JP6705873B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6705873B2
JP6705873B2 JP2018182541A JP2018182541A JP6705873B2 JP 6705873 B2 JP6705873 B2 JP 6705873B2 JP 2018182541 A JP2018182541 A JP 2018182541A JP 2018182541 A JP2018182541 A JP 2018182541A JP 6705873 B2 JP6705873 B2 JP 6705873B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
active material
lead
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018182541A
Other languages
Japanese (ja)
Other versions
JP2020053293A (en
Inventor
真也 菅
真也 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018182541A priority Critical patent/JP6705873B2/en
Priority to CN201980028342.5A priority patent/CN112042041B/en
Priority to PCT/JP2019/030263 priority patent/WO2020066290A1/en
Priority to DE112019002286.5T priority patent/DE112019002286B4/en
Priority to US17/253,084 priority patent/US20210167363A1/en
Publication of JP2020053293A publication Critical patent/JP2020053293A/en
Application granted granted Critical
Publication of JP6705873B2 publication Critical patent/JP6705873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は鉛蓄電池に関する。 The present invention relates to lead acid batteries.

近年の自動車市場では、燃費の向上や排出ガスの低減を目的とした、充電制御システムやアイドリングストップシステムを搭載した車両(以下、これらの車両を「充電制御車」、「アイドリングストップ車」と記すこともある)が主流となっている。これらの車両においては、車両側で鉛蓄電池の充電状態や劣化状態を判定し、その結果に基づいて、鉛蓄電池の充放電やエンジンのアイドリングストップを制御するようになっている。 In the automobile market in recent years, vehicles equipped with a charge control system and an idling stop system for the purpose of improving fuel efficiency and reducing exhaust gas (hereinafter, these vehicles are referred to as "charge control vehicles" and "idling stop vehicles"). In some cases) is the mainstream. In these vehicles, the state of charge or deterioration of the lead storage battery is determined on the vehicle side, and charge/discharge of the lead storage battery or idling stop of the engine is controlled based on the result.

しかしながら、充電制御システムやアイドリングストップシステムを使用した場合には、鉛蓄電池に大きな負荷がかかるため、短寿命化しやすかった。例えば、いずれのシステムにおいても鉛蓄電池の充放電が頻繁に繰り返されるため、活物質の軟化や脱落が発生して早期に容量低下が生じるおそれがあった。また、アイドリングストップ車では鉛蓄電池の充電状態が低下しやすいので、鉛蓄電池の充電受入性が不十分だと、不動態化した硫酸鉛が極板の表面に蓄積するサルフェーションが進行し、内部抵抗の上昇と早期の容量低下が生じるおそれがあった。 However, when a charge control system or an idling stop system is used, a large load is applied to the lead storage battery, and it is easy to shorten the life. For example, in any of the systems, charge and discharge of the lead storage battery are frequently repeated, so that the active material may be softened or fallen off, and the capacity may be reduced at an early stage. In addition, since the state of charge of the lead-acid battery tends to decrease in idling-stop vehicles, if the lead-acid battery's charge acceptance is insufficient, passivation of lead sulfate that accumulates on the surface of the electrode plate will progress, causing internal resistance. There was a risk of an increase in the capacity and an early decrease in capacity.

このような事情から、充電制御車やアイドリングストップ車に用いられる鉛蓄電池は、高い耐久性と充電受入性に加えて、充電状態や劣化状態を判定する際の正確性が求められた。鉛蓄電池の充電状態や劣化状態を判定する手法として、鉛蓄電池の内部抵抗を測定する方法が知られている。しかしながら、鉛蓄電池の内部抵抗は、充電状態、劣化状態以外の様々な要因で上昇する場合があるため、充電状態や劣化状態の正確な判定は容易ではなかった。 Under these circumstances, lead-acid batteries used in charge control vehicles and idling stop vehicles are required to have high durability and charge acceptability as well as accuracy in determining the charge state and the deterioration state. A method of measuring the internal resistance of a lead storage battery is known as a method for determining the charge state or deterioration state of the lead storage battery. However, since the internal resistance of the lead storage battery may increase due to various factors other than the charged state and the deteriorated state, it is not easy to accurately determine the charged state and the deteriorated state.

特開2017−92001号公報JP, 2017-92001, A

本発明は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池を提供することを課題とする。 An object of the present invention is to provide a lead storage battery in which an increase in internal resistance is suppressed and a charged state or a deteriorated state can be accurately determined by a method of measuring the internal resistance.

本発明の一態様に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬され、化成後の正極板の平面度が4.0mm以下であり、満充電状態における正極活物質中に含有される鉄の含有量が3.5ppm以上20.0ppm以下であることを要旨とする。 The lead-acid battery according to an aspect of the present invention has a positive electrode plate having a positive electrode active material containing lead dioxide, and a negative electrode plate having a negative electrode active material containing metallic lead, which are alternately laminated with a separator interposed therebetween. The electrode plate group is immersed in an electrolytic solution, the flatness of the positive electrode plate after chemical formation is 4.0 mm or less, and the content of iron contained in the positive electrode active material in a fully charged state is The gist is that the content is 3.5 ppm or more and 20.0 ppm or less.

本発明に係る鉛蓄電池は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能である。 INDUSTRIAL APPLICABILITY The lead storage battery according to the present invention suppresses an increase in internal resistance and can accurately determine the charged state and the deteriorated state by the method of measuring the internal resistance.

本発明の一実施形態に係る鉛蓄電池の構造を説明する部分断面図である。It is a fragmentary sectional view explaining the structure of the lead acid battery which concerns on one Embodiment of this invention. 極板の平面度の測定方法を説明する図である。It is a figure explaining the measuring method of the flatness of an electrode plate. 正極活物質の厚塗り度の差による湾曲の発生を模式的に示した正極板の図である。FIG. 5 is a diagram of a positive electrode plate schematically showing generation of curvature due to a difference in thickness of positive electrode active material.

本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described. The embodiment described below is an example of the present invention, and the present invention is not limited to this embodiment. Further, various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can also be included in the present invention.

本発明者が鋭意検討した結果、鉛蓄電池の内部抵抗の上昇に関して新たな知見が見出されたので、以下に詳細に説明する。
鉛蓄電池においては、正極板と負極板とがセパレータを介して複数枚交互に積層された極板群が、所定の群圧が負荷された状態で電槽内に収容されている。このとき、極板群の極板間には、充放電反応に必要な電解液の拡散流路やガスの排出流路が必要であるため、ベース面にリブを設けたリブ付きセパレータを極板間に介在させて、電解液の拡散流路やガスの排出流路となる隙間を確保する手法が一般的である。
As a result of diligent studies by the present inventors, new findings have been found regarding an increase in internal resistance of the lead storage battery, and therefore, a detailed description will be given below.
In a lead storage battery, a group of electrode plates in which a plurality of positive electrode plates and negative electrode plates are alternately stacked with a separator interposed therebetween are housed in a battery case under a predetermined group pressure. At this time, since a diffusion passage for the electrolyte and a discharge passage for the gas necessary for the charge/discharge reaction are required between the electrodes of the electrode plate group, a ribbed separator having a rib on the base surface is used as the electrode plate. A common method is to secure a gap that serves as a diffusion channel for the electrolytic solution or a channel for discharging the gas by interposing them therebetween.

しかしながら、このようなリブ付きセパレータを用いた場合でも、内部抵抗が上昇したまま維持され、下がりにくい場合があった。このような内部抵抗が高止まりした鉛蓄電池について本発明者が調査した結果、極板群を構成する極板が湾曲しており、湾曲した極板の縁部にガスの気泡が引っかかり、極板に付着した状態となっていることが判明した。そして、ガスの気泡が極板に付着した結果、ガスが極板群内に閉じ込められて滞留し、活物質と電解液との接触面積(すなわち、反応が生じる部分の面積)が減少するため、鉛蓄電池の内部抵抗が上昇することが判明した。 However, even when such a ribbed separator is used, the internal resistance may be kept rising and may not be lowered easily. As a result of the present inventor's investigation of the lead storage battery having such a high internal resistance, the electrode plates constituting the electrode plate group are curved, and gas bubbles are caught at the edge of the curved electrode plate, and the electrode plate is It was found that it was attached to the. Then, as a result of the gas bubbles adhering to the electrode plate, the gas is trapped and stays in the electrode plate group, and the contact area between the active material and the electrolytic solution (that is, the area where the reaction occurs) is reduced. It was found that the internal resistance of the lead acid battery increased.

また、隣接する極板間の距離が湾曲により小さくなるため、ガスが極板間に閉じこめられやすくなり、極板群の外部に出にくいことも分かった。
さらに、極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在することも分かった。この事実から、極板の湾曲の大きさや湾曲の形状によっては、極板群内にガスが滞留しにくい場合があるということが分かった。
It was also found that the gas is easily trapped between the electrode plates because the distance between the adjacent electrode plates becomes smaller due to the curvature, and it is difficult for the gas to come out of the electrode plate group.
Furthermore, it was also found that there exists a lead storage battery whose internal resistance does not remain high even if the electrode plate is curved. From this fact, it was found that the gas may not easily stay in the electrode plate group depending on the size and shape of the curve of the electrode plate.

極板が湾曲する原因は、本発明者の検討により、以下の通りであることが判明した。基板の表面に活物質からなる活物質層を形成し極板を製造する際には、基板の両板面に同一厚さの活物質層を形成しようとするが、両板面に同一厚さの活物質層を形成することは容易ではなく、異なる厚さの活物質層が形成されてしまうこともある。例えば、図3の例であれば、極板100の基板101の右側の板面101aに形成された活物質層102Aの厚さよりも、左側の板面101bに形成された活物質層102Bの厚さの方が大きい。 The cause of the bending of the electrode plate has been found by the inventors' investigation to be as follows. When manufacturing an electrode plate by forming an active material layer made of an active material on the surface of a substrate, it is attempted to form an active material layer with the same thickness on both plate surfaces of the substrate, but with the same thickness on both plate surfaces. It is not easy to form the active material layer, and an active material layer having a different thickness may be formed. For example, in the example of FIG. 3, the thickness of the active material layer 102B formed on the left plate surface 101b is larger than the thickness of the active material layer 102A formed on the right plate surface 101a of the substrate 101 of the electrode plate 100. Sano is bigger.

このように基板101の両板面101a、101bに形成された活物質層102A、102Bの厚さが異なると、図3に示すように、化成によって極板100が湾曲して、略椀状に変形する。そして、図3に示すように、活物質層102Bの厚さが大きい方の板面101bが凸面となり、活物質層102Aの厚さが小さい方の板面101aが凹面となるように、極板100が湾曲する。 When the active material layers 102A and 102B formed on both plate surfaces 101a and 101b of the substrate 101 have different thicknesses, the electrode plate 100 is curved due to chemical conversion to form a substantially bowl shape, as shown in FIG. Deform. Then, as shown in FIG. 3, the plate surface 101b of the active material layer 102B having the larger thickness becomes a convex surface, and the plate surface 101a of the active material layer 102A having the smaller thickness becomes a concave surface. 100 bends.

以上の検討結果から、本発明者は、極板の湾曲を抑えれば、化成、充放電等による内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の一実施形態に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬された鉛蓄電池であり、化成後の正極板の平面度が4.0mm以下であることを特徴とするものである。極板群内の全ての正極板の平面度が4.0mm以下であることが好ましい。
なお、正極板と負極板とでは、化成時に正極板の方が湾曲しやすい。このことから、本発明の目的を達成するためには、正極板の平面度を小さく制御することが重要となる。
From the above examination results, the present inventor, if suppressing the curvature of the electrode plate, the increase in internal resistance due to chemical formation, charge/discharge, etc. is suppressed, and the charging state and the deterioration state are accurately determined by the method of measuring the internal resistance. It was found that a lead-acid battery capable of being obtained is obtained, and the present invention has been completed.
That is, the lead-acid battery according to an embodiment of the present invention has a positive electrode plate having a positive electrode active material containing lead dioxide and a negative electrode plate having a negative electrode active material containing metallic lead, and a plurality of sheets are alternately arranged via a separator. Is a lead-acid battery in which the electrode plate group is laminated in, and the electrode plate group is immersed in an electrolytic solution, and the flatness of the positive electrode plate after formation is 4.0 mm or less. The flatness of all the positive electrode plates in the electrode plate group is preferably 4.0 mm or less.
It should be noted that, between the positive electrode plate and the negative electrode plate, the positive electrode plate is more likely to bend during chemical formation. From this, in order to achieve the object of the present invention, it is important to control the flatness of the positive electrode plate to be small.

本発明の一実施形態に係る鉛蓄電池の構造について、図1を参照しながら、さらに詳細に説明する。本実施形態に係る鉛蓄電池は、正極板10と負極板20とがセパレータ30を介して複数枚交互に積層された極板群1を備えている。この極板群1は、その積層方向が水平方向に沿うように(すなわち、正極板10及び負極板20の板面が鉛直方向に沿うように)、図示しない電解液とともに電槽41内に収容され、電槽41内で電解液に浸漬されている。 The structure of the lead storage battery according to the embodiment of the present invention will be described in more detail with reference to FIG. The lead-acid battery according to the present embodiment includes an electrode plate group 1 in which a plurality of positive electrode plates 10 and negative electrode plates 20 are alternately stacked with a separator 30 in between. The electrode plate group 1 is housed in the battery case 41 together with an electrolytic solution (not shown) such that the stacking direction is along the horizontal direction (that is, the plate surfaces of the positive electrode plate 10 and the negative electrode plate 20 are along the vertical direction). And is immersed in the electrolytic solution in the battery case 41.

正極板10は、例えば、鉛合金からなる板状格子体の開口部に、二酸化鉛を含有する正極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、二酸化鉛を含有する正極活物質からなる活物質層を形成したものである。負極板20は、例えば、鉛合金からなる板状格子体の開口部に、金属鉛を含有する負極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、金属鉛を含有する負極活物質からなる活物質層を形成したものである。正極板10、負極板20の基板である板状格子体は、鋳造法、打ち抜き法、エキスパンド方式で製造することができる。セパレータ30は、例えば、樹脂、ガラス等からなる多孔質の膜状体である。 In the positive electrode plate 10, for example, while filling the positive electrode active material containing lead dioxide in the openings of the plate-shaped grid body made of lead alloy, both surfaces of the plate-shaped grid body made of lead alloy are coated with lead dioxide. An active material layer made of the contained positive electrode active material is formed. The negative electrode plate 20, for example, fills the openings of the plate-shaped grid body made of a lead alloy with the negative electrode active material containing metallic lead, and at the same time, applies the metallic lead to both plate surfaces of the plate-shaped grid body made of the lead alloy. An active material layer made of the contained negative electrode active material is formed. The plate-shaped lattice bodies that are the substrates of the positive electrode plate 10 and the negative electrode plate 20 can be manufactured by a casting method, a punching method, or an expanding method. The separator 30 is, for example, a porous film body made of resin, glass or the like.

正極板10及び負極板20の上端部には、それぞれ集電耳11、21が形成されており、各正極板10の集電耳11は正極ストラップ13で連結され、各負極板20の集電耳21は負極ストラップ23で連結されている。そして、正極ストラップ13は正極端子15の一端に接続され、負極ストラップ23は負極端子25の一端に接続されており、正極端子15の他端及び負極端子25の他端が、電槽41の開口部を閉塞する蓋43を貫通して、電槽41と蓋43からなる鉛蓄電池のケース体の外部に露出している。 Current collecting ears 11 and 21 are formed at the upper ends of the positive electrode plate 10 and the negative electrode plate 20, respectively. The current collecting ears 11 of each positive electrode plate 10 are connected by a positive electrode strap 13, and the current collecting ears of each negative electrode plate 20 are connected. The ears 21 are connected by a negative electrode strap 23. The positive electrode strap 13 is connected to one end of the positive electrode terminal 15, the negative electrode strap 23 is connected to one end of the negative electrode terminal 25, and the other end of the positive electrode terminal 15 and the other end of the negative electrode terminal 25 are connected to the opening of the battery case 41. It penetrates through the lid 43 that closes the part, and is exposed to the outside of the case body of the lead storage battery including the battery case 41 and the lid 43.

このような構造を有する本実施形態に係る鉛蓄電池において、化成後の正極板10の平面度は4.0mm以下とされている。平面度の数値が小さいほど正極板10は平らであり、ガスの気泡が正極板10の表面に付着しにくい。化成後の正極板10の平面度が4.0mm以下であれば、ガスは極板群1の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。 In the lead acid battery according to the present embodiment having such a structure, the flatness of the positive electrode plate 10 after formation is set to 4.0 mm or less. The smaller the value of the flatness is, the flatter the positive electrode plate 10 is, and the gas bubbles are less likely to adhere to the surface of the positive electrode plate 10. If the flatness of the positive electrode plate 10 after formation is 4.0 mm or less, the gas is easily discharged to the outside of the electrode plate group 1, so that the increase in internal resistance of the lead storage battery is suppressed and the internal resistance is measured. This makes it possible to accurately determine the charging state and the deterioration state.

化成後の正極板10の平面度を4.0mm以下とする方法は特に限定されるものではなく、化成による湾曲を抑える方法により鉛蓄電池を製造してもよいし、化成により湾曲した正極板10を矯正して平面度を4.0mm以下としてもよい。
前述したように、正極板の両板面に形成した活物質層の厚さが異なると、化成時に正極板に湾曲が生じるので、両板面に略同一厚さの活物質層が形成された正極板を化成に供すれば、湾曲を抑えて平面度を4.0mm以下とすることができる。
The method of setting the flatness of the positive electrode plate 10 after chemical conversion to 4.0 mm or less is not particularly limited, and a lead storage battery may be manufactured by a method of suppressing the curvature due to the chemical conversion, or the positive electrode plate 10 curved due to the chemical conversion. The flatness may be corrected to 4.0 mm or less.
As described above, when the active material layers formed on both surfaces of the positive electrode plate have different thicknesses, the positive electrode plate is curved during formation, so that the active material layers having substantially the same thickness are formed on both surfaces. By subjecting the positive electrode plate to chemical conversion, it is possible to suppress the curvature and to set the flatness to 4.0 mm or less.

両板面に同一厚さの活物質層を形成する方法としては、例えば、以下の2つの方法を挙げることができる。第一の方法は、厚さの異なる活物質層が両板面に形成された正極板を、負極板及びセパレータと積層する前に、正極板の厚さの大きい方の活物質層を削って、厚さの小さい方の活物質層と厚さを一致させる方法である。
正極板の両板面に同時に活物質層を形成しようとすると、同一厚さの活物質層を形成することが難しくなるので、第二の方法は、正極活物質のペーストを板状格子体の開口部に片面ずつ充填して活物質層を形成することにより、同一厚さの活物質層を形成する方法である。
As a method of forming the active material layers having the same thickness on both plate surfaces, for example, the following two methods can be mentioned. The first method is to scrape the active material layer having the larger thickness of the positive electrode plate before laminating the positive electrode plate in which the active material layers having different thicknesses are formed on both plate surfaces with the negative electrode plate and the separator. A method of matching the thickness with the active material layer having the smaller thickness.
When it is attempted to form active material layers on both surfaces of the positive electrode plate at the same time, it becomes difficult to form active material layers having the same thickness. Therefore, the second method is to paste the positive electrode active material into a plate grid. This is a method of forming active material layers of the same thickness by filling the openings one by one to form active material layers.

ただし、化成後の正極板10の平面度が0.5mm未満の場合は、ガスが極板群1の外部に排出されやすくなるものの、極板群1を電槽41内に収容した際に電槽41の内壁面により極板群1に負荷される群圧が不十分となるおそれがある。その結果、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。よって、化成後の正極板10の平面度は0.5mm以上とすることが好ましい。 However, when the flatness of the positive electrode plate 10 after chemical formation is less than 0.5 mm, the gas is likely to be discharged to the outside of the electrode plate group 1, but when the electrode plate group 1 is housed in the battery case 41, no electric power is generated. The group pressure applied to the electrode plate group 1 by the inner wall surface of the tank 41 may be insufficient. As a result, the positive electrode active material is likely to soften or fall off, which may reduce the performance or life of the lead storage battery. Therefore, it is preferable that the flatness of the positive electrode plate 10 after chemical formation is 0.5 mm or more.

正極板の平面度は、JIS B0419:1991に規定された方法によって測定することができる。すなわち、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置して、湾曲した正極板の凸面の頂点(基台の平面から最も離れた部分)と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 The flatness of the positive electrode plate can be measured by the method defined in JIS B0419:1991. That is, as shown in FIG. 2, on the plane of the base, the plane of the positive electrode plate and the plane of the base are substantially parallel to each other, and the convex surface of the curved positive electrode plate is directed upward. Is placed and the distance h between the apex of the convex surface of the curved positive electrode plate (the portion farthest from the plane of the base) and the plane of the base is measured. The value obtained by subtracting the thickness of the positive electrode plate from this distance h is defined as the flatness.

なお、従来の鉛蓄電池においても極板は湾曲しており、平面度が4.0mm以下の極板を有する鉛蓄電池は確認されていなかった。例えば特許文献1の図面には、湾曲していない平らな極板が描画されているが、便宜上、平らに描画されているのであって、実際には極板は平らではなく湾曲していた。また、極板の湾曲によってガスが極板群の内部に閉じ込められ内部抵抗が上昇するという知見は、当業者においても全く知られていなかった。 Even in the conventional lead-acid battery, the electrode plate is curved, and no lead-acid battery having an electrode plate with a flatness of 4.0 mm or less has been confirmed. For example, in the drawing of Patent Document 1, a flat electrode plate which is not curved is drawn, but it is drawn flat for convenience, and the electrode plate is actually not flat but curved. Further, the knowledge that the gas is confined inside the electrode plate group due to the bending of the electrode plate to increase the internal resistance has not been known at all by those skilled in the art.

以上のように、本実施形態に係る鉛蓄電池は、化成、定電圧充電等による内部抵抗の上昇が生じにくく、充電後の内部抵抗の低下も早い。また、本実施形態に係る鉛蓄電池は、優れた耐久性と高い充電受入性(充電効率が高く短時間で充電可能)も有している。よって、本実施形態に係る鉛蓄電池は、充電制御車、アイドリングストップ車のような充電制御を行う車両に搭載され且つ主に部分充電状態で用いられる鉛蓄電池として好適である。なお、部分充電状態とは、充電状態が例えば70%超過100%未満の状態である。 As described above, in the lead storage battery according to the present embodiment, it is difficult for the internal resistance to increase due to chemical conversion, constant voltage charging, etc., and the internal resistance after charging to decrease quickly. Further, the lead storage battery according to the present embodiment also has excellent durability and high charge acceptance (high charging efficiency and capable of being charged in a short time). Therefore, the lead storage battery according to the present embodiment is suitable as a lead storage battery that is mounted in a vehicle that performs charge control, such as a charge control vehicle and an idling stop vehicle, and that is mainly used in a partially charged state. The partially charged state is a state where the charged state is, for example, more than 70% and less than 100%.

また、本実施形態に係る鉛蓄電池は、車両の内燃機関を起動する電源としての用途のみならず、電動自動車、電動フォークリフト、電動バス、電動バイク、電動スクータ、小型電動モペッド、ゴルフ用カート、電気機関車等の動力電源としても使用可能である。さらに、本実施形態に係る鉛蓄電池は、照明用電源、予備電源としても使用可能である。あるいは、太陽光発電、風力発電等により発電された電気エネルギーの蓄電装置としても使用可能である。 Further, the lead storage battery according to the present embodiment is not only used as a power source for starting an internal combustion engine of a vehicle, but also an electric vehicle, an electric forklift truck, an electric bus, an electric motorcycle, an electric scooter, a small electric moped, a golf cart, and an electric vehicle. It can also be used as a power source for locomotives. Further, the lead storage battery according to the present embodiment can be used as a lighting power source and a standby power source. Alternatively, it can be used as a power storage device for electric energy generated by solar power generation, wind power generation, or the like.

なお、本実施形態に係る鉛蓄電池においては、化成後の負極板の平面度は特に限定されるものではないが、化成後の正極板と同様に平面度は小さくてもよく、例えば4.0mm以下としてもよい。また、化成後の正極板の平面度と化成後の負極板の平面度は、同一であってもよいし異なっていてもよいが、異なっている方が好ましい。例えば、正極板の平面度に対する負極板の平面度の比を、極板群内において平均で50%以上80%以下とすれば、極板群内にガスが滞留しにくく、極板群からのガスの排出が生じやすい。
以下に、本実施形態に係る鉛蓄電池について、さらに詳細に説明する。
In the lead-acid battery according to the present embodiment, the flatness of the negative electrode plate after chemical formation is not particularly limited, but the flatness may be small like the positive electrode plate after chemical formation, for example, 4.0 mm. It may be as follows. Further, the flatness of the positive electrode plate after the chemical conversion and the flatness of the negative electrode plate after the chemical conversion may be the same or different, but preferably different. For example, if the ratio of the flatness of the negative electrode plate to the flatness of the positive electrode plate is 50% or more and 80% or less on average in the electrode plate group, it is difficult for gas to stay in the electrode plate group and Emission of gas is likely to occur.
Below, the lead acid battery which concerns on this embodiment is demonstrated still in detail.

〔正極板の湾曲の形状について〕
前述したように、正極板の湾曲の形状によっては、極板群内にガスが滞留しにくい場合があり、化成後の正極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在する。例えば、湾曲した正極板の凸面の頂点が、鉛蓄電池内に配されている状態の正極板の鉛直方向中央よりも下方側部分に位置するような湾曲形状であれば、ガスの気泡の出口となる鉛直方向中央よりも上方側部分の湾曲度合いは小さいと言えるので、ガスは極板群内に滞留しにくい。
[Regarding the curved shape of the positive electrode plate]
As described above, depending on the curved shape of the positive electrode plate, it may be difficult for gas to stay in the electrode plate group, and there is a lead storage battery in which the internal resistance does not stay high even if the positive electrode plate after formation is curved. .. For example, if the apex of the convex surface of the curved positive electrode plate has a curved shape such that it is located below the center in the vertical direction of the positive electrode plate in the state where it is arranged in the lead storage battery, the gas bubble outlet and Since it can be said that the degree of curvature of the upper side portion is smaller than the vertical center, the gas is unlikely to stay in the electrode plate group.

すなわち、ガスの気泡が極板群から外部に排出される際の出口となる部分である、正極板の鉛直方向中央よりも上方側部分の湾曲度合いが小さければ、ガスは極板群内に滞留しにくく排出されやすいので、鉛蓄電池の内部抵抗の上昇が抑制される。よって、化成後の正極板のうち、鉛直方向中央よりも上方側部分の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が抑制されるという効果が奏される。 That is, if the degree of curvature of the portion above the vertical center of the positive electrode plate, which is the outlet when gas bubbles are discharged from the electrode plate group to the outside, is small, the gas stays in the electrode plate group. Since it is difficult to do so and is easily discharged, an increase in internal resistance of the lead storage battery is suppressed. Therefore, if the flatness of the upper part of the positive electrode plate after formation in the vertical direction is 4.0 mm or less, it is possible to suppress an increase in internal resistance of the lead storage battery.

〔正極活物質の密度について〕
正極板が有する正極活物質の密度は特に限定されるものではないが、4.2g/cm3以上4.6g/cm3以下であることが好ましく、4.4g/cm3以上4.6g/cm3以下であることがより好ましい。正極活物質の密度が上記数値範囲内であれば、正極活物質の軟化や脱落が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
[Regarding the density of the positive electrode active material]
The density of the positive electrode active material included in the positive electrode plate is not particularly limited, but it is preferably 4.2 g/cm 3 or more and 4.6 g/cm 3 or less, and 4.4 g/cm 3 or more and 4.6 g/ More preferably, it is not more than cm 3 . When the density of the positive electrode active material is within the above numerical range, the positive electrode active material is less likely to soften or fall off, so that the life of the lead storage battery is improved.

〔電解液について〕
電解液の組成は特に限定されるものではなく、一般的な鉛蓄電池に使用される電解液を問題なく適用することができるが、鉛蓄電池の充電受入性を優れたものとするためには、電解液にアルミニウムが含有されていることが好ましく、電解液中のアルミニウムイオンの含有量は0.01モル/L以上とすることが好ましい。ただし、電解液中のアルミニウムイオンの含有量が高いと、ガスが極板群から外部に排出されにくくなるため、電解液中のアルミニウムイオンの含有量は0.3モル/L以下とすることが好ましい。
また、電解液はナトリウムイオンを含有していてもよい。電解液中のナトリウムイオンの含有量は、0.002モル/L以上0.05モル/L以下とすることができる。
[About electrolyte]
The composition of the electrolytic solution is not particularly limited, it is possible to apply the electrolytic solution used in a general lead storage battery without problems, in order to make the charge acceptance of the lead storage battery excellent, Aluminum is preferably contained in the electrolytic solution, and the content of aluminum ions in the electrolytic solution is preferably 0.01 mol/L or more. However, if the content of aluminum ions in the electrolytic solution is high, it becomes difficult for the gas to be discharged to the outside from the electrode plate group. Therefore, the content of aluminum ions in the electrolytic solution may be 0.3 mol/L or less. preferable.
Further, the electrolytic solution may contain sodium ions. The content of sodium ions in the electrolytic solution can be 0.002 mol/L or more and 0.05 mol/L or less.

〔極板群に負荷される群圧について〕
前述したように、極板群を電槽内に収容した際には電槽の内壁面により極板群に群圧が負荷されるが、群圧が不十分であると、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。一方、群圧が高すぎると、正極活物質中にガスが滞留して、鉛蓄電池の内部抵抗が上昇するおそれがある。よって、極板群に負荷される群圧は10kPa以下とすることが好ましい。
[Regarding the group pressure applied to the electrode plate group]
As described above, when the electrode plate group is housed in the battery case, the inner wall surface of the battery case applies a group pressure to the electrode plate group, but if the group pressure is insufficient, the positive electrode active material softens. The lead-acid battery may lose its performance and life in some cases. On the other hand, if the group pressure is too high, the gas may stay in the positive electrode active material and the internal resistance of the lead storage battery may increase. Therefore, the group pressure applied to the electrode plate group is preferably 10 kPa or less.

〔正極活物質が含有する二酸化鉛について〕
二酸化鉛には、斜方晶系であるα相(α−二酸化鉛)と、正方晶系のβ相(β−二酸化鉛)がある。正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)は、20%以上40%以下であることが好ましい。このような構成であれば、電解液の成層化が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
[Lead dioxide contained in positive electrode active material]
Lead dioxide includes an orthorhombic α phase (α-lead dioxide) and a tetragonal β phase (β-lead dioxide). The ratio α/(α+β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is preferably 20% or more and 40% or less. With such a configuration, stratification of the electrolytic solution is less likely to occur, so that the effect of improving the life of the lead storage battery is achieved.

α−二酸化鉛は、多孔性に乏しく比表面積が小さいため放電能力が小さいが、結晶の崩壊が極めて徐々に進行するため軟化速度が小さい。一方、β−二酸化鉛は、多孔性に富み比表面積が大きいため放電能力が大きい反面、結晶の崩壊が速く進み軟化速度が大きい。よって、鉛蓄電池の長寿命化と優れた放電能力との両立のためには、正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下となるように、正極活物質内にα−二酸化鉛とβ−二酸化鉛が分散していることが好ましい。 α-Lead dioxide has poor porosity and a small specific surface area, and thus has a small discharge capacity, but has a small softening rate because the crystal disintegration proceeds extremely gradually. On the other hand, β-lead dioxide has a large discharge capacity since it is rich in porosity and has a large specific surface area, but on the other hand, the crystal collapses rapidly and the softening rate is high. Therefore, in order to achieve both long life of the lead acid battery and excellent discharge capability, the ratio α/(α+β) of the mass α of α-lead dioxide contained in the positive electrode active material and the mass β of β-lead dioxide contained in the positive electrode active material is: It is preferable that α-lead dioxide and β-lead dioxide are dispersed in the positive electrode active material so as to be 20% or more and 40% or less.

α−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が20%より小さいと、鉛蓄電池の寿命が不十分となるおそれがある。一方、α−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が40%より大きいと、鉛蓄電池の容量が低下するおそれがある。 When the ratio α/(α+β) of the mass α of α-lead dioxide to the mass β of β-lead dioxide is less than 20%, the life of the lead storage battery may be insufficient. On the other hand, when the ratio α/(α+β) of the mass α of α-lead dioxide to the mass β of β-lead dioxide is larger than 40%, the capacity of the lead storage battery may decrease.

〔正極活物質が有する細孔について〕
正極活物質が多孔質である場合は、正極活物質が有する細孔の平均直径は0.07μm以上0.20μm以下であることが好ましく、正極活物質の多孔度は30%以上50%以下であることが好ましい。
[Regarding pores of positive electrode active material]
When the positive electrode active material is porous, the average diameter of the pores of the positive electrode active material is preferably 0.07 μm or more and 0.20 μm or less, and the porosity of the positive electrode active material is 30% or more and 50% or less. Preferably.

正極活物質が有する細孔の平均直径が0.07μm未満であると、活物質の利用率が低下するおそれがある。一方、正極活物質が有する細孔の平均直径が0.20μmよりも大きいと、鉛蓄電池の内部抵抗が上昇するおそれがある。また、正極活物質の軟化が生じやすくなるおそれがある。正極活物質が有する細孔の平均直径の測定方法は特に限定されるものではないが、例えば水銀圧入法によって測定することができる。 If the average diameter of the pores of the positive electrode active material is less than 0.07 μm, the utilization factor of the active material may decrease. On the other hand, if the average diameter of the pores of the positive electrode active material is larger than 0.20 μm, the internal resistance of the lead storage battery may increase. In addition, the positive electrode active material may be easily softened. The method for measuring the average diameter of the pores of the positive electrode active material is not particularly limited, but it can be measured, for example, by the mercury penetration method.

正極活物質の多孔度が30%未満であると、活物質中に硫酸が浸透しにくくなり、活物質の利用率が低下するおそれがある。一方、正極活物質の多孔度が50%超過であると、活物質の密度が低下するため、寿命が低下するおそれがある。
正極活物質の多孔度の測定方法は特に限定されるものではないが、例えば水銀圧入法によって測定することができる。
When the porosity of the positive electrode active material is less than 30%, it becomes difficult for sulfuric acid to penetrate into the active material, and the utilization rate of the active material may decrease. On the other hand, when the porosity of the positive electrode active material is more than 50%, the density of the active material decreases, which may shorten the life.
The method for measuring the porosity of the positive electrode active material is not particularly limited, but it can be measured by, for example, the mercury penetration method.

〔正極板の表面の表面粗さRaについて〕
正極板の表面の表面粗さRaは特に限定されるものではないが、0.20mm以下であることが好ましい。正極板の表面の表面粗さRaが0.20mmよりも大きいと、正極板の表面の凹凸の凹部内にガスが滞留しやすくなるため、内部抵抗が上昇するおそれがある。ただし、正極板の表面の表面粗さRaが0.05mm未満であると、充電時に正極板の表面で生成する硫酸の沈降速度が速くなり、電解液の成層化が生じやすくなるおそれがある。
[Regarding Surface Roughness Ra of Surface of Positive Electrode Plate]
The surface roughness Ra of the surface of the positive electrode plate is not particularly limited, but is preferably 0.20 mm or less. When the surface roughness Ra of the surface of the positive electrode plate is larger than 0.20 mm, the gas tends to stay in the concave and convex portions of the surface of the positive electrode plate, which may increase the internal resistance. However, if the surface roughness Ra of the surface of the positive electrode plate is less than 0.05 mm, the settling rate of sulfuric acid generated on the surface of the positive electrode plate during charging may be high, and the electrolyte may be easily stratified.

〔隣接する正極板と負極板との間の距離について〕
極板群内において隣接する正極板と負極板との間の距離は、特に限定されるものではないが、いずれの極板間においても0.60mm以上0.90mm以下であることが好ましい。
[About the distance between the positive electrode plate and the negative electrode plate adjacent to each other]
The distance between the positive electrode plate and the negative electrode plate adjacent to each other in the electrode plate group is not particularly limited, but is preferably 0.60 mm or more and 0.90 mm or less between any of the electrode plates.

隣接する正極板と負極板との間の距離が0.60mm未満であると、極板間に存在する硫酸の量が少なくなるので、鉛蓄電池の容量が低下するおそれがある。一方、隣接する正極板と負極板との間の距離が0.90mmよりも大きいと、液抵抗が大きくなり、鉛蓄電池の内部抵抗が上昇するおそれがある。また、ガスの滞留により、鉛蓄電池の内部抵抗が上昇するおそれがある。
なお、隣接する正極板と負極板との間の距離は0.60mm以上0.90mm以下であることが好ましいが、本発明においては、極板の板面上のいずれの部位においても、両極板間の距離が0.60mm以上0.90mm以下であることを意味する。
When the distance between the adjacent positive electrode plate and negative electrode plate is less than 0.60 mm, the amount of sulfuric acid existing between the electrode plates decreases, which may reduce the capacity of the lead storage battery. On the other hand, when the distance between the adjacent positive electrode plate and negative electrode plate is larger than 0.90 mm, the liquid resistance becomes large and the internal resistance of the lead storage battery may increase. Moreover, the internal resistance of the lead storage battery may increase due to the accumulation of gas.
The distance between the positive electrode plate and the negative electrode plate adjacent to each other is preferably 0.60 mm or more and 0.90 mm or less. However, in the present invention, the bipolar plate can be used at any position on the plate surface of the electrode plate. It means that the distance between them is 0.60 mm or more and 0.90 mm or less.

〔満充電状態における正極活物質中に含有される鉄の含有量について〕
鉛蓄電池の満充電状態(例えば化成後)における正極活物質中に含有される鉄の含有量は、特に限定されるものではないが、3.5ppm以上20.0ppm以下であることが好ましい。正極活物質中に鉄が含有されていると、正極板上でガスが発生しやすくなる。そして、発生したガスが電解液中を上昇することにより、電解液が撹拌され、成層化が抑制される。鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が上記の範囲内であれば、正極板上で発生するガスの量が電解液の撹拌に対して好適な量となるので、電解液の成層化がより抑制されることとなる。
[Regarding Iron Content in Positive Electrode Active Material in Fully Charged State]
The content of iron contained in the positive electrode active material in the fully charged state (for example, after chemical conversion) of the lead storage battery is not particularly limited, but is preferably 3.5 ppm or more and 20.0 ppm or less. When iron is contained in the positive electrode active material, gas is likely to be generated on the positive electrode plate. Then, the generated gas rises in the electrolytic solution, whereby the electrolytic solution is stirred and stratification is suppressed. When the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery is within the above range, the amount of gas generated on the positive electrode plate becomes a suitable amount for stirring the electrolytic solution. Therefore, stratification of the electrolytic solution is further suppressed.

鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が3.5ppm未満であると、正極板上で発生するガスの量が少なくなるため、電解液が十分に撹拌されず、電解液の成層化が生じやすくなるおそれがある。また、鉛蓄電池の製造工程において鉄やステンレス製の製造装置が多く使用されており、これら装置に由来する鉄が混入するため、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量を3.5ppm未満とすることは困難である。 When the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery is less than 3.5 ppm, the amount of gas generated on the positive electrode plate becomes small, so that the electrolytic solution is not sufficiently stirred. There is a possibility that stratification of the electrolytic solution may occur easily. In addition, manufacturing equipment made of iron or stainless steel is often used in the manufacturing process of lead-acid batteries, and iron derived from these devices is mixed, so that iron contained in the positive electrode active material in the fully charged state of the lead-acid battery is It is difficult to make the content less than 3.5 ppm.

例えば、正極活物質のペーストの材料である鉛粉を水や硫酸と混合するミキサーや、ミキサーに材料を供給するためのホッパーなどは、耐酸性のステンレスで形成されることが多い。したがって、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量を3.5ppm未満とするには、鉛蓄電池の製造工程において使用される製造装置を非鉄金属やセラミックス等で形成するか、鉄を除去する工程を追加する必要が生じるため、鉛蓄電池の製造コストの増大につながる。 For example, a mixer that mixes lead powder, which is a material for the paste of the positive electrode active material, with water or sulfuric acid, a hopper that supplies the material to the mixer, and the like are often made of acid-resistant stainless steel. Therefore, in order to make the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery less than 3.5 ppm, the manufacturing equipment used in the manufacturing process of the lead storage battery is made of non-ferrous metal or ceramics. Or, it is necessary to add a step of removing iron, which leads to an increase in manufacturing cost of the lead storage battery.

一方、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が20.0ppm超過であると、電解液の電気分解が促進され、正極板上で発生する酸素ガス等のガスの量が多くなるため、電解液の減液が多くなって鉛蓄電池が短寿命化するとともに、鉛蓄電池の内部抵抗が上昇するおそれがある。さらに、自己放電が促進されるため、電圧の降下量が大きくなるおそれがある。 On the other hand, when the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery is more than 20.0 ppm, electrolysis of the electrolytic solution is promoted, and gas such as oxygen gas generated on the positive electrode plate. Since the amount of electrolyte increases, the amount of electrolyte solution decreases, which shortens the life of the lead storage battery and may increase the internal resistance of the lead storage battery. Furthermore, since self-discharge is promoted, the amount of voltage drop may increase.

なお、鉛蓄電池内に存在する鉄は、充電時には正極へ、放電時には負極へと、電解液を介して移動を繰り返す(シャトル効果)ので、鉄によるガス発生効果は正極に限定されるものではなく、負極においても生じる。そのため、セパレータが袋状である場合は、正極板及び負極板のいずれを袋状のセパレータ内に収容する構成であっても、同様の電解液撹拌効果が期待できるので、鉛蓄電池の設計の自由度が高まる。 It should be noted that the iron existing in the lead storage battery repeatedly moves through the electrolytic solution to the positive electrode during charging and to the negative electrode during discharging (shuttle effect), so the gas generation effect of iron is not limited to the positive electrode. , Also occurs in the negative electrode. Therefore, when the separator is in the shape of a bag, the same electrolytic solution stirring effect can be expected regardless of whether the positive electrode plate or the negative electrode plate is housed in the bag-shaped separator. The degree increases.

〔厚塗り度比について〕
前述したように、極板が湾曲する原因は、極板の両板面に形成された活物質層の厚さの違いである。よって、化成後の正極板の平面度を4.0mm以下とするためには、化成後の正極板の一方の板面に形成された正極活物質の活物質層の厚さに対する化成後の正極板の他方の板面に形成された正極活物質の活物質層の厚さの比(以下「厚塗り度比」と記すこともある)を0.67以上1.33以下とすることが好ましい。
[About thick coating ratio]
As described above, the cause of the bending of the electrode plate is the difference in the thickness of the active material layers formed on both plate surfaces of the electrode plate. Therefore, in order to set the flatness of the positive electrode plate after chemical formation to 4.0 mm or less, the positive electrode after chemical conversion has a thickness corresponding to the thickness of the active material layer of the positive electrode active material formed on one plate surface of the positive electrode plate after chemical conversion. It is preferable that the ratio of the thickness of the active material layer of the positive electrode active material formed on the other plate surface of the plate (hereinafter also referred to as “thick coating ratio”) be 0.67 or more and 1.33 or less. ..

なお、化成後の正極活物質の活物質層の厚塗り度比を0.67以上1.33以下とするには、化成前の正極活物質の活物質層の厚塗り度比を0.67以上1.33以下として化成を行えばよい。正極板の化成の過程で正極活物質に体積変化が生じたとしても、正極板の両板面の化成条件が同一条件である限りは、厚塗り度比が化成前後で変化することはない。 In order to set the thick coating ratio of the active material layer of the positive electrode active material after chemical conversion to 0.67 or more and 1.33 or less, the thick coating ratio of the active material layer of the positive electrode active material before chemical conversion is 0.67. The formation may be performed as above with 1.33 or less. Even if the positive electrode active material undergoes a volume change during the formation of the positive electrode plate, the thick coating ratio does not change before and after the formation, as long as the formation conditions of both plate surfaces of the positive electrode plate are the same.

化成後の正極板の厚塗り度比を上記の数値範囲内とすれば、化成後の正極板の平面度を4.0mm以下とすることが容易である。その結果、ガスは極板群の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。 If the thickness ratio of the positive electrode plate after chemical conversion is within the above numerical range, it is easy to set the flatness of the positive electrode plate after chemical conversion to 4.0 mm or less. As a result, the gas is easily discharged to the outside of the electrode plate group, so that the increase in the internal resistance of the lead storage battery is suppressed, and it becomes possible to accurately determine the charging state or the deterioration state by the method of measuring the internal resistance. ..

なお、正極活物質の活物質層の厚さとは、正極板の表面と、これに対向する正極基板の板面との間の距離であり、すなわち、正極板の表面に直交する仮想直線のうち、正極板の表面から正極基板の板面までの部分の長さである。正極板の表面は、段差、屈曲、湾曲等がマクロスケール(数十μm〜数mm程度)においては実質的に存在しない一つの平坦な平面である。正極活物質の活物質層の厚さは、正極板の表面と正極基板の板面との間の距離を1箇所測定して得た値でもよいし、正極板の表面と正極基板の板面との間の距離を複数箇所測定して得た値の平均値でもよい。 The thickness of the active material layer of the positive electrode active material is the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate facing the positive electrode active material layer, that is, of the virtual straight line orthogonal to the surface of the positive electrode plate. , The length from the surface of the positive electrode plate to the plate surface of the positive electrode substrate. The surface of the positive electrode plate is one flat plane on which no steps, bends, curves, etc. substantially exist on a macro scale (several tens of μm to several mm). The thickness of the active material layer of the positive electrode active material may be a value obtained by measuring the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate at one location, or the surface of the positive electrode plate and the plate surface of the positive electrode substrate. It may be an average value of the values obtained by measuring the distance between and.

例えば、正極基板として板状格子体を用いた場合には、正極板の表面と、板状格子体の格子網目を形成する縦横の格子骨の表面とが対向するので、正極板の表面と格子骨の表面との間の距離を測定して、その測定値を正極活物質の活物質層の厚さとすればよい。また、板状格子体において格子骨は複数並んでいるので、複数の格子骨において、正極板の表面と格子骨の表面との間の距離を測定し、それら測定値の平均値を正極活物質の活物質層の厚さとしてもよい。 For example, when a plate-like grid is used as the positive electrode substrate, the surface of the positive plate and the surfaces of the vertical and horizontal lattice bones that form the grid mesh of the plate-like grid face each other, so the surface of the positive plate and the grid are The distance from the surface of the bone may be measured and the measured value may be used as the thickness of the active material layer of the positive electrode active material. In addition, since a plurality of lattice bones are arranged side by side in the plate-like lattice body, the distance between the surface of the positive electrode plate and the surface of the lattice bones is measured in the plurality of lattice bones, and the average value of the measured values is used as the positive electrode active material. The thickness of the active material layer may be the same.

また、板状格子体の格子骨の断面形状(格子骨の長手方向に直交する平面で切断した場合の断面の形状)は、基本的には矩形であるので、正極板の表面とこれに対向する格子骨の表面とは平行をなす。ただし、エキスパンド方式で製造した板状格子体では、製造過程で板状格子体に捩れや歪みが生じる場合がある。板状格子体に捩れや歪みが生じた場合には、格子骨の表面が正極板の表面に対して傾斜するか又は曲面状となるため、正極板の表面とこれに対向する格子骨の表面とは非平行となる。このような場合には、正極板の表面と格子骨の表面との間の距離は測定箇所によって大きく異なるので、各格子骨において、格子骨の表面と正極板の表面との最短距離を測定し、それらの測定値の平均値を正極活物質の活物質層の厚さとするとよい。 In addition, since the cross-sectional shape of the lattice bone of the plate-like lattice (the shape of the cross-section when cut along a plane orthogonal to the longitudinal direction of the lattice bone) is basically rectangular, the surface of the positive electrode plate and the opposite surface thereof face each other. It is parallel to the surface of the lattice bone. However, in the plate-shaped grid body manufactured by the expanding method, the plate-shaped grid body may be twisted or distorted during the manufacturing process. When the plate-shaped lattice is twisted or distorted, the surface of the lattice bone is inclined or curved with respect to the surface of the positive electrode plate. Therefore, the surface of the positive electrode plate and the surface of the lattice bone opposite to this surface. And are not parallel. In such a case, the distance between the surface of the positive electrode plate and the surface of the lattice bone greatly differs depending on the measurement location.Therefore, in each lattice bone, measure the shortest distance between the surface of the lattice bone and the surface of the positive electrode plate. The average value of those measured values may be used as the thickness of the active material layer of the positive electrode active material.

本発明における厚塗り度比は、化成後の正極板の一方の板面に形成された正極活物質の活物質層の厚さに対する化成後の正極板の他方の板面に形成された正極活物質の活物質層の厚さの比であり、正極板の両板面のうちいずれの面の正極活物質の活物質層の厚さを分母として算出しても差し支えない。例えば、化成後の正極板を、その両板面が鉛直方向に直交するような姿勢で且つ集電耳が右上側に位置するようにして、平面上に載置した状態において、正極板の両板面のうち上面側の正極活物質の活物質層の厚さを分母とし、下面側の正極活物質の活物質層の厚さを分子として比を算出し、厚塗り度比としてもよい。 The thick coating ratio in the present invention is the positive electrode active formed on the other plate surface of the positive electrode plate after chemical conversion with respect to the thickness of the active material layer of the positive electrode active material formed on one plate surface of the positive electrode plate after chemical conversion. It is the ratio of the thickness of the active material layer of the substance, and may be calculated with the thickness of the active material layer of the positive electrode active material on either side of the positive electrode plate as the denominator. For example, when the positive electrode plate after formation is placed on a flat surface in a posture in which both plate surfaces are orthogonal to the vertical direction and the current collecting ear is located on the upper right side, It is also possible to calculate the ratio by using the thickness of the active material layer of the positive electrode active material on the upper surface side of the plate surface as the denominator and the thickness of the active material layer of the positive electrode active material on the lower surface side as the numerator, and calculating the thick coating ratio.

〔実施例〕
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
まず、Pb−Ca系又はPb−Ca−Sn系の鉛合金からなる板状格子体を鋳造し、該板状格子体の所定の位置に集電耳を形成した。なお、板状格子体は、鋳造法に限定されず連続製法により作製してもよい。連続製法としては、鉛又は鉛合金のシート(例えば圧延シート)を打ち抜いて板状格子体を作製する打ち抜き法(パンチング法)や、鉛又は鉛合金のシートを押し抜いた後にシート面に平行な方向に伸張して格子構造を形成するエキスパンド法があげられる。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
First, a plate-shaped grid body made of a Pb-Ca-based or Pb-Ca-Sn-based lead alloy was cast, and a current collecting ear was formed at a predetermined position of the plate-shaped grid body. The plate-shaped lattice body is not limited to the casting method and may be manufactured by a continuous manufacturing method. As a continuous manufacturing method, a lead or lead alloy sheet (for example, a rolled sheet) is punched to form a plate-like lattice (punching method), or a lead or lead alloy sheet is punched and then parallel to the sheet surface. There is an expanding method that stretches in a direction to form a lattice structure.

次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。 Next, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a paste of the positive electrode active material. Similarly, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a paste of the negative electrode active material.

そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。上記のようにして作製した正極板と負極板とを、多孔質の合成樹脂からなるセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。そして、正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。電池サイズはM−42とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。 Then, after the paste of the positive electrode active material was filled in the plate-like lattice, aging and drying were performed. Similarly, after the paste of the negative electrode active material was filled in the plate-like lattice, aging and drying were performed. A plurality of positive electrode plates and negative electrode plates produced as described above were alternately laminated with a separator made of a porous synthetic resin interposed therebetween to produce an electrode plate group. The electrode plate group was housed in a battery case, the current collecting ears of each positive electrode plate were connected with a positive electrode strap, and the current collecting ears of each negative electrode plate were connected with a negative electrode strap. Then, the positive electrode strap was connected to one end of the positive electrode terminal, and the negative electrode strap was connected to one end of the negative electrode terminal. The battery size was M-42, the number of positive electrode plates constituting the electrode plate group was 6, and the number of negative electrode plates was 7.

さらに、蓋で電槽の開口部を閉塞した。正極端子と負極端子は、蓋を貫通させ、正極端子の他端と負極端子の他端を鉛蓄電池の外部に露出させた。蓋に形成された注液口から電解液を注入し、注液口を栓体により封口して、電槽化成を行った。電解液の注入から化成のための通電開始までの時間(すなわちソーキング時間)は30分間、化成のための電気量は230%とした。 Furthermore, the lid closed the opening of the battery case. The positive electrode terminal and the negative electrode terminal were penetrated through the lid, and the other end of the positive electrode terminal and the other end of the negative electrode terminal were exposed to the outside of the lead acid battery. The electrolytic solution was injected from the injection port formed on the lid, and the injection port was sealed with a stopper to form a battery case. The time from injection of the electrolytic solution to the start of energization for chemical formation (that is, soaking time) was 30 minutes, and the amount of electricity for chemical conversion was 230%.

電解液としては、所定量の鉄を含有する硫酸を用いた。この電解液は、工業硫酸に硫酸第一鉄を添加することによって調製した。電解液中の鉄の含有量については、表1を参照。調製した電解液の比重は、いずれも1.23である。なお、鉄は、充電時には正極へ、放電時には負極へと、電解液を介して移動するので、化成前の電解液に含有される鉄は、化成後(満充電状態)では正極へ移動している。よって、化成前の電解液中の鉄の含有量と、満充電状態における正極活物質中に含有される鉄の含有量とは、ほぼ同一の値となる。 Sulfuric acid containing a predetermined amount of iron was used as the electrolytic solution. This electrolyte was prepared by adding ferrous sulfate to industrial sulfuric acid. See Table 1 for iron content in the electrolyte. The specific gravity of each of the prepared electrolytic solutions is 1.23. Since iron moves to the positive electrode during charging and to the negative electrode during discharging via the electrolytic solution, the iron contained in the electrolytic solution before formation moves to the positive electrode after formation (fully charged state). There is. Therefore, the content of iron in the electrolytic solution before chemical conversion and the content of iron in the positive electrode active material in the fully charged state have substantially the same value.

このような化成により、二酸化鉛を含有する正極活物質の活物質層が極板の両板面に形成された化成済みの正極板と、金属鉛を含有する負極活物質の活物質層が極板の両板面に形成された化成済みの負極板と、を備える鉛蓄電池を得た。
化成後の正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。ただし、化成後の正極板の平面度を調整する方法は、前述の厚塗り度比を変更する方法に限定されるものではなく、他の方法を用いても差し支えない。化成後の正極板の平面度の測定方法については、後に詳述する。
Due to such formation, the active material layer of the positive electrode active material containing lead dioxide is formed on both sides of the electrode plate, and the active material layer of the negative electrode active material containing metallic lead is polar. A lead storage battery provided with a chemically-formed negative electrode plate formed on both plate surfaces of the plate was obtained.
The flatness of the positive electrode plate after chemical conversion was adjusted by changing the thick coating ratio of the active material layers of the positive electrode active material formed on both surfaces of the positive electrode plate before chemical conversion. However, the method of adjusting the flatness of the positive electrode plate after chemical conversion is not limited to the method of changing the thick coating ratio described above, and other methods may be used. The method for measuring the flatness of the positive electrode plate after chemical conversion will be described in detail later.

また、セパレータの厚さは、極板群に所定の群圧が負荷されるように調整した。正極板が有する正極活物質の密度は、4.4g/cm3である。正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)は、30%である。正極活物質が有する細孔の平均直径は0.10μmであり、正極活物質の多孔度は30%である。正極板の表面の表面粗さRaは0.10mmである。隣接する正極板と負極板との間の距離は0.60mmである。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。 Further, the thickness of the separator was adjusted so that a predetermined group pressure was applied to the electrode plate group. The density of the positive electrode active material included in the positive electrode plate is 4.4 g/cm 3 . The ratio α/(α+β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is 30%. The average diameter of the pores of the positive electrode active material is 0.10 μm, and the porosity of the positive electrode active material is 30%. The surface roughness Ra of the surface of the positive electrode plate is 0.10 mm. The distance between the adjacent positive electrode plate and negative electrode plate is 0.60 mm. The electrolytic solution used contained aluminum sulfate at a concentration of 0.1 mol/L.

次に、化成終了後直ちに、正極板の平面度と正極活物質中に含有される鉄の含有量とを測定した。結果を表1に示す。なお、正極板の平面度は、以下のようにして測定した。まず、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 Next, immediately after the completion of the chemical conversion, the flatness of the positive electrode plate and the content of iron contained in the positive electrode active material were measured. The results are shown in Table 1. The flatness of the positive electrode plate was measured as follows. First, using a micrometer, the thickness is measured at a plurality of points on the positive electrode plate, and the average value is used as the thickness of the positive electrode plate. Next, as shown in FIG. 2, the positive electrode is placed on the plane of the base so that the plate surface of the positive electrode plate and the plane of the base are substantially parallel to each other and the convex surface of the curved positive electrode plate faces upward. The plate is placed, and the height h is used to measure the distance h between the apex of the convex surface of the curved positive electrode plate and the plane of the base. The value obtained by subtracting the thickness of the positive electrode plate from this distance h is defined as the flatness.

次に、作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
Next, after performing the initial charge on the manufactured lead storage battery, aging was performed for 48 hours. Then, the internal resistance of the lead storage battery was measured. This measured internal resistance value was taken as the "initial value".
Subsequently, the lead storage battery in a fully charged state after aging was subjected to constant voltage charging, and the internal resistance immediately after the completion of constant voltage charging was measured. This measured internal resistance value was defined as “value immediately after charging”. The conditions for constant voltage charging are a maximum current of 100 A, a control voltage of 14.0 V, and a charging time of 10 minutes (this lead-acid battery has a 5-hour rate capacity (rated capacity) of 32 Ah).
After the constant voltage charging was completed, it was left standing for 1 hour, and the internal resistance after standing was measured. This measured internal resistance value was defined as "value after standing still".

これらの結果を表1に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]−[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]−[初期値])/[初期値]により算出した。 The results are shown in Table 1. The rate of increase in internal resistance was calculated using the initial value of internal resistance, the value immediately after charging, and the value after standing. The rate of increase of the value immediately after charging with respect to the initial value is calculated by ([value immediately after charging]-[initial value])/[initial value], and the rate of increase of the value after standing with respect to the initial value is ([static The value after the storage]-[initial value])/[initial value].

そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるか又は充電直後の値の上昇率に対して静置後の値の上昇率が4%以上低い値であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表1においては○印で示した。 Then, the condition A that the rate of increase of the value immediately after charging with respect to the initial value is 10% or less, and the rate of increase of the value after standing still with respect to the initial value is 5% or less, or the rate of increase of the value immediately after charging is On the other hand, when both the condition B that the rate of increase in the value after standing is lower by 4% or more are satisfied, it is determined that the increase in the internal resistance is significantly suppressed, and in Table 1, a circle indicates Indicated.

条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表1においては△印で示した。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表1においては×印で示してある。 When only one of the condition A and the condition B is satisfied, it is determined that the increase in the internal resistance is sufficiently suppressed but is not significantly suppressed, and in Table 1, Δ It is indicated by a mark. When neither the condition A nor the condition B is satisfied, it is determined that the suppression of the increase in the internal resistance is slightly or completely inadequate.

また、電解液の成層化と電池寿命については、欧州規格(EN規格)のEN 50342−6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差と電解液の減液量とを、雰囲気温度25℃において測定した。 The stratification of the electrolytic solution and the battery life were evaluated by the 17.5% DOD life test described in EN 50342-6:2015 of European standard (EN standard). That is, the following operations (1), (2), and (3) are repeated for a plurality of cycles, and when the voltage reaches 10 V, it is determined that the battery has reached the end of its life. The difference in specific gravity between the upper part and the lower part of the liquid and the reduced amount of the electrolytic solution were measured at an ambient temperature of 25°C.

(1)充電状態(SOC)を50%に調整する。
(2)放電深度(DOD)17.5%の充放電を85回繰り返す。
(3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。
(1) Adjust the state of charge (SOC) to 50%.
(2) Charge/discharge with a depth of discharge (DOD) of 17.5% is repeated 85 times.
(3) Perform a 20 HR capacity test with full charge. After completing the capacity test, fully charge the battery again.

評価結果を表1に示す。電解液の成層化については、電解液の上部と下部での比重の差が0.100未満である場合は、表1においては○印で示し、0.100以上0.145以下である場合は、表1においては△印で示し、0.145超過である場合は、表1においては×印で示した。 The evaluation results are shown in Table 1. Regarding stratification of the electrolytic solution, when the difference in specific gravity between the upper part and the lower part of the electrolytic solution is less than 0.100, it is indicated by a circle in Table 1, and when it is 0.100 or more and 0.145 or less, In Table 1, it is indicated by Δ, and when it exceeds 0.145, it is indicated by X in Table 1.

また、電解液の減液量が36.0g未満である場合は、表1においては○印で示し、36.0g以上40.0g以下である場合は、表1においては△印で示し、40.0g超過である場合は、表1においては×印で示した。なお、減液前の元の電解液の量は、475gである。 Further, when the amount of electrolyte reduction is less than 36.0 g, it is indicated by ◯ in Table 1, and when it is 36.0 g or more and 40.0 g or less, indicated by Δ in Table 1, 40 In the case where it exceeds 0.0 g, it is indicated by a cross in Table 1. The original amount of the electrolytic solution before the liquid reduction is 475 g.

さらに、電解液の上部と下部での比重の差と電解液の減液量の両判定結果を合わせて統合評価し、表1においては、両方の判定結果が○であった場合は○印で示し、一方の判定結果が△で且つ他方の判定結果が○又は△であった場合は△印で示し、少なくとも一方の判定結果が×であった場合は×印で示した。 Furthermore, integrated evaluation was performed by combining the judgment results of the difference in specific gravity between the upper and lower parts of the electrolytic solution and the electrolyte reduction amount, and in Table 1, when both judgment results were ○, it was marked with a circle. When one judgment result is Δ and the other judgment result is ◯ or Δ, it is indicated by Δ, and when at least one judgment result is ×, it is indicated by X.

さらに、上記した電解液の比重の差と減液量とを合わせた統合評価と、内部抵抗の上昇率との判定結果を総合して、総合判定を行った。表1においては、一方の判定結果が○で且つ他方の判定結果が○又は△であった場合は○印で示し、両方の判定結果が△であった場合は△印で示し、少なくとも一方の判定結果が×であった場合は×印で示した。 Furthermore, a comprehensive judgment was made by integrating the integrated evaluation combining the above-mentioned difference in specific gravity of the electrolytic solution and the liquid reduction amount and the judgment result of the increase rate of the internal resistance. In Table 1, when one judgment result is ◯ and the other judgment result is ◯ or △, it is indicated by ◯, when both judgment results are ∆, it is indicated by Δ, and at least one of When the judgment result is x, it is indicated by x mark.

Figure 0006705873
Figure 0006705873

まず、表1の平面度と内部抵抗の関係から、平面度が小さいほど内部抵抗が低いことが分かる。これは、平面度が小さいほどガスが正極板の表面に滞留しにくくなり、極板群の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制されためと考えられる。そして、化成後の正極板の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が十分に抑制されるため、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。 First, from the relationship between flatness and internal resistance in Table 1, it can be seen that the smaller the flatness, the lower the internal resistance. It is considered that this is because as the flatness is smaller, the gas is less likely to stay on the surface of the positive electrode plate and is more likely to be discharged to the outside of the electrode plate group, and thus the increase in internal resistance of the lead storage battery is suppressed. If the flatness of the positive electrode plate after formation is 4.0 mm or less, the increase in internal resistance of the lead storage battery is sufficiently suppressed. Therefore, the charging state and the deterioration state can be accurately determined by the method of measuring the internal resistance. It becomes possible to do.

また、満充電状態における正極活物質中に含有される鉄の含有量が少ないほど、電解液の上部と下部での比重の差が大きくなる傾向があり、成層化が生じやすく、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、電解液の上部と下部での比重の差が小さくなる傾向があり、成層化が抑制された。例えば、比較例6は比重の差が大きく成層化が生じているのに対し、比較例7、8は比較例6よりも比重の差が小さく、比較例9、10は比重の差がさらに小さく成層化は抑制された。そして、平面度が同一である鉛蓄電池においては(例えば、平面度が1.0mmである実施例5〜8及び比較例2においては)、いずれも上記と同様の傾向が見られた。 Further, as the content of iron contained in the positive electrode active material in the fully charged state is smaller, the difference in specific gravity between the upper and lower portions of the electrolytic solution tends to be large, and stratification is likely to occur. As the content of iron contained in the positive electrode active material increased, the difference in specific gravity between the upper part and the lower part of the electrolytic solution tended to decrease, and stratification was suppressed. For example, Comparative Example 6 has a large difference in specific gravity and stratification occurs, whereas Comparative Examples 7 and 8 have a smaller difference in specific gravity than Comparative Example 6, and Comparative Examples 9 and 10 have a smaller difference in specific gravity. Stratification was suppressed. Then, in the lead storage batteries having the same flatness (for example, in Examples 5 to 8 and Comparative Example 2 having the flatness of 1.0 mm), the same tendency as above was observed.

一方、電解液の減液量については、電解液の上部と下部での比重の差とは逆の傾向があり、満充電状態における正極活物質中に含有される鉄の含有量が少ないほど、電解液の減液量が少なくなる傾向があり、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、電解液の減液量が多くなる傾向があった。 On the other hand, with respect to the reduced amount of the electrolytic solution, there is a tendency opposite to the difference in specific gravity between the upper part and the lower part of the electrolytic solution, and as the content of iron contained in the positive electrode active material in a fully charged state is smaller, The electrolyte reduction tends to decrease, and the electrolyte reduction tends to increase as the iron content in the positive electrode active material in the fully charged state increases.

他方、満充電状態における正極活物質中に含有される鉄の含有量が同一である鉛蓄電池においては(例えば、鉄の含有量が4.00ppmである実施例2、6、10、14、18、比較例7においては)、平面度が小さいほど、電解液の上部と下部での比重の差が小さくなる傾向が見られた。平面度が小さいほど、正極板と負極板との間隔や正極板とセパレータとの間隔が小さくなるため、正極板と負極板との間の隙間や正極板とセパレータとの間の隙間にガスが滞留しにくくなり、より多量のガスが電解液中に放出される。その結果、電解液の撹拌がより効率的に行われるため、成層化が抑制されると考えられる。 On the other hand, in a lead-acid battery in which the iron content contained in the positive electrode active material in the fully charged state is the same (for example, in Examples 2, 6, 10, 14, 18 in which the iron content is 4.00 ppm). Comparative Example 7), the smaller the flatness, the smaller the difference in specific gravity between the upper part and the lower part of the electrolytic solution. The smaller the flatness is, the smaller the distance between the positive electrode plate and the negative electrode plate and the distance between the positive electrode plate and the separator are, so that the gas is generated in the gap between the positive electrode plate and the negative electrode plate or the gap between the positive electrode plate and the separator. It becomes hard to stay, and a larger amount of gas is released into the electrolytic solution. As a result, it is considered that the electrolytic solution is stirred more efficiently and the stratification is suppressed.

さらに、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、充電時に正極及び負極から発生するガスの量が多くなるため、電解液の撹拌がより効率的に行われ、成層化は抑制された。さらに、正極板の平面度が小さいほど、正極及び負極から発生するガスが正極板と負極板との間の隙間に滞留しにくくなるため、より多量のガスが電解液中に放出される。その結果、電解液の撹拌がより効率的に行われ、成層化は抑制されると考えられる。 Further, as the content of iron contained in the positive electrode active material in the fully charged state is larger, the amount of gas generated from the positive electrode and the negative electrode during charging is larger, so that the stirring of the electrolytic solution is performed more efficiently, Stratification was suppressed. Furthermore, as the flatness of the positive electrode plate is smaller, the gas generated from the positive electrode and the negative electrode is less likely to stay in the gap between the positive electrode plate and the negative electrode plate, so that a larger amount of gas is released into the electrolytic solution. As a result, it is considered that the electrolytic solution is stirred more efficiently and the stratification is suppressed.

1 極板群
10 正極板
20 負極板
30 セパレータ
1 Electrode Plate Group 10 Positive Electrode Plate 20 Negative Electrode Plate 30 Separator

Claims (4)

二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、前記極板群が電解液に浸漬され、化成後の前記正極板の平面度が4.0mm以下であり、満充電状態における前記正極活物質中に含有される鉄の含有量が3.5ppm以上20.0ppm以下であり、化成後の前記正極板が略椀状に湾曲しており、湾曲した前記正極板の凸面の頂点が、前記正極板の鉛直方向中央よりも下方側部分に位置する鉛蓄電池。 A positive electrode plate having a positive electrode active material containing lead dioxide, and a negative electrode plate having a negative electrode active material containing metal lead, a plurality of electrode plates are alternately laminated via a separator, the electrode plate group Is immersed in an electrolytic solution, the flatness of the positive electrode plate after formation is 4.0 mm or less, and the content of iron contained in the positive electrode active material in a fully charged state is 3.5 ppm or more and 20.0 ppm or less. The lead storage battery in which the positive electrode plate after chemical formation is curved in a substantially bowl shape, and the apex of the convex surface of the curved positive electrode plate is located in a lower portion than the vertical center of the positive electrode plate. 前記正極活物質の密度が4.2g/cm3以上4.6g/cm3以下である請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1 , wherein the positive electrode active material has a density of 4.2 g/cm 3 or more and 4.6 g/cm 3 or less. 前記電解液のアルミニウムイオンの含有量が0.01モル/L以上0.3モル/L以下である請求項1又は請求項2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2 , wherein the content of aluminum ions in the electrolytic solution is 0.01 mol/L or more and 0.3 mol/L or less. 前記極板群に負荷された群圧が10kPa以下である請求項1〜3のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to claim 1 , wherein a group pressure applied to the electrode plate group is 10 kPa or less.
JP2018182541A 2018-09-27 2018-09-27 Lead acid battery Expired - Fee Related JP6705873B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018182541A JP6705873B2 (en) 2018-09-27 2018-09-27 Lead acid battery
CN201980028342.5A CN112042041B (en) 2018-09-27 2019-08-01 Lead-acid battery
PCT/JP2019/030263 WO2020066290A1 (en) 2018-09-27 2019-08-01 Lead storage battery
DE112019002286.5T DE112019002286B4 (en) 2018-09-27 2019-08-01 Lead acid battery
US17/253,084 US20210167363A1 (en) 2018-09-27 2019-08-01 Lead Storage Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182541A JP6705873B2 (en) 2018-09-27 2018-09-27 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2020053293A JP2020053293A (en) 2020-04-02
JP6705873B2 true JP6705873B2 (en) 2020-06-03

Family

ID=69993918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182541A Expired - Fee Related JP6705873B2 (en) 2018-09-27 2018-09-27 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6705873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129721A4 (en) 2020-03-24 2024-04-24 Nippon Steel Corp Frame structure of automotive exterior panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866261A (en) * 1981-10-16 1983-04-20 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead-acid storage battery
JPH01176661A (en) * 1987-12-29 1989-07-13 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH02177256A (en) * 1988-12-28 1990-07-10 Japan Storage Battery Co Ltd Manufacture of plate for paste type lead accumulator
JPH11111274A (en) * 1997-10-07 1999-04-23 Yuasa Corp Lead-acid battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP6120634B2 (en) * 2013-03-28 2017-04-26 古河電池株式会社 Separator and lead acid battery
JP6727965B2 (en) * 2016-03-22 2020-07-22 古河電池株式会社 Lead acid battery
EP3419101B1 (en) * 2016-03-30 2019-09-25 Hitachi Chemical Co., Ltd. Lead storage battery, micro-hybrid vehicle and start-stop system vehicle

Also Published As

Publication number Publication date
JP2020053293A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6670903B1 (en) Lead storage battery
WO2020066290A1 (en) Lead storage battery
EP3352285B1 (en) Lead storage battery
JP2021111491A (en) Liquid type lead storage battery
JP2021163612A (en) Lead-acid battery
JP2009199735A (en) Manufacturing method of control valve type lead-acid storage battery
JP6525167B2 (en) Lead storage battery
JP6705873B2 (en) Lead acid battery
JP2021163618A (en) Lead-acid battery
JP6705874B2 (en) Lead acid battery
JP2021163608A (en) Lead-acid battery
JP7002518B2 (en) Lead-acid battery
JP6817264B2 (en) Lead-acid battery
JP6921037B2 (en) Lead-acid battery
JP7097403B2 (en) Lead-acid battery
JP7128483B2 (en) lead acid battery
JP2021163610A (en) Lead-acid battery
JP7219366B1 (en) liquid lead acid battery
JP2021163616A (en) Lead-acid battery
JP2020053296A (en) Lead storage battery
JP2020053292A (en) Lead storage battery
JP2020053298A (en) Lead storage battery
JP2021163609A (en) Lead-acid battery
JP2021163537A (en) Lead-acid battery
JP7079832B2 (en) Liquid lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191114

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200318

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R150 Certificate of patent or registration of utility model

Ref document number: 6705873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees