JP6716227B2 - 蒸発器、これを備えたターボ冷凍装置 - Google Patents

蒸発器、これを備えたターボ冷凍装置 Download PDF

Info

Publication number
JP6716227B2
JP6716227B2 JP2015201239A JP2015201239A JP6716227B2 JP 6716227 B2 JP6716227 B2 JP 6716227B2 JP 2015201239 A JP2015201239 A JP 2015201239A JP 2015201239 A JP2015201239 A JP 2015201239A JP 6716227 B2 JP6716227 B2 JP 6716227B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
transfer tube
pressure vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201239A
Other languages
English (en)
Other versions
JP2017072343A (ja
Inventor
直也 三吉
直也 三吉
上田 憲治
憲治 上田
白方 芳典
芳典 白方
紀行 松倉
紀行 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2015201239A priority Critical patent/JP6716227B2/ja
Priority to US15/736,130 priority patent/US20180187932A1/en
Priority to PCT/JP2016/076068 priority patent/WO2017061211A1/ja
Priority to CN201680036519.2A priority patent/CN107850359B/zh
Publication of JP2017072343A publication Critical patent/JP2017072343A/ja
Application granted granted Critical
Publication of JP6716227B2 publication Critical patent/JP6716227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/30Steam-separating arrangements using impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、低圧冷媒を気化させる蒸発器、これを備えたターボ冷凍装置に関するものである。
例えば地域冷暖房の熱源用として使用されているターボ冷凍装置は、周知のように、冷媒を圧縮するターボ圧縮機と、圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる制御弁と、膨張した冷媒を気液分離する中間冷却器と、膨張した冷媒を蒸発させる蒸発器とを備えて構成されている。
特許文献1に開示されているように、蒸発器は円胴シェル形状の圧力容器を備えており、この圧力容器を長手軸方向に貫通するように、水等の被冷却液を通過させる伝熱管群が配設されている。また、圧力容器の内部には、伝熱管群の下方に多数の冷媒流通孔が穿設された分布板(冷媒分配板)が設けられ、伝熱管群の上方にエリミネータ(デミスタ)が設けられている。
ターボ圧縮機により圧縮され、凝縮器にて凝縮された液相状の冷媒は、圧力容器の下部に設けられた冷媒入口から圧力容器内に流入し、分布板の多数の冷媒流通孔を通過することによって圧力容器の内部全域に拡散しながら伝熱管群と熱交換する。これにより伝熱管群の内部を流れる被冷却液が冷却され、この冷却された被冷却液が空調用の冷熱媒や工業用冷却液として利用される。
伝熱管群と熱交換した液相状の冷媒は温度差により沸騰して気化する。そして、エリミネータを通過する際に液相分を除去され、気相状の冷媒のみが圧力容器の上部に接続された吸入管からターボ圧縮機に吸入されて再び圧縮される。
従来の蒸発器では、分布板における冷媒流通孔の内径や穿設間隔等が一定となっていた。即ち、分配板の単位面積あたりの冷媒流通孔の面積比率は、分布板の全域において一定となっていた。
また、エリミネータは、圧力容器内における冷媒の液面レベルよりも十分高い位置に配置されていた。その理由は、沸騰した冷媒の液状飛沫がエリミネータを通過して液相状のまま吸入管に入ってしまう、所謂キャリーオーバー(気液同伴)を防止してターボ圧縮機の効率低下を抑制するためである。
特開昭61−280359号公報
最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒は、ターボ冷凍装置を高効率化させることができ、しかも地球温暖化係数が低いことから、次世代冷媒として期待されている。
このような低圧冷媒は、R134a等の高圧冷媒に比べてガス比体積が大きい特性を持つため、蒸発器の内部で伝熱管群と熱交換して沸騰した際に沸騰泡が大きくなる。したがって、伝熱管群が局所的に沸騰泡に囲まれる、所謂ドライアウトが発生しやすくなり、伝熱管群が冷媒二相液中に浸漬された状態に比べて伝熱性能が低下する傾向がある。
また、蒸発器内部における伝熱管群の上流部では伝熱管群の内部を流れる被冷却液と冷媒との温度差が大きいために冷媒が激しく沸騰するが、伝熱管群の下流部では上記温度差が縮まることから冷媒の沸騰が穏やかになる。このため、蒸発器の内部における液相状の冷媒プールの液面高(フロスレベル)の設定や調整が難しくなる。
さらに、伝熱管群ではギャップ流速が大きくなるため、個々の伝熱管に掛かる抗力による疲労破壊が懸念される。また、低圧冷媒を用いる場合には、蒸発器からターボ圧縮機に吸入される気化冷媒の体積流量が高圧冷媒に比べて格段に大きいため、蒸発器内部における気化冷媒の流速が高くなり、気化冷媒の流れに乗って液相状の冷媒がターボ圧縮機側にキャリーオーバーされやすく、ターボ圧縮機の効率低下が懸念される。
本発明は、このような事情に鑑みてなされたものであり、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる蒸発器、これを備えたターボ冷凍装置を提供することを目的とする。
上記課題を解決するために、本発明は、以下の手段を採用する。
本発明の第1態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群とを備え、前記伝熱管群は、前記圧力容器の長手軸方向に交差する面方向を有する平板状の伝熱管支持板に支持され、前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、前記往路管群及び前記復路管群のそれぞれの上流側の位置付近に対応する範囲において他の範囲よりも大きくされるとともに、前記冷媒出口付近に対応する範囲において他の範囲よりも小さくされていることを特徴とする。
上記のように、冷媒分配板における単位面積あたりの冷媒流通孔の面積比率が、伝熱管群の上流側の位置付近に対応する範囲において他の範囲よりも大きいため、冷媒入口から圧力容器内に導入された低圧冷媒は、伝熱管群の上流側の位置付近に多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。
蒸発器内部における伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群の伝熱性能を高めることができる。
また、圧力容器の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、圧力容器の長手軸方向中間部にターボ圧縮機の吸入管に通じる冷媒出口を設けることにより、液相状の低圧冷媒が気化冷媒の流れに乗ってターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。
上記の蒸発器において、前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい構成としてもよい。
上記構成の蒸発器によれば、圧力容器の長手軸方向中間部に設けられた冷媒入口から圧力容器内に導入された低圧冷媒は、圧力容器内部の長手軸方向両端部に多く供給され、冷媒入口の直上部となる圧力容器の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させ、伝熱管群の伝熱性能を高めることができる。
本発明の第2態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていることを特徴とする。
低圧冷媒は、高圧冷媒に比べて比体積が大きいため、冷媒入口から蒸発器に流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板の圧損を大きくすると、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度が大きくなり、伝熱管群の振動や破損に繋がる。
上記構成の蒸発器によれば、冷媒入口が圧力容器の長手軸方向に沿って複数分散して設けられているため、冷媒入口を単一とした場合に比べて低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板の冷媒流通孔の径を大きくすることができ、これによって低圧冷媒が冷媒流通孔から噴出する速度を低下させ、伝熱管群の振動や破損を防止することができる。
また、低圧冷媒を複数の冷媒入口から圧力容器の長手軸方向全長に亘って均等に流入させて圧力容器内部における低圧冷媒プールのフロスレベルを均一化することができる。これにより、伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制してターボ圧縮機の効率低下を回避することができる。
本発明の第3態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していることを特徴とする。
上記構成の蒸発器によれば、冷媒入口の外側開口部から圧力容器までの流路断面積が圧力容器に向かって拡大するため、冷媒入口を流れる低圧冷媒の流速が圧力容器に向かって低下する。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
本発明の第4態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていることを特徴とする。
上記構成の蒸発器によれば、流速減衰部材によって冷媒入口から圧力容器に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
上記のいずれかの蒸発器において、前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置された構成としてもよい。
上記構成の蒸発器によれば、伝熱管内を流れる被冷却液との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群が圧力容器の下部に配置され、被冷却液との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群が圧力容器の上部に配置される。
このため、低圧冷媒の激しい沸騰が圧力容器内における低圧冷媒プールの液面の下方で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。
上記のいずれかの蒸発器において、前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成された構成としてもよい。
上記構成の蒸発器によれば、複数の伝熱管束の間にある鉛直な空隙が、伝熱管群と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒の液面に容易に浮上できる。したがって、冷媒液面下で伝熱管群が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群の伝熱性能を高めることができる。
上記の蒸発器において、前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置された構成としてもよい。
上記構成の蒸発器によれば、冷媒分配板に穿設された冷媒流通孔を通過して上方に放流される低圧冷媒の流れが、空隙を通過して伝熱管群の上端まで掛かるため、伝熱管群の伝熱性能を高めることができる。
上記のいずれかの蒸発器において、前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置された構成としてもよい。
低圧冷媒を用いる場合、ガス流速が大きいので、噴き上がる液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタを設置すると、冷媒液面からデミスタまでの距離が長くなり、圧力容器のシェル径が大きくなってしまう。
上記のようにデミスタを伝熱管群の直上部に配置することにより、噴き上がる液滴量をデミスタによって減少させ、キャリーオーバー量を減少させることができる。さらに、デミスタを伝熱管群の直上部に配置することにより、デミスタ上の空間において低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて低圧冷媒のキャリーオーバーを防止することができる。
上記の蒸発器において、前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられた構成としてもよい。
上記構成の蒸発器によれば、圧力容器の内部における低圧冷媒のガス流の全量がデミスタを通過しなければならず、ガス流の流動抵抗が増大する。このため、圧力容器内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。
上記のいずれかの蒸発器において、前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さくされた構成としてもよい。
伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群が沸騰泡の振動に共振して破損する懸念がある。
上記のように、伝熱管群の上流側の位置付近における伝熱管支持板の設置間隔を、他の位置における伝熱管支持板の設置間隔よりも小さくすることにより、伝熱管群の上流側付近における共振を抑制して破損を防止することができる。
本発明に係るターボ冷凍装置は、最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、圧縮された前記低圧冷媒を凝縮させる凝縮器と、膨張した前記低圧冷媒を蒸発させる上記のいずれかの蒸発器と、を具備してなることを特徴とする。
上記構成のターボ冷凍装置によれば、低圧冷媒を用いた場合に、蒸発器内における低圧冷媒の沸騰泡による伝熱管群のドライアウトや、低圧冷媒の液滴がターボ圧縮機にキャリーオーバーされることを防止し、低圧冷媒による効率向上を図ることができる。
以上のように、本発明に係る蒸発器、これを備えたターボ冷凍装置によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる。
本発明の実施形態に係るターボ冷凍装置の全体図である。 図1のII矢視により本発明の第1実施形態を示す蒸発器の側面図である。 図2のIII−III線に沿う蒸発器の縦断面図である。 図2のIV−IV線に沿う蒸発器の縦断面図である。 本発明の第2実施形態を示す蒸発器の側面図である。 本発明の第3実施形態を示す蒸発器の縦断面図である。 図6のVII矢視図である。 (a),(b)は、それぞれ本発明の第4実施形態を示す冷媒入口の縦断面図である。
以下に、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るターボ冷凍装置の全体図である。このターボ冷凍装置1は、冷媒を圧縮するターボ圧縮機2と、凝縮器3と、高圧膨張弁4と、中間冷却器5と、低圧膨張弁6と、蒸発器7と、潤滑油タンク8と、回路箱9と、インバータユニット10と、操作盤11等を備えてユニット状に構成されている。潤滑油タンク8は、ターボ圧縮機2の軸受や増速器等に供給する潤滑油を貯留するタンクである。
凝縮器3と蒸発器7は耐圧性の高い円胴シェル形状に形成され、その軸線を略水平方向に延在させた状態で互いに隣り合うように平行に配置されている。凝縮器3は蒸発器7よりも相対的に高い位置に配置され、その下方に回路箱9が設置されている。中間冷却器5と潤滑油タンク8は、凝縮器3と蒸発器7との間に挟まれて設置されている。インバータユニット10は凝縮器3の上部に設置され、操作盤11は蒸発器7の上方に配置されている。潤滑油タンク8と回路箱9とインバータユニット10と操作盤11は、それぞれ平面視でターボ冷凍装置1の全体輪郭から大きくはみ出さないように配置されている。
ターボ圧縮機2は、電動機13によって回転駆動される公知の遠心タービン型のものであり、その軸線を略水平方向に延在させた姿勢で蒸発器7の上方に配置されている。電動機13はインバータユニット10によって駆動される。ターボ圧縮機2は後述するように蒸発器7の冷媒出口23から吸入管14を経て供給される気相状の冷媒を圧縮する。冷媒としては、最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒が用いられる。
ターボ圧縮機2の吐出口と凝縮器3の上部との間が吐出管15により接続され、凝縮器3の底部と中間冷却器5の底部との間が冷媒管16により接続されている。また、中間冷却器5の底部と蒸発器7との間が冷媒管17により接続され、中間冷却器5の上部とターボ圧縮機2の中段との間が冷媒管18により接続されている。冷媒管16には高圧膨張弁4が設けられ、冷媒管17には低圧膨張弁6が設けられている。
[第1実施形態]
図2〜図4は蒸発器7の第1実施形態を示している。
図2に示すように、蒸発器7は、水平方向に延在する円胴シェル形状の圧力容器21と、この圧力容器21の下部に設けられる冷媒入口22と、圧力容器21の上部に設けられる冷媒出口23と、圧力容器21の内部を長手軸方向に通過する伝熱管群25と、冷媒分配板26と、デミスタ27とを具備して構成されている。
冷媒入口22と冷媒出口23は、それぞれ圧力容器21の長手軸方向中間部に配置されており、冷媒入口22は圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成され、冷媒出口23は圧力容器21の上部から鉛直上方に延出する短いパイプ状に形成されている。図1に示すように、冷媒入口22には中間冷却器5の底部から延出する冷媒管17が接続され、冷媒出口23にはターボ圧縮機2の吸入管14が接続されている。
圧力容器21の内部には、その一端(例えば図2に向かって左端)の下側に入口チャンバ31、その上に出口チャンバ32が、それぞれ独立した部屋として設けられている。また、圧力容器21の内部他端(例えば図2に向かって右端)にはUターンチャンバ33が独立した部屋として設けられている。これらのチャンバ31,32,33はいずれもデミスタ27よりも下に配置されている。入口チャンバ31には入口ノズル34が設けられ、出口チャンバ32には出口ノズル35が設けられている。
図2および図3、図4に示すように、伝熱管群25は、圧力容器21内部の長手軸方向一端(図2中の左端)から他端(図2中の右端)まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを備えている。具体的には、往路管群25Aは入口チャンバ31とUターンチャンバ33の下部との間を繋ぐように配設され、復路管群25Bは出口チャンバ32とUターンチャンバ33の上部との間を繋ぐように配設されている。即ち、往路管群25Aは圧力容器21の内部下方に配置され、復路管群25Bは圧力容器21の内部上方に配置されている。
入口ノズル34からは、冷媒に冷却される被冷却液として、例えば水(水道水、精製水、蒸留水等)が流入するようになっている。この水は、入口チャンバ31から流入して往路管群25Aを流れ、Uターンチャンバ33にてUターンした後、復路管群25Bを流れ、出口チャンバ21を経て出口ノズル35から冷水として流出する。
図3、図4に示すように、伝熱管群25を構成する往路管群25Aと復路管群25Bは、それぞれ多数の伝熱管が束ねられた伝熱管束25aが水平方向に複数(例えば4つずつ)平行に配列された構成である。各伝熱管束25aの間には鉛直方向に延びる空隙S1が形成されている。また、往路管群25Aと復路管群25Bとの間には水平方向に延びる空隙S2が形成されている。
図2に示すように、伝熱管群25(25A,25B)を構成する個々の伝熱管は、圧力容器21の内部において複数の伝熱管支持板37に支持されながら圧力容器21の内部に固定されている。これらの伝熱管支持板37は、圧力容器21の長手軸方向に交差する面方向を有する平板状であり、圧力容器21の長手軸方向に間隔を空けて複数配置され、圧力容器21の内面に固定されている。伝熱管支持板37には多数の貫通穴が穿設されており、これらの貫通穴に伝熱管が密に挿通されている。
圧力容器21の長手軸方向に沿う伝熱管支持板37の設置間隔は、伝熱管群25の上流側の位置付近、つまり往路管群25Aの上流側の位置(図2中の左方)付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。例えば、L1はL2の半分程度となっている。
一方、図2〜図4に示すように、冷媒分配板26は、圧力容器21の内部において冷媒入口22と伝熱管群25(往路管群25A)との間に設置されている。この冷媒分配板26は、多数の冷媒流通孔26aが穿設された板状の部材である。
この冷媒分配板26における単位面積あたりの冷媒流通孔26aの面積比率は、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において、他の範囲、例えば伝熱管群25の中間区間の位置に対応する範囲A2よりも大きくされている。また、この冷媒流通孔26aの面積比率は、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。例えば、範囲A1,A3における冷媒流通孔26aの面積比率は33〜38%、範囲A2における冷媒流通孔26aの面積比率は24〜33%を例示することができるが、この範囲のみには限定されない。
図3、図4に示すように、伝熱管群25(25A,25B)を構成する複数の伝熱管束25aの間に形成された鉛直方向に延びる空隙S1の鉛直下に、冷媒分配板26の冷媒流通孔26aが配置されている。つまり、平面視で、空隙S1の長手方向に沿って冷媒流通孔26aが配列されている。
図2〜図4に示すように、デミスタ27は、圧力容器21の内部において冷媒出口23と伝熱管群25(復路管群25B)との間に配置されている。デミスタ27は、例えばワイヤーをメッシュ状に絡め合わせた通気性に富む部材であり、低圧冷媒の気液分離を行うものである。ワイヤーメッシュに限らず、通気性が良ければ他の多孔状の物質であってもよい。
デミスタ27は、その周囲全周が圧力容器21の内周に接するように取り付けられており、このデミスタ27を境に圧力容器21の内部空間が上下に二分されている。また、デミスタ27の設置高さは、伝熱管群25の直上部とされている。具体的には、伝熱管群25とデミスタ27との間隔はチューブ配置ピッチの2倍程度とされている。一方、デミスタ27と冷媒出口23との間には比較的大きな高低差(例えば圧力容器21の直径の50%程度以上)が設けられている。
以上のように構成された蒸発器7を備えたターボ冷凍装置1において、ターボ圧縮機2は電動機13に回転駆動され、蒸発器7から吸入管14を経て供給される気相状の低圧冷媒を圧縮し、この圧縮された低圧冷媒を吐出管15から凝縮器3に送給する。
凝縮器3の内部では、ターボ圧縮機2で圧縮された高温の低圧冷媒が冷却水と熱交換されることにより凝縮熱を冷却されて凝縮液化される。凝縮器3で液相状になった低圧冷媒は、凝縮器3から延出する冷媒管16に設けられた高圧膨張弁4を通過することにより膨張し、気液混合状態となって中間冷却器5に給送され、ここに一旦貯留される。
中間冷却器5の内部では、高圧膨張弁4にて膨張した気液混合状態の低圧冷媒が気相分と液相分とに気液分離される。ここで分離された低圧冷媒の液相分は、中間冷却器5の底部から延出する冷媒管17に設けられた低圧膨張弁6によりさらに膨張して気液二相流となって蒸発器7に給送される。また、中間冷却器5で分離された低圧冷媒の気相分は、中間冷却器5の上部から延出する冷媒管18を経てターボ圧縮機2の中段部に給送され、再び圧縮される。
図2〜図4に示すように、蒸発器7では、低圧膨張弁6において断熱膨張した後の低温な気液二相流状の低圧冷媒が冷媒入口22から圧力容器21の内部に流入し、冷媒分配板26の下方で圧力容器21の長手軸方向に分散した後、冷媒分配板26の冷媒流通孔26aを通過して上方に流れる。そして、圧力容器21の内部で低圧冷媒のプールが形成される。この低圧冷媒プールの液面レベルは、伝熱管群25とデミスタ27との間となるように自動調整される。
伝熱管群25(25A,25B)は、圧力容器21の内部で低圧冷媒プール中に浸漬された状態となり、低圧冷媒と熱交換する。これにより、伝熱管群25の内部を通過する水が冷却されて冷水になる。この冷水は空調用の冷熱媒や工業用冷却水等として利用される。
伝熱管群25との熱交換により蒸発(気化)した低圧冷媒は、デミスタ27によって気液分離される。即ち、気化した低圧冷媒(気化冷媒)が圧力容器21の内部を冷媒出口23に向かう時には、高圧冷媒に比べて比体積が大きい低圧冷媒の特性によって速い流れが形成される。そして、低圧冷媒プールから噴き上げられた未気化の液相冷媒の液滴が、気化冷媒の速い流れに同伴して冷媒出口23から出ようとし、キャリーオーバーが発生する虞がある。
しかし、この液滴は多孔状のデミスタ27に捕捉されて分離され、重力により低圧冷媒プールに落下するため、キャリーオーバーが防止される。このように気液分離された気化冷媒は、冷媒出口23から出て吸入管14を経て再びターボ圧縮機2に吸入・圧縮され、以下、この冷凍サイクルが繰り返される。
この蒸発器7は、圧力容器21の内部において冷媒入口22と伝熱管群25(25A,25B)との間に設置されている冷媒分配板26における冷媒流通孔26aの面積比率が、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において他の範囲A2よりも大きくされている。
このため、冷媒入口22から圧力容器21内に導入された低圧冷媒は、伝熱管群25(25A)の上流側の位置付近に比較的多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。
蒸発器21の内部における伝熱管群25(25A)の上流側の位置付近では、伝熱管群25(25A)の内部を流れる水との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には上記のように他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群25(25A)の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群25(25A,25B)が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群25(25A,25B)の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。
上記のように圧力容器21の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、本実施形態のように圧力容器21の長手軸方向中間部にターボ圧縮機2の吸入管14に通じる冷媒出口23を設けることにより、液相状の冷媒が気化冷媒の流れに乗ってターボ圧縮機2側にキャリーオーバーされることを効果的に防止し、ターボ圧縮機2の効率低下を抑制することができる。
また、この蒸発器7は、冷媒入口22が圧力容器21の長手軸方向中間部に設けられるとともに、冷媒分配板26における冷媒流通孔26aの面積比率が、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。
このため、圧力容器21の長手軸方向中間部に設けられた冷媒入口22から圧力容器21内に導入された低圧冷媒は、圧力容器21内部の長手軸方向両端部に多く供給され、冷媒入口22の直上部となる圧力容器21の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群25(25A,25B)の内部を流れる水と低圧冷媒とを良好に熱交換させ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。
さらに、この蒸発器7の伝熱管群25は、圧力容器21内部の長手軸方向一端から他端まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを具備している。そして、圧力容器21の内部において往路管群25Aが下方に配置され、復路管群25Bが上方に配置されている。
このように伝熱管群25を構成すれば、伝熱管内を流れる水との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群25Aが圧力容器21の下部に配置され、伝熱管内を流れる水との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群25Bが圧力容器21の上部に配置される。
このため、低圧冷媒の激しい沸騰が圧力容器21内における低圧冷媒プールの液面の下方(深部)で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機2側にキャリーオーバーされることを防止し、ターボ圧縮機2の効率低下を抑制することができる。
伝熱管群25(25A,25B)は、複数の伝熱管が束ねられた伝熱管束25aが水平方向に複数配列され、これらの伝熱管束25aの間に鉛直方向に延びる空隙S1が形成されている。
この複数の伝熱管束25aの間にある鉛直な空隙S1が、伝熱管群25(25A,25B)と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒プールの液面に容易に浮上することができる。したがって、冷媒液面下で伝熱管群25(25A,25B)が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群25(25A,25B)の伝熱性能を高めることができる。
これに加えて、空隙S1の鉛直下に、冷媒分配板26に穿設された冷媒流通孔26aが配置されているため、冷媒分配板26の冷媒流通孔26aを通過して上方に放流される低圧冷媒の流れが、空隙S1を通過して伝熱管群25(25A,25B)の上端まで掛かる。したがって、伝熱管群25(25A,25B)の伝熱性能を高めることができる。
このターボ冷凍装置1のように低圧冷媒を用いる場合、高圧冷媒に比べて比堆積が大きい低圧冷媒の特性により、蒸発器7の圧力容器21内部におけるガス流速が速くなる。このため、圧力容器21内部の低圧冷媒プールから噴き上がった液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタ27を設置すると、冷媒液面からデミスタ27までの距離が長くなり、圧力容器21のシェル径が大きくなってしまう。
この蒸発器7では、デミスタ27を伝熱管群25の直上部に配置することにより、低圧冷媒プールから噴き上がる液滴量をデミスタ27によって減少させ、低圧冷媒の液滴が冷媒出口23から出てしまうこと(キャリーオーバー)を抑制している。
さらに、デミスタ27を伝熱管群25の直上部に配置することにより、相対的にデミスタ27上の空間高さを大きくし、低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて、この点でも低圧冷媒のキャリーオーバーを抑制することができる。
さらに、この蒸発器7では、デミスタ27が、その周囲全周が圧力容器21の内周全周に接するように設けられている。これにより、圧力容器21の内部における低圧冷媒のガス流の全量がデミスタ27を通過することになり、ガス流の流動抵抗が増大する。このため、圧力容器21内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。
また、この蒸発器7では、伝熱管群25の個々の伝熱管を支持している複数の伝熱管支持板37の、伝熱管群25の上流側の位置付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。
伝熱管群25の上流側の位置付近では、前述のように伝熱管群25の内部を流れる水と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群25が沸騰泡の振動に共振して破損する懸念がある。
上記のように、伝熱管群25の上流側の位置付近における伝熱管支持板37の設置間隔L1を、他の位置における設置間隔L2よりも小さくすることにより、伝熱管群25の上流側付近における設置剛性を高め、共振を抑制して破損を防止することができる。
[第2実施形態]
図5は本発明の第2実施形態を示す蒸発器の側面図である。
この蒸発器7Aは、圧力容器21の冷媒入口22Aが、圧力容器21の長手軸方向に沿って複数分散して設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。このため、同一構成の各部分には同一符号を付与して説明を省略する。
本実施形態では、例えば2つの冷媒入口22Aが、圧力容器21の長手軸方向に沿って分散し、各々の間が離間するように設けられている。冷媒入口22Aを3箇所以上に設けてもよい。これらの冷媒入口22Aは、第1実施形態の冷媒入口22と同じく、圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成されている。各冷媒入口22Aの口径は、第1実施形態の冷媒入口22の口径よりも小さくされている。
前述の通り、低圧冷媒は、高圧冷媒に比べて比体積が大きいため、蒸発器7Aに流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板26の冷媒流通孔26aを小さくする等して圧損を大きくすると、低圧冷媒が冷媒流通孔26aから噴出する速度が大きくなり、伝熱管群25の振動や破損に繋がる。
この蒸発器7Aのように2つ、あるいは3つ以上の冷媒入口22Aを圧力容器21の長手軸方向に沿って離間させて設けることにより、第1実施形態のように単一の冷媒入口22を設けた場合に比べて圧力容器21内部への低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板26の冷媒流通孔26aの径を大きくすることができ、これによって低圧冷媒が冷媒流通孔26aから噴出する速度を低下させることができる。
これにより、伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
[第3実施形態]
図6は本発明の第3実施形態を示す蒸発器の縦断面図であり、図7は図6のVII矢視図である。
この蒸発器7Bは、圧力容器21の底部に設けられている冷媒入口22の外側開口部22aから圧力容器21までの流路断面積が、外側開口部22aから圧力容器21に向かって拡大している。具体的には、外側開口部22aと圧力容器21との間に拡張流路22bが設けられている。それ以外の構成は図3に示す第1実施形態の蒸発器7と同様であるため、同一構成の各部分には同一符号を付与して説明を省略する。
拡張流路22bは、例えば箱状に形成されており、その流路断面積が冷媒入口22の流路断面積よりも大きくされている。例えば拡張流路22bの流路断面積は冷媒入口22の流路断面積の2〜5倍程度に設定される。なお、拡張流路22bの形状は箱状のみに限定されず、その流路断面積が冷媒入口22の外側開口部22aよりも大きければ他の形状であってもよい。例えば、拡張流路22bをバルジ形状等にしてもよい。また、拡張流路22bを設けずに、冷媒入口22を、その外側開口部22aから圧力容器21側に向かって径が大きくなるテーパー管状とすること等が考えられる。
このように、冷媒入口22の外側開口部22aから圧力容器21までの流路断面積を圧力容器21に向かって拡大させることにより、冷媒入口22を流れる低圧冷媒の流速が圧力容器21に向かって低下する。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
[第4実施形態]
図8(a),(b)は本発明の第4実施形態を示す蒸発器の縦断面図である。
この蒸発器7Cは、冷媒入口22の管内に、低圧冷媒の流速を減衰させる流速減衰部材が設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。
流速減衰部材としては、図8(a)に示すように、冷媒入口22の管内に多孔板(パンチングプレート等)22cを設置したり、図8(b)に示すように、冷媒入口22の管内に複数の邪魔板22dを迷路状に設置したりすることが考えられる。冷媒入口22の管内における低圧冷媒の流速を減衰させることができれば、これら以外のものを流速減衰部材として設置してもよい。
このように、冷媒入口22の管内に流速減衰部材22c,22dを設けることにより、冷媒入口22から圧力容器21に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
以上に説明したように、本実施形態に係る蒸発器7,7A,7B,7C、およびこれらの蒸発器を備えたターボ冷凍装置1によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置1において、蒸発器内における伝熱管25群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機2側にキャリーオーバーされることによる効率低下を抑制することができる。
なお、本発明は上記実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、上記の第1〜第4実施形態を組み合わせる等してもよい。
1 ターボ冷凍装置
2 ターボ圧縮機
3 凝縮器
7 蒸発器
21 圧力容器
22 冷媒入口
22a 冷媒入口の外側開口部
22b 拡張流路
22c 多孔板(流速減衰部材)
22d 邪魔板(流速減衰部材)
23 冷媒出口
25 伝熱管群
25A 往路管群
25B 復路管群
25a 伝熱管束
26 冷媒分配板
26a 冷媒流通孔
27 デミスタ
37 伝熱管支持板
A1 伝熱管群の上流側の位置付近に対応する範囲(冷媒分配板の長手軸方向端部の範囲)
A2 伝熱管群の他の位置に対応する範囲(冷媒分配板の長手軸方向中間部の範囲)
A3 冷媒分配板の長手軸方向端部の範囲
L1,L2 伝熱管支持板の設置間隔
S1 空隙

Claims (12)

  1. 水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
    前記圧力容器の下部に設けられる冷媒入口と、
    前記圧力容器の上部に設けられる冷媒出口と、
    前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
    前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
    前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群とを備え、
    前記伝熱管群は、前記圧力容器の長手軸方向に交差する面方向を有する平板状の伝熱管支持板に支持され、
    前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、前記往路管群及び前記復路管群のそれぞれの上流側の位置付近に対応する範囲において他の範囲よりも大きくされるとともに、前記冷媒出口付近に対応する範囲において他の範囲よりも小さくされていることを特徴とする蒸発器。
  2. 前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、
    前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい請求項1に記載の蒸発器。
  3. 前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に間隔を空けて配置された複数の前記伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さい請求項1または2に記載の蒸発器。
  4. 水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
    前記圧力容器の下部に設けられる冷媒入口と、
    前記圧力容器の上部に設けられる冷媒出口と、
    前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
    前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
    前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていて、
    前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
  5. 水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
    前記圧力容器の下部に設けられる冷媒入口と、
    前記圧力容器の上部に設けられる冷媒出口と、
    前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
    前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
    前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していて、
    前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
  6. 水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
    前記圧力容器の下部に設けられる冷媒入口と、
    前記圧力容器の上部に設けられる冷媒出口と、
    前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
    前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
    前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていて、
    前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
  7. 前記伝熱管群は、
    前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、
    前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、
    前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置されている請求項1からのいずれかに記載の蒸発器。
  8. 前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成されている請求項1からのいずれかに記載の蒸発器。
  9. 前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置されている請求項に記載の蒸発器。
  10. 前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記低圧冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置されている請求項1からのいずれかに記載の蒸発器。
  11. 前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられている請求項10に記載の蒸発器。
  12. 最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、
    圧縮された前記低圧冷媒を凝縮させる凝縮器と、
    膨張した前記低圧冷媒を蒸発させる請求項1から11のいずれかに記載の蒸発器と、
    を具備してなることを特徴とするターボ冷凍装置。
JP2015201239A 2015-10-09 2015-10-09 蒸発器、これを備えたターボ冷凍装置 Active JP6716227B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (ja) 2015-10-09 2015-10-09 蒸発器、これを備えたターボ冷凍装置
US15/736,130 US20180187932A1 (en) 2015-10-09 2016-09-06 Evaporator and centrifugal chiller provided with the same
PCT/JP2016/076068 WO2017061211A1 (ja) 2015-10-09 2016-09-06 蒸発器、これを備えたターボ冷凍装置
CN201680036519.2A CN107850359B (zh) 2015-10-09 2016-09-06 蒸发器及具备该蒸发器的涡轮制冷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (ja) 2015-10-09 2015-10-09 蒸発器、これを備えたターボ冷凍装置

Publications (2)

Publication Number Publication Date
JP2017072343A JP2017072343A (ja) 2017-04-13
JP6716227B2 true JP6716227B2 (ja) 2020-07-01

Family

ID=58487574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201239A Active JP6716227B2 (ja) 2015-10-09 2015-10-09 蒸発器、これを備えたターボ冷凍装置

Country Status (4)

Country Link
US (1) US20180187932A1 (ja)
JP (1) JP6716227B2 (ja)
CN (1) CN107850359B (ja)
WO (1) WO2017061211A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190926A (ja) * 2016-04-15 2017-10-19 三菱重工サーマルシステムズ株式会社 蒸発器、これを備えたターボ冷凍装置
JP6524990B2 (ja) * 2016-12-09 2019-06-05 ダイキン工業株式会社 熱搬送装置及びそれを用いた熱搬送方法
EP3627073A1 (en) 2018-09-18 2020-03-25 Daikin applied Europe S.p.A. Flooded evaporator
EP3690376B1 (en) 2019-02-04 2021-07-21 Carrier Corporation Heat exchanger
JP7261131B2 (ja) * 2019-09-05 2023-04-19 荏原冷熱システム株式会社 ターボ冷凍機に使用される蒸発器、およびターボ冷凍機
CN110947192A (zh) * 2019-12-02 2020-04-03 大连海事大学 一种立式节能蒸发器
US11747060B2 (en) 2020-06-17 2023-09-05 Carrier Corporation Vapor compression system and method for operating heat exchanger
CN114264188A (zh) * 2020-09-16 2022-04-01 浙江盾安人工环境股份有限公司 流体分配装置及具有其的热交换器
CN115076589A (zh) * 2021-06-29 2022-09-20 中国石油天然气集团有限公司 贫甘醇缓冲罐和贫富甘醇换热器的一体化装置及使用方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454959U (ja) * 1977-09-26 1979-04-16
JPS58183471U (ja) * 1982-05-27 1983-12-07 ダイキン工業株式会社 満液式蒸発器
JPS60251302A (ja) * 1984-05-28 1985-12-12 株式会社日立製作所 湿分分離加熱器
JPS61175492A (ja) * 1985-01-31 1986-08-07 Toshiba Corp 非共沸混合媒体用蒸発器
JP2510041Y2 (ja) * 1990-10-16 1996-09-11 石川島播磨重工業株式会社 低温流体用蒸発器
JP2875373B2 (ja) * 1990-10-19 1999-03-31 株式会社日立製作所 水冷却器
JP3829452B2 (ja) * 1998-01-12 2006-10-04 三菱電機株式会社 熱交換器
JPH11294706A (ja) * 1998-04-08 1999-10-29 Mitsubishi Heavy Ind Ltd シェル・チューブ熱交換器型横置蒸気発生器
US6167713B1 (en) * 1999-03-12 2001-01-02 American Standard Inc. Falling film evaporator having two-phase distribution system
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
JP4192413B2 (ja) * 2000-09-06 2008-12-10 株式会社Ihi 氷蓄熱装置の過冷却器
JP3572250B2 (ja) * 2000-10-24 2004-09-29 三菱重工業株式会社 冷凍機用凝縮器
JP4451998B2 (ja) * 2001-05-22 2010-04-14 三菱重工業株式会社 蒸発器及びこれを有する冷凍機
US8574451B2 (en) * 2005-06-24 2013-11-05 Honeywell International Inc. Trans-chloro-3,3,3-trifluoropropene for use in chiller applications
WO2009151669A1 (en) * 2008-03-07 2009-12-17 Arkema Inc. Halogenated alkene heat transfer compositions with improved oil return
EP2671039B1 (en) * 2011-02-04 2019-07-31 Lockheed Martin Corporation Heat exchanger with foam fins
US10579947B2 (en) * 2011-07-08 2020-03-03 Avaya Inc. System and method for scheduling based on service completion objectives
JP5916360B2 (ja) * 2011-11-30 2016-05-11 三菱重工業株式会社 ターボ冷凍機
JP6423221B2 (ja) * 2014-09-25 2018-11-14 三菱重工サーマルシステムズ株式会社 蒸発器及び冷凍機

Also Published As

Publication number Publication date
CN107850359B (zh) 2021-03-26
JP2017072343A (ja) 2017-04-13
WO2017061211A1 (ja) 2017-04-13
CN107850359A (zh) 2018-03-27
US20180187932A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6716227B2 (ja) 蒸発器、これを備えたターボ冷凍装置
WO2017179630A1 (ja) 蒸発器、これを備えたターボ冷凍装置
CN104303000B (zh) 热交换器
US10132537B1 (en) Heat exchanger
JP7364930B2 (ja) 熱交換器
JP2019507862A (ja) 熱交換器
US11029094B2 (en) Heat exchanger
JP2007309604A (ja) 冷凍装置の蒸発器及び冷凍装置
CN104395687A (zh) 热交换器
CN113195997B (zh) 热交换器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150