JP6734363B2 - ガスタービンプラント、及びその運転方法 - Google Patents

ガスタービンプラント、及びその運転方法 Download PDF

Info

Publication number
JP6734363B2
JP6734363B2 JP2018508897A JP2018508897A JP6734363B2 JP 6734363 B2 JP6734363 B2 JP 6734363B2 JP 2018508897 A JP2018508897 A JP 2018508897A JP 2018508897 A JP2018508897 A JP 2018508897A JP 6734363 B2 JP6734363 B2 JP 6734363B2
Authority
JP
Japan
Prior art keywords
water
gas turbine
pressure
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018508897A
Other languages
English (en)
Other versions
JPWO2017169594A1 (ja
Inventor
上地 英之
英之 上地
石黒 達男
達男 石黒
直樹 久田
直樹 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2017169594A1 publication Critical patent/JPWO2017169594A1/ja
Application granted granted Critical
Publication of JP6734363B2 publication Critical patent/JP6734363B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、ガスタービン及び排熱回収ボイラーを備えるガスタービンプラント、及びその運転方法に関する。
本願は、2016年3月29日に、日本国に出願された特願2016−065790号に基づき優先権を主張し、この内容をここに援用する。
ガスタービンプラントとしては、ガスタービンと、このガスタービンからの排気ガスで蒸気を発生する排熱回収ボイラーと、を備えているプラントがある。
このようなガスタービンプラントとしては、例えば、以下の特許文献1に記載されているプラントがある。このプラントの排熱回収ボイラーは、低圧節炭器と、低圧蒸発器と、第一高圧節炭器と、第一低圧過熱器と、第一再熱器と、第二高圧節炭器と、第二低圧過熱器と、高圧蒸発器と、第一高圧過熱器と、第二再熱器と、第二高圧過熱器と、高圧ポンプと、を有する。低圧節炭器、低圧蒸発器、第一高圧節炭器、第一低圧過熱器、第一再熱器、第二低圧過熱器、高圧蒸発器、第一高圧過熱器、第二再熱器、第二高圧過熱器は、以上の順序で、排気ガスの下流側から上流側に向って並んでいる。また、第二高圧節炭器は、排気ガスの流れの上下流方向で、第一再熱器と同じ位置に配置されている。
低圧節炭器は、外部からの水を排気ガスで加熱する。低圧蒸発器は、低圧節炭器からの加熱水を排気ガスで加熱して低圧蒸気を生成する。高圧ポンプは、低圧節炭器からの加熱水を昇圧する。第一高圧節炭器は、高圧ポンプで昇圧された加熱水を排気ガスで加熱する。第一低圧過熱器は、低圧蒸気を排気ガスで過熱する。第一再熱器は、中圧蒸気タービンから排気された排気蒸気を加熱する。第二高圧節炭器は、第一高圧節炭器で加熱された加熱水をさらに加熱する。第二低圧過熱器は、第一低圧過熱器で過熱された低圧蒸気をさらに過熱し、この過熱低圧蒸気を低圧蒸気タービンに送る。高圧蒸発器は、第二高圧節炭器で加熱された加熱水を排気ガスで加熱して高圧蒸気を生成する。第一高圧過熱器は、高圧蒸気を排気ガスで過熱する。第二再熱器は、第一再熱器で加熱された蒸気を排気ガスでさらに過熱し、この過熱蒸気を中圧蒸気タービンに送る。第二高圧過熱器は、第一高圧過熱器で過熱された高圧蒸気をさらに過熱し、これを過熱高圧蒸気として高圧蒸気タービンに送る。
この排熱回収ボイラーでは、排気ガスの熱を有効に用いるために、互いに圧力の異なる複数種類の蒸気を発生する。
特開2009−092372号公報
排熱回収ボイラーでは、排気ガスの熱を有効に利用するために、排気ガスの温度ができる限り低温になるまで、排気ガスの熱を用いることが好ましい。一方、排気ガスの温度が低温になり過ぎると、この排気ガス中に含まれるNOxやSOxが凝縮して、硫酸水や硝酸水等になり、これらの腐食液により煙道等が腐食する。このため、排熱回収ボイラーから排気される排気ガスの温度には、排気ガスの熱の有効利用と煙道等の保護等の観点から適切な温度が要求される。
上記特許文献1に記載の排熱回収ボイラーでは、高圧蒸発器の下流側に再熱器が配置されている。この再熱器には、中圧蒸気タービンから排気された排気蒸気が流入するため、この再熱器で排気ガスの温度を調節することが難しい。このため、この再熱器よりも下流側に配置されている低圧蒸発器等でも、排気ガスの温度を調節することが難しい。
そこで、本発明は、蒸発器の下流側に再熱器が配置されている排熱回収ボイラーでも、排熱回収ボイラーから排出される排気ガスの温度を調節することができるガスタービンプラント、及びその運転方法を提供することを目的とする。
上記目的を達成するための発明に係る一態様としてのガスタービンプラントは、
ガスタービンと、前記ガスタービンからの排気ガスの熱で蒸気を発生される排熱回収ボイラーと、前記排熱回収ボイラーに水を供給する給水系統と、を備え、前記排熱回収ボイラーは、前記排気ガスで水を加熱して蒸気を発生させる蒸発器と、前記蒸発器を通過した前記排気ガスで外部からの蒸気を加熱する再熱器と、を有し、前記給水系統は、給水源からの水を前記排熱回収ボイラーに送る給水ラインと、前記給水ラインを流れる水である給水の温度を調節する給水温度調節器と、を有し、前記給水温度調節器は、前記給水を加熱する給水加熱器と、前記排熱回収ボイラー内を通って加熱された給水である加熱水を冷却し、冷却後の加熱水に前記排熱回収ボイラー内を通って加熱された給水である加熱水を合流させ、合流後の水を前記給水ラインを流れる水に合流させて、前記排熱回収ボイラーに流入する水を冷却する給水冷却器とを有する。
当該ガスタービンプラントでは、給水源からの水の温度が低めでも、給水加熱器で給水を加熱することで、排熱回収ボイラーに流入する給水の温度を目的の温度にすることができる。
前記給水加熱器を有する前記ガスタービンプラントにおいて、前記ガスタービンは、空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動されるタービンと、を有し、前記給水加熱器は、前記ガスタービンにおける冷却対象から前記給水へ熱を移動させて、前記冷却対象を冷却すると共に、前記給水を加熱する熱移動装置を有してもよい。
当該ガスタービンプラントでは、ガスタービンにおける冷却対象からの熱を有効利用することができる。
前記熱移動装置を有する前記ガスタービンプラントにおいて、前記熱移動装置は、前記圧縮機からの圧縮空気の一部を前記冷却対象として、前記給水と熱交換させて前記圧縮空気を冷却し、前記ガスタービン中で前記燃焼ガスと接する高温部品に冷却した前記圧縮空気を送る冷却用空気冷却器と、前記圧縮機が吸い込む前記空気を前記冷却対象として、前記空気から前記給水へ熱を移動させて前記空気を冷却し、前記圧縮機に冷却した前記空気を送る吸気冷却器と、前記ガスタービンのロータを回転可能に支持する軸受からの潤滑油を前記冷却対象として、前記給水と熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却器と、のうち少なくとも一つの冷却器を含んでもよい。
当該ガスタービンプラントでは、高温部品に送る空気の冷却で得た熱、圧縮機が吸い込む空気の冷却で得た熱、又は、潤滑油の冷却で得た熱を有効に利用することができる。
前記給水加熱器を有する、以上のいずれかの前記ガスタービンプラントにおいて、前記ガスタービンの駆動で発電する発電機を備え、前記給水加熱器は、前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却器を有してもよい。
当該ガスタービンプラントでは、発電機の冷却で得た熱を有効利用することができる。
前記給水加熱器を有する、以上のいずれかの前記ガスタービンプラントにおいて、前記排熱回収ボイラーで発生した蒸気で駆動される蒸気タービンと、前記蒸気タービンの駆動で発電する発電機と、を備え、前記給水加熱器は、前記蒸気タービンのロータを回転可能に支持する軸受からの潤滑油と前記給水とを熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却器と、前記蒸気タービンの駆動で発電する前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却器と、前記蒸気タービンから抽気した蒸気と前記給水とを熱交換させる蒸気冷却器と、のうち少なくとも一つの冷却器を含んでもよい。
当該ガスタービンプラントでは、潤滑油の冷却で得た熱、発電機の冷却で得た熱、又は蒸気を冷却することで得た熱を有効に利用することができる。
前記給水加熱器を有する、以上のいずれかの前記ガスタービンプラントにおいて、前記給水加熱器は、前記ガスタービンプラント外の熱源を利用して、前記給水を加熱する外部加熱器を有してもよい。
当該ガスタービンプラントでは、ガスタービンプラント外の熱源を利用することで、ガスタービンプラントと外部とを合せて全体での熱利用効率を高めることができる。
以上のいずれかの前記ガスタービンプラントにおいて、前記給水温度調節器は、前記給水を冷却する給水冷却器を有してもよい。
当該ガスタービンプラントでは、給水源からの水の温度が高めでも、給水冷却器で給水を冷却することで、排熱回収ボイラーに流入する給水の温度を目的の温度にすることができる。なお、給水加熱器と給水冷却器との双方を備えている場合には、給水源からの水の温度が高めでも低めでも、排熱回収ボイラーに流入する給水の温度を目的の温度にすることができる。
前記給水冷却器を有する前記ガスタービンプラントにおいて、
前記給水冷却器は、前記排熱回収ボイラー内を通って加熱された給水である前記加熱水から熱を吸収して、前記給水源の水の温度よりも前記加熱水の温度を低くする吸熱装置を有してもよい。
以上のいずれかの前記ガスタービンプラントにおいて、前記給水温度調節器は、前記排熱回収ボイラー内を流れた水であるボイラー流通水から熱を吸収して、前記ボイラー流通水を減温してから、前記ボイラー流通水を前記給水中に混入する吸熱装置を有してもよい。
前記吸熱装置を有する、いずれかの前記ガスタービンプラントにおいて、前記吸熱装置は、低沸点媒体が凝縮と蒸発とを繰り返して循環する低沸点媒体ランキンサイクルを有し、前記低沸点媒体ランキンサイクルは、前記加熱水と液体の前記低沸点媒体とを熱交換させ、液体の前記低沸点媒体を加熱して蒸発させる一方で、前記加熱水を冷却する蒸発器を有してもよい。
当該ガスタービンプラントでは、ボイラー流通水の熱を有効に利用することができる。
以上のいずれかのガスタービンプラントにおいて、前記排熱回収ボイラーは、前記蒸発器として高圧蒸発器のみを有し、前記高圧蒸発器は、所定の圧力での定圧比熱が極大となる定圧比熱極大温度以下の温度の水を、前記定圧比熱極大温度以上の温度に加熱する蒸発器であってもよい。
上記目的を達成するための発明に係る一態様としてのガスタービンプラントの運転方法は、
ガスタービンと、前記ガスタービンからの排気ガスの熱で蒸気を発生させる排熱回収ボイラーと、前記排熱回収ボイラーに水を供給する給水系統と、を備え、前記排熱回収ボイラーは、前記排気ガスで水を加熱して蒸気を発生させる蒸発器と、前記蒸発器を通過した前記排気ガスで外部からの蒸気を加熱する再熱器と、を有し、前記給水系統は、給水源からの水を前記排熱回収ボイラーに送る給水ラインを有する、ガスタービンプラントの運転方法において、前記給水ラインを流れる水である給水の温度を調節する給水温度調節工程を実行し、前記給水温度調節工程は、前記給水を加熱する給水加熱工程と、前記排熱回収ボイラー内を通って加熱された給水である加熱水を冷却し、冷却後の加熱水に前記排熱回収ボイラー内を通って加熱された給水である加熱水を合流させ、合流後の水を前記給水ラインを流れる水に合流させて、前記排熱回収ボイラーに流入する水を冷却する給水冷却工程とを含む。
前記給水加熱工程を含む前記ガスタービンプラントの運転方法において、前記ガスタービンは、空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動されるタービンと、を有し、前記給水加熱工程は、前記ガスタービンにおける冷却対象から前記給水へ熱を移動させて、前記冷却対象を冷却すると共に、前記給水を加熱する熱移動工程を含んでもよい。
前記熱移動工程を含む前記ガスタービンプラントの運転方法において、前記熱移動工程は、前記圧縮機からの圧縮空気の一部を前記冷却対象として、前記給水と熱交換させて前記圧縮空気を冷却し、前記ガスタービン中で前記燃焼ガスと接する高温部品に冷却した前記圧縮空気を送る冷却用空気冷却工程と、前記圧縮機が吸い込む前記空気を前記冷却対象として、前記空気から前記給水へ熱を移動させて前記空気を冷却し、前記圧縮機に冷却した前記空気を送る吸気冷却工程と、前記ガスタービンのロータを回転可能に支持する軸受からの潤滑油を前記冷却対象として、前記給水と熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却工程と、のうち少なくとも一つの冷却工程を含んでもよい。
前記給水加熱工程を含む、以上のいずれかの前記ガスタービンプラントの運転方法において、前記ガスタービンプラントは、前記ガスタービンの駆動で発電する発電機を備え、前記給水加熱工程は、前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却工程を含んでもよい。
前記給水加熱工程を含む、以上のいずれかの前記ガスタービンプラントの運転方法において、前記ガスタービンプラントは、前記排熱回収ボイラーで発生した蒸気で駆動される蒸気タービンと、前記蒸気タービンの駆動で発電する発電機と、を備え、前記給水加熱工程は、前記蒸気タービンのロータを回転可能に支持する軸受からの潤滑油と前記給水とを熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却工程と、前記蒸気タービンの駆動で発電する前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却工程と、前記蒸気タービンから抽気した蒸気と前記給水とを熱交換させる蒸気冷却工程と、のうち少なくとも一つの冷却工程を含んでもよい。
前記給水加熱工程を含む、以上のいずれかの前記ガスタービンプラントの運転方法において、前記給水加熱工程は、前記ガスタービンプラント外の熱源を利用して、前記給水を加熱する外部加熱工程を含んでもよい。
以上のいずれかの前記ガスタービンプラントの運転方法において、前記給水温度調節工程は、前記給水を冷却する給水冷却工程を含んでもよい。
前記給水冷却工程を含む前記ガスタービンプラントの運転方法において、前記給水冷却工程は、前前記排熱回収ボイラー内を通って加熱された給水である前記加熱水から熱を吸収して、前記給水源の水の温度よりも前記加熱水の温度を低くする吸熱工程を含む。
以上のいずれかの前記ガスタービンプラントの運転方法において、前記給水温度調節工程は、前記排熱回収ボイラー内を流れた水であるボイラー流通水から熱を吸収して、前記ボイラー流通水を減温してから、前記ボイラー流通水を前記給水中に混入する吸熱工程を含んでもよい。
前記吸熱工程を含む、いずれかの前記ガスタービンプラントの運転方法において、前記吸熱工程は、低沸点媒体ランキンサイクルで、低沸点媒体を循環させるランキンサイクル実行工程を含み、前記ランキンサイクル実行工程は、前記加熱水と液体の前記低沸点媒体とを熱交換させ、液体の前記低沸点媒体を加熱して蒸発させる一方で、前記加熱水を冷却する蒸発工程を含んでもよい。
本発明の一態様によれば、排熱回収ボイラーから排出される排気ガスの温度を調節することができる。
本発明に係る第一実施形態におけるガスタービンプラントの系統図である。 本発明に係る第一実施形態例における燃焼器の模式的な断面図である。 本発明に係る第一実施形態における低沸点媒体ランキンサイクルの系統図である。 本発明に係る第一実施形態における機器周りの給水ラインの系統図である。 本発明に係る第一実施形態の変形例における低沸点媒体ランキンサイクルの系統図である。 本発明に係る第二実施形態におけるガスタービンプラントの系統図である。 本発明に係る第三実施形態におけるガスタービンプラントの系統図である。 本発明に係る第四実施形態におけるガスタービンプラントの系統図である。 本発明に係る第五実施形態におけるガスタービンプラントの系統図である。 本発明に係る第六実施形態におけるガスタービンプラントの系統図である。 本発明に係る第七実施形態におけるガスタービンプラントの系統図である。 本発明に係る第八実施形態におけるガスタービンプラントの系統図である。 本発明に係る第九実施形態におけるガスタービンプラントの系統図である。 本発明に係る第十実施形態におけるガスタービンプラントの系統図である。 本発明に係る第十一実施形態におけるガスタービンプラントの系統図である。 本発明に係る第十二実施形態におけるガスタービンプラントの系統図である。 本発明に係る第十三実施形態におけるガスタービンプラントの系統図である。
以下、本発明に係るガスタービンプラントの各種実施形態について、図面を用いて説明する。
「第一実施形態」
図1〜図4を参照して、本発明に係るガスタービンプラントの第一実施形態について説明する。
本実施形態のガスタービンプラントは、図1に示すように、ガスタービン10と、ガスタービン10の駆動で発電する発電機15、排熱回収ボイラー100と、排熱回収ボイラー100からの排気ガスを大気に放出する煙突129と、排熱回収ボイラー100と煙突129とを接続する煙道128と、複数の蒸気タービン61,62、63と、複数の蒸気タービン61,62、63の駆動で発電する発電機65と、蒸気タービン63から排気された蒸気を水に戻す復水器68と、を備える。ガスタービンプラントは、さらに、吸気冷却器40と、燃料予熱器45と、冷却用空気冷却器50と、復水器(給水源)68内の水を排熱回収ボイラー100に送る給水系統70と、を備える。吸気冷却器40は、ガスタービン10が吸い込む空気Aを冷却する。燃料予熱器45は、ガスタービン10に送る燃料Fを予熱する。冷却用空気冷却器50は、ガスタービン10を構成する部品のうちで高温の燃焼ガスに接する高温部品の冷却するための空気を冷却する。
ガスタービン10は、空気Aを圧縮する空気圧縮機11と、空気圧縮機11で圧縮された空気中で燃料Fを燃焼させて燃焼ガスを生成する燃焼器20と、高温高圧の燃焼ガスにより駆動されるタービン30と、を備えている。
タービン30は、軸線を中心に回転するロータ31と、このロータ31を覆うタービンケーシング34と、タービンケーシング34の内周面に設けられている複数の静翼列35と、を有する。複数の静翼列35は、軸線が延びる軸方向に間隔をあけて並んでいる。各静翼列35は、いずれも、軸線を中心とした周方向に並んでいる複数の静翼を有する。ロータ31は、軸線を中心として軸方向に延びるロータ軸32と、このロータ軸32の外周に固定されている複数の動翼列33と、を有する。複数の動翼列33は、それぞれ、いずれか一の静翼列35の軸方向下流側に配置されている。各動翼列33は、いずれも、軸線を中心とした周方向に並んでいる複数の動翼を有する。
燃焼器20は、タービンケーシング34に固定されている。この燃焼器20は、図2に示すように、燃料Fが燃焼する尾筒25と、この尾筒25に空気圧縮機11からの圧縮空気と共に燃料Fを噴射する燃料噴射器21と、を有する。燃料噴射器21は、燃料Fを噴射するバーナー22と、このバーナー22を支持するバーナー支持筒23と、を有する。尾筒25の内周面と外周面との間には、冷却空気が流れる冷却空気流路26が形成されている。この冷却空気流路26は、尾筒25の外周面で開口している空気入口27と、尾筒25の内周面で開口している空気出口28とを有する。
図1に示すように、タービンロータ31と圧縮機ロータとは、同一の軸線上に配置され、相互に連結されて、ガスタービンロータ13を成している。このガスタービンロータ13には、前述の発電機15のロータが接続されている。発電機15のロータやステータは、例えば水素等の冷却媒体で冷却される。このため、発電機15にはこの冷却媒体を給水との熱交換で冷却する発電機冷却器16が設けられている。ガスタービンロータ13及び発電機ロータは、回転可能に軸受14で支持されている。この軸受14には、軸受14からの潤滑油と給水とを熱交換させて、潤滑油を冷却し、この潤滑油を軸受14に戻す潤滑油冷却器17が設けられている。
吸気冷却器40は、吸気熱交換器41と、吸気冷凍機42とを有する。吸気熱交換器41は、空気圧縮機11が吸い込む空気Aと冷却媒体とを熱交換させて、空気Aを冷却する一方で、冷却媒体を加熱する。吸気冷凍機42は、吸気熱交換器41で加熱された冷却媒体の熱を給水に移動させて、給水を加熱する一方で、冷却媒体を冷却する。
燃料予熱器45は、燃料供給源と燃焼器20とを接続する燃料ライン48に設けられている。燃料予熱器45は、排熱回収ボイラー100で加熱された水と燃料Fとを熱交換させて、燃料Fを加熱する。
冷却用空気冷却器50は、第一空気冷却器51と、第二空気冷却器52と、ブースト圧縮機55と、第三空気冷却器53と、第四空気冷却器54と、を有する。ガスタービン10を構成する部品のうちで高温の燃焼ガスに接する高温部品としては、燃焼器20の尾筒25、タービン30の静翼及び動翼等がある。第一空気冷却器51及び第二空気冷却器52は、空気圧縮機11で圧縮された圧縮空気を冷却して、尾筒25を冷却するための尾筒冷却空気を生成する。ブースト圧縮機55は、この尾筒冷却空気を昇圧して、尾筒25に送る。尾筒25に送られた尾筒冷却空気は、尾筒25の冷却空気流路26を通って尾筒25を冷却する。第三空気冷却器53は、空気圧縮機11で圧縮された圧縮空気を冷却して、例えば、タービン30の前段の静翼及び動翼を冷却するための前段冷却空気を生成する。第四空気冷却器54は、空気圧縮機11の中段から抽気した抽気空気を冷却して、例えば、タービン30の後段の静翼及び動翼を冷却するための後段冷却空気を生成する。
本実施形態のガスタービンプラントは、蒸気タービン61,62、63として、低圧蒸気タービン63と、中圧蒸気タービン62と、高圧蒸気タービン61と、を有する。各蒸気タービン61,62、63のロータは、同一の軸線上に配置され、相互に連結されて、蒸気タービンロータを成している。この蒸気タービンロータには、前述の発電機65のロータが接続されている。発電機65のロータやステータは、例えば水素等の冷却媒体で冷却される。このため、発電機65にはこの冷却媒体を給水との熱交換で冷却する発電機冷却器66が設けられている。蒸気タービンロータ及び発電機ロータは、回転可能に軸受64で支持されている。この軸受64には、軸受64からの潤滑油と給水とを熱交換させて、潤滑油を冷却し、この潤滑油を軸受64に戻す潤滑油冷却器67が設けられている。なお、ここでは、低圧蒸気タービン63、中圧蒸気タービン62、高圧蒸気タービン61の合計3基の蒸気タービンに対して、1基の発電機65を設けているが、各蒸気タービン61,62、63に発電機を設けてもよい。
復水器68は、低圧蒸気タービン63から排気された蒸気を水に戻す。
給水系統70は、復水器68と排熱回収ボイラー100とを接続する給水ライン71と、復水器68内の水を排熱回収ボイラー100へ送る給水ポンプ76と、給水ライン71を流れる給水の温度を調節する給水温度調節器77と、を有する。給水温度調節器77は、給水を加熱する給水加熱器78と、給水を冷却する給水冷却器79と、を有する。
排熱回収ボイラー100は、ボイラー外枠101と、低圧節炭器102と、低圧再熱器106と、高圧節炭器107と、高圧蒸発器109と、第一高圧過熱器111と、中圧再熱器112と、第二高圧過熱器113と、低温熱交換器115と、高圧ポンプ116と、を有する。
ボイラー外枠101は、タービンケーシング34の排気口及び煙道128に接続されている。このため、ボイラー外枠101内には、タービンロータ31を回転させた燃焼ガスが排気ガスとして流入する。この排気ガスは、ボイラー外枠101内を通って、煙道128及び煙突129を経て、大気に放出される。本実施形態では、ボイラー外枠101の煙突129側を排気ガスの流れの下流側Dgdとし、その反対側を上流側Dguとする。
低圧節炭器102、低圧再熱器106、高圧節炭器107、高圧蒸発器109、第一高圧過熱器111、中圧再熱器112、第二高圧過熱器113は、いずれも、少なくとも一部がボイラー外枠101内に設けられている。ここで、低圧節炭器102、高圧節炭器107、高圧蒸発器109、第一高圧過熱器111、第二高圧過熱器113は、以上の順序で、排気ガスの下流側Dgdから上流側Dguに並んでいる。低圧再熱器106は、排気ガスの流れの上下流方向Dgで、高圧節炭器107と同じ位置に配置されている。また、中圧再熱器112は、排気ガスの流れの上下流方向Dgで、第二高圧過熱器113と同じ位置に配置されている。低温熱交換器115は、煙道128内に配置されている。なお、低温熱交換器115は、ボイラー外枠101内であって、低圧節炭器102よりも下流側Dgdに配置されていてもよい。また、この低温熱交換器115は、省略されてもよい。
低温熱交換器115は、給水ライン71からの給水が流入する。低温熱交換器115は、煙道128を通る排気ガスと給水とを熱交換させて、給水を加熱する一方で、排気ガスを冷却する。低圧節炭器102は、排気ガスと低温熱交換器115で加熱された給水とを熱交換させて、この給水を加熱して低圧加熱水を生成する。低圧節炭器102と高圧節炭器107とは、第一加熱水ライン121で接続されている。高圧ポンプ116は、この第一加熱水ライン121に設けられている。高圧ポンプ116は、低圧加熱水を昇圧し、高圧加熱水を生成する。高圧節炭器107は、高圧加熱水と排気ガスとを熱交換させて、高圧加熱水をさらに加熱する。低圧再熱器106は、中圧蒸気タービン62から排気された蒸気と排気ガスとを熱交換させて、この蒸気を過熱し、この蒸気を低圧過熱蒸気として低圧蒸気タービン63に送る。高圧蒸発器109は、高圧節炭器107で加熱された高圧加熱水と排気ガスとを熱交換させて、高圧加熱水を加熱して、高圧蒸気を生成する。第一高圧過熱器111は、高圧蒸気と排気ガスとを熱交換させて、高圧蒸気を過熱する。中圧再熱器112は、高圧蒸気タービン61から排気された蒸気と排気ガスとを熱交換させて、この蒸気を過熱し、この蒸気を中圧過熱蒸気として中圧蒸気タービン62に送る。第二高圧過熱器113は、第一高圧過熱器111で過熱された高圧蒸気と排気ガスとを熱交換させて、この高圧蒸気をさらに過熱して、この高圧蒸気を高圧過熱蒸気として高圧蒸気タービン61に送る。
ここで、本実施形態の高圧蒸発器109は、所定の圧力での定圧比熱が極大となる定圧比熱極大温度Tmax以下の温度の水を、この定圧比熱極大温度Tmax以上の温度に加熱する装置である。具体的に、高圧蒸発器109で加熱される水の圧力が臨界圧である場合、高圧蒸発器109は、臨界圧において定圧比熱が極大となる温度、すなわち臨界温度Tmax1(定圧比熱極大温度Tmax)以下の温度の水を臨界温度Tmax1以上の温度に加熱する装置である。高圧蒸発器109で加熱される水の圧力が臨界圧よりも高い場合、高圧蒸発器109は、高圧蒸発器109で加熱される水の圧力において定圧比熱が極大となる温度、すなわち擬臨界温度Tmax2(定圧比熱極大温度Tmax)以下の温度の水を擬臨界温度Tmax2以上の温度に加熱する装置である。高圧蒸発器109で加熱される水の圧力が臨界圧よりも低い場合、高圧蒸発器109は、高圧蒸発器109で加熱される水の圧力において定圧比熱が極大(この場合、無限大)となる温度、すなわち飽和温度Tmax3(定圧比熱極大温度Tmax)以下の温度の水を飽和温度Tmax3以上の温度に加熱する装置である。よって、以上及び以下の説明で、高圧蒸発器109で生成される蒸気とは、臨界圧において、臨界温度Tmax1以下の温度の水が臨界温度Tmax1以上の温度になった流体、又は、超臨界圧において、擬臨界温度Tmax2以下の温度の水が擬臨界温度Tmax2以上の温度になった流体、亜臨界圧において、飽和温度Tmax3以下の温度の水が飽和温度Tmax3以上の温度になった流体である。また、高圧ポンプ116は、水の圧力を臨界圧、超臨界圧、亜臨界圧まで昇圧するポンプである。
給水冷却器79は、第一低沸点媒体ランキンサイクル81aと、第二低沸点媒体ランキンサイクル81bと、を有する。なお、本実施形態において、第一低沸点媒体ランキンサイクル81a、及び第二低沸点媒体ランキンサイクル81bは、いずれも、排熱回収ボイラー100内を流れた水であるボイラー流通水から熱を吸収する吸熱装置である。
ランキンサイクルは、蒸気でタービンを駆動させるサイクルである。一方、低沸点媒体ランキンサイクルは、水よりも沸点の低い媒体(以下、低沸点媒体とする)を用いてタービンを駆動させるサイクルである。
低沸点媒体としては、例えば、以下の物質がある。
・トリクロロエチレン、テトラクロロエチレン、モノクロロベンゼン、ジクロロベンゼン、パーフルオロデカリン等の有機ハロゲン化合物
・ブタン、プロパン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン等のアルカン
・シクロペンタン、シクロヘキサン等の環状アルカン
・チオフェン、ケトン、芳香族化合物
・R134a、R245fa等の冷媒、
・以上を組み合わせたもの
第一低沸点媒体ランキンサイクル(以下、単に第一ランキンサイクルとする)81a及び第二低温沸点媒体ランキンサイクル(以下、単に第二ランキンサイクルとする)81bは、図3に示すように、いずれも、液体の低沸点媒体を加熱して蒸発させる蒸発器82と、蒸発した低沸点媒体で駆動されるタービン83と、タービン83を駆動させた低沸点媒体を冷却して凝縮させる凝縮器84と、凝縮した低沸点媒体を蒸発器82に戻す低沸点媒体ポンプ85と、以上の要素間で低沸点媒体を流すための低沸点媒体ライン86と、を有する。タービン83には、例えば、このタービン83の駆動で発電する発電機89が接続されている。凝縮器84は、熱交換器の一種で、低沸点媒体と水等の冷却媒体とを熱交換させる。また、蒸発器82も、熱交換器の一種で、液体の低沸点媒体と排熱回収ボイラー100で加熱された液体の水とを熱交換させる。
給水ライン71は、図1に示すように、復水器68と排熱回収ボイラー100の低温熱交換器115とを接続する給水主ライン72と、給水主ライン72から分岐している第一給水分岐ライン73及び第二給水分岐ライン74と、を有する。給水主ライン72には、給水ポンプ76が設けられている。第一給水分岐ライン73は、この給水主ライン72中で給水ポンプ76が設けられている位置よりも給水の流れの下流側の位置Pから分岐している。この第一給水分岐ライン73には、蒸気タービンに接続されている発電機65に関する発電機冷却器66及び潤滑油冷却器67が設けられている。よって、発電機冷却器66では、この第一給水分岐ライン73を流れる給水と、発電機65を冷却する冷却媒体とを熱交換させ、冷却媒体を冷却する一方で、給水を加熱する。また、潤滑油冷却器67では、この第一給水分岐ライン73を流れる給水と、軸受64からの潤滑油とを熱交換させ、潤滑油を冷却する一方で、給水を加熱する。
給水主ライン72中で第一給水分岐ライン73の分岐位置Pよりも給水の流れの下流側には、吸気冷凍機42、ガスタービン10に接続されている発電機15に関する発電機冷却器16及び潤滑油冷却器17、第四空気冷却器54が、この順序で設けられている。よって、吸気冷凍機42では、空気圧縮機11が吸い込む空気との熱交換で加熱された冷却媒体の熱がこの給水主ライン72を流れる給水に移動する。この結果、冷却媒体が冷却される一方で、給水が加熱される。また、発電機冷却器16では、この給水主ライン72を流れる給水と、発電機15を冷却する冷却媒体とを熱交換させ、冷却媒体を冷却する一方で、給水を加熱する。潤滑油冷却器17では、この給水主ライン72を流れる給水と、軸受14からの潤滑油とを熱交換させ、潤滑油を冷却する一方で、給水を加熱する。第四空気冷却器54では、この給水主ライン72を流れる給水と、空気圧縮機11から抽気された抽気空気とを熱交換させ、抽気空気を冷却する一方で、給水を加熱する。
第二給水分岐ライン74は、給水主ライン72中で、潤滑油冷却器17が設けられている位置よりも給水の流れの下流側であって第四空気冷却器54が設けられている位置よりも給水の流れの上流側の位置Qから分岐している。この第二給水分岐ライン74には、第二空気冷却器52が設けられている。この第二給水分岐ライン74は、給水主ライン72に対する分岐位置Qよりも給水の流れの下流側の位置で給水主ライン72に接続されている。よって、第二空気冷却器52では、この給水主ライン72を流れる給水と、空気圧縮機11で圧縮された圧縮空気とが熱交換され、圧縮空気が冷却される一方で、給水が加熱される。
前述の第一給水分岐ライン73は、第二給水分岐ライン74と給水主ライン72との接続位置よりも給水の流れの下流側の位置で給水主ライン72に接続されている。
低圧節炭器102には、低圧節炭器102で加熱された低圧加熱水の一部を給水ライン71に戻す第二加熱水ライン122が接続されている。この第二加熱水ライン122は、給水主ライン72と第一給水分岐ライン73との接続位置よりも給水の流れの下流側の位置で、給水主ライン72に接続されている。
第二高圧過熱器113と高圧蒸気タービン61の蒸気入口とは、高圧蒸気ライン123で接続されている。高圧蒸気タービン61の蒸気出口と中圧再熱器112とは、高圧排気ライン124で接続されている。中圧再熱器112と中圧蒸気タービン62の蒸気入口とは、中圧蒸気ライン125で接続されている。中圧蒸気タービン62の蒸気出口と低圧再熱器106とは、中圧排気ライン126で接続されている。低圧再熱器106と低圧蒸気タービン63の蒸気入口とは、低圧蒸気ライン127で接続されている。低圧蒸気タービン63の蒸気出口には、復水器68が接続されている。
低圧節炭器102と高圧節炭器107とを接続する第一加熱水ライン121からは、ガスタービン熱量調節ライン(以下、GTHCラインとする)90が分岐している。このGTHCライン90は、第一加熱水ライン121中で、高圧ポンプ116が設けられている位置よりも加熱水の流れの下流側の位置Rから分岐している。このGTHCライン90は、第一加熱水ライン121と第二加熱水ライン122とを接続するガスタービン熱量調節主ライン(以下、GTHC主ラインとする)91と、このGTHC主ライン91から分岐している第一ガスタービン熱量調節分岐ライン(以下、第一GTHC分岐ラインとする)92と、第二ガスタービン熱量調節分岐ライン(以下、第二GTHC分岐ラインとする)93と、を有する。第一GTHC分岐ライン92は、GTHC主ライン91から分岐した後、このGTHC主ライン91に接続されている。この第一GTHC分岐ライン92には、第一空気冷却器51が設けられている。よって、第一空気冷却器51では、この第一GTHC分岐ライン92を流れる高圧加熱水と、空気圧縮機11で圧縮された圧縮空気とが熱交換され、圧縮空気が冷却される一方で、高圧加熱水が加熱される。
GTHC主ライン91中で、第一GTHC分岐ライン92の分岐位置Sとその接続位置との間には、第三空気冷却器53が設けられている。よって、第三空気冷却器53では、このGTHC主ライン91を流れる高圧加熱水と、空気圧縮機11で圧縮された圧縮空気とが熱交換され、圧縮空気が冷却される一方で、高圧加熱水が加熱される。
第二GTHC分岐ライン93は、GTHC主ライン91中で、第一GTHC分岐ライン92とGTHC主ライン91との接続位置よりも、高圧加熱水の流れの下流側の位置Tから分岐している。この第二GTHC分岐ライン93は、給水主ライン72と第二加熱水ライン122との接続位置よりも、給水の流れの下流側の位置で給水主ライン72に接続されている。この第二GTHC分岐ライン93には、燃料予熱器45が設けられている。よって、燃料予熱器45では、この第二GTHC分岐ライン93を流れる高圧加熱水と燃料Fとが熱交換され、高圧加熱水が冷却される一方で、燃料Fが加熱される。
第一ランキンサイクル81aは、GTHC主ライン91中で、第二GTHC分岐ライン93の分岐位置Tよりも、高圧加熱水の流れの下流側の位置に設けられている。図3に示すように、GTHC主ライン91は、第一ランキンサイクル81aの蒸発器82に接続されている。よって、この蒸発器82では、第一ランキンサイクル81a内を流れる低沸点媒体とGTHC主ライン91を流れる過程で加熱された高圧加熱水とを熱交換させ、低沸点媒体を加熱して気化させる一方で、高圧加熱水を冷却する。
第二ランキンサイクル81bは、第二加熱水ライン122中で、GTHC主ライン91との合流位置よりも低圧加熱水の流れの下流側の位置に設けられている。この第二加熱水ライン122は、第二ランキンサイクル81bの蒸発器82に接続されている。よって、この蒸発器82では、第二ランキンサイクル81b内を流れる低沸点媒体と第二加熱水ライン122を流れる低圧加熱水及び第一ランキンサイクル81aで冷却された高圧加熱水とを熱交換させ、低沸点媒体を加熱して気化させる一方で、これらの加熱水を冷却する。冷却された加熱水の温度は、給水主ライン72を流れる冷却水の温度よりも低い。
給水加熱器78は、図1に示すように、給水ライン71に設けられている、発電機65に関する発電機冷却器66及び潤滑油冷却器67と、吸気冷却器40と、発電機15に関する発電機冷却器16及び潤滑油冷却器17と、第二空気冷却器52と、第四空気冷却器54と、を有して構成される。給水加熱器78を構成する各機器は、いずれも、熱移動装置である。図4に示すように、給水ライン71には、給水加熱器78を構成する以上の各機器78xに流入する給水の流量を調節するため、図4に示すように、流量調節弁75a又はバイパス量調節弁75bが設けられている。なお、バイパス量調節弁75bは、機器78xに対して給水ライン71を流れる給水をバイパスさせるバイパスラインに設けられている。
GTHCライン90に設けられている、第一空気冷却器51、第三空気冷却器53、燃料予熱器45は、ガスタービン熱量調節器を構成する。GTHCライン90には、このGTHC器を構成する以上の各機器に流入する高圧加熱水の流量を調節するため、図4を用いて説明した給水ライン71と同様に、流量調節弁又はバイパス量調節弁が設けられている。
次に、本実施形態のガスタービンプラントの動作について説明する。
ガスタービン10の空気圧縮機11は、空気Aを圧縮し、圧縮した空気を燃焼器20に供給する。また、燃焼器20には、燃料Fも供給される。燃焼器20内では、圧縮された空気中で燃料Fが燃焼して、高温高圧の燃焼ガスが生成される。この燃焼ガスは、燃焼器20からタービン30内の燃焼ガス流路に送られ、タービンロータ31を回転させる。このタービンロータ31の回転で、ガスタービン10に接続されている発電機15は発電する。
タービンロータ31を回転させた燃焼ガスは、排気ガスとしてガスタービン10から排気され、排熱回収ボイラー100及び煙道128を介して、煙突129から大気に放出される。排熱回収ボイラー100は、ガスタービン10からの排気ガスが排熱回収ボイラー100を通る過程で、この排気ガスに含まれている熱を回収する。
排熱回収ボイラー100中で、最も下流側Dgd(煙突129側)の低温熱交換器115には、給水ライン71からの給水が供給される。低温熱交換器115は、給水と排気ガスとを熱交換させて、給水を加熱する。低温熱交換器115で加熱された給水は、低圧節炭器102に送られる。低圧節炭器102では、この給水と排気ガスと熱交換させて、この給水をさらに加熱する。低圧節炭器102で加熱された給水である低圧加熱水の一部は、第二加熱水ライン122に流入する。また、低圧節炭器102で加熱された低圧加熱水の他の一部は、第一加熱水ライン121に流入する。第一加熱水ライン121に流入した低圧加熱水は、高圧ポンプ116で昇圧されて高圧加熱水となる。この高圧加熱水の一部は、GTHCライン90に流入する。また、この高圧加熱水の他の一部は、第一加熱水ライン121を経て、高圧節炭器107に流入する。
高圧節炭器107では、排気ガスにより高圧加熱水がさらに加熱される。高圧節炭器107で加熱された高圧加熱水は、高圧蒸発器109でさらに加熱されて高圧蒸気になる。この高圧蒸気は、第一高圧過熱器111及び第二高圧過熱器113でさらに過熱されて高圧過熱蒸気となる。この高圧過熱蒸気は、高圧蒸気ライン123を経て、高圧蒸気タービン61に流入し、この高圧蒸気タービン61を駆動させる。高圧過熱蒸気は、高圧蒸気タービン61内を流れる過程で、圧力及び温度の双方が低下する。高圧蒸気タービン61から排気された高圧過熱蒸気は、高圧排気ライン124を経て、中圧再熱器112に流入する。中圧再熱器112では、圧力及び温度が低下した高圧過熱蒸気を再度加熱して、中圧過熱蒸気にする。中圧過熱蒸気は、中圧蒸気ライン125を経て、中圧蒸気タービン62に流入し、この中圧蒸気タービン62を駆動させる。中圧過熱蒸気は、中圧蒸気タービン62内を流れる過程で、圧力及び温度の双方が低下する。中圧蒸気タービン62から排気された中圧過熱蒸気は、中圧排気ライン126を経て、低圧再熱器106に流入する。低圧再熱器106では、圧力及び温度が低下した中圧過熱蒸気を再度加熱して、低圧過熱蒸気にする。低圧過熱蒸気は、低圧蒸気タービン63に流入し、この低圧蒸気タービン63を駆動させる。低圧蒸気タービン63から排気された低圧過熱蒸気は、復水器68に流入する。復水器68では、この蒸気が冷却されて凝縮し、水となる。
空気圧縮機11が吸い込む空気Aの温度が高くなると、この空気圧縮機11が吸い込む空気Aの質量流量が低下する。よって、空気圧縮機11が吸い込む空気Aの温度が高くなると、ガスタービン出力が低下する。そこで、本実施形態では、吸気冷却器40により、空気圧縮機11が吸い込む空気の熱を給水に移動させ、給水を加熱する一方で空気を冷却する(吸気冷却工程)。
燃焼器20に供給する燃料Fの温度が高いほど、燃焼器20での燃料消費量を削減することができ、プラントの効率が高まる。そこで、本実施形態では、燃料予熱器45により、低圧節炭器102で加熱された給水である高圧加熱水と燃料Fとを熱交換させ、高圧加熱水を冷却する一方で燃料Fを加熱する。
高温高圧の燃焼ガスに晒される高温部品は、その耐久性を高めるために、冷却することが好ましい。そこで、本実施形態では、高温部品に対して冷却空気を送り、この冷却空気で高温部品を冷却する。具体的に、本実施形態では、第一空気冷却器51及び第二空気冷却器52により、空気圧縮機11で圧縮された圧縮空気を冷却して、尾筒冷却空気を生成する(冷却用空気冷却工程)。この尾筒冷却空気は、ブースト圧縮機55により昇圧されてから燃焼器20の尾筒25に送られ、尾筒25を冷却する。また、本実施形態では、第三空気冷却器53により、空気圧縮機11で圧縮された圧縮空気を冷却して、前段冷却空気を生成する(冷却用空気冷却工程)。この前段冷却空気は、例えば、タービン30の前段の静翼及び動翼に送られ、これらを冷却する。本実施形態では、第四空気冷却器54により、空気圧縮機11の中段から抽気した抽気空気を冷却して、後段冷却空気を生成する(冷却用空気冷却工程)。この後段冷却空気は、例えば、タービン30の後段の静翼及び動翼に送られ、これらを冷却する。
給水ライン71を流れる給水は、この給水ライン71を流れる過程で、給水加熱器78により加熱される(給水加熱工程、熱移動工程)。具体的には、この給水は、発電機65に関する発電機冷却器66及び潤滑油冷却器67、吸気冷却器40、発電機15に関する発電機冷却器16及び潤滑油冷却器17、第二空気冷却器52、第四空気冷却器54により、加熱される(冷却用空気冷却工程、吸気冷却工程、潤滑油冷却工程、発電機冷却工程)。給水加熱器78を構成する各機器での給水の加熱量は、各機器に対して設けられている流量調節弁75a又はバイパス量調節弁75b等の開度を変えることで、適宜調節することができる。
GTHCライン90を流れる高圧加熱水は、第一空気冷却器51、第三空気冷却器53により、加熱される。また、この高温加熱水は、燃料予熱器45により冷却される。第一空気冷却器51及び第三空気冷却器53での高圧加熱水の加熱量は、これらに対して設けられている流量調節弁又はバイパス弁等の開度を変えることで、適宜調節することができる。また、燃料予熱器45での高圧加熱水の冷却量は、この燃料予熱器45に対して設けられている流量調節弁又はバイパス弁等の開度を変えることで、適宜調節することができる。
以上のように、加熱及び冷却された高圧加熱水(ボイラー流通水)は、第一ランキンサイクル81aにより冷却される。具体的には、第一ランキンサイクル81aの蒸発器82で、低沸点媒体と高圧加熱水とが熱交換され、低沸点媒体が加熱されて気化する一方で、高圧加熱水が冷却される(吸熱工程、ランキンサイクル実行工程、蒸発工程)。気化した低沸点媒体は、第一ランキンサイクル81aのタービン83を駆動させる。この結果、このタービン83に接続されている発電機89が発電する。
第一ランキンサイクル81aで冷却された高圧加熱水は、第二加熱水ライン122を流れる低圧節炭器102からの低圧加熱水と合流する。合流した水は、第二ランキンサイクル81bにより冷却される。具体的には、第二ランキンサイクル81bの蒸発器82で、低沸点媒体と合流後の水(ボイラー流通水)とが熱交換され、低沸点媒体が加熱されて気化する一方で、合流後の水が冷却される(吸熱工程、ランキンサイクル実行工程、蒸発工程)。合流後の水の温度は、給水主ライン72中で、第二加熱水ライン122と給水主ライン72との接続位置よりも給水の流れの上流側での給水の温度よりも低い。この水は、第二加熱水ライン122を経て、給水主ライン72を流れる給水に合流し、この給水を冷却する(給水冷却工程)。
排熱回収ボイラー100では、排気ガスの熱を有効に利用するために、排気ガスの温度ができる限り低温になるまで、排気ガスの熱を用いることが好ましい。一方、排気ガスの温度が低温になり過ぎると、この排気ガス中に含まれるNOxやSOxが凝縮して、硫酸水や硝酸水等になり、これらの腐食液により煙道128や煙突129等が腐食する。このため、排熱回収ボイラー100から排気される排気ガスの温度には、排気ガスの熱の有効利用と煙道128等の保護等の観点から適切な温度が要求される。
本実施形態の排熱回収ボイラー100では、高圧蒸発器109の下流側Dgdに低圧再熱器106が配置されている。この低圧再熱器106には、中圧蒸気タービン62から排気された排気蒸気が流入するため、低圧再熱器106で排気ガスの温度を調節することが難しい。このため、この低圧再熱器106よりも下流側Dgdに配置されている低圧節炭器102等でも、排気ガスの温度を調節することが難しい。
そこで、本実施形態では、給水ライン71を流れる給水を加熱する給水加熱器78、及びこの給水を冷却する給水冷却器79を設けて、排熱回収ボイラー100に流入する給水の温度を調節することで(給水温度調節工程、給水加熱工程、給水冷却工程)、排熱回収ボイラー100からの排気される排気ガスの温度を調節する。しかも、本実施形態では、給水加熱器78と給水冷却器79との双方を設けているため、復水器68から給水ライン71に流入する給水の温度が高い場合でも、逆に温度が低い場合でも、排熱回収ボイラー100に流入する給水の温度を目的の温度に調節することができる。
以上のように、本実施形態では、排熱回収ボイラー100からの排気される排気ガスの温度を調節できるので、排気ガスの熱を有効利用できると共に、排気ガス中に含まれるNOxやSOxの凝縮による煙道128等の腐食を抑えることができる。
また、本実施形態では、給水加熱器78により給水を加熱する熱源として、ガスタービン10の冷却対象からの熱を利用している。このため、本実施形態では、この冷却対象からの熱を有効利用することができる。また、本実施形態では、給水冷却器79により、給水の冷却に用いられる加熱水を冷却している。本実施形態では、この加熱水の冷却で得られた熱でランキンサイクル81a,91bのタービン83を駆動させ、電力を得ている。このため、本実施形態では、この加熱水からの熱も有効利用することができる。
また、本実施形態の排熱回収ボイラー100は、蒸発器が高圧蒸発器109のみである。すなわち、本実施形態の排熱回収ボイラー100では、このボイラーで発生させる蒸気の全量を高圧蒸発器109で発生させる。高圧蒸発器109で発生する蒸気は、高温且つ高圧であるため、高圧蒸気タービン61、中圧蒸気タービン62及び低圧蒸気タービン63の駆動に利用することができる。すなわち、高圧蒸発器109で発生する蒸気は、利用価値の高い蒸気である。このため、この排熱回収ボイラー100で発生した蒸気を有効利用することができる。しかも、本実施形態の排熱回収ボイラー100は、蒸発器が高圧蒸発器109のみであるため、排熱回収ボイラー100を構成する熱交換器の数を少なくすることができ、設備コスト及び維持コストを抑えることができる。
また、本実施形態のプラントは、GTHCライン90を持つ。このことにより、蒸発器が高圧蒸発器109のみであり、熱回収、あるいは、熱源となる場合の選択肢が少ない場合にも、効果的に冷却空気冷却器の排熱を回収し、有効に活用すると共に、燃料予熱器45で燃料Fを加熱し、プラントの効率を高めることができる。
「吸熱装置の変形例」
図5を参照して、第一実施形態における吸熱装置の変形例について説明する。
上記第一実施形態の吸熱装置は、二つのランキンサイクル81a,81bを有している。しかしながら、上記第一実施形態における二つのランキンサイクル81a,81bの機能を一つのランキンサイクルで満たすことも可能である。
本変形例の吸熱装置は、このようなランキンサイクル81cを有している。なお、この吸熱装置も、給水冷却器79cを構成する。このランキンサイクル81cは、第一蒸発器82aと、第二蒸発器82bと、第一タービン83aと、第二タービン83bと、凝縮器84と、第一低沸点媒体ポンプ85aと、第二低沸点媒体ポンプ85bと、を有する。第一蒸発器82aは、GTHC主ライン91を流れる高圧加熱水と液体の低沸点媒体とを熱交換させて、高圧加熱水を冷却する一方で低沸点媒体を加熱して蒸発させる。第二蒸発器82bは、低圧節炭器102からの低圧加熱水と第一蒸発器82aから流出した高圧加熱水とが合流した水と液体の低沸点媒体とを熱交換させて、合流後の水を冷却する一方で低沸点媒体を加熱して蒸発させる。第一タービン83aは、第一蒸発器82aで蒸発した低沸点媒体で駆動される。第二タービン83bは、第一タービン83aから排気された低沸点媒体及び第二蒸発器82bで蒸発した低沸点媒体で駆動される。第一タービン83aのロータと第二タービン83bのロータとは、互いに接続されている。このロータには、例えば、第一タービン83a及び第二タービン83bの駆動で発電する発電機89cが接続されている。凝縮器84は、第二タービン83bから排気された低沸点媒体を凝縮させる。第一低沸点媒体ポンプ85aは、凝縮した低粉点媒体を第一蒸発器82aに送る。第二低沸点媒体ポンプ85bは、凝縮した低沸点媒体を第一低圧媒体ポンプ及び第二蒸発器82bに送る。
また、吸熱装置は、第一ランキンサイクル81aと第二ランキンサイクル81bとのうち、一方のランキンサイクルのみでもよい。例えば、第一ランキンサイクル81aを省略して、第二ランキンサイクル81bのみでもよい。また、第二ランキンサイクル81bを省略して、第一ランキンサイクル81aのみでもよい。この場合、GTHC主ライン91を給水主ライン72に接続する。なお、以上の場合でも、ランキンサイクルを経た水の温度は、給水主ライン72中で、この水が給水と合流する位置よりも給水の流れの上流側における給水の温度よりも低い必要がある。このため、このランキンサイクルでの低沸点媒体と水との熱交換量を上記実施形態におけるランキンサイクルでの低沸点媒体と水との熱交換量よりも多くしなければならない場合がある。この場合、このランキンサイクルの低沸点媒体ポンプからの低沸点媒体の吐出流量を多くするか、このランキンサイクルの蒸発器における伝熱面積を多くする。
上記第一実施形態の吸熱装置、本変形例の吸熱装置、さらに以下の実施形態の吸熱装置は、いずれも、給水を冷却する給水冷却器を構成する。しかしながら、これらの吸熱装置は、給水加熱器を構成してもよい。給水加熱器として機能する吸熱装置も、排熱回収ボイラー100内を流れた水であるボイラー流通水から熱を吸収して、このボイラー流通水を減温する。しかしながら、給水加熱器として機能する吸熱装置からのボイラー流通水の温度は、給水主ライン72中で、このボイラー流通水と給水とが合流する位置よりも給水の流れの上流側における給水の温度よりも高い。よって、吸熱装置は、給水冷却器として機能させても、給水加熱器として機能させてもよい。
また、以上の説明した吸熱装置は、いずれも低沸点媒体ランキンサイクルである。しかしながら、吸熱装置としては、低沸点媒体ランキンサイクルの代わりに、熱移動装置を設けてもよい。この場合、この熱移動装置により、ボイラー冷却水の熱を他の媒体に移動させ、ボイラー冷却水を減温すると共に、媒体の温度を高める。温度が高まった媒体の熱は、例えば、工場プロセスの熱源、化学反応の熱源、蒸気発生、給湯、空調等に用いるとよい。
「第二実施形態」
図6を参照して、本発明に係るガスタービンプラントの第二実施形態について説明する。
本実施形態のガスタービンプラントは、第一実施形態のガスタービンプラントにおける排熱回収ボイラー100を変更したもので、その他の構成は第一実施形態のガスタービンプラントと同一である。
本実施形態の排熱回収ボイラー100aは、第一実施形態の排熱回収ボイラー100の構成要素の他、低圧蒸発器103と、低圧過熱器105と、を有する。
低圧蒸発器103は、燃焼ガスの上下流方向Dgで、低圧節炭器102と高圧節炭器107との間に配置されている。低圧過熱器105は、燃焼ガスの上下流方向Dgで、高圧節炭器107の位置に配置されている。なお、本実施形態では、燃焼ガスの上下流方向Dgで、高圧節炭器107の位置には、この低圧過熱器105の他に、低圧再熱器106も配置されている。但し、燃焼ガスの上下流方向Dgで、低圧過熱器105は、低圧再熱器106よりも下流側Dgdに配置されている。
低圧節炭器102に接続されている第二加熱水ライン122は、途中で分岐している。この分岐しているラインは、加熱水供給ライン122aを成し、低圧蒸発器103に接続されている。よって、低圧蒸発器103では、低圧節炭器102で加熱された給水である低圧加熱水が排気ガスで加熱され低圧蒸気となる。この低圧蒸気は、低圧過熱器105で過熱されて過熱低圧蒸気になる。低圧過熱器105には、低圧過熱蒸気ライン122bが接続されている。この低圧過熱蒸気ライン122bは、中圧蒸気タービン62の蒸気出口と低圧再熱器106とを接続する中圧排気ライン126に接続されている。よって、低圧過熱器105からの低圧過熱蒸気は、低圧過熱蒸気ライン122b及び中圧排気ライン126を経て、低圧再熱器106に流入する。この低圧再熱器106に流入した蒸気は、上記第一実施形態と同様に、低圧再熱器106で過熱された後、低圧蒸気タービン63へ送られる。
本実施形態のガスタービンプラントも、第一実施形態のガスタービンプラントと同様、高圧蒸発器109の下流側Dgdに低圧再熱器106が配置されているものの、給水加熱器78及び給水冷却器79を備えているので、低圧蒸気の流量が少ない場合でも、排熱回収ボイラー100aに流入する給水の温度を目的の温度に調節することができる。よって、本実施形態でも、排熱回収ボイラー100aからの排気される排気ガスの温度を調節できるので、排気ガスの熱を有効利用できると共に、排気ガス中に含まれるNOxやSOxの凝縮による煙道128等の腐食を抑えることができる。
また、本実施形態のプラントは、GTHCライン90を持つ。このことにより、低圧蒸気の流量が少なく、熱回収、あるいは、熱源となる場合の選択肢が少ない場合にも、効果的に冷却空気冷却器の排熱を回収し、有効に活用すると共に、燃料予熱器45で燃料Fを加熱し、プラントの効率を高めることができる。
「第三実施形態」
図7を参照して、本発明に係るガスタービンプラントの第三実施形態について説明する。
本実施形態のガスタービンプラントは、高圧蒸気タービン61及び低圧蒸気タービン63を有するものの、第一及び第二実施形態のガスタービンプラントにおける中圧蒸気タービン62を有さない。この関係で、本実施形態のガスタービンプラントにおける排熱回収ボイラー100bは、第一及び第二実施形態の排熱回収ボイラー100,100aと異なる。
本実施形態の排熱回収ボイラー100bは、第二実施形態の排熱回収ボイラー100aから中圧再熱器112を省いたボイラーである。言い換えると、本実施形態の排熱回収ボイラー100bは、第一実施形態の排熱回収ボイラー100に、低圧蒸発器103と低圧過熱器105とを追加する一方で、第一実施形態の排熱回収ボイラー100から中圧再熱器112を省いたボイラーである。
本実施形態のガスタービンプラントは、第一及び第二実施形態のガスタービンプラントにおける中圧蒸気タービン62及び中圧再熱器112を有さない関係上、中圧再熱器112と中圧蒸気タービン62の蒸気入口とを接続する中圧蒸気ライン125と、中圧蒸気タービン62の蒸気出口と低圧再熱器106とを接続する中圧排気ライン126とを有さない。
本実施形態の高圧蒸気タービン61の蒸気出口に接続されている高圧排気ライン124は、低圧再熱器106に接続されている。低圧過熱器105に接続されている低圧過熱蒸気ライン122bは、この高圧排気ライン124に接続されている。よって、本実施形態では、低圧過熱器105からの低圧過熱蒸気、及び高圧蒸気タービン61から排気された高圧蒸気が、低圧再熱器106に流入する。この低圧再熱器106に流入した蒸気は、上記第一実施形態と同様に、低圧再熱器106で過熱された後、低圧蒸気タービン63へ送られる。
本実施形態の排熱回収ボイラー100bは、第一及び第二実施形態の排熱回収ボイラー100,100aと同様、高圧蒸発器109の下流側Dgdに低圧再熱器106が配置されているものの、高圧蒸発器109の上流側Dguには中圧再熱器112が配置されていない。しかしながら、本実施形態のガスタービンプラントも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100bに流入する給水の温度を目的の温度に調節することができる。よって、本実施形態でも、排熱回収ボイラー100bからの排気される排気ガスの温度を調節できるので、排気ガスの熱を有効利用できると共に、排気ガス中に含まれるNOxやSOxの凝縮による煙道128等の腐食を抑えることができる。
また、本実施形態のプラントは、GTHCライン90を持つ。このことにより、低圧蒸気の流量が少なく、熱回収、あるいは、熱源となる場合の選択肢が少ない場合にも、効果的に冷却空気冷却器の排熱を回収し、有効に活用すると共に、燃料予熱器45で燃料Fを加熱し、プラントの効率を高めることができる。
「第四実施形態」
図8を参照して、本発明に係るガスタービンプラントの第四実施形態について説明する。
本実施形態のガスタービンプラントも、第一実施形態のガスタービンプラントにおける排熱回収ボイラー100を変更したもので、その他の構成は第一実施形態のガスタービンプラントと基本的に同一である。
本実施形態の排熱回収ボイラー100cは、低温熱交換器115、低圧節炭器102、低圧蒸発器103、第一高圧節炭器104、第一低圧過熱器105、第一中圧再熱器106c、第二高圧節炭器107c、第二低圧過熱器108、高圧蒸発器109、第一高圧過熱器111、第二中圧再熱器112c、第二高圧過熱器113を有する。低温熱交換器115、低圧節炭器102、低圧蒸発器103、第一高圧節炭器104、第一低圧過熱器105、第一中圧再熱器106c、第二低圧過熱器108、高圧蒸発器109、第一高圧過熱器111、第二中圧再熱器112c、第二高圧過熱器113は、以上の順序で、排気ガスの下流側Dgdから上流側Dguに並んでいる。よって、本実施形態の排熱回収ボイラー100cでは、高圧蒸発器109の下流側Dgdに第一中圧再熱器106cが配置され、高圧蒸発器109の上流側Dguに第二中圧再熱器112cが配置されている。第二高圧節炭器107cは、排気ガスの上下流方向Dgで、第一中圧再熱器106cの位置に配置されている。第二高圧節炭器107cと高圧蒸発器109とは、高温加熱水ライン121cで接続されている。この高温加熱水ライン121cからは、GTHCライン90が分岐している。
高圧蒸気タービン61の蒸気出口と第一中圧再熱器106cとは、高圧排気ライン124で接続されている。第二中圧再熱器112cと中圧蒸気タービン62の蒸気入口とは、中圧蒸気ライン125で接続されている。第二低圧過熱器108と低圧蒸気タービン63の蒸気入口とは、低圧蒸気ライン127で接続されている。中圧蒸気タービン62の蒸気出口と低圧蒸気ライン127とは、中圧排気ライン126で接続されている。
以上の各実施形態と同様、排熱回収ボイラー100c中で、最も下流側Dgdの低温熱交換器115には、給水ライン71からの給水が供給される。低温熱交換器115は、この給水を加熱する。低圧節炭器102は、低温熱交換器115で加熱された給水をさらに加熱する。低圧節炭器102で加熱された給水である低圧加熱水の一部は、第二加熱水ライン122に流入する。また、低圧節炭器102で加熱された低圧加熱水の他の一部は、第一加熱水ライン121に流入する。第一加熱水ライン121に流入した低圧加熱水は、高圧ポンプ116で昇圧されて高圧加熱水となる。この高圧加熱水は、第一高圧節炭器104及び第二高圧節炭器107cでさらに加熱されて、高温加熱水となる。この高温加熱水の一部は、GTHCライン90に流入し、以上の各実施形態と同様に、空気圧縮機11からの空気の冷却に利用される。また、この高温加熱水の他の一部は、高圧蒸発器109で加熱されて高圧蒸気になる。この高圧蒸気は、第一高圧過熱器111及び第二高圧過熱器113で過熱されて高圧過熱蒸気になる。この高圧過熱蒸気は、高圧蒸気ライン123を経て、高圧蒸気タービン61に送られ、高圧蒸気タービン61を駆動させる。高圧蒸気タービン61から排気された高圧過熱蒸気は、高圧排気ライン124を経て、第一中圧再熱器106cに送られる。この高圧過熱蒸気は、第一中圧再熱器106c及び第二中圧再熱器112cで過熱されて、中圧過熱蒸気になる。この中圧過熱蒸気は、中圧蒸気ライン125を経て、中圧蒸気タービン62に送られ、中圧蒸気タービン62を駆動させる。中圧蒸気タービン62から排気された中圧過熱蒸気は、中圧排気ライン126及び低圧蒸気ライン127を経て、低圧蒸気タービン63に送られる。
低圧節炭器102で加熱された給水である低圧加熱水の一部は、低圧蒸発器103で加熱されて低圧蒸気になる。この低圧蒸気は、第一低圧過熱器105及び第二低圧過熱器108で過熱されて、低圧過熱蒸気になる。この低圧過熱蒸気は、低圧蒸気ライン127を経て、低圧蒸気タービン63に送られる。よって、本実施形態では、この低圧過熱蒸気、及び中圧蒸気タービン62から排気された中圧過熱蒸気が低圧蒸気タービン63に流入する。低圧蒸気タービン63から排気された低圧過熱蒸気は、以上の各実施形態と同様、復水器68に流入する。
以上のように、本実施形態の排熱回収ボイラー100cでは、高圧蒸発器109の下流側Dgdに第一中圧再熱器106cが配置されていると共に、高圧蒸発器109の上流側Dguに第二中圧再熱器112cが配置されている。さらに、本実施形態の排熱回収ボイラー100cは、第一実施形態の排熱回収ボイラー100には設けられていない低圧蒸発器103や低圧節炭器102等を有する。しかしながら、本実施形態のガスタービンプラントも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100cに流入する給水の温度を目的の温度に調節することができる。よって、本実施形態でも、排熱回収ボイラー100cからの排気される排気ガスの温度を調節できるので、排気ガスの熱を有効利用できると共に、排気ガス中に含まれるNOxやSOxの凝縮による煙道128等の腐食を抑えることができる。
また、本実施形態のプラントは、GTHCライン90を持つ。このことにより、低圧蒸気の流量が少なく、熱回収、あるいは、熱源となる場合の選択肢が少ない場合にも、効果的に冷却空気冷却器の排熱を回収し、有効に活用すると共に、燃料予熱器45で燃料Fを加熱し、プラントの効率を高めることができる。
「第五実施形態」
図9を参照して、本発明に係るガスタービンプラントの第五実施形態について説明する。
本実施形態のガスタービンプラントは、第一実施形態のガスタービンプラントにおける排熱回収ボイラー100を変更したもので、その他の構成は第一実施形態のガスタービンプラントと同一である。
本実施形態の排熱回収ボイラー100dは、第一実施形態の排熱回収ボイラー100の構成要素の他、助燃燃焼器131を有する。
本実施形態の排熱回収ボイラー100dのボイラー外枠101内には、流路分岐板132が配置されている。この流路分岐板132は、ボイラー外枠101内の排気ガス流路のうちで、第一高圧過熱器111よりも上流側Dguの部分を第一流路133と第二流路134とに分岐する。第一流路133内には、助燃燃焼器131と、中圧再熱器112と、第二高圧過熱器113とが配置されている。第一流路133内で、中圧再熱器112の上下流方向Dgの位置と第二高圧過熱器113の上下流方向Dgの位置とは、同じである。
助燃燃焼器131は、第一流路133内で、中圧再熱器112及び第二高圧過熱器113よりも上流側Dguに配置されている。一方、第二流路134内には、排気ガスと水とを熱交換する熱交換器類は、一切配置されていない。
助燃燃焼器131には、助燃燃料ライン49により、燃料予熱器45で加熱された燃料Fが供給される。助燃燃焼器131は、この燃料Fを第一流路133内で燃焼させる。このため、ガスタービン10から排気された排気ガスの一部は、第一流路133内で高温になり、再燃排気ガスになる。中圧再熱器112に流入した蒸気、及び第二高圧過熱器113に流入した蒸気は、いずれも、この高温の再燃排気ガスで加熱される。
中圧再熱器112及び第二高圧過熱器113を通過した再燃排気ガスは、第一高圧過熱器111内を流れる加熱水を加熱する。また、ガスタービン10から排気された排気ガスの他の一部は、第二流路134を流れる。この排気ガスも、第一高圧過熱器111内を流れる加熱水を加熱する。すなわち、第一高圧過熱器111では、再熱排気ガスと加熱水とが熱交換されると共に、排気ガスと加熱水とが熱交換される。
本実施形態のように、ボイラー外枠101内に助燃燃焼器131を設けることで、この助燃燃焼器131への僅かな燃料供給で、以上の各実施形態よりも高温の高圧過熱蒸気及び高温の中圧過熱蒸気を得ることができる。すなわち、本実施形態では、蒸気の利用価値を高めることができる。
本実施形態のガスタービンプラントも、第一実施形態のガスタービンプラントと同様、高圧蒸発器109の下流側Dgdに低圧再熱器106が配置されているものの、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100dに流入する給水の温度を目的の温度に調節することができる。
「第六実施形態」
図10を参照して、本発明に係るガスタービンプラントの第六実施形態について説明する。
本実施形態のガスタービンプラントは、第五実施形態における助燃燃焼器131に対する、中圧再熱器112、第二高圧過熱器113及び第一高圧過熱器111の相対位置を変更したもので、その他の構成は、第五実施形態の構成と同様である。
ボイラー外枠101内の第一流路133内には、助燃燃焼器131及び中圧再熱器112が配置されている。また、ボイラー外枠101内の第二流路134内には、第二高圧過熱器113及び第一高圧過熱器111が配置されている。すなわち、本実施形態では、第五実施形態と異なり、第一流路133内には第二高圧過熱器113が配置されていない。この第二高圧過熱器113は、第二流路134内に配置されている。第二流路134内で第二高圧過熱器113の下流側Dgdには、第一高圧過熱器111が配置されている。
本実施形態では、第五実施形態と同様に、ボイラー外枠101内に助燃燃焼器131を設けることで、この助燃燃焼器131への僅かな燃料供給で、以上の各実施形態よりも高温の中圧過熱蒸気を得ることができる。また、本実施形態では、高圧の加熱水が流れる第二高圧過熱器113が、高温の再燃排気ガスに晒されないため、第五実施形態よりも、第二高圧過熱器113の耐久性を高めることができる。言い換えると、本実施形態では、第五実施形態よりも、第二高圧過熱器113を構成する伝熱管を安価な材料で形成することができる、又はこの伝熱管の肉厚を薄くすることができる。
なお、本実施形態のガスタービンプラントも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100eに流入する給水の温度を目的の温度に調節することができる。
「第七実施形態」
図11を参照して、本発明に係るガスタービンプラントの第七実施形態について説明する。
本実施形態の排熱回収ボイラー100fは、第一実施形態の排熱回収ボイラー100の構成要素の他、空気加熱器135を有する。空気加熱器135は、ボイラー外枠101中、上下流方向Dgで第二高圧過熱器113及び中圧再熱器112が位置している部分に配置されている。この空気加熱器135には、空気圧縮機11で生成された圧縮空気を燃焼器20に導く圧縮空気ライン56が接続されている。よって、空気圧縮機11からの圧縮空気の一部は、この圧縮空気ライン56からボイラー外枠101内の空気加熱器135によって加熱されてから、燃焼器20に流入する。
このため、本実施形態では、以上の実施形態よりも高温の圧縮空気を燃焼器20に供給することができる。よって、本実施形態では、燃焼器20での燃料消費量を削減することができる。
なお、本実施形態のガスタービンプラントも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100fに流入する給水の温度を目的の温度に調節することができる。
「第八実施形態」
図12を参照して、本発明に係るガスタービンプラントの第八実施形態について説明する。
本実施形態のガスタービンプラントも、第七実施形態と同様、空気圧縮機11で生成された圧縮空気を加熱する空気加熱器135a,135bを有する。本実施形態では、この空気加熱器135a,135bとして、第一空気加熱器135aと第二空気加熱器135bとを有する。但し、これらの第一空気加熱器135a及び第二空気加熱器135bは、排熱回収ボイラー100gのボイラー外枠101外に配置されている。また、これらの第一空気加熱器135a及び第二空気加熱器135bは、蒸気で圧縮空気を加熱する。第一空気加熱器135a及び第二空気加熱器135bは、互いに並列に圧縮空気ライン56に設けられている。
本実施形態のボイラー外枠101内には、第八実施形態に空気加熱器135の替りに第一再過熱器136a及び第二再過熱器136bが配置されている。これらの第一再過熱器136a及び第二再過熱器136bは、排気ガスにより蒸気を過熱する。
第一再過熱器136aの蒸気入口は、高圧排気ライン124を介して、高圧蒸気タービン61の蒸気出口と接続されている。この第一再過熱器136aの蒸気出口は、第一空気加熱器135aの蒸気入口と接続されている。この第一空気加熱器135aの蒸気出口は、第二再過熱器136bの蒸気入口と接続されている。この第二再過熱器136bの蒸気出口は、第二空気加熱器135bの蒸気入口に接続されている。この第二空気加熱器135bの蒸気出口は、中圧再熱器112に接続されている。
高圧蒸気タービン61から排気された蒸気は、高圧排気ライン124を経て、ボイラー外枠101内の第一再過熱器136aに流入する。第一再過熱器136aでは、流入した蒸気を排気ガスにより過熱する。第一再過熱器136aで過熱された蒸気は、第一空気加熱器135aで空気圧縮機11からの圧縮空気を加熱する。第一空気加熱器135aで加熱された圧縮空気は、燃焼器20に流入する。第一空気加熱器135aで圧縮空気を加熱した蒸気は、ボイラー外枠101内の第二再過熱器136bで排気ガスにより過熱される。第二再過熱器136bで過熱された蒸気は、第二空気加熱器135bで空気圧縮機11からの圧縮空気を加熱する。第二空気加熱器135bで加熱された圧縮空気は、燃焼器20に流入する。第二空気加熱器135bで圧縮空気を加熱した蒸気は、中圧再熱器112で加熱された後、中圧蒸気ライン125を経て、中圧蒸気タービン62に流入する。
本実施形態では、第一空気加熱器135a及び第二空気加熱器135bで、空気圧縮機11からの圧縮空気と蒸気とを熱交換させて、圧縮空気を加熱する。すなわち、本実施形態では、熱伝達率が高く且つ熱密度の高い蒸気で圧縮空気を加熱する。よって、本実施形態では、第一空気加熱器135a及び第二空気加熱器135bの小型化を図ることができる。また、本実施形態では、圧縮空気の加熱と蒸気の過熱とを二重ループ化しているので、圧縮空気の温度を高めることができる。
なお、本実施形態のガスタービンプラントも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79を備えているので、排熱回収ボイラー100gに流入する給水の温度を目的の温度に調節することができる。
「第九実施形態」
図13を参照して、本発明に係るガスタービンプラントの第九実施形態について説明する。
本実施形態のガスタービンプラントは、第二実施形態のガスタービンプラントにおける給水加熱器78及びガスタービン熱量調節器に、ガスタービンプラント外の熱源を利用して、水等を加熱する外部加熱器140を追加したプラントである。また、本実施形態のガスタービンプラントにおける排熱回収ボイラー100hは、第二実施形態の排熱回収ボイラー100aから低温熱交換器115を省いたボイラーである。
本実施形態における外部加熱器140は、太陽熱加熱器141、及び地熱熱交換器142である。太陽熱加熱器141は、給水加熱器78として給水主ライン72に設けられている。太陽熱加熱器141は、太陽光を受けて、給水主ライン72中を流れる給水を加熱する。地熱熱交換器142は、地熱生産井143からの熱水とGTHC主ライン91中を流れる加熱水とを熱交換させて、加熱水を加熱する。加熱水を加熱した地熱生産井143からの熱水は、地熱還元井144に送られる。
以上のように、給水加熱器78及びガスタービン熱量調節器として、ガスタービンプラント外の熱源(太陽熱、地熱)を利用して水等を加熱する外部加熱器140を用いてもよい。また、外部加熱器140で水等を加熱する熱源としては、バイオマス燃料や廃棄物の燃焼熱、工場排熱、エンジンの排気ガスの熱、ジャケット冷却水の熱等を利用することができる。
以上のように、ガスタービンプラント外の熱源を利用することで、ガスタービンプラントと外部とを合せて全体での熱利用効率を高めることができる。
本実施形態は、第二実施形態の変形例である。しかしながら、他の実施形態においても、本実施形態と同様に、給水加熱器78として外部加熱器140を用いてもよいし、ガスタービン熱量調節器として外部加熱器140を用いてもよい。
「第十実施形態」
図14を参照して、本発明に係るガスタービンプラントの第十実施形態について説明する。
本実施形態のガスタービンプラントは、第二実施形態のガスタービンプラントにおける給水加熱器78及びガスタービン熱量調節器に、蒸気により水や燃料を加熱する蒸気熱交換器(蒸気冷却器)145を追加したプラントである。
本実施形態における蒸気熱交換器145は、低圧蒸気熱交換器87及び一次燃料予熱器46である。低圧蒸気熱交換器87は、給水加熱器78として給水主ライン72に設けられている。低圧蒸気熱交換器87には、低圧蒸気タービン63から抽気した低圧蒸気と給水主ライン72中を流れる給水とを熱交換させて、給水を加熱する。一次燃料予熱器46は、燃焼器20に燃料を供給する燃料ライン48に設けられている。この燃料ライン48中で、一次燃料予熱器46よりも燃料Fの流れの下流側には、先に説明した燃料予熱器45が設けられている。一次燃料予熱器46は、低圧蒸気タービン63から抽気した低圧蒸気と燃料Fとを熱交換させて、燃料Fを加熱する。
低圧蒸気タービン63の中間段の位置には、抽気ライン146が接続されている。この抽気ライン146は、途中で二つの分岐している。第一抽気分岐ライン147は、復水器68に接続されている。低圧蒸気熱交換器87は、この第一抽気分岐ライン147中に設けられている。よって、低圧蒸気タービン63から抽気された低圧蒸気の一部は、第一抽気分岐ライン147を経て低圧蒸気熱交換器87に流入してから、再び、第一抽気分岐ライン147を経て復水器68に流入する。第二抽気分岐ライン148は、復水器68に接続されている。一次燃料予熱器46は、この第二抽気分岐ライン148中に設けられている。よって、低圧蒸気タービン63から抽気された低圧蒸気の他の一部は、第二抽気分岐ライン148を経て一次燃料予熱器46に流入してから、復水器68に流入する。
以上のように、給水加熱器78及びガスタービン熱量調節器として、低圧蒸気により水等を加熱する蒸気熱交換器(蒸気冷却器)145を用いてもよい。
本実施形態では、低圧蒸気を水等の加熱に用いることで、利用価値の高い高圧蒸気の量を相対的に増加させることができる。このため、ガスタービンプラントの効率を高めることができる。
本実施形態は、前述したように、第二実施形態の変形例である。しかしながら、他の実施形態においても、本実施形態と同様に、低圧蒸気を水等の加熱に用いてもよい。
「第十一実施形態」
図15を参照して、本発明に係るガスタービンプラントの第十一実施形態について説明する。
以上の各実施形態では、いずれも、給水ライン71を流れる水と、GTHCライン90を流れる水とが合流する。本実施形態では、給水ライン71を流れる水と、GTHCライン90iを流れる媒体とが合流しない。つまり、本実施形態では、給水ライン71に対してGTHCライン90iは、独立したラインである。
本実施形態のガスタービンプラントは、第二実施形態のガスタービンプラントの変形例である。本実施形態の排熱回収ボイラー100aは、第二実施形態の排熱回収ボイラー100aと同じである。
本実施形態の給水系統70iにおける給水ライン71iは、以上の実施形態と同様、復水器68と排熱回収ボイラー100aとを接続するラインである。この給水ライン71iには、発電機65に関する発電機冷却器66及び潤滑油冷却器67が設けられている。但し、本実施形態の給水ライン71iには、第二実施形態のガスタービンプラントのように、吸気冷凍機42、発電機15に関する発電機冷却器16及び潤滑油冷却器17、及び第四空気冷却器54は、設けられていない。すなわち、本実施形態では、発電機65に関する発電機冷却器66及び潤滑油冷却器67が給水加熱器78を構成する。
低圧節炭器102と給水ライン71iとを接続する第二加熱水ライン122には、以上の各実施形態と同様、第二ランキンサイクル81bが設けられている。本実施形態では、この第二ランキンサイクル81bのみが給水冷却器79を構成する。
本実施形態のGTHCライン90iは、循環ライン95と、第一GTHC分岐ライン92と、第二GTHC分岐ライン93と、第三GTHC分岐ライン94と、を有する。循環ライン95では、内部を流れる媒体が循環する。第一GTHC分岐ライン92、第二GTHC分岐ライン93及び第三GTHC分岐ライン94は、循環ライン95から分岐して再び循環ライン95に接続されている。
循環ライン95には、内部を流れる媒体を昇圧する媒体ポンプ96が設けられている。
また、この循環ライン95には、第三ランキンサイクル81dが設けられている。この第三ランキンサイクル81dは、先に説明した低沸点媒体ランキンサイクルである。この第三ランキンサイクル81dでは、ランキンサイクル内部を流れる低沸点媒体と循環ライン95を流れる媒体とを熱交換させ、循環ライン95を流れる媒体を冷却する。
第一GTHC分岐ライン92は、循環ライン95中で媒体ポンプ96が設けられている位置よりも媒体の流れの下流側の位置から分岐し、この分岐位置よりも下流側の位置で循環ライン95に接続されている。この第一GTHC分岐ライン92には、第二空気冷却器52が設けられている。また、循環ライン95中で第一GTHC分岐ライン92の分岐位置とその接続位置との間には、第四空気冷却器54が設けられている。
第二GTHC分岐ライン93は、循環ライン95中で第一GTHC分岐ライン92の接続位置よりも媒体の流れの下流側の位置から分岐し、この分岐位置よりも下流側の位置で循環ライン95に接続されている。この第二GTHC分岐ライン93には、第三空気冷却器53が設けられている。また、循環ライン95中で第二GTHC分岐ライン93の分岐位置とその接続位置との間には、第一空気冷却器51が設けられている。
第三GTHC分岐ライン94は、循環ライン95中で第二GTHC分岐ライン93の接続位置よりも媒体の流れの下流側であって、第三ランキンサイクル81dの設置位置よりも上流側の位置から分岐している。この第三GTHC分岐ライン94は、循環ライン95中で第三ランキンサイクル81dの設置位置と媒体ポンプ96の設置位置との間に接続されている。この第三GTHC分岐ライン94には、燃料予熱器45が設けられている。
本実施形態のGTHCライン90iには、高温(300℃以上)の空気が混入しても発火しない不燃性の媒体が流れる。不燃性の媒体としては、例えば、水、合成系有機熱媒体油、二酸化炭素、窒素等がある。なお、合成系有機熱媒体油は、例えば、ジベンジルトルエンを主成分とする油等がある。
媒体ポンプ96から吐出された媒体は、GTHCライン90iの循環ライン95を経て、第四空気冷却器54、第二空気冷却器52、第三空気冷却器53、第一空気冷却器51に送られる。これらの空気冷却器54〜51では、媒体と空気圧縮機11からの空気とを熱交換させて、空気を冷却する一方で、媒体を加熱する。これらの空気冷却器54〜51で加熱された媒体の一部は、燃料予熱器45に流入する。燃料予熱器45では、媒体と燃料Fとを熱交換させて、媒体を冷却する一方で、燃料Fを加熱する。これらの空気冷却器54〜51で加熱された媒体の他の一部は、第三ランキンサイクル81dの蒸発器に流入する。第三ランキンサイクル81dの蒸発器では、媒体と低沸点媒体とを熱交換させて、媒体を冷却する一方で、低沸点媒体を加熱し蒸発させる。燃料予熱器45を通過した媒体及び第三ランキンサイクル81dを通過した媒体は、媒体ポンプ96に吸い込まれて、この媒体ポンプ96から吐出される。
以上のように、給水ライン71iに対してGTHCライン90iを独立させてもよい。本実施形態では、給水ライン71iに対してGTHCライン90iを独立させたので、蒸気タービンを駆動させずに、ガスタービン10のみを駆動させることができる。また、本実施形態では、GTHCライン90i中に第三ランキンサイクル81dを設けたので、このGTHCライン90iを媒体が流れる過程で得た熱を有効利用することができる。
本実施形態は、前述したように、第二実施形態の変形例である。しかしながら、他の実施形態においても、本実施形態と同様に、給水ライン71に対してGTHCライン90を独立させてもよい。
また、本実施形態においても、吸熱装置である第二ランキンサイクル81bが給水冷却器79を構成する。しかしながら、この吸熱装置も、前述したように、給水加熱器として機能させてもよい。
「第十二実施形態」
図16を参照して、本発明に係るガスタービンプラントの第十二実施形態について説明する。
本実施形態のガスタービンプラントは、第十一実施形態のガスタービンプラントの変形例である。
本実施形態の給水ライン71i及び給水ライン71iに設けられている給水加熱器78は、第十一実施形態と同じである。一方、本実施形態のGTHCライン90j及びこのGTHCライン90jに設けられている機器は、第十一実施形態と異なる。
本実施形態のGTHCライン90jは、循環系GTHCライン97と、第一放出系GTHCライン98と、第二放出系GTHCライン99と、を有する。循環系GTHCライン97は、循環ライン95iと、第一GTHC分岐ライン92と、第二GTHC分岐ライン93と、を有する。循環ライン95iでは、内部を流れる媒体が循環する。第一GTHC分岐ライン92及び第二GTHC分岐ライン93は、循環ライン95iから分岐して再び循環ライン95iに接続されている。
循環ライン95iには、第十一実施形態と同様に、媒体ポンプ96及び第三ランキンサイクル81dが設けられている。
第一GTHC分岐ライン92は、循環ライン95i中で媒体ポンプ96が設けられている位置よりも媒体の流れの下流側の位置Sから分岐し、この分岐位置Sよりも下流側の位置で循環ライン95iに接続されている。この第一GTHC分岐ライン92には、第二空気冷却器52が設けられている。また、循環ライン95i中で第一GTHC分岐ライン92の分岐位置Sとその接続位置との間には、第四空気冷却器54が設けられている。
第二GTHC分岐ライン93は、循環ライン95i中で第一GTHC分岐ライン92の接続位置よりも媒体の流れの下流側の位置Uから分岐し、この分岐位置Uよりも下流側の位置で循環ライン95iに接続されている。この第二GTHC分岐ライン93には、第三空気冷却器53が設けられている。また、循環ライン95i中で第二GTHC分岐ライン93の分岐位置とその接続位置との間には、第一空気冷却器51が設けられている。
媒体ポンプ96から吐出された媒体は、第十一実施形態と同様に、循環ライン95i等を経て、第四空気冷却器54、第二空気冷却器52、第三空気冷却器53、第一空気冷却器51に送られる。これらの空気冷却器54〜51では、媒体と空気圧縮機11からの空気とを熱交換させて、空気を冷却する一方で、媒体を加熱する。これらの空気冷却器54〜51で加熱された媒体は、第三ランキンサイクル81dの蒸発器に流入する。第三ランキンサイクル81dの蒸発器では、媒体と低沸点媒体とを熱交換させて、媒体を冷却する一方で、低沸点媒体を加熱して蒸発させる。第三ランキンサイクル81dを通過した媒体は、媒体ポンプ96に吸い込まれて、この媒体ポンプ96から吐出される。
第一放出系GTHCライン98は、第二加熱水ライン122と復水器68とを接続する。この第一放出系GTHCライン98には、燃料予熱器45が設けられている。低圧節炭器102で加熱された給水である低圧加熱水は、第二加熱水ライン122及び第一放出系GTHCライン98を経て、燃料予熱器45に流入する。燃料予熱器45では、燃料Fと低圧加熱水とを熱交換させて、燃料Fを加熱する一方で、低圧加熱水を冷却する。燃料予熱器45で冷却された低圧加熱水は、第一放出系GTHCライン98を経て、復水器68に流入する。
第二放出系GTHCライン99は、低温熱交換器115と復水器68とを接続する。この第二放出系GTHCライン99には、吸気加熱器47が設けられている。空気圧縮機11が吸い込む空気Aは、この吸気加熱器47を通過する。この吸気加熱器47では、空気圧縮機11が吸い込む空気Aと低温熱交換器115で加熱された給水とを熱交換させ、空気Aを加熱する一方で、給水を冷却する。吸気加熱器47で冷却された給水は、第二放出系GTHCライン99を経て、復水器68に流入する。
本実施形態では、吸気加熱器47で空気圧縮機11が吸い込む空気Aを加熱する。空気圧縮機11が吸い込む空気Aを加熱し、この空気Aの温度が高くなると、空気圧縮機11が吸い込む空気Aの質量流量が低下する。よって、空気圧縮機11が吸い込む空気Aの温度が高くなると、ガスタービン出力が低下する。本実施形態では、電力需要が少なく、ガスタービン10を低負荷運転させるときに、吸気加熱器47で空気圧縮機11が吸い込む空気を加熱する。また、本実施形態では、定常的に、吸気加熱器47で空気Aを加熱し、電力需要増大時に、吸気加熱器47による空気圧縮機11が吸い込む空気Aの加熱を中止する。従って、本実施形態では、ガスタービン10の出力変動幅を大きくすることができる。
本実施形態は、前述したように、第十一実施形態の変形例である。しかしながら、他の実施形態においても、本実施形態と同様に、吸気加熱器47を設けてもよい。
「第十三実施形態」
図17を参照して、本発明に係るガスタービンプラントの第十三実施形態について説明する。
本実施形態のガスタービンプラントは、第一実施形態のガスタービンプラントの変形例である。
本実施形態の給水主ライン72には、給水冷却器79hが設けられている。具体的は、給水主ライン72中であって、第二加熱水ライン122との接続位置よりも、給水の流れの下流側の位置に、給水冷却器79hが設けられている。この給水冷却器79hは、例えば、給水よりも温度の低い媒体と給水とを熱交換させて、給水を減温させる。給水との熱交換で加熱された媒体の熱は、例えば、給湯の熱源、建物や温室の空調等に利用することができる。
本実施形態でも、以上の各実施形態と同様、給水加熱器78及び給水冷却器79,79hを備えているので、排熱回収ボイラー100に流入する給水の温度を目的の温度に調節することができる。よって、本実施形態でも、排熱回収ボイラー100からの排気される排気ガスの温度を調節できるので、排気ガスの熱を有効利用できると共に、排気ガス中に含まれるNOxやSOxの凝縮による煙道128等の腐食を抑えることができる。
「各種変形例」
以上の各実施形態の給水加熱器78は、給水を加熱する複数の機器を有する。しかしながら、給水加熱器78は、これら全ての機器を有する必要はなく、これらの機器のうち少なくとも一の機器を有していればよい。
以上の各実施形態のガスタービンプラントは、給水加熱器78と給水冷却器79の双方を備えている。しかしながら、給水加熱器78と給水冷却器79とのうち、一方のみを備えていてもよい。例えば、給水加熱器78のみを備えている場合、復水器68から給水ライン71に流入する給水の温度を低めに設定しておき、給水加熱器78でこの給水を加熱して、排熱回収ボイラー100に流入する給水の温度を目的の温度に調節する。また、給水冷却器79のみを備えている場合、復水器68から給水ライン71に流入する給水の温度を高めに設定しておき、給水冷却器79でこの給水を冷却して、排熱回収ボイラー100に流入する給水の温度を目的の温度に調節する。
本発明の一態様によれば、排熱回収ボイラーから排出される排気ガスの温度を調節することができる。
10:ガスタービン
11:空気圧縮機
13:ガスタービンロータ
15:発電機
14:軸受
16:発電機冷却器
17:潤滑油冷却器
20:燃焼器
21:燃料噴射器
22:バーナー
23:バーナー支持筒
25:尾筒
26:冷却空気流路
27:空気入口
28:空気出口
31:タービンロータ
32:ロータ軸
33:動翼列
34:タービンケーシング
35:静翼列
40:吸気冷却器
41:吸気熱交換器
42:吸気冷凍機
45:燃料予熱器
46:一次燃料予熱器
47:吸気加熱器
48:燃料ライン
49:助燃燃料ライン
50:冷却用空気冷却器
51:第一空気冷却器
52:第二空気冷却器
53:第三空気冷却器
54:第四空気冷却器
55:ブースト圧縮機
56:圧縮空気ライン
61:高圧蒸気タービン
62:中圧蒸気タービン
63:低圧蒸気タービン
65:発電機
64:軸受
66:発電機冷却器
67:潤滑油冷却器
68:復水器(給水源)
70,70i:給水系統
71,71i:給水ライン
72:給水主ライン
73:第一給水分岐ライン
74:第二給水分岐ライン
75a:流量調節弁
75b:バイパス量調節弁
76:給水ポンプ
77:給水温度調節器
78:給水加熱器
79,79c,79h:給水冷却器
81a:第一低沸点媒体ランキンサイクル(第一ランキンサイクル)
81b:第二低沸点媒体ランキンサイクル(第二ランキンサイクル)
81c:低沸点媒体ランキンサイクル(ランキンサイクル)
81d:第三ランキンサイクル
82:蒸発器
82a:第一蒸発器
82b:第二蒸発器
83:タービン
83a:第一タービン
83b:第二タービン
84:凝縮器
85:低沸点媒体ポンプ
85a:第一低沸点媒体ポンプ
85b:第二低沸点媒体ポンプ
86:低沸点媒体ライン
87:低圧蒸気熱交換器
89,89c:発電機
90,90i,90j:ガスタービン熱量調節ライン(GTHCライン)
91:ガスタービン熱量調節主ライン(GTHC主ライン)
92:第一ガスタービン熱量調節分岐ライン(第一GTHC分岐ライン)
93:第二ガスタービン熱量調節分岐ライン(第二GTHC分岐ライン)
94:第三ガスタービン熱量調節分岐ライン(第三GTHC分岐ライン)
95,95i:循環ライン
96:媒体ポンプ
97:循環系GTHCライン
98:第一放出系GTHCライン
99:第二放出系GTHCライン
100,100a,100b,100c,100d,100e,100f,100g,100h:排熱回収ボイラー
101:ボイラー外枠
102:低圧節炭器
103:低圧蒸発器
104:第一高圧節炭器
105:第一低圧過熱器(低圧過熱器)
106:低圧再熱器(再熱器)
106c:第一中圧再熱器(再熱器)
107:高圧節炭器
107c:第二高圧節炭器
108:第二低圧過熱器
109:高圧蒸発器
111:第一高圧過熱器
112:中圧再熱器
112c:第二中圧再熱器
113:第二高圧過熱器
115:低温熱交換器
116:高圧ポンプ
121:第一加熱水ライン
121c:高温加熱水ライン
122:第二加熱水ライン
122a:加熱水供給ライン
122b:低圧過熱蒸気ライン
123:高圧蒸気ライン
124:高圧排気ライン
125:中圧蒸気ライン
126:中圧排気ライン
127:低圧蒸気ライン
128:煙道
129:煙突
131:助燃燃焼器
132:流路分岐板
133:第一流路
134:第二流路
135:空気加熱器
135a:第一空気加熱器
135b:第二空気加熱器
136a:第一再過熱器
136b:第二再過熱器
140:外部加熱器
141:太陽熱加熱器
142:地熱熱交換器
143:地熱生産井
145:蒸気熱交換器(蒸気冷却器)
146:抽気ライン
147:第一抽気分岐ライン
148:第二抽気分岐ライン

Claims (17)

  1. ガスタービンと、
    前記ガスタービンからの排気ガスの熱で蒸気を発生される排熱回収ボイラーと、
    前記排熱回収ボイラーに水を供給する給水系統と、
    を備え、
    前記排熱回収ボイラーは、前記排気ガスで水を加熱して蒸気を発生させる蒸発器と、前記蒸発器を通過した前記排気ガスで外部からの蒸気を加熱する再熱器と、を有し、
    前記給水系統は、給水源からの水を前記排熱回収ボイラーに送る給水ラインと、前記給水ラインを流れる水である給水の温度を調節する給水温度調節器と、を有し、
    前記給水温度調節器は、前記給水を加熱する給水加熱器と、前記排熱回収ボイラー内を通って加熱された給水である加熱水を冷却し、冷却後の加熱水に前記排熱回収ボイラー内を通って加熱された給水である加熱水を合流させ、合流後の水を前記給水ラインを流れる水に合流させて、前記排熱回収ボイラーに流入する水を冷却する給水冷却器とを有する、
    ガスタービンプラント。
  2. 請求項1に記載のガスタービンプラントにおいて、
    前記ガスタービンは、空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動されるタービンと、を有し、
    前記給水加熱器は、前記ガスタービンにおける冷却対象から前記給水へ熱を移動させて、前記冷却対象を冷却すると共に、前記給水を加熱する熱移動装置を有する、
    ガスタービンプラント。
  3. 請求項2に記載のガスタービンプラントにおいて、
    前記熱移動装置は、
    前記圧縮機からの圧縮空気の一部を前記冷却対象として、前記給水と熱交換させて前記圧縮空気を冷却し、前記ガスタービン中で前記燃焼ガスと接する高温部品に冷却した前記圧縮空気を送る冷却用空気冷却器と、
    前記圧縮機が吸い込む前記空気を前記冷却対象として、前記空気から前記給水へ熱を移動させて前記空気を冷却し、前記圧縮機に冷却した前記空気を送る吸気冷却器と、
    前記ガスタービンのロータを回転可能に支持する軸受からの潤滑油を前記冷却対象として、前記給水と熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却器と、
    のうち少なくとも一つの冷却器を含む、
    ガスタービンプラント。
  4. 請求項1から3のいずれか一項に記載のガスタービンプラントにおいて、
    前記ガスタービンの駆動で発電する発電機を備え、
    前記給水加熱器は、前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却器を有する、
    ガスタービンプラント。
  5. 請求項1から4のいずれか一項に記載のガスタービンプラントにおいて、
    前記排熱回収ボイラーで発生した蒸気で駆動される蒸気タービンと、
    前記蒸気タービンの駆動で発電する発電機と、を備え、
    前記給水加熱器は、
    前記蒸気タービンのロータを回転可能に支持する軸受からの潤滑油と前記給水とを熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却器と、
    前記蒸気タービンの駆動で発電する前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却器と、
    前記蒸気タービンから抽気した蒸気と前記給水とを熱交換させる蒸気冷却器と、
    のうち少なくとも一つの冷却器を含む、
    ガスタービンプラント。
  6. 請求項1から5のいずれか一項に記載のガスタービンプラントにおいて、
    前記給水加熱器は、前記ガスタービンプラント外の熱源を利用して、前記給水を加熱する外部加熱器を有する、
    ガスタービンプラント。
  7. 請求項1から6のいずれか一項に記載のガスタービンプラントにおいて、
    前記給水冷却器は、前記排熱回収ボイラー内を通って加熱された給水である前記加熱水から熱を吸収して、前記給水源の水の温度よりも前記加熱水の温度を低くする吸熱装置を有する、
    ガスタービンプラント。
  8. 請求項7に記載のガスタービンプラントにおいて、
    前記吸熱装置は、低沸点媒体が凝縮と蒸発とを繰り返して循環する低沸点媒体ランキンサイクルを有し、
    前記低沸点媒体ランキンサイクルは、前記加熱水と液体の前記低沸点媒体とを熱交換させ、液体の前記低沸点媒体を加熱して蒸発させる一方で、前記加熱水を冷却する蒸発器を有する、
    ガスタービンプラント。
  9. 請求項1から8のいずれか一項に記載のガスタービンプラントにおいて、
    前記排熱回収ボイラーは、前記蒸発器として高圧蒸発器のみを有し、
    前記高圧蒸発器は、所定の圧力での定圧比熱が極大となる定圧比熱極大温度以下の温度の水を、前記定圧比熱極大温度以上の温度に加熱する蒸発器である、
    ガスタービンプラント。
  10. ガスタービンと、前記ガスタービンからの排気ガスの熱で蒸気を発生させる排熱回収ボイラーと、前記排熱回収ボイラーに水を供給する給水系統と、を備え、
    前記排熱回収ボイラーは、前記排気ガスで水を加熱して蒸気を発生させる蒸発器と、前記蒸発器を通過した前記排気ガスで外部からの蒸気を加熱する再熱器と、を有し、
    前記給水系統は、給水源からの水を前記排熱回収ボイラーに送る給水ラインを有する、ガスタービンプラントの運転方法において、
    前記給水ラインを流れる水である給水の温度を調節する給水温度調節工程を実行し、
    前記給水温度調節工程は、前記給水を加熱する給水加熱工程と、前記排熱回収ボイラー内を通って加熱された給水である加熱水を冷却し、冷却後の加熱水に前記排熱回収ボイラー内を通って加熱された給水である加熱水を合流させ、合流後の水を前記給水ラインを流れる水に合流させて、前記排熱回収ボイラーに流入する水を冷却する給水冷却工程とを含む、
    ガスタービンプラントの運転方法。
  11. 請求項10に記載のガスタービンプラントの運転方法において、
    前記ガスタービンは、空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動されるタービンと、を有し、
    前記給水加熱工程は、前記ガスタービンにおける冷却対象から前記給水へ熱を移動させて、前記冷却対象を冷却すると共に、前記給水を加熱する熱移動工程を含む、
    ガスタービンプラントの運転方法。
  12. 請求項11に記載のガスタービンプラントの運転方法において、
    前記熱移動工程は、
    前記圧縮機からの圧縮空気の一部を前記冷却対象として、前記給水と熱交換させて前記圧縮空気を冷却し、前記ガスタービン中で前記燃焼ガスと接する高温部品に冷却した前記圧縮空気を送る冷却用空気冷却工程と、
    前記圧縮機が吸い込む前記空気を前記冷却対象として、前記空気から前記給水へ熱を移動させて前記空気を冷却し、前記圧縮機に冷却した前記空気を送る吸気冷却工程と、
    前記ガスタービンのロータを回転可能に支持する軸受からの潤滑油を前記冷却対象として、前記給水と熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却工程と、
    のうち少なくとも一つの冷却工程を含む、
    ガスタービンプラントの運転方法。
  13. 請求項10から12のいずれか一項に記載のガスタービンプラントの運転方法において、
    前記ガスタービンプラントは、前記ガスタービンの駆動で発電する発電機を備え、
    前記給水加熱工程は、前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却工程を含む、
    ガスタービンプラントの運転方法。
  14. 請求項10から13のいずれか一項に記載のガスタービンプラントの運転方法において、
    前記ガスタービンプラントは、前記排熱回収ボイラーで発生した蒸気で駆動される蒸気タービンと、前記蒸気タービンの駆動で発電する発電機と、を備え、
    前記給水加熱工程は、
    前記蒸気タービンのロータを回転可能に支持する軸受からの潤滑油と前記給水とを熱交換させて前記潤滑油を冷却し、冷却された前記潤滑油を前記軸受に戻す潤滑油冷却工程と、
    前記蒸気タービンの駆動で発電する前記発電機の構成部品を冷却する冷却媒体と前記給水とを熱交換させて前記冷却媒体を冷却する発電機冷却工程と、
    前記蒸気タービンから抽気した蒸気と前記給水とを熱交換させる蒸気冷却工程と、
    のうち少なくとも一つの冷却工程を含む、
    ガスタービンプラントの運転方法。
  15. 請求項10から14のいずれか一項に記載のガスタービンプラントの運転方法において、
    前記給水加熱工程は、前記ガスタービンプラント外の熱源を利用して、前記給水を加熱する外部加熱工程を含む、
    ガスタービンプラントの運転方法。
  16. 請求項10から15のいずれか一項に記載のガスタービンプラントの運転方法において、
    前記給水冷却工程は、前前記排熱回収ボイラー内を通って加熱された給水である前記加熱水から熱を吸収して、前記給水源の水の温度よりも前記加熱水の温度を低くする吸熱工程を含む、
    ガスタービンプラントの運転方法。
  17. 請求項16に記載のガスタービンプラントの運転方法において、
    前記吸熱工程は、低沸点媒体ランキンサイクルで、低沸点媒体を循環させるランキンサイクル実行工程を含み、
    前記ランキンサイクル実行工程は、前記加熱水と液体の前記低沸点媒体とを熱交換させ、液体の前記低沸点媒体を加熱して蒸発させる一方で、前記加熱水を冷却する蒸発工程を含む、
    ガスタービンプラントの運転方法。
JP2018508897A 2016-03-29 2017-03-08 ガスタービンプラント、及びその運転方法 Active JP6734363B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016065790 2016-03-29
JP2016065790 2016-03-29
PCT/JP2017/009252 WO2017169594A1 (ja) 2016-03-29 2017-03-08 ガスタービンプラント、及びその運転方法

Publications (2)

Publication Number Publication Date
JPWO2017169594A1 JPWO2017169594A1 (ja) 2019-02-14
JP6734363B2 true JP6734363B2 (ja) 2020-08-05

Family

ID=59964129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018508897A Active JP6734363B2 (ja) 2016-03-29 2017-03-08 ガスタービンプラント、及びその運転方法

Country Status (6)

Country Link
US (1) US11274575B2 (ja)
JP (1) JP6734363B2 (ja)
KR (1) KR102165976B1 (ja)
CN (1) CN108884728B (ja)
DE (1) DE112017001619T5 (ja)
WO (1) WO2017169594A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014661B2 (ja) * 2018-03-29 2022-02-01 三菱重工業株式会社 ボイラープラント、及びその運転方法
CN109488544A (zh) * 2018-12-14 2019-03-19 中国华能集团清洁能源技术研究院有限公司 一种地热能与天然气联合循环互补发电***及方法
CN110340104B (zh) * 2019-06-06 2021-11-05 吕梁学院 一种煤矸石生态资源化综合利用设备及其综合利用方法
RU2743868C1 (ru) * 2020-07-13 2021-03-01 Общество с ограниченной ответственностью "Симонов и партнеры" Паропаровая энергетическая установка
EP4071338B1 (en) * 2021-04-08 2024-01-31 General Electric Technology GmbH Gas turbine system having serial heat exchangers
CN113666446B (zh) * 2021-08-27 2022-11-22 西安热工研究院有限公司 耦合煤电的低温多效海水淡化***最佳热源确定方法及***
FI20210068A1 (fi) * 2021-11-10 2023-05-11 Loeytty Ari Veli Olavi Menetelmä ja laitteisto energiatehokkuuden parantamiseksi nykyisissä kaasuturbiini kombilaitoksissa
US20240133320A1 (en) * 2022-10-25 2024-04-25 General Electric Company Combined cycle power plant having reduced parasitic pumping losses
KR20240078485A (ko) * 2022-11-24 2024-06-04 두산에너빌리티 주식회사 복합발전 시스템 및 그 운전 제어방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150487A (en) * 1963-04-08 1964-09-29 Gen Electric Steam turbine-gas turbine power plant
EP0020821A1 (de) 1979-07-02 1981-01-07 BBC Aktiengesellschaft Brown, Boveri & Cie. Verfahren zur Ausnutzung der in einem Abgas enthaltenen Abwärme
US4961311A (en) * 1989-09-29 1990-10-09 Westinghouse Electric Corp. Deaerator heat exchanger for combined cycle power plant
JPH06212909A (ja) 1993-01-21 1994-08-02 Mitsubishi Heavy Ind Ltd 複合発電プラント
JP3082826B2 (ja) 1994-10-24 2000-08-28 三菱重工業株式会社 排熱回収装置
DE59709511D1 (de) 1997-10-06 2003-04-17 Alstom Switzerland Ltd Verfahren zum Betrieb einer Kombianlage
JPH11270352A (ja) * 1998-03-24 1999-10-05 Mitsubishi Heavy Ind Ltd 吸気冷却型ガスタービン発電設備及び同発電設備を用いた複合発電プラント
JP2004036535A (ja) 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The 発電所主機排熱回収装置
JP2006211837A (ja) * 2005-01-28 2006-08-10 Hitachi Ltd プラント設備
JP4794229B2 (ja) 2005-07-21 2011-10-19 中国電力株式会社 ガスタービン発電装置及びガスタービン複合発電システム
US20070017207A1 (en) * 2005-07-25 2007-01-25 General Electric Company Combined Cycle Power Plant
JP2007064049A (ja) * 2005-08-30 2007-03-15 Hitachi Eng Co Ltd ガスタービンコージェネレーション設備の廃熱回収システム
JP4786504B2 (ja) * 2006-11-10 2011-10-05 川崎重工業株式会社 熱媒体供給設備および太陽熱複合発電設備ならびにこれらの制御方法
US7874162B2 (en) * 2007-10-04 2011-01-25 General Electric Company Supercritical steam combined cycle and method
EP2385223A1 (de) 2010-05-04 2011-11-09 Thermal PowerTec GmbH Verfahren zur Steigerung des Wirkungsgrades von Gas- und Dampfturbinenanlagen
US8739510B2 (en) * 2010-10-28 2014-06-03 General Electric Company Heat exchanger for a combined cycle power plant
JP2013217214A (ja) * 2012-04-05 2013-10-24 Kawasaki Heavy Ind Ltd 有機媒体を利用するガスタービンエンジン装置
US20140033676A1 (en) * 2012-08-02 2014-02-06 Raymond Pang Unique method of solar integration in combined cycle power plant
JP6101604B2 (ja) * 2013-09-03 2017-03-22 三菱重工業株式会社 蒸気タービンプラント、これを備えているコンバインドサイクルプラント、及び蒸気タービンプラントの運転方法
JP6296286B2 (ja) * 2014-03-24 2018-03-20 三菱日立パワーシステムズ株式会社 排熱回収システム、これを備えているガスタービンプラント、排熱回収方法、及び排熱回収システムの追設方法
JP6267028B2 (ja) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 排熱回収装置、これを備えているガスタービンプラント、及び排熱回収方法
JP6265535B2 (ja) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 給水予熱装置、これを備えているガスタービンプラント、及び給水予熱方法
EP2990627A4 (en) * 2014-04-07 2016-09-14 Mitsubishi Heavy Ind Compressor Corp FLOATING LIQUID GAS PRODUCTION PLANT
JP2016065790A (ja) 2014-09-25 2016-04-28 日本精機株式会社 車両用表示装置
US9470112B2 (en) * 2014-11-13 2016-10-18 General Electric Company System and method for heat recovery and steam generation in combined cycle systems

Also Published As

Publication number Publication date
CN108884728A (zh) 2018-11-23
WO2017169594A1 (ja) 2017-10-05
US11274575B2 (en) 2022-03-15
KR102165976B1 (ko) 2020-10-15
DE112017001619T5 (de) 2018-12-20
US20200332681A1 (en) 2020-10-22
KR20180114184A (ko) 2018-10-17
JPWO2017169594A1 (ja) 2019-02-14
CN108884728B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
JP6734363B2 (ja) ガスタービンプラント、及びその運転方法
US11519303B2 (en) Waste heat recovery system, gas turbine plant provided with same, waste heat recovery method, and installation method for waste heat recovery system
KR102113929B1 (ko) 배열 회수 장치, 이것을 구비하고 있는 가스 터빈 플랜트, 및 배열 회수 방법
US8561405B2 (en) System and method for recovering waste heat
CN107250511B (zh) 吸气冷却方法、执行该方法的吸气冷却装置、具备该装置的废热回收设备及燃气涡轮成套设备
US8181463B2 (en) Direct heating organic Rankine cycle
RU2595192C2 (ru) Электростанция с встроенным предварительным нагревом топливного газа
US20110113786A1 (en) Combined cycle power plant with integrated organic rankine cycle device
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
US20190323384A1 (en) Boilor plant and method for operating the same
JP6554751B2 (ja) ボイラー、これを備える蒸気発生プラント、及びボイラーの運転方法
JP6265535B2 (ja) 給水予熱装置、これを備えているガスタービンプラント、及び給水予熱方法
US11719156B2 (en) Combined power generation system with feedwater fuel preheating arrangement
JP6405589B2 (ja) 排熱回収装置
Klemencic et al. Comparison of conventional and CO2 power generation cycles for waste heat recovery
EP4067738B1 (en) Steam generator
RU2686541C1 (ru) Парогазовая установка

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6734363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150