JP6733606B2 - Insulation box - Google Patents

Insulation box Download PDF

Info

Publication number
JP6733606B2
JP6733606B2 JP2017103643A JP2017103643A JP6733606B2 JP 6733606 B2 JP6733606 B2 JP 6733606B2 JP 2017103643 A JP2017103643 A JP 2017103643A JP 2017103643 A JP2017103643 A JP 2017103643A JP 6733606 B2 JP6733606 B2 JP 6733606B2
Authority
JP
Japan
Prior art keywords
plate
heat insulating
design
heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103643A
Other languages
Japanese (ja)
Other versions
JP2018044758A (en
Inventor
亨 岡崎
亨 岡崎
浅井田 康浩
康浩 浅井田
彰継 瀬川
彰継 瀬川
白羽 劉
白羽 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to CN201710599070.7A priority Critical patent/CN107806731A/en
Priority to US15/684,727 priority patent/US10866021B2/en
Publication of JP2018044758A publication Critical patent/JP2018044758A/en
Application granted granted Critical
Publication of JP6733606B2 publication Critical patent/JP6733606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、断熱箱に関する。特に、複数の室を有する冷蔵庫などの断熱箱の仕切部の構造に関する。 The present invention relates to a heat insulation box. In particular, it relates to the structure of a partition of a heat insulating box such as a refrigerator having a plurality of chambers.

複数の室を有する冷蔵庫などの断熱箱は、内部に断熱材を備えた樹脂成形品である仕切板を設け、各室間を食品などの貯蔵内容によって温度や湿度などの環境が異なる室に仕切って区画している。 Insulating boxes such as refrigerators with multiple rooms are equipped with partition plates, which are resin molded products equipped with heat insulating materials, and partition each room into rooms with different environments such as temperature and humidity depending on the storage contents such as food. Are partitioned.

この仕切板を設置することによって断熱箱の強度を向上させている。仕切板の開口部側にある意匠板は、前面の意匠面と、この意匠面に対して直角に折り曲げた端辺を備えてコ字状に形成されている。 By installing this partition plate, the strength of the heat insulation box is improved. The design plate on the opening side of the partition plate is formed in a U-shape with a front design surface and an edge bent at a right angle to the design surface.

また、扉に設けたパッキンと箱体本体とが密閉状態で保持されるように、意匠板は、パッキンの内部に備えたマグネットが吸着する磁性体であることが必要である。さらに、意匠板は、冷蔵庫の強度向上に対する影響が大きいので、意匠板には低価格で高強度の塗装鋼板が用いられている。 Further, the design plate needs to be a magnetic body attracted by a magnet provided inside the packing so that the packing provided on the door and the box body are held in a sealed state. Further, since the design plate has a great influence on the improvement of the strength of the refrigerator, a low cost and high strength coated steel plate is used as the design plate.

しかしながら、意匠板は、熱伝導性に優れる塗装鋼板からなるため、室外の高温域から室内の低温域に向かって熱を流してしまう。これによって、断熱箱の断熱性能が低下するとともに、意匠板自体の温度が外気(冷蔵庫の設置雰囲気)の露点以下に低下して、結露を生じる。 However, since the design plate is made of a coated steel plate having excellent thermal conductivity, heat flows from the outdoor high temperature region toward the indoor low temperature region. As a result, the heat insulating performance of the heat insulating box is lowered, and the temperature of the design plate itself is lowered to a temperature equal to or lower than the dew point of the outside air (the atmosphere in which the refrigerator is installed) to cause dew condensation.

このような問題に対し、特許文献1では、結露発生防止の対応が取られている。図12は、特許文献1における従来の冷蔵庫の仕切板と意匠板周辺の構造を示す図である。仕切板21は、断熱材28、上板26、下板27、放熱パイプ22、蓄熱層23、意匠板25、意匠板の端部25a、断熱材24を含む。 With respect to such a problem, Patent Document 1 takes measures to prevent the occurrence of dew condensation. FIG. 12: is a figure which shows the structure of the partition plate of a conventional refrigerator in patent document 1, and a design board periphery. The partition plate 21 includes a heat insulating material 28, an upper plate 26, a lower plate 27, a heat radiating pipe 22, a heat storage layer 23, a design plate 25, an end portion 25 a of the design plate, and a heat insulating material 24.

冷蔵庫の背面部より封入された発泡ウレタンの断熱材28の上下にそれぞれ上板26、下板27が配置され、その前面部に、冷凍サイクルの放熱のための放熱パイプ22を配設されている。この放熱パイプ22は、蓄熱層23を介して意匠板25に接触されている。冷蔵庫前面にウレタンの断熱材28が漏出するのを防止するために、発泡スチロールなどで構成される固形の柔軟な断熱材24が設けられている。冷蔵庫背面からの発泡ウレタンの断熱材28の封入時に、断熱材24は、意匠板25に押圧される。これにより、温度を露点以上に上昇させて結露を防止している。 An upper plate 26 and a lower plate 27 are arranged above and below a heat insulating material 28 made of urethane foam sealed from the rear portion of the refrigerator, and a heat radiating pipe 22 for radiating heat from the refrigeration cycle is arranged on the front portion thereof. .. The heat radiation pipe 22 is in contact with the design plate 25 via the heat storage layer 23. In order to prevent the urethane heat insulating material 28 from leaking out from the front of the refrigerator, a solid, flexible heat insulating material 24 made of styrofoam or the like is provided. The heat insulating material 24 is pressed against the design plate 25 when the urethane foam insulating material 28 is filled from the back of the refrigerator. As a result, the temperature is raised above the dew point to prevent dew condensation.

また、特許文献2には、結露防止と仕切板の強度強化を両立しながら、冷蔵庫の断熱性を高める対応が取られている。 In addition, Patent Document 2 takes measures to improve the heat insulating property of the refrigerator while simultaneously preventing dew condensation and strengthening the strength of the partition plate.

図13は、特許文献2における従来の冷蔵庫の仕切板と意匠板周辺の構造を示す図である。仕切板31は、冷蔵庫の背面部より封入された発泡ウレタンの断熱材33の上下にそれぞれ上板38、下板39が配置されている。また、上板38と下板39の間には、発泡ウレタンの断熱材33と放熱パイプ32が配設されている。これに加え、発泡スチロールなどで構成される固形の柔軟な断熱材34を隔て、仕切板31の強度確保と、冷蔵庫背面からの発泡ウレタンの断熱材28の封入時に冷蔵庫前面にウレタンが漏出するのを防止するための仕切壁36が配設されている。 FIG. 13: is a figure which shows the structure of the partition board of a conventional refrigerator in patent document 2, and a design board periphery. In the partition plate 31, an upper plate 38 and a lower plate 39 are arranged above and below a heat insulating material 33 made of urethane foam enclosed from the back of the refrigerator. Further, between the upper plate 38 and the lower plate 39, a urethane foam heat insulating material 33 and a heat radiation pipe 32 are arranged. In addition to this, the solid flexible heat insulating material 34 made of styrofoam or the like is separated to secure the strength of the partition plate 31 and prevent urethane from leaking to the front surface of the refrigerator when the heat insulating material 28 of urethane foam is sealed from the back surface of the refrigerator. A partition wall 36 for preventing is provided.

放熱パイプ32は意匠板35に接触されている。意匠板35は、特許文献1のように側面が直接、上板38、下板39に接触するのではなく、硬質の断熱材37を囲い込むように張出端部35bを介して上板38、下板39に接触している。また、脚状端辺35cも仕切壁36のリブ部40に接触することで、仕切板31の強度確保と結露の防止を行いながら硬質の断熱材37を配設することで断熱箱の断熱性を高めている。 The heat radiation pipe 32 is in contact with the design plate 35. The side surface of the design plate 35 does not directly contact the upper plate 38 and the lower plate 39 as in Patent Document 1, but the upper plate 38 via the protruding end portion 35b so as to surround the hard heat insulating material 37. , Is in contact with the lower plate 39. Further, the leg-shaped edges 35c also come into contact with the ribs 40 of the partition wall 36 to secure the strength of the partition plate 31 and to prevent dew condensation, and by disposing the hard heat insulating material 37, the heat insulating property of the heat insulating box is obtained. Is increasing.

特開平4−103984号公報JP-A-4-103984 特許第2945553号公報Japanese Patent No. 2945553

しかしながら、特許文献1の図12に記載の従来の冷蔵庫では、冷蔵庫庫内への熱の侵入を抑えきれていない。意匠板25には、仕切板21の上板26、下板27の表面近くに端部25aがある。これにより、意匠板25は温度上昇し結露が防止される。しかし、放熱パイプ22から発せられた熱が、熱伝導性の大きい鋼板で構成された意匠板25から、端部25aに伝わり、熱伝導性の高い樹脂で構成された上板26、下板27を介して、図12中のAのルートにて庫内に侵入する。これが、断熱箱の断熱性能を低下させる原因となる。 However, in the conventional refrigerator described in FIG. 12 of Patent Document 1, it is not possible to prevent heat from entering the refrigerator. The design plate 25 has end portions 25 a near the surfaces of the upper plate 26 and the lower plate 27 of the partition plate 21. As a result, the temperature of the design plate 25 rises and dew condensation is prevented. However, the heat generated from the radiating pipe 22 is transmitted from the design plate 25 made of a steel plate having high heat conductivity to the end portion 25a, and the upper plate 26 and the lower plate 27 made of resin having high heat conductivity. Through the route A through the route A in FIG. This causes deterioration of the heat insulation performance of the heat insulation box.

また、発熱源である放熱パイプ22の近傍に配設されている固形の柔軟な断熱材24は、熱伝導率が大きい発泡スチロール製(およそλ=0.040W/(m・K))であり、発泡ウレタンの断熱材28の熱伝導率(およそλ=0.023W/(m・K))のおよそ2倍である。これも、放熱パイプ22から意匠板の端部25a、仕切板の上板26、下板27までの断熱性を下げ、断熱箱の断熱性能を低下させる原因となる。 Further, the solid flexible heat insulating material 24 arranged near the heat radiation pipe 22 which is a heat source is made of expanded polystyrene having a large thermal conductivity (approximately λ=0.040 W/(m·K)), This is about twice the thermal conductivity (about λ=0.023 W/(m·K)) of the urethane foam insulation 28. This also lowers the heat insulating property from the heat radiating pipe 22 to the end portion 25a of the design plate, the upper plate 26 and the lower plate 27 of the partition plate, and causes the heat insulating performance of the heat insulating box to be lowered.

また、特許文献2の図13に記載の従来の冷蔵庫でも、冷蔵庫庫内への熱の侵入を抑えきれていない。意匠板35は、張出端部35bを介して上板38、下板39に接触しているため、放熱パイプ32の熱は、前面部35aから張出端部35bを介して上板38、下板39へ伝わり、図12中のBのルートで庫内へ侵入する。また同じく、意匠板35は、脚状端辺35cを介して仕切壁のリブ部40に接触しているため、放熱パイプ32の熱は、前面部35aから脚状端辺35cを介して仕切壁のリブ部40、仕切壁36へと伝わり、図13中のCのルートでも庫内へ侵入するため、冷蔵庫の断熱性能を低下させる原因となる。 Further, even the conventional refrigerator shown in FIG. 13 of Patent Document 2 cannot sufficiently suppress heat from entering the refrigerator. Since the design plate 35 is in contact with the upper plate 38 and the lower plate 39 via the protruding end portion 35b, the heat of the heat dissipation pipe 32 is transferred from the front surface portion 35a to the upper plate 38 via the protruding end portion 35b. It is transmitted to the lower plate 39, and enters the inside of the refrigerator by the route of B in FIG. Similarly, since the design plate 35 is in contact with the rib portion 40 of the partition wall via the leg-shaped edge 35c, the heat of the heat dissipation pipe 32 is transferred from the front surface portion 35a to the partition wall 35c via the leg-shaped edge 35c. 13 is transmitted to the rib portion 40 and the partition wall 36 and enters the inside of the refrigerator even at the route of C in FIG. 13, which causes a decrease in the heat insulating performance of the refrigerator.

また、前記特許文献1の場合と同様に、発熱源である放熱パイプ32の近傍に配設されている固形の柔軟な断熱材34は、熱伝導率が大きい発泡スチロール製であり、発泡ウレタンの断熱材33の熱伝導率のおよそ2倍である。これも、放熱パイプ32から意匠板の脚状端辺35cや仕切壁36から仕切板の上板38、下板39までの断熱性を下げ、断熱箱の断熱性能を低下させる原因となる。 Further, as in the case of the above-mentioned Patent Document 1, the solid, flexible heat insulating material 34 disposed near the heat radiating pipe 32, which is a heat source, is made of styrofoam, which has a large thermal conductivity, and is a heat insulating material for urethane foam. It is about twice the thermal conductivity of the material 33. This also lowers the heat insulating property from the heat radiating pipe 32 to the leg-shaped edge 35c of the design plate and from the partition wall 36 to the upper plate 38 and the lower plate 39 of the partition plate, which causes the heat insulating performance of the heat insulating box to be deteriorated.

本発明は、前記従来の課題を解決するもので、仕切板近傍の結露防止を実現し、意匠板を介して冷蔵庫庫内へ侵入する熱を抑制した断熱箱を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a heat insulating box that realizes prevention of dew condensation in the vicinity of a partition plate and suppresses heat entering the refrigerator compartment through a design plate.

上記課題を解決するために、空間を有する断熱箱本体と、上記空間を密閉する扉と、上記空間を仕切る仕切板と、を含み、上記仕切板は、上記扉側に配置された意匠板と、上記意匠板の両端のそれぞれに配置された第1板部と第2板部と、上記意匠板と上記第1板部と上記第2板部で囲まれた領域に位置する断熱材と、上記意匠板と上記第1板部との間、上記意匠板と上記第2板部との間の少なくとも1方に配置された断熱体と、を含む断熱箱を用いる。 In order to solve the above problems, a heat-insulating box main body having a space, a door for sealing the space, and a partition plate for partitioning the space, the partition plate, the design plate arranged on the door side. A first plate part and a second plate part arranged at both ends of the design plate, and a heat insulating material located in a region surrounded by the design plate, the first plate part and the second plate part, A heat insulation box including a heat insulator arranged between the design plate and the first plate portion and at least one side between the design plate and the second plate portion is used.

本発明によれば、仕切板近傍の結露防止を実現し、意匠板を介して冷蔵庫庫内へ侵入する熱を抑制するとともに、発泡ウレタン断熱材の封入時のウレタンの冷蔵庫前部への漏出を防止し、冷蔵庫の断熱性能を向上させる。 According to the present invention, it is possible to prevent dew condensation in the vicinity of the partition plate, suppress heat entering the refrigerator compartment through the design plate, and prevent leakage of urethane to the front part of the refrigerator when the urethane foam insulation is sealed. Prevent and improve the heat insulation performance of the refrigerator.

実施の形態1、2における冷蔵庫の断熱箱の構造を示す図The figure which shows the structure of the heat insulation box of the refrigerator in Embodiment 1, 2. 実施の形態1における、図1のα部の縦断面図1 is a vertical cross-sectional view of an α portion in FIG. 1 in Embodiment 1. FIG. 軟質複合断熱材の断面構造を示す図Diagram showing cross-sectional structure of soft composite heat insulating material (a)軟質複合断熱材の積層前の構造を示す図、(b)軟質複合断熱材の積層後の構造を示す図、(c)軟質複合断熱材のゲル硬化後の構造を示す図(A) The figure which shows the structure before lamination of a soft composite heat insulating material, (b) The figure which shows the structure after lamination of a soft composite heat insulating material, (c) The figure which shows the structure after gel hardening of a soft composite heat insulating material. 実施の形態1、2、4における冷蔵庫の断熱箱の仕切板の上板、下板間に意匠板を組込む段階を示す図The figure which shows the step which incorporates a design board between the upper board and lower board of the partition plate of the heat insulation box of the refrigerator in Embodiment 1, 2, and 4. 実施の形態1、2、3、4における冷蔵庫の断熱箱の仕切板のビス止め機構を示す図The figure which shows the screw stop mechanism of the partition plate of the heat insulation box of the refrigerator in Embodiment 1, 2, 3, and 4. 軟質複合断熱材と他の断熱材の押圧時の熱伝導率変化を示すグラフGraph showing changes in thermal conductivity of soft composite insulation and other insulation when pressed 実施の形態2における、図1のα部の縦断面図FIG. 1 is a vertical cross-sectional view of part α of FIG. 1 according to the second embodiment. 実施の形態3における、図1のα部の縦断面図FIG. 1 is a vertical cross-sectional view of part α in FIG. 1 according to the third embodiment. (a)実施の形態3における意匠板を仕切板へ入れる途中段階を示す図、(b)実施の形態3における意匠板を仕切板へ入れた後を示す図(A) The figure which shows the intermediate step which puts the design board in Embodiment 3 in a partition board, (b) The figure which shows after the design board in Embodiment 3 is put in a partition board 実施の形態4における、図1のα部の縦断面図FIG. 1 is a vertical cross-sectional view of part α in FIG. 1 according to the fourth embodiment. 特許文献1における従来の冷蔵庫の断熱箱の仕切板の構造を示す断面図Sectional drawing which shows the structure of the partition plate of the conventional heat insulation box of the refrigerator in patent document 1. 特許文献2における従来の冷蔵庫の断熱箱の仕切板の構造を示す断面図Sectional drawing which shows the structure of the partition plate of the conventional heat insulation box of the refrigerator in patent document 2.

以下、実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の断熱箱を示す斜視図であり、図2は図1のα部の縦断面図、図3は軟質複合断熱材11(断熱体)の拡大断面図である。
(Embodiment 1)
1 is a perspective view showing a heat insulation box of a refrigerator according to a first embodiment of the present invention, FIG. 2 is a vertical sectional view of an α portion of FIG. 1, and FIG. 3 is an enlarged cross section of a soft composite heat insulating material 11 (heat insulator). It is a figure.

<断熱箱100の構成>
図1において、冷蔵庫の断熱箱100は、鋼板などの金属製の外箱5と、ABS(アクリロニトリル・ブタジエン・スチレン)などの樹脂製の内箱4と、内箱4内の断熱される空間を仕切る仕切板1と、空間を密閉する扉(図示せず)と、によって構成される。外箱5と内箱4とを組み合わせて、断熱箱本体となる。
<Structure of heat insulation box 100>
In FIG. 1, a heat insulation box 100 of a refrigerator includes a metal outer box 5 such as a steel plate, a resin inner box 4 such as ABS (acrylonitrile butadiene styrene), and a space in the inner box 4 to be insulated. A partition plate 1 for partitioning and a door (not shown) for sealing the space are configured. The outer box 5 and the inner box 4 are combined to form a heat insulating box body.

仕切板1は、断熱された空間を分け、第1貯蔵室2と第2貯蔵室3とに仕切る。例えば、第1貯蔵室2は、冷蔵室であり、第2貯蔵室3は冷凍室である。仕切板1は、温度帯の異なる各貯蔵部屋の間に配設されるものである。 The partition plate 1 divides the heat-insulated space and partitions it into a first storage chamber 2 and a second storage chamber 3. For example, the first storage compartment 2 is a refrigerating compartment and the second storage compartment 3 is a freezing compartment. The partition plate 1 is arranged between the storage rooms having different temperature zones.

<仕切板1の構成>
図2において、仕切板1は上下に上板6(第1板部)、下板7(第2板部)を有し、上板6と下板7の前面部(断熱箱の前面、扉側)には、コの字型の意匠板10がある。意匠板15には、結露防止用の放熱パイプ9(放熱部)が、接触設置されている。なお、放熱パイプ9でなく、別の方法で結露防止をしてもよい。また、放熱パイプ9は、仕切板1内でなくともよい。
<Structure of partition plate 1>
In FIG. 2, the partition plate 1 has an upper plate 6 (first plate portion) and a lower plate 7 (second plate portion) on the upper and lower sides, and the front portions of the upper plate 6 and the lower plate 7 (the front of the heat insulating box, the door). On the side), there is a U-shaped design plate 10. A heat dissipation pipe 9 (heat dissipation part) for preventing dew condensation is provided in contact with the design plate 15. It should be noted that instead of the heat radiation pipe 9, condensation may be prevented by another method. Further, the heat radiation pipe 9 does not have to be inside the partition plate 1.

意匠板10は、冷蔵庫の前面に現れる前面部10aと、前面部10aから約90度曲げられ、冷蔵庫内部へ配置される側面部10bとを有する。 The design plate 10 has a front surface portion 10a that appears on the front surface of the refrigerator, and a side surface portion 10b that is bent from the front surface portion 10a by about 90 degrees and that is disposed inside the refrigerator.

意匠板10の側面部10bと上板6(第1板部)、下板7(第2板部)の間に、軟質複合断熱材11(断熱体)が挟まれ圧縮固定されている。第1板部6と断熱体11と意匠板10の側面部10bとが積層されている。断熱体11は、圧縮されやすい。 A soft composite heat insulating material 11 (heat insulating body) is sandwiched and fixed between the side surface portion 10b of the design plate 10, the upper plate 6 (first plate portion), and the lower plate 7 (second plate portion). The first plate portion 6, the heat insulator 11, and the side surface portion 10b of the design plate 10 are laminated. The heat insulator 11 is easily compressed.

上板6(第1板部)と下板7(第2板部)は、L字形状で、その前面部にそれぞれ鍵括弧型の上板前面部6a、下板前面部7aを備えている。なお、意匠板10から上板6(第1板部)、下板7(第2板部)への熱の伝導を防ぐため、図2の円点線の中に示すように、意匠板10と上板6(第1板部)、下板7(第2板部)の接続は、軟質複合断熱材11(断熱体)を介してのみ行うことが好ましい。すなわち、意匠板10と上板前面部6a、下板前面部7aが、直接接触しないよう隙間50を空けておくことが好ましい。隙間50は、断熱体11の厚みより薄い。 The upper plate 6 (first plate part) and the lower plate 7 (second plate part) are L-shaped, and are provided with a key-bracket type upper plate front face part 6a and lower plate front face part 7a on their front faces, respectively. .. In order to prevent heat conduction from the design plate 10 to the upper plate 6 (first plate portion) and the lower plate 7 (second plate portion), as shown by the dotted circle in FIG. The upper plate 6 (first plate portion) and the lower plate 7 (second plate portion) are preferably connected only via the soft composite heat insulating material 11 (heat insulating body). That is, it is preferable to leave a gap 50 so that the design plate 10, the upper plate front surface portion 6a, and the lower plate front surface portion 7a do not come into direct contact with each other. The gap 50 is thinner than the thickness of the heat insulator 11.

なお、上板6(第1板部)と下板7(第2板部)の全面部が鍵括弧型の上板前面部6a、下板前面部7aを有しているため、冷蔵庫前面から軟質複合断熱材11(断熱体)が使用者に明確に見えることはない。結果、冷蔵庫としての美観も維持することができる。また、上板6(第1板部)と軟質複合断熱材11(断熱体)、放熱パイプ9(放熱部)、意匠板10、下板7(第2板部)の間には、発泡ウレタンの断熱材8が充填されている。 Since the entire surfaces of the upper plate 6 (the first plate portion) and the lower plate 7 (the second plate portion) have the bracket-shaped upper plate front surface portion 6a and the lower plate front surface portion 7a, from the front surface of the refrigerator. The soft composite heat insulating material 11 (heat insulating body) is not clearly visible to the user. As a result, the beauty of the refrigerator can be maintained. Further, urethane foam is provided between the upper plate 6 (first plate portion) and the soft composite heat insulating material 11 (heat insulating body), the heat radiation pipe 9 (heat radiation portion), the design plate 10, and the lower plate 7 (second plate portion). The heat insulating material 8 is filled.

結果、第1板部6と断熱体11と意匠板10の側面部10bと放熱パイプ9とが積層されている、または、一直線上にある。断熱体11は、熱の経路を、遮断できる。 As a result, the first plate portion 6, the heat insulating body 11, the side surface portion 10b of the design plate 10 and the heat radiation pipe 9 are laminated or aligned. The heat insulator 11 can block the heat path.

<軟質複合断熱材11(断熱体)の構成>
図3に示す軟質複合断熱材11(断熱体)は、エアロゲルと繊維構造物との複合体である。軟質複合断熱材11(断熱体)は、不織布繊維11cとエアロゲル11dを構成要素とする。軟質複合断熱材11は、中央にエアロゲルと繊維との複合層11aとその上下に繊維単独層11bとを有する積層構造である。軟質複合断熱材11では、エアロゲル繊維複合層11aが変形しにくいが、繊維単独層11bが変形でき、軟質性がある。
<Structure of soft composite heat insulating material 11 (heat insulating body)>
The soft composite heat insulating material 11 (heat insulating body) shown in FIG. 3 is a composite of an airgel and a fiber structure. The soft composite heat insulating material 11 (heat insulating body) has the nonwoven fabric fibers 11c and the airgel 11d as constituent elements. The soft composite heat insulating material 11 has a laminated structure having a composite layer 11a of airgel and fibers in the center and single fiber layers 11b above and below the composite layer 11a. In the soft composite heat insulating material 11, the airgel fiber composite layer 11a is hard to be deformed, but the fiber single layer 11b can be deformed and is flexible.

エアロゲル繊維複合層11aは、繊維構造物(例えば不織布)にエアロゲルを複合させたものであり、エアロゲル前駆体に繊維構造物を浸漬し、該繊維構造物の存在下で超臨界乾燥、あるいは常圧乾燥により前記エアロゲル前駆体からエアロゲルを生成させることにより得られるものである。 The airgel fiber composite layer 11a is a composite of airgel in a fiber structure (for example, non-woven fabric), and the fiber structure is immersed in an airgel precursor and supercritically dried in the presence of the fiber structure or at normal pressure. It is obtained by producing an airgel from the airgel precursor by drying.

エアロゲルは、微細な空孔を多数持つ極めて空隙率(好ましくは空隙率99%以上)の高い固体である。より詳細には、二酸化ケイ素などを数珠状に結合した構造を持ち、ナノメータレベル(例えば2〜50nm)の空隙を多数持つ物質である。このようにナノメータレベルの細孔と格子状構造を持つため、気体分子の平均自由行程を縮小することができ、常圧でも気体分子同士の熱伝導が非常に少なく、熱伝導率が非常に小さいものである。 Aerogel is a solid having a large number of fine pores and an extremely high porosity (preferably a porosity of 99% or more). More specifically, it is a substance having a structure in which silicon dioxide and the like are connected in a beaded shape and having a large number of voids on the nanometer level (for example, 2 to 50 nm). With the nanometer-level pores and lattice structure, the mean free path of gas molecules can be reduced, and the thermal conductivity between gas molecules is very small even at normal pressure, and the thermal conductivity is very small. It is a thing.

エアロゲルとしては、ケイ素、アルミニウム、鉄、銅、ジルコニウム、ハフニウム、マグネシウム、イットリウムなどの金属酸化物からなる無機エアロゲルの使用が好ましく、より好ましくは二酸化ケイ素からなるシリカエアロゲルである。 As the aerogel, it is preferable to use an inorganic aerogel made of a metal oxide such as silicon, aluminum, iron, copper, zirconium, hafnium, magnesium or yttrium, and more preferable is a silica aerogel made of silicon dioxide.

繊維構造物は、エアロゲルを補強し、また支持するための補強材ないし支持体として作用するものであり、軟質な複合体断熱材を得るために、軟質な織布、編布、不織布などを用いる。繊維構造物の材質としては、ポリエステル繊維等の有機繊維の他、ガラス繊維などの無機繊維を用いることもできる。 The fibrous structure acts as a reinforcing material or support for reinforcing and supporting the airgel, and soft woven cloth, knitted cloth, non-woven cloth or the like is used to obtain the soft composite heat insulating material. .. As the material of the fiber structure, in addition to organic fibers such as polyester fibers, inorganic fibers such as glass fibers can be used.

このようにして得られる断熱材は、熱伝導率が発泡ウレタン断熱材と同等かそれ以下(およそλ=0.020W/(m・K))であり、非常に断熱性の高い材料である。 The heat insulating material thus obtained has a thermal conductivity equal to or lower than that of the urethane foam heat insulating material (about λ=0.020 W/(m·K)), and is a material having a very high heat insulating property.

繊維単独層11bは、エアロゲルを含まない上記繊維構造物からなる。繊維単独層11bは、主に、繊維材料のみからなるのが好ましい。繊維単独層11bは、軟質複合断熱材11(断熱体)の圧縮時の弾力性の創出や、上板6(第1板部)、下板7(第2板部)の反りやうねりによる意匠板10との隙間のばらつきの緩和のための弾力層として設けられている。 The fiber single layer 11b is made of the above fiber structure containing no airgel. It is preferable that the fiber single layer 11b mainly be made of a fiber material only. The single fiber layer 11b is designed by creating elasticity during compression of the soft composite heat insulating material 11 (heat insulating body) and by warping or waviness of the upper plate 6 (first plate portion) and the lower plate 7 (second plate portion). It is provided as an elastic layer for alleviating variations in the gap with the plate 10.

なお、両側の繊維単独層11bが、上板6、意匠板10にそれぞれ接触する。繊維単独層11bは、両板から圧縮される。繊維単独層11bが主に圧縮される。しかし、熱伝度率は、エアロゲル繊維複合層11aの寄与が大きいため、圧縮されても断熱体11の熱伝導率はほとんど変化せず、断熱を保てる。 The single fiber layers 11b on both sides come into contact with the upper plate 6 and the design plate 10, respectively. The fiber single layer 11b is compressed from both plates. The fiber-only layer 11b is mainly compressed. However, since the airgel fiber composite layer 11a greatly contributes to the thermal conductivity, the thermal conductivity of the heat insulator 11 hardly changes even when compressed, and the heat insulation can be maintained.

繊維単独層11bとエアロゲル繊維複合層11aとの層方向と圧縮させる方向は同じである。 The fiber single layer 11b and the airgel fiber composite layer 11a have the same layer direction and the same compression direction.

(製造方法)
以上のように構成される冷蔵庫について、以下、その製造方法と効果について説明する。
(Production method)
The manufacturing method and effects of the refrigerator configured as described above will be described below.

<軟質複合断熱材11(断熱体)の製造>
軟質複合断熱材11(断熱体)の製造方法は(1)ゾル調製工程、(2)含浸工程、(3)積層工程、(4)ゲル化工程、(5)養生工程、(6)酸性水溶液浸漬工程、(7)疎水化工程、(8)乾燥工程の8工程からなる。以下にそれぞれの工程ごとに説明する。
<Production of soft composite heat insulating material 11 (heat insulating body)>
The manufacturing method of the soft composite heat insulating material 11 (heat insulator) is (1) sol preparation step, (2) impregnation step, (3) lamination step, (4) gelation step, (5) curing step, (6) acidic aqueous solution. It comprises 8 steps of a dipping step, (7) hydrophobizing step, and (8) drying step. Each step will be described below.

(1)ゾル調製工程
ゾル調製工程では、原料として水ガラスを用いる場合と、高モル珪酸水溶液を用いる場合とがある。水ガラスを用いる場合は、水ガラス中のナトリウムをイオン交換樹脂もしくは電気透析法により除去、酸性にし、ゾルとした後、触媒として塩基を添加して重縮合させ、ヒドロゲルとする。高モル珪酸ソーダを用いる場合は、高モル珪酸水溶液に触媒として酸を加えて重縮合させ、ヒドロゲルとする。
(1) Sol Preparation Step In the sol preparation step, there are cases where water glass is used as a raw material and cases where a high molar silicic acid aqueous solution is used. When water glass is used, sodium in water glass is removed by an ion exchange resin or an electrodialysis method to make it acidic, and after making it a sol, a base is added as a catalyst to cause polycondensation to give a hydrogel. When high molar sodium silicate is used, an acid is added as a catalyst to the high molar silicic acid aqueous solution to cause polycondensation to form a hydrogel.

(2)含浸工程
0.2〜1.0mm厚みのPET、ガラスウール、ロックウールなどで構成される不織布に、(1)にて調製したゾル溶液を不織布重量の6.5〜10倍量注ぎ、ゾル溶液を不織布に含浸させる。含浸方法は、あらかじめゾル溶液をフィルム上などに一定の厚みにて広げ、その上より不織布を覆うことにより、ゾル溶液を不織布に浸透させる。
(2) Impregnation step Pour the sol solution prepared in (1) into a nonwoven fabric composed of PET, glass wool, rock wool, etc. having a thickness of 0.2 to 1.0 mm in an amount of 6.5 to 10 times the weight of the nonwoven fabric. , Impregnate the nonwoven fabric with the sol solution. In the impregnation method, the sol solution is preliminarily spread on a film or the like with a certain thickness, and the nonwoven fabric is covered thereover so that the sol solution permeates the nonwoven fabric.

(3)積層工程
積層構成について、図4(a)〜図4(c)を用いて説明する。(2)の工程までで、図4(a)におけるエアロゲル繊維複合層11aが完成した。積層工程では、これに、繊維単独層11bとして、不織布を積層、複合化する。
(3) Laminating Step The laminated structure will be described with reference to FIGS. 4(a) to 4(c). By the process of (2), the airgel fiber composite layer 11a in FIG. 4(a) was completed. In the laminating step, a non-woven fabric is laminated and compounded as a single fiber layer 11b.

まず、図4(a)に示すように、(2)の含浸工程を経たエアロゲル繊維複合層11aに対し、繊維単独層11bとして不織布を上下にして、図4(b)に示すようにサンドイッチする。このとき、浸透圧により、繊維単独層11bである不織布にエアロゲル繊維複合層11a中のゾル成分の一部に浸透する(しみ込む)。 First, as shown in FIG. 4(a), the airgel fiber composite layer 11a that has been subjected to the impregnation step (2) is sandwiched as shown in FIG. .. At this time, due to the osmotic pressure, a part of the sol component in the airgel fiber composite layer 11a permeates (impregnates) the nonwoven fabric which is the fiber single layer 11b.

(4)ゲル化工程
(3)の後、ゾルをゲル化する。ゾルのゲル化温度は、20〜90℃が好ましい。ゲル化温度が20℃未満であると、反応の活性種である珪酸モノマーに必要な熱が伝わらない。このため、シリカ粒子の成長が促進されない。その結果、ゾルのゲル化が十分に進行するまでに時間を要する。その上に、生成されるゲル(エアロゲル)の強度が低く、乾燥時に大きく収縮する場合があり、所望の強度のエアロゲルが得られない場合がある。
(4) Gelation step After (3), the sol is gelled. The gelation temperature of the sol is preferably 20 to 90°C. When the gelling temperature is lower than 20°C, the heat required for the silicic acid monomer which is the active species of the reaction is not transferred. Therefore, the growth of silica particles is not promoted. As a result, it takes time for the gelation of the sol to proceed sufficiently. In addition, the strength of the gel (aerogel) produced is low, and it may shrink significantly during drying, and it may not be possible to obtain an aerogel of the desired strength.

また、ゲル化温度が90℃を越えると、シリカ粒子の成長は著しく促進されてしまう。結果、水の揮発が急速に起こり、水とヒドロゲルとが分離する現象がみられる。これにより得られるヒドロゲルの体積が減少して、シリカエアロゲルが得られない場合がある。 If the gelling temperature exceeds 90° C., the growth of silica particles will be significantly promoted. As a result, water volatilizes rapidly, and there is a phenomenon in which water and hydrogel are separated. In some cases, the volume of hydrogel thus obtained is reduced and silica airgel cannot be obtained.

なお、ゲル化時間は、ゲル化温度や後述するゲル化後の養生時間により異なるが、ゲル化時間と後述する養生時間とを合計して、0.1〜12時間が好ましい。さらに、ゲル化時間は、性能(熱伝導率)と生産タクトを両立させるという観点から0.1〜1時間が好ましい。 The gelling time varies depending on the gelling temperature and the curing time after gelation described below, but is preferably 0.1 to 12 hours as the total of the gelation time and the curing time described below. Furthermore, the gelation time is preferably 0.1 to 1 hour from the viewpoint of achieving both performance (heat conductivity) and production tact.

ゲル化時間が、12時間より長い場合、シリカネットワークの強化は十分に行われているが、より養生に時間をかけると生産性を損なうだけでなく、ゲルの収縮が起こる。結果、ゲルの嵩密度が上がるため、できた軟質複合断熱材11(断熱体)の熱伝導率が上昇しよくない。 When the gelation time is longer than 12 hours, the silica network is sufficiently strengthened, but the longer the curing time, the more the productivity is impaired and the gel shrinks. As a result, the bulk density of the gel increases, so that the thermal conductivity of the resulting soft composite heat insulating material 11 (heat insulating body) increases, which is not good.

このようにして、ゲル化を行うことで、ヒドロゲルの壁の強度や剛性が向上し、乾燥時に収縮し難いヒドロゲルを得ることができる。さらに、ゾルがゲル状に固化することで、不織布層にしみ込んだエアロゲルは固化し、図4(c)に示すように、全層合体して、エアロゲル繊維複合層11aと繊維単独層11bの積層構造を形成する。 By performing gelation in this way, the strength and rigidity of the walls of the hydrogel are improved, and a hydrogel that does not easily shrink when dried can be obtained. Further, as the sol solidifies into a gel, the airgel that has penetrated into the non-woven fabric solidifies, and as shown in FIG. 4(c), all the layers are combined to laminate the airgel fiber composite layer 11a and the fiber single layer 11b. Form a structure.

(5)養生工程
養生工程は、ゲル化後にシリカの骨格を、強化させた骨格強化ヒドロゲルにする工程である。養生温度は、50〜100℃が好ましい。養生温度が50℃未満の場合、脱水縮合反応が相対的に遅くなるため、生産性を考慮した際の目標のタクト時間内にシリカネットワークを十分に強化させることが難しくなる。
(5) Curing Step The curing step is a step of making the skeleton of silica into a reinforced skeleton-reinforced hydrogel after gelation. The curing temperature is preferably 50 to 100°C. When the curing temperature is lower than 50° C., the dehydration condensation reaction becomes relatively slow, and it becomes difficult to sufficiently strengthen the silica network within the target tact time when productivity is taken into consideration.

養生温度が、100℃より高い場合は、ゲル中の水分が著しく蒸発してしまうため、ゲルの収縮、乾燥が起こり、熱伝導率が上昇してしまう。 When the curing temperature is higher than 100° C., the water content in the gel evaporates significantly, so that the gel contracts and dries, and the thermal conductivity increases.

養生時間は、0.1〜12時間が好ましく、性能(熱伝導率)と生産タクトを両立させるという観点から0.1〜1時間がより好ましい。 The curing time is preferably 0.1 to 12 hours, and more preferably 0.1 to 1 hour from the viewpoint of achieving both performance (heat conductivity) and production tact.

養生時間が12時間より長い場合、シリカネットワークの強化は十分に行われているが、より養生に時間をかけると生産性を損なうだけでなく、ゲルの収縮が起こり、嵩密度が上がるため、熱伝導率が上昇してしまうという問題がある。 When the curing time is longer than 12 hours, the silica network is sufficiently strengthened, but if the curing time is prolonged, not only the productivity is impaired, but also the gel shrinks and the bulk density increases, so There is a problem that the conductivity increases.

養生時間を0.1〜6時間の範囲で養生を行うことで、生産性を確保しつつ、シリカ粒子のネットワークを十分に強化することができる。 By performing the curing in the range of 0.1 to 6 hours, the network of silica particles can be sufficiently strengthened while ensuring the productivity.

(6)酸性水溶液浸漬工程
ゲルと不織布の複合体を塩酸(6〜12規定)に浸漬後、常温23℃で45分以上放置し、複合体内部に塩酸を取り込む。
(6) Step of Immersing Acidic Aqueous Solution After immersing the gel-nonwoven fabric complex in hydrochloric acid (6 to 12 N), the mixture is left standing at room temperature of 23° C. for 45 minutes or more to take up the hydrochloric acid inside the complex.

(7)疎水化工程
ゲルと不織布の複合体を例えば、シリル化剤であるオクタメチルトリシロキサンとアルコールとして2−プロパノール(IPA)の混合液に浸漬させて、55℃の恒温槽に入れて2時間反応させる。トリメチルシロキサン結合が形成され始めると、ゲルシートから塩酸水が排出され、2液分離する(上層にシロキサン、下層に塩酸水)。
(7) Hydrophobicizing step For example, the composite of gel and nonwoven fabric is immersed in a mixed solution of octamethyltrisiloxane which is a silylating agent and 2-propanol (IPA) as an alcohol, and placed in a thermostatic chamber at 55°C for 2 hours. React for hours. When trimethylsiloxane bond starts to be formed, hydrochloric acid water is discharged from the gel sheet, and two liquids are separated (siloxane in the upper layer and hydrochloric acid water in the lower layer).

(8)乾燥
ゲルと不織布の複合体を150℃の恒温槽に移して2時間乾燥させる(常圧乾燥の場合)。
(8) Drying The composite of gel and non-woven fabric is transferred to a constant temperature bath at 150° C. and dried for 2 hours (in the case of normal pressure drying).

以上の工程により、軟質複合断熱材11(断熱体)が製造される。 Through the above steps, the soft composite heat insulating material 11 (heat insulating body) is manufactured.

<仕切板1の製造>
仕切板1の製造方法について、図1、図2、図5、図6を用いて説明する。
<Manufacture of partition plate 1>
A method of manufacturing the partition plate 1 will be described with reference to FIGS. 1, 2, 5, and 6.

図1において、外箱5と内箱4を係合したのち、図1中の仕切板1の部分について、図5に示すように、意匠板10に接触するように放熱パイプ9(放熱部)をテープ等(図示せず)で固定したものを設け、仕切板1の上板6(第1板部)の下面と下板7(第2板部)の上面にテープ等(図示せず)で軟質複合断熱材11(断熱体)を設置する。 In FIG. 1, after the outer box 5 and the inner box 4 are engaged with each other, the part of the partition plate 1 in FIG. 1 is radiated so as to come into contact with the design plate 10 as shown in FIG. Is provided with a tape or the like (not shown), and the tape or the like (not shown) is provided on the lower surface of the upper plate 6 (first plate portion) of the partition plate 1 and the upper surface of the lower plate 7 (second plate portion). Then, the soft composite heat insulating material 11 (heat insulating body) is installed.

次に、断熱箱に仮止めした仕切板1の上板6(第1板部)と下板7(第2板部)を、図5の(1)のように上下に少し広げ、図5の(2)に示すように、上板6(第1板部)と下板7(第2板部)に設置された軟質複合断熱材11(断熱体)の間に意匠板10を移動させ合体させる。 Next, the upper plate 6 (first plate part) and the lower plate 7 (second plate part) of the partition plate 1 temporarily fixed to the heat insulating box are slightly spread vertically as shown in (1) of FIG. As shown in (2) of the above, the design plate 10 is moved between the soft composite heat insulating material 11 (heat insulator) installed on the upper plate 6 (first plate portion) and the lower plate 7 (second plate portion). To coalesce.

合体した意匠板10の位置固定について、図6の斜視図に示すように、上板6(第1板部)(図示せず)と下板7(第2板部)(図示せず)の間の一部に配設された仕切板1の取付用リブ12に、取付用リブ12と同じ位置に配設された意匠板10上のビス穴13を介して、ビス(図示せず)にて、意匠板10を固定する。 Regarding the position fixing of the combined design plate 10, as shown in the perspective view of FIG. 6, the upper plate 6 (first plate portion) (not shown) and the lower plate 7 (second plate portion) (not shown) are fixed. Through a screw hole 13 on the design plate 10 arranged at the same position as the mounting rib 12 to the mounting rib 12 of the partition plate 1 arranged in a part of the space, a screw (not shown) is formed. Then, the design board 10 is fixed.

最後に、図1における断熱箱100の背面側から外箱5と内箱4の間と、図2における上板6(第1板部)と下板7(第2板部)の間に発泡ウレタンの断熱材8を流し込み、硬化させることで仕切板1、ならびに断熱箱100が製造される。 Finally, foaming is performed from the back side of the heat insulation box 100 in FIG. 1 between the outer box 5 and the inner box 4 and between the upper plate 6 (first plate part) and the lower plate 7 (second plate part) in FIG. The partition plate 1 and the heat insulating box 100 are manufactured by pouring the urethane heat insulating material 8 and curing it.

このとき、図2に示すように、上板6(第1板部)と下板7(第2板部)の間には意匠板10により軟質複合断熱材11(断熱体)が圧縮されて固定されているため、発泡ウレタンの断熱材8が、封入時に断熱箱の前面に漏れ出すことはない。 At this time, as shown in FIG. 2, the soft composite heat insulating material 11 (heat insulating body) is compressed between the upper plate 6 (first plate portion) and the lower plate 7 (second plate portion) by the design plate 10. Since it is fixed, the urethane foam heat insulating material 8 does not leak to the front surface of the heat insulating box at the time of sealing.

結果、断熱材8は、断熱体11と意匠板10と第1板部6と第2板部7とで囲まれている。 As a result, the heat insulating material 8 is surrounded by the heat insulating body 11, the design plate 10, the first plate portion 6, and the second plate portion 7.

<実施の形態1の効果>
図2に示すように、放熱パイプ19の熱は、意匠板10の前面部10aから側面部10bまで伝わり、意匠板10の表面の結露防止に効果を発揮する。一方で、側面部10bの隣には、断熱性の高い軟質複合断熱材11(断熱体)が配置しているため、熱が仕切板1の上板6(第1板部)や下板7(第2板部)に伝わらず、庫内への熱の侵入を防ぐことができる。
<Effect of Embodiment 1>
As shown in FIG. 2, the heat of the heat radiating pipe 19 is transmitted from the front surface portion 10a to the side surface portion 10b of the design plate 10 and exerts an effect of preventing dew condensation on the surface of the design plate 10. On the other hand, since the soft composite heat insulating material 11 (insulator) having a high heat insulating property is disposed next to the side surface portion 10b, heat is applied to the upper plate 6 (first plate portion) and the lower plate 7 of the partition plate 1. It is possible to prevent heat from entering the inside of the refrigerator without being transmitted to the (second plate portion).

特に、軟質複合断熱材11(断熱体)は、圧縮力(押圧)を受け、縮んでも、熱伝導率がほとんど変化しない。 In particular, the soft composite heat insulating material 11 (heat insulating body) receives a compressive force (pressure) and shrinks, and its thermal conductivity hardly changes.

図7に、軟質複合断熱材11(断熱体)の押圧と熱伝導率の関係を示す。実施の形態1における軟質複合断熱材11(断熱体)と、比較例1として同じ厚みの発泡樹脂製の断熱材と、比較例2として同じ厚みの樹脂製断熱材とを評価した。種々の押圧をかけた状態で、各試料の熱伝導率を測定したものである。 FIG. 7 shows the relationship between the pressure of the soft composite heat insulating material 11 (heat insulating body) and the thermal conductivity. The soft composite heat insulating material 11 (heat insulating body) according to the first embodiment, a foamed resin heat insulating material having the same thickness as Comparative Example 1, and a resin heat insulating material having the same thickness as Comparative Example 2 were evaluated. The thermal conductivity of each sample was measured under various pressures.

発泡樹脂製の断熱材(比較例1)は、初期の熱伝導率λ=0.04W/(m・K)に対し、500kPaの押圧をかけたときには76%も上昇している。 The heat insulating material made of foamed resin (Comparative Example 1) had an initial thermal conductivity of λ=0.04 W/(m·K), and increased by 76% when a pressure of 500 kPa was applied.

樹脂製の断熱材(比較例2)は、初期の熱伝導率λ=0.05W/(m・K)に対し、500kPaの押圧をかけたときには45%も上昇している。
一方、軟質複合断熱材11(実施例)は、500kPaの押圧時に15%しか熱伝導率が上昇していない。
The resin heat insulating material (Comparative Example 2) had an initial thermal conductivity λ=0.05 W/(m·K) of 45% when pressed at 500 kPa.
On the other hand, the thermal conductivity of the soft composite heat insulating material 11 (Example) increased by only 15% when pressed at 500 kPa.

したがって、軟質複合断熱材11(断熱体)は意匠板10と上板6(第1板部)、下板7(第2板部)の間に圧縮固定するのに適している。つまり、軟質複合断熱材11(断熱体)を圧縮しても、断熱効果が低下しない。軟質複合断熱材11(断熱体)は、断熱材として好ましい。 Therefore, the soft composite heat insulating material 11 (heat insulator) is suitable for being compressed and fixed between the design plate 10, the upper plate 6 (first plate portion), and the lower plate 7 (second plate portion). That is, even if the soft composite heat insulating material 11 (heat insulating body) is compressed, the heat insulating effect does not decrease. The soft composite heat insulating material 11 (heat insulating body) is preferable as a heat insulating material.

また、軟質複合断熱材11(断熱体)は、意匠板10と上板6(第1板部)、下板7(第2板部)の間で圧縮固定されているのに加え、図4(c)に示すように、上板6(第1板部)、下板7(第2板部)と意匠板10の隙間のばらつきに対応する弾力性のある繊維単独層11bが設けられている。 Further, the soft composite heat insulating material 11 (heat insulating body) is compressed and fixed between the design plate 10, the upper plate 6 (first plate portion), and the lower plate 7 (second plate portion). As shown in (c), an elastic fiber single layer 11b is provided corresponding to the variation in the gap between the upper plate 6 (first plate part), the lower plate 7 (second plate part) and the design plate 10. There is.

これにより、従来の冷蔵庫にて発泡ウレタンの断熱材8の漏れ出し防止に用いていた断熱性の低い発泡スチロール製の断熱材34(図13)、断熱材24(図12)、仕切壁36(図13)を用いなくともよい。 As a result, the heat insulating material 34 (FIG. 13), the heat insulating material 24 (FIG. 12), the partition wall 36 (FIG. 13) may not be used.

さらに、実施の形態1の仕切板1では、放熱パイプ19の近傍まで、断熱性の高い発泡ウレタンの断熱材8を封入することができる。よって、放熱パイプ19から上板6(第1板部)や下板7(第2板部)を介して庫内に侵入する熱も防ぐことができる。 Furthermore, in the partition plate 1 according to the first embodiment, the heat insulating material 8 made of urethane foam having a high heat insulating property can be enclosed up to the vicinity of the heat radiating pipe 19. Therefore, it is possible to prevent heat from entering the inside of the refrigerator from the heat radiation pipe 19 through the upper plate 6 (first plate portion) and the lower plate 7 (second plate portion).

さらに、図2に示すように仕切板1の上板6(第1板部)と下板7(第2板部)の全面部が鍵括弧型をしているため、冷蔵庫前面から軟質複合断熱材11(断熱体)が使用者に見えることがなく、冷蔵庫としての美観も維持することができる。 Further, as shown in FIG. 2, since the entire surface of the upper plate 6 (first plate part) and the lower plate 7 (second plate part) of the partition plate 1 is in the shape of a key bracket, the soft composite heat insulation from the front of the refrigerator is performed. The material 11 (insulator) is not visible to the user, and the aesthetic appearance of the refrigerator can be maintained.

なお、軟質複合断熱材11(断熱体)は、2箇所に設けているが、少なくとも1方にあればよい。 In addition, although the soft composite heat insulating material 11 (heat insulating body) is provided in two places, it may be provided in at least one.

(実施の形態2)
図8は、図1のα部の縦断面図である。図8は、実施の形態1の図2に対応する図である。
(Embodiment 2)
FIG. 8 is a vertical cross-sectional view of the α portion in FIG. FIG. 8 is a diagram corresponding to FIG. 2 of the first embodiment.

実施の形態2において、実施の形態1と異なるのは、図8における意匠板15と上板61(第1板部)、下板71の形状である。説明しない事項は、実施の形態1と同様である。 The second embodiment differs from the first embodiment in the shapes of the design plate 15, the upper plate 61 (first plate portion), and the lower plate 71 in FIG. Items not described are the same as those in the first embodiment.

<意匠板15、上板61(第1板部)、下板71(第2板部)の構成>
図8において、意匠板15は、ロールフォーミングなどの折曲げ加工により、端部に二重折曲げ部15bを形成したのちに、上板61(第1板部)、下板71(第2板部)と平行な面を構成するように再度折曲げられ折曲げ平坦部15cを設けている。
<Structure of Design Plate 15, Upper Plate 61 (First Plate Part), Lower Plate 71 (Second Plate Part)>
In FIG. 8, the design plate 15 has the upper plate 61 (first plate part) and the lower plate 71 (second plate) after forming the double-folded part 15b at the end by bending such as roll forming. The bent flat portion 15c is provided so as to form a surface parallel to the bent portion.

つまり、意匠板15は両端が2重構造で、内側に突起があり、前記突起で前記断熱材を保持する。 That is, the design plate 15 has a double structure at both ends and has a protrusion inside, and the protrusion holds the heat insulating material.

上板61(第1板部)と下板71(第2板部)は、軟質複合断熱材11(断熱体)が収まるように意匠板10に平行に、それぞれザグリ61b、71b(凹部)を設けている。 The upper plate 61 (first plate part) and the lower plate 71 (second plate part) are provided with counterbores 61b and 71b (recesses) in parallel with the design plate 10 so that the soft composite heat insulating material 11 (heat insulator) can be accommodated therein. It is provided.

なお、ザグリ(凹部)でなく、2つの凸部で断熱体を固定してもよい。 Note that the heat insulator may be fixed by two convex portions instead of the counterbore (concave portion).

なお、意匠板15から上板61(第1板部)、下板71(第2板部)への熱の伝導を防ぐため、意匠板15と上板61(第1板部)、下板71(第2板部)の接続は、軟質複合断熱材11(断熱体)を介してのみ行い、直接、意匠板15の端部15aと上板61(第1板部)、下板71(第2板部)がそれぞれ接触しないよう隙間を空けておくことが好ましい。 In order to prevent heat conduction from the design plate 15 to the upper plate 61 (first plate portion) and the lower plate 71 (second plate portion), the design plate 15, the upper plate 61 (first plate portion), the lower plate 71 (second plate portion) is connected only through the soft composite heat insulating material 11 (heat insulator), and the end portion 15a of the design plate 15 and the upper plate 61 (first plate portion), the lower plate 71 ( It is preferable to leave a gap so that the second plate portions) do not contact each other.

<実施の形態2の効果>
実施の形態1に示した効果(結露防止効果、庫内への熱侵入抑制効果)に加え、上板61(第1板部)、下板71(第2板部)にザグリ61b、71bがあることと、意匠板15に折り曲げ部があることにより、軟質複合断熱材11(断熱体)の仕切板1の組立時の位置決め精度を向上させることができる。
<Effect of Embodiment 2>
In addition to the effects shown in Embodiment 1 (condensation prevention effect, heat invasion suppression effect in the refrigerator), counterbores 61b, 71b are provided on the upper plate 61 (first plate part) and the lower plate 71 (second plate part). The presence of the bent part in the design plate 15 improves the positioning accuracy of the partition plate 1 of the soft composite heat insulating material 11 (heat insulating body).

また、図8に示すように意匠板15に折り曲げ部があることにより、冷蔵庫前面から軟質複合断熱材11(断熱体)が使用者に見えることがなく、冷蔵庫としての美観も維持できる。 Further, as shown in FIG. 8, since the design plate 15 has the bent portion, the soft composite heat insulating material 11 (heat insulating body) is not visible to the user from the front of the refrigerator, and the aesthetics of the refrigerator can be maintained.

(実施の形態3)
図9は図1のα部の縦断面図である。図9は、実施の形態1の図2に対応する図である。
(Embodiment 3)
FIG. 9 is a vertical cross-sectional view of the α portion in FIG. FIG. 9 is a diagram corresponding to FIG. 2 of the first embodiment.

実施の形態3において、実施の形態1と異なるのは、意匠板16と上板62(第1板部)、下板72(第2板部)の形状と、仕切板1の製造方法(意匠板16の上板62(第1板部)、下板72(第2板部)への組込み方法)である。説明しない事項は、実施の形態1と同様である。 The third embodiment differs from the first embodiment in the shapes of the design plate 16, the upper plate 62 (first plate portion), the lower plate 72 (second plate portion), and the manufacturing method of the partition plate 1 (design The method of assembling the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion) of the plate 16). Items not described are the same as those in the first embodiment.

<意匠板16、上板62(第1板部)、下板72(第2板部)の構成>
図9において、意匠板16は二段のプレス加工などで形成された第1段差部16aと第2段差部16bを有している。上板62(第1板部)、下板72(第2板部)の前面部には、それぞれ鉤戻り部62a、72aが設けられている。
<Structure of Design Plate 16, Upper Plate 62 (First Plate Part), Lower Plate 72 (Second Plate Part)>
In FIG. 9, the design plate 16 has a first step portion 16a and a second step portion 16b formed by two-step press working or the like. The upper plate 62 (first plate part) and the lower plate 72 (second plate part) are provided with hook return parts 62a and 72a, respectively, on their front surfaces.

なお、意匠板16から上板62(第1板部)、下板72(第2板部)への熱の伝導を防ぐため、意匠板16と上板62(第1板部)、下板72(第2板部)の接続は、軟質複合断熱材11(断熱体)を介してのみ行い、直接、意匠板16の第1段差部16aと上板鉤戻り部62a、下板鉤戻り部72aがそれぞれ接触しないよう隙間を空けておくことが好ましい。 In order to prevent heat conduction from the design plate 16 to the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion), the design plate 16 and the upper plate 62 (first plate portion), the lower plate The 72 (second plate portion) is connected only through the soft composite heat insulating material 11 (heat insulator), and directly connected to the first step portion 16a of the design plate 16, the upper plate hook returning portion 62a, and the lower plate hook returning portion. It is preferable to leave a gap so that 72a does not contact each other.

<仕切板1の製造(意匠板16の上板62(第1板部)、下板72(第2板部)への組込み方法)>
図10(a)は、仕切板1の上板62(第1板部)、下板72(第2板部)の間に意匠板16への組込み段階を示す図である。意匠板16を上板62(第1板部)と下板72(第2板部)の間に矢印の向きに押し込むと、意匠板16の第2段差部16bの上面と下面が上板62(第1板部)、下板72(第2板部)それぞれの鉤戻り部62a、72aのテーパ部を押し、上板62(第1板部)と下板72(第2板部)の開口部が広がる。これにより、意匠板16を上板62(第1板部)と下板72(第2板部)に設置された軟質複合断熱材11(断熱体)の間の部分にまで配置することができる。
<Manufacture of Partition Plate 1 (Method of Assembling Design Plate 16 into Upper Plate 62 (First Plate Part) and Lower Plate 72 (Second Plate Part))>
FIG. 10( a) is a diagram showing a step of assembling the design plate 16 between the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion) of the partition plate 1. When the design plate 16 is pushed between the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion) in the direction of the arrow, the upper surface and the lower surface of the second step portion 16b of the design plate 16 become the upper plate 62. (First plate portion), lower plate 72 (second plate portion) of the hook return portion 62a, the taper portion of 72a is pressed, the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion) The opening widens. As a result, the design plate 16 can be arranged even in a portion between the soft composite heat insulating material 11 (heat insulator) installed on the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion). ..

図10(b)は、仕切板1の上板62(第1板部)、下板72(第2板部)の間に意匠板16への組込み後を示す図である。意匠板16の第2段差部16b(階段状形状)が、上板62(第1板部)、下板72(第2板部)それぞれの鉤戻り部62a、72aより奥まで押し込まれると、鉤戻り部62a、72aに対する外力が無くなる。このとき、スプリングバックによって、軟質複合断熱材11(断熱体)と意匠板16の第2段差部16bが接触し、圧縮固定される。仕切板1の製造において、上記以外の部分は実施の形態1、2と同様である。 FIG. 10B is a diagram showing a state after the partition plate 1 is assembled to the design plate 16 between the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion) of the partition plate 1. When the second step portion 16b (stepped shape) of the design plate 16 is pushed deeper than the hook return portions 62a and 72a of the upper plate 62 (first plate portion) and the lower plate 72 (second plate portion), The external force on the hook return parts 62a and 72a is eliminated. At this time, due to the spring back, the soft composite heat insulating material 11 (heat insulating body) and the second step portion 16b of the design plate 16 come into contact with each other and are compressed and fixed. In the manufacturing of the partition plate 1, the parts other than the above are the same as those in the first and second embodiments.

<実施の形態3の効果>
図9に示した実施の形態3により、実施の形態1に示した効果(結露防止効果、庫内への熱侵入抑制効果)に加え、上板62(第1板部)、下板72(第2板部)前面部に鉤戻り部62a、72aがあることにより、仕切板1の製造工程、特に意匠板16の上板62(第1板部)、下板72(第2板部)の間への組込みを簡略化することができる。すなわち、実施の形態1あるいは2においては、意匠板の組み込みのために上板と下板の開口部を広げる必要があるが、本実施の形態においては、前述のように意匠板16を上板62(第1板部)、下板72(第2板部)の間に押し込むだけで済む。
<Effect of Embodiment 3>
According to the third embodiment shown in FIG. 9, in addition to the effect (condensation preventing effect, heat invasion suppressing effect into the refrigerator) shown in the first embodiment, an upper plate 62 (first plate portion), a lower plate 72 ( (2nd plate part) By the hook return parts 62a and 72a on the front part, the manufacturing process of the partition plate 1, especially the upper plate 62 (first plate part) and the lower plate 72 (second plate part) of the design plate 16 It is possible to simplify the integration between the two. That is, in the first or second embodiment, it is necessary to widen the openings of the upper plate and the lower plate for incorporating the design plate, but in the present embodiment, the design plate 16 is used as the upper plate as described above. It only needs to be pushed between the 62 (first plate portion) and the lower plate 72 (second plate portion).

また、図9に示すように上板62(第1板部)、下板72(第2板部)の前面部に鉤戻り部62a、72aがあることにより、冷蔵庫前面から軟質複合断熱材11(断熱体)が使用者に見えることがなく、冷蔵庫としての美観も維持することができる。 Further, as shown in FIG. 9, since the upper plate 62 (first plate part) and the lower plate 72 (second plate part) have the hook return parts 62a, 72a on the front parts thereof, the soft composite heat insulating material 11 from the front of the refrigerator 11 The (insulator) is not visible to the user, and the appearance as a refrigerator can be maintained.

(実施の形態4)
図11は図1のα部の縦断面図である。図9は、実施の形態1の図2に対応する図である。
(Embodiment 4)
FIG. 11 is a vertical cross-sectional view of the α portion of FIG. FIG. 9 is a diagram corresponding to FIG. 2 of the first embodiment.

本実施の形態が実施の形態1と異なるのは、図11における上板63(第1板部)と下板73(第2板部)の形状である。上板63(第1板部)と下板73(第2板部)の側面部10bは、前面(意匠板10との組込み位置)において平坦な形状である。説明しない事項は、実施の形態1と同様である。 The present embodiment differs from the first embodiment in the shapes of the upper plate 63 (first plate portion) and the lower plate 73 (second plate portion) in FIG. 11. The side surface portion 10b of the upper plate 63 (first plate portion) and the lower plate 73 (second plate portion) has a flat shape on the front surface (position where the design plate 10 is incorporated). Items not described are the same as those in the first embodiment.

<実施の形態4の効果>
実施の形態1に示した効果(結露防止効果、庫内への熱侵入抑制効果)に加え、平板をベースに構成できるなど、上板63(第1板部)、下板73(第2板部)を簡便に製造することが可能となる。
<Effect of Embodiment 4>
In addition to the effects shown in the first embodiment (condensation preventing effect, heat invasion suppressing effect in the refrigerator), a flat plate can be used as a base, and the upper plate 63 (first plate portion) and the lower plate 73 (second plate). Part) can be easily manufactured.

簡便な製造方法であっても、軟質複合断熱材11(断熱体)は上板63(第1板部)、下板73(第2板部)と意匠板10の間に強固に圧縮固定されているため、内部のウレタンが漏れ出すことはない。 Even with a simple manufacturing method, the soft composite heat insulating material 11 (heat insulator) is firmly compressed and fixed between the upper plate 63 (first plate portion), the lower plate 73 (second plate portion) and the design plate 10. Therefore, the urethane inside does not leak out.

美観の確保は困難であるが、店舗用の民生冷蔵庫、業務用冷蔵庫など、美観を重視しない冷蔵庫に対しての適用が可能である。 Although it is difficult to secure aesthetics, it can be applied to refrigerators that do not emphasize aesthetics, such as consumer refrigerators for shops and commercial refrigerators.

(全体として)
なお、上記実施の形態は、それぞれ組み合わせできる。
(as a whole)
The above embodiments can be combined with each other.

また、上記では、意匠板10の両端を同じ形状とする例であったが、どちらか一方を実施の形態としてもよい。または、両端で異なる実施の形態でもよい。 Further, in the above description, both ends of the design plate 10 have the same shape, but either one may be the embodiment. Alternatively, the embodiments may be different at both ends.

以上のように、本発明にかかる冷蔵庫は、複数の温度帯の部屋を仕切板で分割する機構を持つあらゆる冷熱機器(民生用冷蔵庫、業務用冷蔵庫、ワインセラーなど)の断熱性向上のために利用可能である。 INDUSTRIAL APPLICABILITY As described above, the refrigerator according to the present invention is for improving the heat insulating property of any cooling/heating equipment (commercial refrigerator, commercial refrigerator, wine cellar, etc.) having a mechanism for dividing a room in a plurality of temperature zones by a partition plate. It is available.

1 仕切板
2 第1貯蔵室
3 第2貯蔵室
4 内箱
5 外箱
6 上板(第1板部)
6a 上板前面部
7 下板(第2板部)
7a 下板前面部
8 断熱材
9 放熱パイプ(放熱部)
10 意匠板
10a 前面部
10b 側面部
11 軟質複合断熱材(断熱体)
11a エアロゲル繊維複合層
11b 繊維単独層
11c 不織布繊維
11d エアロゲル
12 取付用リブ
13 ビス穴
15 意匠板
15a 端部
15b 二重折曲げ部
15c 折曲げ平坦部
16 意匠板
16a 第1段差部
16b 第2段差部
19 放熱パイプ
21 仕切板
22 放熱パイプ
23 蓄熱層
24 断熱材
25 意匠板
25a 端部
26 上板
27 下板
28 断熱材
31 仕切板
32 放熱パイプ
33 断熱材
34 断熱材
35 意匠板
35a 前面部
35b 張出端部
35c 脚状端辺
36 仕切壁
37 断熱材
38 上板
39 下板
40 リブ部
50 隙間
61 上板(第1板部)
61b ザグリ
62 上板(第1板部)
62a 鉤戻り部
63 上板(第1板部)
71 下板(第2板部)
72 下板(第2板部)
72a 鉤戻り部
73 下板(第2板部)
99 空隙率
100 断熱箱
1 Partition Plate 2 First Storage Room 3 Second Storage Room 4 Inner Box 5 Outer Box 6 Upper Plate (First Plate Part)
6a Upper plate front part 7 Lower plate (second plate part)
7a Lower plate front surface 8 Insulation material 9 Radiating pipe (radiating portion)
10 Design plate 10a Front part 10b Side part 11 Soft composite heat insulating material (heat insulator)
11a Aerogel fiber composite layer 11b Fiber single layer 11c Nonwoven fiber 11d Aerogel 12 Mounting rib 13 Screw hole 15 Design plate 15a End part 15b Double bent part 15c Bent flat part 16 Design plate 16a First step 16b Second step Part 19 Radiating pipe 21 Partition plate 22 Radiating pipe 23 Heat storage layer 24 Insulating material 25 Design plate 25a End 26 Upper plate 27 Lower plate 28 Insulating material 31 Partition plate 32 Radiating pipe 33 Insulating material 34 Insulating material 35 Design plate 35a Front part 35b Overhanging end portion 35c Leg-shaped side edge 36 Partition wall 37 Heat insulating material 38 Upper plate 39 Lower plate 40 Rib portion 50 Gap 61 Upper plate (first plate portion)
61b Counterbore 62 Upper plate (first plate part)
62a Hook return part 63 Upper plate (first plate part)
71 Lower plate (second plate part)
72 Lower plate (second plate part)
72a Hook return part 73 Lower plate (second plate part)
99 Porosity 100 Insulation box

Claims (5)

空間を有する断熱箱本体と、
前記空間を密閉する扉と、
前記空間を仕切る仕切板と、を含み、
前記仕切板は、
前記扉の側に配置された意匠板と、
前記意匠板の両端のそれぞれに配置された第1板部と第2板部と、
前記意匠板と前記第1板部と前記第2板部で囲まれた領域に位置する断熱材と、
前記意匠板と前記第1板部との間、前記意匠板と前記第2板部との間の少なくとも1方に配置された断熱体と
前記仕切板にあり、前記意匠板と接触して配置されている放熱部と、を有し、
前記意匠板は、コの字形状であり、前記コの字のコーナーに前記放熱部があり、
前記第1板部、または、前記第2板部は、L字形状であり、前記L字形状のコーナーに断熱材があり、
前記第1板部と前記断熱体と前記意匠板の側板と前記放熱部とが接して積層し、
前記断熱体は、繊維と断熱材料との複合層と、前記複合層の両面に繊維層と、を含み、
前記繊維層は、前記意匠板と、前記第1板部又は前記第2板部と接触する断熱箱。
An insulating box body having a space,
A door for sealing the space,
A partition plate for partitioning the space,
The partition plate is
A design plate arranged on the side of the door,
A first plate part and a second plate part arranged at both ends of the design plate;
A heat insulating material located in a region surrounded by the design plate, the first plate portion, and the second plate portion;
A heat insulator arranged between at least one of the design plate and the first plate portion and between the design plate and the second plate portion ;
In the partition plate, having a heat dissipation portion arranged in contact with the design plate,
The design plate has a U shape, and the heat dissipation portion is provided at a corner of the U shape.
The first plate portion or the second plate portion has an L shape, and a heat insulating material is provided at a corner of the L shape.
The first plate portion, the heat insulator, the side plate of the design plate, and the heat dissipation portion are in contact and laminated,
The heat insulator includes a composite layer of fibers and a heat insulating material, and a fiber layer on both surfaces of the composite layer,
The said fiber layer is a heat insulation box which contacts the said design board and the said 1st board part or the said 2nd board part.
前記断熱体は、前記繊維層が、圧縮された状態である請求項1記載の断熱箱。 The heat insulation box according to claim 1 , wherein the fiber layer of the heat insulation body is in a compressed state. 前記意匠板と、前記第1板部、または、前記第2板部との間に隙間がある請求項1または2に記載の断熱箱。 Said design plate, said first plate portion, or heat insulating box according to claim 1 or 2 there is a gap between the second plate portion. 前記隙間は前記断熱体の厚みより小さい請求項に記載の断熱箱。 The heat insulation box according to claim 3 , wherein the gap is smaller than the thickness of the heat insulator. 前記第1板部と前記第2板部のいずれかには、前記断熱材が配置される凹部、または、凸部がある請求項1〜のいずれか1項に記載の断熱箱。 Wherein the any of the second plate portion first plate portion, said recess thermally insulating material is arranged, or the insulating box according to any one of claims 1 to 4, there is a convex portion.
JP2017103643A 2016-09-09 2017-05-25 Insulation box Active JP6733606B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710599070.7A CN107806731A (en) 2016-09-09 2017-07-20 Hot box
US15/684,727 US10866021B2 (en) 2016-09-09 2017-08-23 Heat-insulation box

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176089 2016-09-09
JP2016176089 2016-09-09

Publications (2)

Publication Number Publication Date
JP2018044758A JP2018044758A (en) 2018-03-22
JP6733606B2 true JP6733606B2 (en) 2020-08-05

Family

ID=61694826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103643A Active JP6733606B2 (en) 2016-09-09 2017-05-25 Insulation box

Country Status (1)

Country Link
JP (1) JP6733606B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822253U (en) * 1971-07-20 1973-03-14
JPS4838469U (en) * 1971-09-10 1973-05-12
JPH10318657A (en) * 1997-05-21 1998-12-04 Hitachi Ltd Refrigerator
JP3945553B2 (en) * 1998-07-27 2007-07-18 三菱電機株式会社 Heat insulation box
JP3805163B2 (en) * 2000-03-30 2006-08-02 株式会社東芝 Refrigerator partition structure
CA2338807C (en) * 2001-02-27 2004-07-06 Camco Inc. Refrigerator mullion
CA2876691C (en) * 2012-06-26 2018-06-12 Cabot Corporation Flexible insulating structures and methods of making and using same

Also Published As

Publication number Publication date
JP2018044758A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US10866021B2 (en) Heat-insulation box
JP6959808B2 (en) refrigerator
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
KR101597554B1 (en) Vacuum insulation panel and refrigerator with vacuum insulation panel
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
KR101620397B1 (en) Vacuum insulation panel and refrigerator with vacuum insulation panel
KR20110015323A (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR20110015322A (en) Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
US20130029082A1 (en) Vacuum insulation panel
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
CN101568787A (en) Refrigerating appliance
JP2007238141A (en) Vacuum container
JP2004340194A (en) Vacuum heat insulating material and refrigerator
CN100383453C (en) Vacuum heat insulator, and refrigerating apparatus and cooling apparatus using the insulator
CA2458037C (en) Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained
JP3528846B1 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using the vacuum insulation material
JP6733606B2 (en) Insulation box
JP2009168092A (en) Vacuum heat insulation material and building component using vacuum heat insulation material
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
KR20110133451A (en) Vacuum insulation panel and manufacturing method thereof
KR200472900Y1 (en) Drywall insulation structure
JP3876551B2 (en) Insulation and refrigerator
JP2020153602A (en) Door for refrigerating showcase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150