JP6731311B2 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
JP6731311B2
JP6731311B2 JP2016156033A JP2016156033A JP6731311B2 JP 6731311 B2 JP6731311 B2 JP 6731311B2 JP 2016156033 A JP2016156033 A JP 2016156033A JP 2016156033 A JP2016156033 A JP 2016156033A JP 6731311 B2 JP6731311 B2 JP 6731311B2
Authority
JP
Japan
Prior art keywords
reaction cell
sample
reagent
reaction
automatic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016156033A
Other languages
English (en)
Other versions
JP2018025415A (ja
Inventor
貴洋 安藤
貴洋 安藤
谷口 伸一
伸一 谷口
山崎 功夫
功夫 山崎
定光 麻生
定光 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2016156033A priority Critical patent/JP6731311B2/ja
Publication of JP2018025415A publication Critical patent/JP2018025415A/ja
Application granted granted Critical
Publication of JP6731311B2 publication Critical patent/JP6731311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反応セル及びこれを用いた自動分析装置に関する。
血液や尿などの生体試料に含まれる、蛋白質、糖、脂質、酵素、ホルモン、無機イオン、疾患マーカー等を分析する臨床検査の大部分は、自動分析装置で実行されている。自動分析装置としては、例えば反応セル内で、生体試料と試薬とを混合した反応溶液の吸光度を測定し、所定の物質の有無の判定や濃度の測定を行うものが知られている。
近年、医療診断技術の向上に伴って、臨床検査における測定項目数が飛躍的に増加している。一般に、臨床検査では、各測定項目に振り分ける検体の量が限られているため、自動分析装置には、測定項目数の増加に伴い、微量の検体の分析を高感度に行うことが求められている。
反応溶液を収容する反応セルは、寸法安定性や機械的強度が求められるため、吸水率や成型時の収縮率の上昇を抑える観点から、一般に疎水性樹脂を用いて形成されている。疎水性樹脂で形成された反応セルの表面には、生体試料や試薬の供給時に気泡が付着し易いため、反応セルに向けて照射された測定光が気泡により散乱されて、検出感度が低下することがある。特に、検体の微量化のため小型の反応セルを用いた場合には、測定光が気泡に当たり易くなり、光散乱による検出感度の低下が問題となる。
また、臨床検査において反応セルを繰り返し使用すると、生体試料に含まれる蛋白質や脂質等の高分子化合物や試薬に含まれるラテックス等の残留物が反応セル内に蓄積し、セルの内壁が汚染され、検出結果に影響することがある。
このため、微量の検体を高精度に分析するためには、検出感度を低下させる要因となる、反応セル表面への気泡の付着や汚染物質の付着を低減することが求められる。
例えば特許文献1には、表面にオゾン処理を行って親水化することで、内壁への気泡の付着を低減した反応セルが開示されている。特許文献2には、内壁面に親水性物質又は疎水性物質をコーティングして親水化領域を形成することで、液体の這い上がりを防止しつつ気泡の付着を防止するようにした反応容器が開示されている。また、特許文献3には、特定の分析項目において反応セルに防汚液を供給し、反応セルの内壁面に防汚膜を形成することで、汚染物質の付着を低減する技術が開示されている。
特開2005−77263号公報 特開2015−225054号公報 特開2016−50796号公報
特許文献1の技術では、成型後の反応セルの表面にオゾン処理を行うため、製造コストが増大する。また、小型の反応セルへのオゾン処理は困難であるため、特許文献1の技術では、反応セルの一部の領域に、親水化処理が不十分な領域が残存するおそれがある。また、オゾン処理を行うと、反応セルの表面が帯電状態となり易く、生体試料や試薬に含まれる汚染物質が付着し易くなる。
一方、特許文献2では、反応容器の基材表面に、親水性物質又は疎水性物質をコーティングしているため、長期間の使用によりコーティング膜の剥がれが発生し、コーティング膜の機能を持続的に得られないことがある。
特許文献3では、特定の分析項目においてのみ一時的な防汚膜を適用し、分析後は剥離する。このため、防汚膜の剥離後の反応セルに生体試料や試薬を供給したときに、これらに含まれる汚染物質が、反応セルの表面に付着することがある。特に微量の検体の分析を行う場合には、反応セル表面への汚染物質の付着量が僅かであっても検出結果に影響し、測定誤差の原因となる。
本発明の目的は、気泡の付着や汚染物質の付着を低減することのできる反応セル及びこれを用いた自動分析装置を提供することにある。
本発明に係る反応セルの好ましい実施形態としては、試料と試薬との混合物を収容し、該混合物の光学測定を行うための反応セルであって、前記反応セルは、ポリオレフィン系樹脂である第一の高分子材料と、水酸基、エーテル基、カルボニル基、カルボキシル基、及びエステル基からなる群から選択される少なくとも一種の酸素含有官能基を有する第二の高分子材料との混合体により形成されていることを特徴とする。
本発明に係る自動分析装置の好ましい実施形態としては、試料と試薬との混合物を収容する反応セルを複数個保持する反応セル保持機構と、前記反応セルに収容された試料と試薬との混合物の状態を光学的に測定する光学測定部と、を備えた自動分析装置において、前記反応セル保持機構は、前記反応セルとして、ポリオレフィン系樹脂である第一の高分子材料と、水酸基、エーテル基、カルボニル基、カルボキシル基、及びエステル基からなる群から選択される少なくとも一種の酸素含有官能基を有する第二の高分子材料との混合体により形成される反応セルを保持することを特徴とする。
本発明によれば、気泡の付着や汚染物質の付着を低減することのできる反応セル及びこれを用いた自動分析装置を実現することができる。
実施例に係る自動分析装置100の概略図である。 反応ディスク3に設置される反応セル10の外観斜視図である。 図2に示す反応セル10の断面図である。 自動分析装置100の動作フローを示す図である。 自動分析装置100の動作フローを示す図である。
図1は、実施例に係る自動分析装置100の概略図である。自動分析装置100は、反応セル保持機構としての反応ディスク3、サンプルディスク機構4、試薬ディスク機構5A、5Bを備えている。
反応ディスク3には、生体試料(以下、サンプルと示す)と試薬とが混合される反応セル10が、およそ120個程度、円周上に並べられて保持されている。反応ディスク3には恒温槽9が接続されており、反応ディスク3全体が恒温槽9によって所定の温度に保持されるように構成されている。なお、サンプルとは、反応セル10内で試薬と反応させる被検査液体であり、血清や尿等の採集検体原液でもよく、この原液に希釈や前処理等の加工処理を行った溶液であってもよい。
サンプルディスク機構4には、サンプルを収容するサンプルセル25が多数個配置されている。なお、図1では、サンプルの収納部としてディスク状のサンプルディスク機構4を設けた構成を示した。但し、サンプルの収納部は必ずしもディスク状のものでなくてもよく、例えば、ラック状又はホルダー状のものを使用してもよい。
サンプルディスク機構4の近傍には、サンプル供給用分注機構2が配置されている。サンプル供給用分注機構2は、アームの先端にサンプルノズル27が接続されて構成されている。サンプルノズル27には、サンプルピペッタ15が接続されている。サンプルノズル27は、サンプルピペッタ15を作動させることで、サンプルセル25内に収容されたサンプルを分取し、所定の反応セル10に注入する。
試薬ディスク機構5Aには、試薬を収容する試薬容器6が多数個配置されている。試薬ディスク機構5Aの近傍には、試薬分注機構としての試薬ピペッティング機構7が配置されている。試薬ピペッティング機構7は、アームの先端に試薬用ノズル28が接続されて構成されている。試薬用ノズル28には、試薬用ピペッタ17が接続されている。試薬用ノズル28は、試薬用ピペッタ17を作動させることで、試薬容器6内に収容された試薬を分取し、所定の反応セル10に注入する。
なお、試薬ディスク機構5Aの近傍には、試薬ディスク機構5Aと同様の構成及び機能を有する試薬ディスク機構5Bが隣設されている。
反応ディスク3の近傍には、攪拌機構8が設置されている。反応セル10に供給されたサンプルと試薬は、撹拌機構8に設けられた攪拌棒29により撹拌される。
反応ディスク3の近傍には、光学測定部として、分光光度計30及び光源26が配置されている。分光光度計30及び光源26は、これらの間に反応ディスク3が回転可能に配置されて設置されている。光源26から出射された光は、反応セル10に向けて照射され、反応セル10内の混合液通過後の光の吸光度が分光光度計30により測定される。
反応ディスク3の近傍には、反応セル洗浄機構11が設置されている。反応セル洗浄機構11には、洗浄剤供給部13及び洗浄水ポンプ16が接続されている。洗浄剤供給部13には洗浄剤が収容されており、この洗浄剤は、洗浄水ポンプ16により、洗浄水と共に反応セル洗浄機構11に供給される。反応セル洗浄機構11は、洗浄剤供給部13から供給された洗浄剤を反応セル10に供給し、反応セル10の内部を洗浄する。反応セル10洗浄後の洗浄剤は、反応セル洗浄機構11に設けられた吸引ノズル12で吸引され、反応セル10から排出される。
インターフェイス23には、サンプルピペッタ15、洗浄水ポンプ16、試薬用ピペッタ17、Log変換器及びA/D変換器18、コンピュータ19、プリンタ20、ディスプレイ21、記憶装置22としてのハードディスク、操作パネル24が接続されている。上記したサンプルピペッタ15、洗浄水ポンプ16、試薬用ピペッタ17は、それぞれ、インターフェイス23を介して、制御部としてのコンピュータ19に接続されており、コンピュータ19により各々の動作が制御される。また、反応ディスク3、サンプルディスク機構4、試薬ディスク機構5A、5B、恒温槽9も、インターフェイス23を介してコンピュータ19に接続されており、コンピュータ19により各々の動作が制御される。
図2に、反応ディスク3に設置される反応セル10の外観斜視図を示す。図2に示すように、反応セル10は、測光面101と非測光面102とを有している。光源26(図1参照)から出射された測定光は、図2中矢印103の方向から測光面101に入射する。
自動分析装置100では、反応セル10内でサンプルと試薬とを混合することで、化学的及び/又は免疫学的な反応を生じさせ、その反応の経過や所定の時点における混合液の状態を、光学的に測定する。具体的には、例えば色素による発色状態や、ラテックス試薬の凝集状態を、測光面101から入射した複数の特定波長の光の変化により評価する。このため、反応セル10としては、可視光領域、特に340〜800nmの波長域において、高い光透過率を得られるものが好ましい。
反応セル10は、ポリオレフィン系樹脂である第一の高分子材料と、酸素含有官能基を有する第二の高分子材料との混合体により構成されている。図3に、図2に示す反応セル10の断面図を示す。図3に示すように、反応セル10は、第一の高分子材料201と第二の高分子材料202とが、分子レベルで混在した状態で構成されている。
第一の高分子材料201は、炭素及び水素により構成されるポリオレフィン系樹脂であれば、特に限定されない。ポリオレフィン系樹脂としては、具体的には、例えばポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂等の、鎖状不飽和炭化水素の重合体であってもよく、ポリシクロオレフィン樹脂であってもよく、これらの樹脂の混合物であってもよい。
ポリオレフィン系樹脂は、光透過性に優れている。このため、第一の高分子材料201としてポリオレフィン系樹脂を用いることで、反応セル10において、光学測定に必要とされる光透過性を得られ易くなる。また、ポリオレフィン系樹脂を第一の高分子材料として用いることで、反応セル10において、低吸水性及び高い機械強度を得ることができる。
反応セル10において、高い光透過率を得るとともに、高い寸法安定性及び機械強度を得る観点から、第一の高分子材料201として、ポリシクロオレフィン樹脂を用いることが望ましい。
ポリシクロオレフィン樹脂は、主鎖及び側鎖がそれぞれ炭素−炭素結合及び炭素−水素結合により構成されており、さらに、主鎖の一部に環状の飽和炭化水素を有している。このような分子構造を有することで、ポリシクロオレフィン樹脂は、低吸水性、低透湿性であり、また低屈折率、低成型収縮率を得られ易い。このため、第一の高分子材料201として、ポリシクロオレフィン樹脂を用いた場合には、反応セル10において、高い寸法安定性及び機械強度と高い光透過率を得ることができる。
ポリシクロオレフィン樹脂としては、4〜8員環の脂環構造を有するものが好ましい。ポリシクロオレフィン樹脂として、4員環以上の脂環構造を有するものを用いることで、反応セル10において、十分な機械強度及び寸法安定性を得ることができる。また、ポリシクロオレフィン樹脂として、8員環以下の脂環構造を有するものを用いることで、反応セル10の製造時に、適度な成形性を得ることができる。これらの中でも、高い光透過性を有し、かつ機械強度及び寸法安定性に優れるポリシクロオレフィン樹脂が好ましい。具体的には、例えばノルボルネンの開環重合体の水素添加物が挙げられる。また、ポリシクロオレフィン樹脂は、上記した脂環構造のいずれかと、他のモノマーとの共重合体(シクロオレフィンコポリマー)であってもよい。
ポリシクロオレフィン樹脂としては、平均分子量が数万〜数十万程度のものを用いることができる。
第二の高分子材料202としては、水酸基(−OH)、エーテル基(C−O−C)、カルボニル基(C=O)、カルボキシル基(COOH)、及びエステル基(O=C−OR)からなる群から選択される少なくとも一種の酸素含有官能基を有するものを用いることができる。
第二の高分子材料202としては、具体的には、例えばメタクリル樹脂、ポリエチレングリコール、ポリアルキレンオキサイド変性ポリプロピレン、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)からなる群から選択される少なくとも一種を用いることができる。
また、第二の高分子材料202としては、例えばポリエチレングリコール等の酸素含有基を有するモノマーと、他のモノマーとの共重合体を用いてもよい。他のモノマーとしては、例えばシクロオレフィン等の、第一の高分子材料のモノマー又はこれと化学的構造が類似するモノマーであることが好ましい。また、第二の高分子材料202としては、例えばシクロオレフィン等の、第一の高分子材料のモノマーの側鎖に酸素含有基が結合した構造をモノマー単位とした重合体を用いてもよく、このモノマー構造と他のモノマーとの共重合体を、第二の高分子材料202として用いてもよい。第二の高分子材料202のモノマー成分として、第一の高分子材料のモノマー又はこれと化学的構造が類似するモノマーを含むことで、第一の高分子材料と混合し易くなり、成形性が向上する。
第二の高分子材料の分子量は、特に限定されないが、第一の高分子材料との混合のし易さの観点からは、第一の高分子材料の分子量と同程度の分子量を有するものを用いることが好ましい。
樹脂表面における気泡付着を抑制するためには、表面の親水性が高い方が望ましい。上記した第二の高分子材料202を、第一の高分子材料201と混合して用いることで、第二の高分子材料202が有する酸素含有基により、反応セル10表面の親水性を高めることができる。このため、反応セル10内にサンプルや試薬を供給したときの、セル内壁への気泡の付着を低減することができる。
また、上記した第二の高分子材料202を混合することで、反応セル10表面への気泡の付着を低減しつつ、汚染物質の付着が抑制された表面状態を得ることができる。例えば、反応セル10の表面を、オゾン処理することで親水性を向上させた従来の反応セルの場合には、表面の帯電性が正又は負に傾き易いため、反応セルの内壁に汚染物質が付着し易くなる。実施例の反応セル10は、表面の帯電性を高めることなく、親水性が高められている。このため、気泡の付着が低減され、かつ汚染物質の付着が抑制された反応セル10とすることができる。
また、第二の高分子材料202を第一の高分子材料201と混合することで、第一の高分子材料201を単独で用いる場合と比較して、表面電位を中性化できることがある。このため、第一の高分子材料201を単独で形成した反応セルと比較して、内壁面への汚染物質の付着が抑制された反応セル10を得ることができる。
反応セル10は、上記した第一の高分子材料201と第二の高分子材料202とを混合した後、所定のサイズ及び形状に成形することにより得ることができる。生産性の観点からは、射出成形、押出成形、ブロー成形や、真空成形等の溶融成形により製造することが好適である。
反応セル10は、X線光電子分光法(XPS)により算出される酸素/炭素の原子数比が、0.01以上であることが好ましい。X線光電子分光法(XPS)により算出される酸素/炭素の原子数比が0.01以上であることで、反応セル10表面における接触角が、所望の親水性を得られる程度まで低下し、また汚染物質の付着抑制について十分な効果を得ることができる。
反応セル10において、光学測定を行うのに十分な光透過率を得る観点から、反応セル10における第二の高分子材料201の含有量は、15重量%以下とすることが好ましい。
自動分析装置100において、高精度な光学測定を可能とする観点から、反応セル10の光透過率は80%以上であることが好ましく、90%以上であることがより好ましい。
反応セル10表面への気泡の付着を抑制する観点から、反応セル10の水接触角は、97.0度未満であることが好ましく、90度以下であることがより好ましく、75度以下であることがさらに好ましい。
図4に、自動分析装置100の動作フローを示す。操作パネル24は、動作フロー開始前に、操作者により分析依頼情報の入力を受ける。操作パネル24から入力された分析依頼情報は、コンピュータ19内のメモリに記憶され、自動分析装置の動作が開始される。
まず、ステップS701では、コンピュータ19は、分析依頼情報に基づき、反応セル10として、上述した第一の高分子材料及び第二の高分子材料の混合体により構成される反応セル(第一の反応セル。以下、専用セルと示す。)を使用するか否かを判断する。ここでは、上述した専用セルに該当しない反応セル(第二の反応セル)を、以下、通常セルと示す。ステップS701での判断の結果、分析作業に専用セルの使用が必要と判断した場合には、反応セル10として専用セルを選択し、ステップS702に移行する。一方、専用セルの使用が必要無いと判断した場合には、反応セル10として通常の反応セルを選択し、ステップS703に移行する。分析依頼情報は、例えば分析対象とする試料の種類や、使用する試薬の種類である。例えば、分析対象であるサンプルが、反応セルの表面に付着し易い物質を含むことが分析依頼情報から認定される場合には、専用セルを使用する判断をする。
なお、以下の説明において、図4中左側のフロー(ステップS702、ステップS704、ステップS706、ステップS708、ステップS710、ステップS712、ステップS714、ステップS716、ステップS718)は、専用セルを用いる場合のステップであり、図4中右側のフロー(ステップS703、ステップS705、ステップS707、ステップS709、ステップS711、ステップS713、ステップS715、ステップS717、ステップS719)は、通常の反応セルを用いる場合のステップである。
次に、ステップS702、ステップS703では、洗浄剤供給部13及び洗浄水ポンプ16により、反応セル洗浄機構11に洗浄剤及び水を供給し、反応セル洗浄機構11により、反応ディスク3上の専用セル又は通常の反応セル内に洗浄剤及び水を供給し、その内部を洗浄する。専用セル又は通常の反応セル内に供給された洗浄剤及び水は、それぞれ吸引ノズル12により吸引して排出する。
次に、ステップS704、ステップS705では、ブランク水注入機構(図3において不図示)により、反応ディスク3上の専用セル又は通常の反応セル内にブランク水を注入する。次いで、この状態で反応ディスク3を回転させ、専用セル又は通常の反応セルが分光光度計30と光源26の間を通過する毎に、その吸光度を分光光度計30により測定する。ステップS704、ステップS705で測定された吸光度は、ブランク値としてコンピュータ19内のメモリに記憶される。なお、ブランク値は、ベースライン値ともいう。
次に、ステップS706、ステップS707では、専用セル又は通常の反応セル内に注入されたブランク水を、ブランク水吸引ノズル(図3において不図示)により吸引する。
次に、ステップS708、ステップS709では、サンプルピペッタ15を作動し、サンプルセル25内に収容されたサンプルをサンプルノズル27により分取し、専用セル又は通常の反応セル内に注入する。
次に、ステップS710、ステップS711では、試薬用ピペッタ17を作動し、試薬容器6内の試薬を試薬用ノズル28により分取し、専用セル又は通常の反応セル内に注入する。
次に、ステップS712、ステップS713では、撹拌機構8により、専用セル又は通常の反応セルに供給されたサンプルと試薬とを攪拌する。
次に、ステップS714、ステップS715では、サンプルと試薬との混合物が収容された専用セル又は通常の反応セルを、分光光度計30と光源26との間の位置に移動させ、光学測定を行う。
次に、ステップS716、ステップS717では、吸引ノズル12により、専用セル又は通常の反応セル内で混合されて反応した反応液を吸引する。
次に、ステップS718、ステップS719では、反応セル洗浄機構11により、洗浄剤供給部13から供給された洗浄剤を、専用セル又は通常の反応セルに供給し、専用セル又は通常の反応セルの内部を洗浄する。専用セル又は通常の反応セル内の洗浄剤は、洗浄処理終了後、専用セル又は通常の反応セルから排出されて、動作フローを終了する。
図4に示す動作フローでは、反応セル10として、専用セルを使用すべきか否かを、光学測定開始前に分析依頼情報から判断可能な場合について説明した。図5では、光学測定開始前の時点では、反応セル10として専用セルを使用すべきか否かが不明である場合の動作フローについて説明する。図5に示す動作フローは、図4と同様、自動分析装置100の概略を示した図1を用いて説明する。
まず、操作パネル24は、動作フロー開始前に、操作者により分析依頼情報の入力を受ける。操作パネル24から入力された分析依頼情報は、コンピュータ19内のメモリに記憶され、自動分析装置100の動作が開始される。
まず、ステップS801では、通常の反応セルを用いて、図4の動作フロー(図4のステップS715参照)で説明したのと同様の操作により、分光光度計30及び光源26により光学測定を行う。なお、ステップS801の光学測定は、ステップS715と同様、通常の反応セル内に、サンプルと試薬との混合物を収容した状態で実行する。即ち、フロー開始からステップS801の間には、図4に示すステップS703、ステップS705、ステップS707、ステップS709、ステップS711、ステップS713の各ステップと同様の作業を行うが、図5に示すフロー図では、その説明を省略する。
次に、ステップS802では、コンピュータ19は、記憶装置22に記憶されている情報に基づいて、ステップS801で得られた測定値が正常範囲内にあるか否かを判断する。記憶装置22に記憶させる情報としては、例えば、測定対象サンプルについて予め光学測定して得た、通常の測定値の数値範囲が挙げられる。その結果、測定値が正常範囲内である(YES)と判断した場合には、動作フローを終了する。一方、測定値が正常範囲内に無い(NO)と判断した場合には、このサンプルについての光学測定を、専用の反応セルを用いて、再度実行する(ステップS803)。
なお、専用セルを選択する場合の動作フローとしては、記憶装置22に予め記憶させた情報に基づいて行うものには限定されない。例えば、通常の反応セルを用いて行った1回目の測定値と比較して、2回目以降の測定値が大幅に変動した場合には、反応セルの内壁に気泡の付着が発生したと判断し、それ以降の測定を、専用セルを用いて行うようにすることも可能である。
以上説明した実施例によれば、反応セルを、第一の高分子材料と第二の高分子材料との混合体により形成することで、高い機械強度及び低吸水性を維持し、かつ高い光透過性を維持しつつ、サンプルや試薬を注入したときの気泡の付着や汚染物質の付着を低減することができる。従って、自動分析装置において実施例の反応セルを用いることで、少量の検体を高精度に分析することができる。
また、自動分析装置において、例えば、汚染物質が付着し易い分析項目の場合に実施例の反応セルを用いるように、分析項目に応じて反応セルを使い分けるようにすることで、自動分析装置の連続稼動時間を長期化し、また反応セルの交換寿命を長期化することができる。
また、実施例の反応セルは、表面処理を別途行うことなく親水性が高められている。このため、実施例の反応セルは、オゾン処理により親水化処理した従来の反応セルと比較して、製造コストを低減することができる。
また、実施例の反応セルは、酸素含有基を有する第二の高分子材料を、第一の高分子材料との混合体として形成している。このため、実施例の反応セルは、コーティング膜の形成により親水化処理した従来の反応セルと異なり、気泡付着防止効果や汚染物質付着防止効果を、長期間にわたって持続的に得ることができる。
(実施例1)
第一の高分子材料としてポリシクロオレフィン樹脂、第二の高分子材料としてメタクリル樹脂を用いて反応セル10を製造した。なお、メタクリル樹脂は、酸素含有官能基としてエステル基を有している。また、ポリシクロオレフィン樹脂としては、分子量約2万程度のものを使用した。
まず、第一の高分子材料及び第二の高分子材料のペレットを、表1に示す混合比で混合してドライブレンドした。得られた混合物を、射出成形機の材料供給部に投入し、下記成形条件にて射出成形して、プレート状の樹脂成形体(80mm×80mm、厚さ0.8mm、以下、樹脂プレートと示す)を得た。得られた樹脂プレートについて、以下に示す方法により、光透過性評価及び親水性評価を行った。評価結果を表1に示す。
なお、表1に示す混合比は、ポリシクロオレフィン樹脂とメタクリル樹脂との混合物全体に占めるメタクリル樹脂の含有量の値として示している。また、実施例1では、反応セル10の一部を模した、平板状の成形体を製造したが、使用する金型を変更することで、図2に示す形状の反応セル10を製造することが可能である。
[成形条件]
成形温度(前部);230〜290℃
金型温度;50〜100℃
射出圧力;179〜194MPa
射出時間;0.39〜0.51s
[光透過性評価]
樹脂プレートの全光線透過率として、日立ハイテクノロジーズ製分光光度計U−4100を用いて、波長340nm〜800nmの平均透過率を測定した。なお、表1には、第一の高分子材料として用いたポリシクロオレフィン樹脂単体の樹脂プレートの光透過率を基準として、各全光線透過率を規格化した値を示す。
[親水性評価]
樹脂プレート表面の親水性を評価するため、協和界面科学製接触角計(DM−500)を用いて水の静的接触角を測定した。具体的には、樹脂プレートに対して純水0.5μLを滴下し、θ/2法により、滴下から1秒後の静的接触角を測定した。
Figure 0006731311
[評価結果]
表1に示すように、第二の高分子材料としてメタクリル樹脂を混合することで、比較的高い全光線透過率を維持したまま、接触角が低下していることが確認された。即ち、比較的高い光透過率を維持しつつ、気泡付着抑制に寄与する表面親水性が向上していることが確認された。
実施例1の方法により、従来、反応セルの成形後に行っていた、酸素プラズマ処理、オゾン処理、コロナ放電処理等の表面処理を行うことなく、表面親水性を向上させることが可能となる。このため、従来の方法と比較して、製造コストを低減することができる。
(実施例2)
第一の高分子材料としてポリシクロオレフィン樹脂、第二の高分子材料としてポリエチレングリコールを用いて反応セル10を製造した。なお、ポリエチレングリコールは、酸素含有官能基としてエーテル基を有している。また、ポリシクロオレフィン樹脂は、実施例1と同じものを使用した。
上記した第一の高分子材料及び第二の高分子材料を、同方向回転二軸押出機(φ25mm、L/D=41)と重量式計量単軸フィーダとを用いて溶融混練し、混合ペレットを作製した。混合ペレットは、ポリエチレングリコールの含有量が1重量%となるように、ポリシクロオレフィン樹脂ペレットにポリエチレングリコールを混合して作製した。得られた混合ペレットを、射出成形機の材料供給部に投入し、下記成形条件にて射出成形して、樹脂プレート(80mm×80mm、厚さ0.8mm)を得た。
得られた樹脂プレートについて、光透過性評価及び親水性評価を、実施例1と同様にして行った。また、得られた樹脂プレートについて、以下に示す方法により、汚染物質付着性評価を行った。評価結果を表2に示す。
[成形条件]
成形温度(前部);290℃
金型温度;60〜70℃
射出圧力;196MPa
射出時間;0.50s
[汚染物質の付着性評価]
樹脂成形体における汚染物質の付着性評価として、蛍光標識された蛋白質(FITC−BSA)を用いた浸漬試験を行なった。まず、樹脂プレートを水に浸漬させた後、リン酸緩衝生理食塩水に10分間浸漬させた。この樹脂プレートをさらに水に浸漬させた後、その表面を、蛍光顕微鏡により観察した。このとき得られた蛍光強度を、ベースラインの蛍光強度とした。
次いで、FITC−BSAを溶解させたリン酸緩衝生理食塩水に、樹脂プレートを10分間浸漬し、さらに水に浸漬させた後の樹脂プレート表面を、蛍光顕微鏡で観察して、蛍光強度を測定した。得られた蛍光強度の測定値と、ベースラインの蛍光強度との差を汚染付着度として算出し、蛋白質の付着特性を評価した。
Figure 0006731311
[評価結果]
表2に示すように、第二の高分子材料としてポリエチレングリコールを混合することで、ポリシクロオレフィン樹脂単体のときと略同等の全光線透過率を維持したまま、接触角が低下していることが確認された。即ち、比較的高い光透過率を維持しつつ、気泡付着抑制に寄与する表面親水性が向上していることが確認された。また、汚染物質付着性評価から、ポリシクロオレフィン樹脂にポリエチレングリコールを混合した樹脂プレートでは、ポリシクロオレフィン樹脂単独の場合と比較して、汚染付着度が低下していることが確認された。
(実施例3)
第一の高分子材料としてポリシクロオレフィン樹脂、第二の高分子材料としてポリアルキレンオキサイド変性ポリプロピレン(平均分子量約45000)を用いて反応セル10を製造した。なお、ポリアルキレンオキサイド変性ポリプロピレンは、酸素含有官能基としてエーテル基を有している。また、ポリシクロオレフィン樹脂は、実施例1と同じものを使用した。
上記した第一の高分子材料及び第二の高分子材料を、同方向回転二軸押出機(φ25mm、L/D=41)と重量式計量単軸フィーダとを用いて溶融混練し、混合ペレットを作製した。混合ペレットは、ポリアルキレンオキサイド変性ポリプロピレンの含有量が3重量%となるように、ポリシクロオレフィン樹脂ペレットにポリアルキレンオキサイド変性ポリプロピレンを混合して作製した。
得られた混合ペレットを、射出成形機の材料供給部に投入し、下記成形条件にて射出成形して、樹脂プレート(80mm×80mm、厚さ0.8mm)を得た。具体的には、上記した混合ペレットを、射出成形機に単独で投入して、ポリアルキレンオキサイド変性ポリプロピレンの含有量が3重量%である樹脂プレートを作製した。また、上記した混合ペレットとポリシクロオレフィン樹脂ペレットとを、射出成形機に1:2の比率で混合して投入して、ポリアルキレンオキサイド変性ポリプロピレンの含有量が1重量%である樹脂プレートを作製した。
得られた樹脂プレートについて、光透過性評価、親水性評価及び汚染物質の付着性評価を、実施例2と同様にして行った。評価結果を表3に示す。
なお、表3に示す混合比は、ポリシクロオレフィン樹脂とポリアルキレンオキサイド変性ポリプロピレンとの混合物全体に占めるポリアルキレンオキサイド変性ポリプロピレンの含有量の値として示している。
[成形条件]
成形温度(前部);290℃
金型温度;60〜70℃
射出圧力;177〜199MPa
射出時間;0.47〜0.51s
Figure 0006731311
[評価結果]
表3に示すように、第二の高分子材料として、ポリアルキレンオキサイド変性ポリプロピレンを混合することで、ポリシクロオレフィン樹脂単体のときと略同等の全光線透過率を維持したまま、接触角が低下していることが確認された。即ち、光透過率を維持しつつ、気泡付着抑制に寄与する表面親水性が向上していることが確認された。
また、汚染物質の付着性評価から、ポリシクロオレフィン樹脂にポリアルキレンオキサイド変性ポリプロピレンを混合した樹脂プレートでは、ポリシクロオレフィン樹脂単独の場合と比較して、汚染付着度が低下していることが確認された。
表3に示すように、第二の高分子材料としてポリアルキレンオキサイド変性ポリプロピレンを用いた場合、汚染物質の付着抑制効果を高く得られることが確認できる。一方、全光線透過率に関しては、ポリシクロオレフィン樹脂単独の樹脂プレートから、若干低下していることが確認できる。但し、例えばポリアルキレンオキサイド変性ポリプロピレンの含有量が3重量%の樹脂プレートの場合には、光源26から照射される測定光の光強度を(1/0.86)=1.16倍とすることで、ポリシクロオレフィン樹脂単独の樹脂プレートを用いた場合と略同等の透過光を得ることが可能となる。
ポリシクロオレフィン樹脂について、X線光電子分光法(XPS)により表面元素濃度(炭素、酸素、窒素)を基準値として分析した結果、炭素は99.5原子%であり、酸素は0.5原子%であり、酸素/炭素の原子数比=(0.5/99.5)=0.005であった。
一方、ポリアルキレンオキサイド変性ポリプロピレンの含有量が3重量%である樹脂プレートについて、X線光電子分光法(XPS)により表面元素濃度(炭素、酸素、窒素)を分析した結果、炭素は97.8原子%であり、酸素は2.0原子%であり、窒素は0.2原子%であり、酸素/炭素の原子数比=(0.5/99.5)=0.02であった。
2…サンプル供給用分注機構、3…反応ディスク、4…サンプルディスク機構、5A、5B…試薬ディスク機構、6…試薬容器、7…試薬ピペッティング機構、8…攪拌機構、9…恒温槽、10…反応セル、11…反応セル洗浄機構、12…吸引ノズル、13…洗浄剤供給部、15…サンプルピペッタ、16…洗浄水ポンプ、17…試薬用ピペッタ、18…Log変換器及びA/D変換器、19…コンピュータ、20…プリンタ、21…ディスプレイ、22…記憶装置、23…インターフェイス、24…操作パネル、25…サンプルセル、26…光源、27…サンプルノズル、28…試薬用ノズル、29…攪拌棒、30…分光光度計、100…自動分析装置、101…測光面、102…非測光面、103…矢印、201…第一の高分子材料、202…第二の高分子材料

Claims (7)

  1. 試料と試薬との混合物を収容する反応セルを複数個保持する反応セル保持機構と、前記反応セルに収容された試料と試薬との混合物の状態を光学的に測定する光学測定部と、を備えた自動分析装置において、
    前記自動分析装置は、前記試料を前記反応セル保持機構に保持された前記反応セルに分注する試料分注機構と、前記試薬を前記反応セル保持機構に保持された前記反応セルに分注する試薬分注機構と、前記試料分注機構及び前記試薬分注機構を制御する制御部とを有しており、
    前記反応セル保持機構は、前記反応セルとして、ポリオレフィン系樹脂である第一の高分子材料と、水酸基、エーテル基、カルボニル基、カルボキシル基、及びエステル基からなる群から選択される少なくとも一種の酸素含有官能基を有する第二の高分子材料との混合体により形成される第一の反応セルと、前記第一の反応セル以外の第二の反応セルとを保持しており、
    前記制御部は、
    光学測定を開始する前に、前記試料若しくは前記試薬の種類又は前記光学測定部の測定結果に基づき、前記第一の反応セルの使用が必要か否かを判断し、
    前記第一の反応セルの使用が必要と判断した場合には、前記試料及び前記試薬を前記第一の反応セルに分注するように、前記試料分注機構及び前記試薬分注機構を制御し、
    前記第一の反応セルの使用が必要無いと判断した場合には、前記試料及び前記試薬を前記第二の反応セルに分注するように、前記試料分注機構及び前記試薬分注機構を制御することを特徴とする自動分析装置。
  2. 試料と試薬との混合物を収容する反応セルを複数個保持する反応セル保持機構と、前記反応セルに収容された試料と試薬との混合物の状態を光学的に測定する光学測定部と、を備えた自動分析装置において、
    前記自動分析装置は、前記試料を前記反応セル保持機構に保持された前記反応セルに分注する試料分注機構と、前記試薬を前記反応セル保持機構に保持された前記反応セルに分注する試薬分注機構と、前記試料分注機構及び前記試薬分注機構を制御する制御部とを有しており、
    前記反応セル保持機構は、前記反応セルとして、ポリオレフィン系樹脂である第一の高分子材料と、水酸基、エーテル基、カルボニル基、カルボキシル基、及びエステル基からなる群から選択される少なくとも一種の酸素含有官能基を有する第二の高分子材料との混合体により形成される第一の反応セルと、前記第一の反応セル以外の第二の反応セルとを保持しており、
    前記制御部は、
    光学測定を開始する時点において、前記試料及び前記試薬を前記第二の反応セルに分注するように、前記試料分注機構及び前記試薬分注機構を制御し、
    前記光学測定部の測定結果が正常範囲内にあるか否かを判断し、
    前記測定結果が正常範囲内であると判断した場合には前記光学測定を終了し、
    前記光学測定部の測定結果が正常範囲内に無いと判断した場合には、前記試料及び前記試薬を前記第一の反応セルに分注するように、前記試料分注機構及び前記試薬分注機構を制御することを特徴とする自動分析装置。
  3. 前記第一の高分子材料は、ポリシクロオレフィン樹脂であることを特徴とする請求項1又は2に記載の自動分析装置。
  4. 前記第二の高分子材料は、メタクリル樹脂、ポリエチレングリコール、ポリアルキレンオキサイド変性ポリプロピレン、ポリビニルピロリドン、ポリビニルアルコールからなる群から選択される少なくとも一種であることを特徴とする請求項1又は2に記載の自動分析装置。
  5. 前記第一の反応セルは、X線光電子分光法により測定される酸素/炭素の原子数比が0.01以上であることを特徴とする請求項1又は2に記載の自動分析装置。
  6. 前記第一の反応セルの光透過率は、90%以上であることを特徴とする請求項1又は2に記載の自動分析装置。
  7. 前記第一の反応セルの水接触角は、90度以下であることを特徴とする請求項1又は2に記載の自動分析装置。
JP2016156033A 2016-08-09 2016-08-09 自動分析装置 Active JP6731311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016156033A JP6731311B2 (ja) 2016-08-09 2016-08-09 自動分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156033A JP6731311B2 (ja) 2016-08-09 2016-08-09 自動分析装置

Publications (2)

Publication Number Publication Date
JP2018025415A JP2018025415A (ja) 2018-02-15
JP6731311B2 true JP6731311B2 (ja) 2020-07-29

Family

ID=61194841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156033A Active JP6731311B2 (ja) 2016-08-09 2016-08-09 自動分析装置

Country Status (1)

Country Link
JP (1) JP6731311B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210146915A (ko) 2019-03-29 2021-12-06 세키스이 메디칼 가부시키가이샤 면역 측정 시약 및 면역 측정 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2618927B2 (ja) * 1987-10-22 1997-06-11 オリンパス光学工業株式会社 自動分析装置
JP3550882B2 (ja) * 1996-05-23 2004-08-04 チッソ株式会社 極細繊維不織布
AU5895898A (en) * 1996-12-20 1998-07-17 Gamera Bioscience Corporation An affinity binding-based system for detecting particulates in a fluid
JPH11292152A (ja) * 1998-04-08 1999-10-26 Ueno Hiroshi 吸油吸水性包装材料
JP2003159526A (ja) * 2001-11-28 2003-06-03 Takashi Inaga 化学マイクロデバイス
JP4584878B2 (ja) * 2005-12-06 2010-11-24 株式会社日立ハイテクノロジーズ 自動分析装置用反応セル、その反応セルを搭載した自動分析装置、及び分析方法

Also Published As

Publication number Publication date
JP2018025415A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5097737B2 (ja) 自動分析装置及びサンプル分注ノズル
US9878322B2 (en) Pipetting unit and method of pipetting a test liquid
US20100051060A1 (en) Nozzle cleaning method, nozzle cleaning device, and automatic analyzer
EP1767271B1 (en) Assay system including a fluid dispenser and a sensor unit
JP4584878B2 (ja) 自動分析装置用反応セル、その反応セルを搭載した自動分析装置、及び分析方法
JP6676489B2 (ja) 自動分析装置で液体をピペッティングする方法
US11879904B2 (en) Method of washing an aspiration probe of an in-vitro diagnostic system, in-vitro diagnostic method, and in-vitro diagnostic system
WO2016136377A1 (ja) 自動分析装置
JP4148858B2 (ja) 反応セル、これらを備えた生化学的及び/又は免疫学的自動分析装置、並びに反応セルの内壁部表面改質方法
JP2009058437A (ja) 分注ノズル及び自動分析装置
JP2011163909A (ja) 自動分析装置および分注手段の洗浄方法
JP6731311B2 (ja) 自動分析装置
JP5028350B2 (ja) 自動分析装置
US11072717B2 (en) Plastic cuvettes having increased scratch resistance and methods for increasing the scratch resistance of same
JP6216298B2 (ja) 自動分析装置及びそれを用いた分析方法
JP5000752B2 (ja) 自動分析装置用反応セルの製造方法
WO2018179950A1 (ja) 検体検出システム用センサーチップ
JP4394940B2 (ja) 便の検査方法及び検査装置
US7615759B2 (en) Fluorescence analysis apparatus
JP4839269B2 (ja) 自動分析装置用反応セルの製造用電極、その電極を使用した製造方法
JP2010185829A (ja) 分注機構、分注方法及び分析装置
CN116940847A (zh) 自动分析装置
US20080113873A1 (en) Screening method and screening apparatus
JP2007333645A (ja) スクリーニング方法、及び、スクリーニング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150