DENCABORON NITRIDE SP” manufactured by Denki Kagaku Kogyo Co., Ltd.) is sieved, and coarse BN powder a˜ having a single frequency maximum in the particle size shown in Table 1 d was produced.

微細BN粉末A〜E及び粗大BN粉末a〜eについて、粒度特性と酸素量を測定した。それらの結果を表1に示す。なお、微細BN粉末E及び粗大BN粉末aは比較例に係わる窒化ホウ素粉末である。ついで、微細BN粉末A〜E及び粗大BN粉末a〜eを表2に示す割合で混合して種々の窒化ホウ素粉末を製造した。   For the fine BN powders A to E and the coarse BN powders a to e, the particle size characteristics and the oxygen amount were measured. The results are shown in Table 1. The fine BN powder E and the coarse BN powder a are boron nitride powders according to the comparative example. Subsequently, various boron nitride powders were produced by mixing the fine BN powders A to E and the coarse BN powders a to e in the ratio shown in Table 2.

上記窒化ホウ素粉末、二硼化チタン粉末(酸素量1.1質量%、平均粒子径14.2μm)、酸化ストロンチウム粉末(平均粒子径7.0μm)、酸化カルシウム粉末(平均粒子径8.1μm)を表3に示す割合でボールミルで混合して原料粉末を調製した。これを平均粒径が1.3mmの大きさに造粒し、18MPaで冷間等方圧加圧成型(50mm×20mm×200mm)した後、カーボン製容器に収納し、窒素雰囲気下、温度2000℃で2時間保持して焼結した。室温まで冷却した後、容器からセラミックス焼結体を離型し、直方角柱体(長さ150mm×幅30mm×厚み10mm)を切り出して、密度及び電気抵抗を測定した。それらの結果を表3に示す。   Boron nitride powder, titanium diboride powder (oxygen 1.1% by mass, average particle size 14.2 μm), strontium oxide powder (average particle size 7.0 μm), calcium oxide powder (average particle size 8.1 μm) Were mixed at a ratio shown in Table 3 by a ball mill to prepare a raw material powder. This was granulated to an average particle size of 1.3 mm, cold isostatically pressed at 18 MPa (50 mm × 20 mm × 200 mm), then housed in a carbon container, and a nitrogen atmosphere under a temperature of 2000 Sintering was performed at 2 ° C. for 2 hours. After cooling to room temperature, the ceramic sintered body was released from the container, a rectangular prism (length 150 mm × width 30 mm × thickness 10 mm) was cut out, and the density and electrical resistance were measured. The results are shown in Table 3.

また、ICP発光分析装置(SII社製「SPS−1700R」)、酸素窒素分析装置(HORIBA社製「EMGA−2800」)による元素定量分析を行い、それらの結果をもとに重回帰計算法によるセラミックス焼結体の組成を解析したところ、ほぼ原料粉末組成に一致していた。   In addition, quantitative elemental analysis was performed using an ICP emission analyzer (“SPS-1700R” manufactured by SII) and an oxygen / nitrogen analyzer (“EMGA-2800” manufactured by HORIBA), and multiple regression calculation was performed based on the results. When the composition of the ceramic sintered body was analyzed, it almost coincided with the raw material powder composition.

(1)セラミックス焼結体の離型性:容器からセラミックス焼結体を離型する際の状況を以下の三段階で評価した。
「○」外力を加えることなく離型できた。「△」外力を加えないと離型できなかった。「×」外力を加えても離型できず、無理に離型しようとするとセラミックス焼結体が破壊した。
(2)相対密度:実測密度と理論密度から算出した。
(3)比抵抗値:直方角柱体の全電気抵抗値から求めた。
(4)ボート内の比抵抗値のバラツキ:切り出した直方角柱体を長さ50mm×幅30mm×厚み10mmの直方体に3等分して、電気抵抗値を測定し、各々の比抵抗値を求めた。
(1) Releasability of ceramic sintered body: The situation when releasing the ceramic sintered body from the container was evaluated in the following three stages.
“○” The mold could be released without applying external force. “△” could not be released without applying external force. Even if "X" external force was applied, the mold could not be released, and the ceramic sintered body was destroyed when trying to release it forcibly.
(2) Relative density: Calculated from measured density and theoretical density.
(3) Specific resistance value: determined from the total electric resistance value of the rectangular prism.
(4) Variation in specific resistance value in the boat: The cut rectangular prism is divided into three equal parts of 50 mm in length, 30 mm in width, and 10 mm in thickness, and the electric resistance value is measured to obtain each specific resistance value. It was.

Figure 2006131472
Figure 2006131472

Figure 2006131472
Figure 2006131472

Figure 2006131472
Figure 2006131472

表1〜表3の実施例と比較例の対比から明らかなように、本発明の製造方法によれば、焼結後に、セラミックス焼結体を外力を加えることなく型から容易に外すことができ、生産性が向上した。また、セラミックス焼結体の相対密度が向上し、そのバラツキも小さくなったので、比抵抗値が下がり、そのバラツキも減少した。   As is clear from the comparison between the examples and comparative examples in Tables 1 to 3, according to the manufacturing method of the present invention, the sintered ceramic body can be easily removed from the mold without applying external force after sintering. , Productivity improved. Moreover, since the relative density of the ceramic sintered body was improved and the variation thereof was reduced, the specific resistance value was lowered and the variation was also reduced.

本発明の製造方法によって得られたセラミックス焼結体は、導電性を有するので各種の導電板として使用できる。とくに、プラスチック等に金属を蒸着するためのボートとして使用できる。   Since the ceramic sintered body obtained by the production method of the present invention has conductivity, it can be used as various conductive plates. In particular, it can be used as a boat for depositing metal on plastic or the like.

Claims (5)

頻度粒度分布において0.5〜5μmの領域と5〜50μmの領域とに極大値を有する窒化ホウ素粉末と、二硼化チタン粉末とを含有してなる原料粉末を成形した後、非酸化性雰囲気下、焼結することを特徴とするセラミックス焼結体の製造方法。   After forming a raw material powder containing a boron nitride powder having a maximum value in a region of 0.5 to 5 μm and a region of 5 to 50 μm in a frequency particle size distribution and a titanium diboride powder, a non-oxidizing atmosphere A method for producing a ceramic sintered body characterized in that sintering is performed below. 原料粉末が、更に窒化アルミニウム粉末を含むことを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the raw material powder further contains an aluminum nitride powder. 原料粉末が、更に酸化カルシウム粉末及び/又は酸化ストロンチウム粉末からなる焼結助剤を含むことを特徴とする請求項1又は2記載の製造方法。   3. The production method according to claim 1, wherein the raw material powder further contains a sintering aid made of calcium oxide powder and / or strontium oxide powder. 原料粉末の割合が、窒化ホウ素粉末30〜60質量%、二硼化チタンを40〜60質量%、窒化アルミニウム粉末を20質量%以下(0%を含む)、焼結助剤10質量%以下(0%を含む)であることを特徴とする請求項3記載の製造方法。   The proportion of the raw material powder is 30-60 mass% boron nitride powder, 40-60 mass% titanium diboride, 20 mass% or less (including 0%) aluminum nitride powder, and 10 mass% or less sintering aid ( The manufacturing method according to claim 3, wherein 0% is included. 焼結が、温度1700〜2200℃下の常圧焼結又はホットプレス焼結であることを特徴とする請求項4記載の製造方法。   The method according to claim 4, wherein the sintering is atmospheric pressure sintering or hot press sintering at a temperature of 1700 to 2200 ° C.
JP2004324571A 2004-11-09 2004-11-09 Method for manufacturing ceramic sintered compact Pending JP2006131472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324571A JP2006131472A (en) 2004-11-09 2004-11-09 Method for manufacturing ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324571A JP2006131472A (en) 2004-11-09 2004-11-09 Method for manufacturing ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2006131472A true JP2006131472A (en) 2006-05-25

Family

ID=36725347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324571A Pending JP2006131472A (en) 2004-11-09 2004-11-09 Method for manufacturing ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2006131472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165241A (en) * 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165241A (en) * 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics

Similar Documents

Publication Publication Date Title
KR100462274B1 (en) A method of manufacturing tungsten- copper based composite powder and sintered alloy for heat sink using the same
US5686676A (en) Process for making improved copper/tungsten composites
JP7317737B2 (en) Hexagonal boron nitride powder and raw material composition for sintered body
JP3763006B2 (en) Copper tungsten alloy and method for producing the same
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JP2006131472A (en) Method for manufacturing ceramic sintered compact
JPH03208865A (en) Manufacture of refractory composite article
JP2001122615A (en) Boron nitride coated spherical borate particle,, mixed powder containing the same and method for manufacture thereof
JPH07172921A (en) Aluminum nitride sintered material and its production
Jiang et al. Fabrication of electronic packaging grade Cu–W materials by high-temperature and high-velocity compaction
KR970001558B1 (en) Method for composite powder
JP2000277815A (en) Thermoelectric material containing dispersed short thin metallic wires and its manufacture
JPS60186479A (en) Manufacture of high heat conductivity aluminum nitride sintered body
JPS6128629B2 (en)
JPS61155210A (en) Preparation of easily sinterable aluminum nitride powder
JPS63134570A (en) Manufacture of aluminum nitride sintered body
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPS6317210A (en) Production of aluminum nitride powder
US6589310B1 (en) High conductivity copper/refractory metal composites and method for making same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
WO2021200868A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JP3959555B2 (en) Aluminum nitride powder and method for producing degreased body thereof
JP2005272269A (en) Ceramics, its manufacturing method, and vessel for evaporating metal
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP2004250264A (en) High strength boron nitride sintered compact and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623