JP2008243606A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2008243606A
JP2008243606A JP2007082616A JP2007082616A JP2008243606A JP 2008243606 A JP2008243606 A JP 2008243606A JP 2007082616 A JP2007082616 A JP 2007082616A JP 2007082616 A JP2007082616 A JP 2007082616A JP 2008243606 A JP2008243606 A JP 2008243606A
Authority
JP
Japan
Prior art keywords
weight
positive electrode
lead
active material
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007082616A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Daisuke Monma
大輔 門馬
Toshimichi Takada
利通 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007082616A priority Critical patent/JP2008243606A/en
Publication of JP2008243606A publication Critical patent/JP2008243606A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cycle life by having good adhesion property between a grid and an active material and good connecting property between active material particles even when used in idling stop or under an over-charge control condition and suppressing sulfation in a negative electrode. <P>SOLUTION: The lead acid storage battery contains at least one kind selected from bismuth, antimony and calcium in a positive electrode substrate surface composed of lead-calcium based alloy and/or in positive electrode active material. At the same time, at least one kind selected from aluminum ion, selenium ion and titanium ion is contained in the electrolyte. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

鉛蓄電池の寿命延長に関する。特にアイドルストップ用途の自動車用電池等に好適である鉛蓄電池に関するものである。 It relates to extending the life of lead-acid batteries. In particular, the present invention relates to a lead storage battery suitable for an automobile battery for idle stop use.

従来、自動車用鉛蓄電池はSLIバッテリーと呼ばれるように、始動時のスタータ起動、照明、イグニションをはじめ、高級車では100個以上搭載されていると言うモーターの電源として使用されて来たが、始動時のスタータ起動以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深い放電が行われることはなかった。また、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。同時に、過充電時のガス発生による電解液の減少を抑制し、補水の手間をなくすメンテナンスフリー性が求められ、正極基板合金はPb−Sb系からPb−Ca系に変更された。 Traditionally, lead-acid batteries for automobiles, called SLI batteries, have been used as a power source for motors that have been installed in more than 100 high-end cars, including starter start-up, lighting, and ignition at start-up. Since the engine drives the generator to supply electric power except for starting the starter at that time, the lead-acid battery was not discharged so deeply. Moreover, since charging from a generator often places the battery in a fully charged state, it has been required to be resistant to overcharging. At the same time, maintenance-free property that suppresses the decrease in the electrolyte due to gas generation during overcharge and eliminates the need for rehydration is required, and the positive electrode substrate alloy has been changed from Pb—Sb system to Pb—Ca system.

しかし近年、自動車は燃費改善や排出ガスの削減が強く求められるようになり、鉛蓄電池の使用条件は大きく変わってきた。その一つは、信号などによる停車中にエンジンを停止するアイドリングストップである。エンジンの停止により発電機からの電力供給も停止するため、この間の電力は鉛蓄電池の放電によってまかなうことになる。そのため、従来と比較して深く放電されることになる。もう一つは鉛蓄電池の過充電の制御である。これは鉛蓄電池の充電に用いるエネルギーの無駄をできるだけ削減するもので、充電効率が低い場合はむしろ充電不足状態で使用されることになる。 However, in recent years, automobiles are strongly required to improve fuel consumption and reduce exhaust gas, and the usage conditions of lead-acid batteries have changed greatly. One of them is an idling stop that stops the engine while the vehicle is stopped by a signal or the like. Since the power supply from the generator is also stopped when the engine is stopped, the electric power during this time is provided by the discharge of the lead storage battery. For this reason, the discharge is deeper than in the prior art. The other is the control of lead battery overcharge. This is to reduce the waste of energy used for charging the lead-acid battery as much as possible. When the charging efficiency is low, the lead-acid battery is used in an insufficiently charged state.

その結果、従来の使用条件では、鉛蓄電池は正極格子グロスや正極格子腐食、エンジンルーム内の高温による負極活物質の収縮、そして高温・過充電による電解液の減少等により寿命となったが、アイドルストップや過充電制御と言った使用条件で鉛蓄電池は深い充放電と慢性的な充電不足状態に置かれることとなり、著しく短寿命となった。 As a result, under conventional usage conditions, lead-acid batteries have reached the end of their lives due to positive grid gloss and positive grid corrosion, shrinkage of the negative electrode active material due to high temperatures in the engine room, and decrease in electrolyte due to high temperature and overcharge, etc. Under the usage conditions such as idle stop and overcharge control, lead-acid batteries were placed in deep charge / discharge and chronic undercharged condition, resulting in a significantly shorter life.

この原因の一つは正極基板合金がPb−Sb系からPb-Ca系に変わったことによるものである。Pb−Sb系合金では基板の酸化で生成した5価のSbイオンは格子−活物質界面の密着性を高めたり活物質に作用してその一部をゲル化し、活物質粒子同士の結合性を強化していると言われる。その結果、深い充放電を繰り返しても格子と活物質の剥離や活物質の軟化が抑制されていた。一方、Pb−Ca系合金ではSbで見られたような作用が弱く、深い充放電を繰り返すと活物質が早期に格子から剥離したり軟化して寿命となった。この問題を解決するため、正極基板の表面にSbを含む層を設ける、正極活物質にSb化合物を添加するなどして、Pb−Sb系合金を用いた場合と同様の効果を得ようとする出願がなされた(特許文献1)。また、Sbと同程度に活物質の結合力を維持する方法の探索もなされている(特許文献2)。Biもその中の一つとしてSbの代替効果が指摘されていた(特許文献3)。ここでは正極基板の少なくとも一部にPb−Bi系合金層を付与すると言うもので、メンテナンスフリー性を維持しつつ深放電寿命特性を改善できるとしている。 One of the causes is that the positive electrode substrate alloy is changed from the Pb—Sb system to the Pb—Ca system. In the Pb-Sb alloy, pentavalent Sb ions generated by oxidation of the substrate increase the adhesion at the lattice-active material interface or act on the active material to gel a part thereof, thereby improving the bonding between the active material particles. It is said that it is strengthening. As a result, peeling of the lattice and the active material and softening of the active material were suppressed even after repeated deep charge / discharge. On the other hand, in the Pb—Ca-based alloy, the action as seen with Sb is weak, and when deep charge / discharge is repeated, the active material is peeled off from the lattice or softened to the end. In order to solve this problem, an effect similar to that in the case of using a Pb—Sb alloy is attempted by providing a layer containing Sb on the surface of the positive electrode substrate or adding an Sb compound to the positive electrode active material. An application was made (Patent Document 1). In addition, a search for a method of maintaining the binding force of the active material to the same extent as Sb has been made (Patent Document 2). Bi has also been pointed out as an alternative effect of Sb (Patent Document 3). Here, a Pb—Bi alloy layer is applied to at least a part of the positive electrode substrate, and the deep discharge life characteristics can be improved while maintaining the maintenance-free property.

もう一つの原因は、慢性的な充電不足状態に置かれることとなった結果、負極活物質がサルフェーションを起こして可逆性が損なわれたことである。この問題を改善手段として負極にカーボンを通常よりも多く添加することが開示されている(非特許文献1)。カーボンの添加量は開示されていないが、硫酸鉛の間隙に入り、導電パスを作るとされている。しかし、発明者はカーボン量を広範囲に取って各種試験したが、寿命延長効果は限定的であり、前記の工業的実用化に不十分であることを体験した。一方、カーボン等の負極添加剤と共に電解液にAl、K、Caイオンを添加する特許が出願されており(特許文献4)、大きな効果が確認されている。他に電解液の添加剤に関する出願としては、上記サルフェーションを解決するために、電解液にポリアクリル酸やエステルなどの有機酸を添加する特許が出願されているが(特許文献5)、格子を腐食させてしまうので実用性に乏しい。その他、アルカリ金属またはアルカリ土類金属の硫酸塩を添加する特許が出願されているが(特許文献6)、これらは硫酸イオン濃度を維持し、過放電状態を緩和する目的は達成したがサルフェーション抑制の問題解決には至らなかった。一方、ゲル電解液にチタン、アルミ、カリウムなどを添加し、低温性能を改善する出願があるが(特許文献7)、この出願の範囲ではむしろ電解液の導電率を下げる方向に作用するため、低温性能の改善には何ら寄与しない。また、密閉電池の電解液にセレンと有機物を添加して負極の水素発生抑制と酸素還元促進を改善するとした出願があるが(特許文献8)、100〜1000ppmと添加量が多く、電解液中でセレンが析出してしまい、むしろ電池に悪影響を及ぼす。 Another cause is that the negative electrode active material caused sulfation as a result of being placed in a chronic undercharged state, and the reversibility was impaired. In order to solve this problem, it has been disclosed to add more carbon than usual to the negative electrode (Non-patent Document 1). The amount of carbon added is not disclosed, but is said to enter the lead sulfate gap and create a conductive path. However, the inventor has conducted various tests with a wide range of carbon contents, but has experienced that the life extension effect is limited and is insufficient for the industrial practical use. On the other hand, a patent for applying Al, K, and Ca ions to an electrolytic solution together with a negative electrode additive such as carbon has been filed (Patent Document 4), and a great effect has been confirmed. In addition, as an application for an additive for an electrolytic solution, a patent for adding an organic acid such as polyacrylic acid or an ester to the electrolytic solution has been filed in order to solve the above sulfation (Patent Document 5). Since it corrodes, it is not practical. In addition, a patent has been filed for adding an alkali metal or alkaline earth metal sulfate (Patent Document 6), but these have achieved the purpose of maintaining the sulfate ion concentration and mitigating the overdischarge state, but suppressing sulfation. The problem was not solved. On the other hand, there is an application for improving low temperature performance by adding titanium, aluminum, potassium, etc. to the gel electrolyte (Patent Document 7), but in the scope of this application, it acts in the direction of lowering the conductivity of the electrolyte, It does not contribute to the improvement of low temperature performance. Moreover, although there exists an application which added selenium and organic substance to the electrolyte solution of a sealed battery and improved the hydrogen generation suppression and oxygen reduction promotion of a negative electrode (patent document 8), there are many addition amounts, 100-1000 ppm, and in electrolyte solution As a result, selenium is deposited, which adversely affects the battery.

また、本願の発明者は先に鉛蓄電池の基板用のPb−Ca系合金として、出願人において、カルシウム0.02重量%以上0.05重量%未満、スズ0.4重量%以上2.5重量%以下、アルミニウム0.005重量%以上0.04重量%以下、バリウム0.002重量%以上0.014重量%以下とすることで耐食性と機械的強度を両立させることを明らかにした。しかし、この高耐食性合金を用いた場合、その高耐食性が故に正極基板と活物質界面の密着性や活物質同士の結合性が低いことが明らかとなった(特許文献9)。
特開昭63−148556号公報 特開2002−158002号公報 特開平3−145061号公報 特開2003−36882号公報 特開2001−313064号公報 特公平7−24224号公報 特開昭60−211777号公報 特開昭64−38970号公報 特開2003−306733号公報 J. Power Source vol.59(1996)153−157
In addition, the inventor of the present application previously described that the Pb—Ca-based alloy for the lead-acid battery substrate is calcium 0.02 wt% or more and less than 0.05 wt%, tin 0.4 wt% or more 2.5 It was clarified that the corrosion resistance and the mechanical strength can be achieved by adjusting the content of aluminum to 0.005% by weight or more, 0.04% by weight or less, and barium from 0.002% to 0.014% by weight. However, when this high corrosion resistance alloy is used, it has been clarified that due to the high corrosion resistance, the adhesion between the positive electrode substrate and the active material interface and the bonding property between the active materials are low (Patent Document 9).
JP-A 63-148556 JP 2002-158002 A Japanese Patent Laid-Open No. 3-145061 JP 2003-36882 A JP 2001-313064 A Japanese Patent Publication No. 7-24224 JP 60-2111777 A JP-A-64-38970 JP 2003-306733 A J. et al. Power Source vol. 59 (1996) 153-157

本発明は上記特許文献の不都合を解消し、アイドルストップや過充電制御条件で使用しても、格子と活物質の密着性や活物質粒子相互の結合性が良好であり、また負極のサルフェーションを抑制して、サイクル寿命を向上した鉛蓄電池を提供することを目的とする。 The present invention eliminates the inconveniences of the above-mentioned patent documents, and even when used under idle stop and overcharge control conditions, the adhesion between the lattice and the active material and the bonding property between the active material particles are good, and the sulfation of the negative electrode is reduced. It aims at providing the lead storage battery which suppressed and improved the cycle life.

活物質同士の密着性の改善に関してはアンチモンの他にビスマスイオンの作用で強化されるという文献(J.Power Sources 33(1991)221−229)がある。従来から正極格子基板に用いられたアンチモン合金では、基板から溶出したアンチモンイオンが二酸化鉛をゲル状の水酸化鉛にする作用があり、これが二酸化鉛同士の結合を強化する接着剤の役目を果たすとされており、同様の働きは同じV族のビスマスや砒素にもあるとされている。その他の例としては、カルシウムイオンにも同様の強化機構があるとされている(文献:J.Power Sources 64(1997)51−56)。即ち、カルシウム含有量が0.06重量%〜0.1重量%の従来公知の合金基板から溶出したカルシウムイオンにこの様な働きがあると考えられる。一方、合金の耐食性は合金中のCa含有量が少ないと向上する傾向があり、特に0.05重量%未満で著しく改善される。その反面、合金の溶出によるカルシウムイオンの活物質への供給は減少し、活物質同士の密着性を高めることが難しくなると考えられる。また、これらと錫を共存させると効果が高まることが分った。理由は明らかではないが、基板−活物質界面のα−PbO2層に錫がドープされて導電性が向上し、実質的に界面の密着性を高めたのと同じ効果が得られると考えられる。また、特にビスマスをドープしたPbO2は酸化触媒能が高まるという報告があり、導電性の高いSnO2を安定化したとも考えられる。活物質同士についても電解液である硫酸水溶液と反応する表面はβ-PbO2であるが、内部はα-PbO2であることから、同様の作用があると考えられる。砒素は錫に劣るが導電性を向上する効果が認められるとともに、特にアンチモンの溶出を抑え、負極の水素過電圧の低下を防ぐため、メンテナンスフリー性を向上させることができる。 There is a literature (J. Power Sources 33 (1991) 221-229) in which the adhesion between active materials is improved by the action of bismuth ions in addition to antimony. In antimony alloys conventionally used for positive grid substrates, antimony ions eluted from the substrate have the effect of converting lead dioxide into gelled lead hydroxide, which acts as an adhesive that strengthens the bond between lead dioxides. It is said that the same function also exists in the same group V bismuth and arsenic. As another example, calcium ions are said to have a similar strengthening mechanism (reference: J. Power Sources 64 (1997) 51-56). That is, it is considered that calcium ions eluted from a conventionally known alloy substrate having a calcium content of 0.06 wt% to 0.1 wt% have such a function. On the other hand, the corrosion resistance of the alloy tends to be improved when the Ca content in the alloy is small, and is remarkably improved particularly at less than 0.05% by weight. On the other hand, the supply of calcium ions to the active material due to the elution of the alloy decreases, and it is considered difficult to improve the adhesion between the active materials. Further, it has been found that the effect increases when these and tin coexist. Although the reason is not clear, it is considered that the same effect can be obtained as when the α-PbO 2 layer at the substrate-active material interface is doped with tin to improve conductivity and substantially improve the adhesion at the interface. In particular, there is a report that PbO2 doped with bismuth increases the oxidation catalytic ability, and it is considered that SnO2 having high conductivity is stabilized. The surfaces that react with the sulfuric acid aqueous solution that is the electrolytic solution for the active materials are β-PbO 2, but since the inside is α-PbO 2, it is considered that there is a similar effect. Although arsenic is inferior to tin, the effect of improving the conductivity is recognized, and in particular, the elution of antimony is suppressed and the decrease in hydrogen overvoltage of the negative electrode is prevented, so that the maintenance-free property can be improved.

アンチモン、ビスマス、カルシウムや錫、砒素の添加法としては活物質に混合することや基板表面にこれらを層状に塗布することが考えられる。また、夫々の添加量は金属換算でビスマスの場合0.005〜0.5重量%、アンチモンの場合0.005重量%〜0.2重量%、カルシウムの場合0.05重量%〜1.5重量%、錫の場合0.005重量%〜1.0重量%、砒素の場合0.005重量%〜0.2重量%とすることが望ましい。これ未満の添加では効果が認められない。また、これ以上の添加は、ビスマスの場合効果が低下し、アンチモンの場合効果が低下するとともにメンテナンスフリー性が低下し、カルシウムの場合効果が低下するとともに容量も低下し、錫の場合効果が飽和するとともに電解液中に溶出して短絡の原因となり、砒素の場合効果が低下する、などの弊害がある。 As a method for adding antimony, bismuth, calcium, tin, and arsenic, it is conceivable to mix them with an active material or apply them in layers on the substrate surface. Further, the respective addition amounts are 0.005 to 0.5% by weight in the case of bismuth in terms of metal, 0.005% to 0.2% by weight in the case of antimony, 0.05% to 1.5% in the case of calcium. In the case of tin, 0.005 wt% to 1.0 wt% is preferable, and in the case of arsenic, 0.005 wt% to 0.2 wt% is desirable. If the amount is less than this, no effect is observed. In addition, the addition of more than this is less effective in the case of bismuth, the effect in the case of antimony is reduced and maintenance-free properties are reduced, the effect is reduced in the case of calcium and the capacity is reduced, and the effect is saturated in the case of tin. At the same time, it dissolves in the electrolyte and causes a short circuit. In the case of arsenic, the effect is reduced.

以上のようにビスマス、アンチモン、カルシウム、錫、砒素には正極の長寿命化効果があるが、これは活物質がPbO2の形態を取っている場合、即ち充電されている場合の効果であって、常に充電不足状態に曝されて硫酸鉛が生成しているアイドルストップや過充電制御では事情が異なる。つまり、充電不足状態で生成した硫酸鉛が充電によって可逆的にPbO2に酸化され、活物質の骨格構造を健全に保つことが重要である。充電しても常に不可逆的に硫酸鉛が残留すると、徐々に活物質の骨格構造を破壊して軟化を促進することになる。アルミニウムイオン、セレンイオン、チタンイオンはこれを防ぐ作用があると考えられる。 As described above, bismuth, antimony, calcium, tin, and arsenic have an effect of extending the life of the positive electrode. This is an effect when the active material is in the form of PbO2, that is, when charged. However, the situation is different in idling stop and overcharge control in which lead sulfate is always generated due to insufficient charging. That is, it is important that lead sulfate generated in an insufficiently charged state is reversibly oxidized to PbO2 by charging, and the skeleton structure of the active material is kept healthy. If lead sulfate always remains irreversibly even after charging, the skeletal structure of the active material is gradually destroyed to promote softening. Aluminum ions, selenium ions, and titanium ions are considered to have an action to prevent this.

アルミニウムイオン、セレンイオン、チタンイオンの作用は、これも明らかではないが、充電不足状態で使用された場合に正極及び負極に生成する硫酸鉛の結晶の粗大化や緻密化を抑制して、充電受け入れ性を大幅に改善する効果がある。アルミニウムイオンの添加量は0.01mol/l〜0.30mol/lが良く、0.01mol/l未満では効果が不十分であり0.30mol/lを越えると電解液の導電率が低下して急放電性能を損なう。セレンイオンの添加量は0.0002mol/l〜0.0012mol/lが良く、0.0002mol/l未満では効果が不十分であり0.0012mol/lを越えると電解液中に金属セレンが析出し易くなりそれ以上の効果が期待できないほか、析出したセレンが短絡を引き起こすなどの悪影響を与える。チタンイオンの添加量は0.001mol/l〜0.1mol/lが良く、0.001mol/l未満では効果が不十分であり0.1mol/lを越えると電解液の導電率が低下して急放電性能を損なう。
以上のように、ビスマス、アンチモン、カルシウムや錫、砒素の添加効果により格子と活物質の剥離や活物質の軟化を抑制し、アルミニウムイオン、セレンイオン、チタンイオンにより正負極に生成した硫酸鉛の可逆性を高めることが同時に実現されることによって、初めてアイドルストップや過充電制御条件で使用される電池の長寿命化達成されるものである。また、従来条件で使用されても長寿命化することは言うまでもない。
The effects of aluminum ions, selenium ions, and titanium ions are not clear, but they can be charged by suppressing the coarsening and densification of lead sulfate crystals formed on the positive and negative electrodes when used in an insufficiently charged state. It has the effect of greatly improving acceptability. The amount of aluminum ion added is preferably 0.01 mol / l to 0.30 mol / l. If the amount is less than 0.01 mol / l, the effect is insufficient, and if it exceeds 0.30 mol / l, the conductivity of the electrolyte decreases. Impairs rapid discharge performance. The amount of selenium ion added is preferably 0.0002 mol / l to 0.0012 mol / l, and if it is less than 0.0002 mol / l, the effect is insufficient, and if it exceeds 0.0012 mol / l, metal selenium precipitates in the electrolyte. In addition to being easy to expect, no further effect can be expected, and the deposited selenium has an adverse effect such as causing a short circuit. The amount of titanium ion added is preferably 0.001 mol / l to 0.1 mol / l, and if it is less than 0.001 mol / l, the effect is insufficient, and if it exceeds 0.1 mol / l, the conductivity of the electrolyte decreases. Impairs rapid discharge performance.
As described above, the addition of bismuth, antimony, calcium, tin, and arsenic suppresses the separation of the lattice and active material and the softening of the active material, and the lead sulfate produced on the positive and negative electrodes by aluminum ions, selenium ions, and titanium ions. By realizing reversibility at the same time, it is possible to extend the life of a battery used for idle stop and overcharge control conditions for the first time. Moreover, it goes without saying that the service life is extended even when used under conventional conditions.

以上の様に、本発明によれば、自動車のアイドリングストップ、過充電制御、HEVを始め、産業用途でも長寿命化が達成されるので、鉛蓄電池の用途拡大に貢献する。 As described above, according to the present invention, a long life can be achieved even in industrial applications including idling stop, overcharge control and HEV of automobiles, which contributes to the expansion of the use of lead storage batteries.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(電池の製造)
正極基板として、合金組成はカルシウム0.04重量%、スズ1.0重量%、アルミニウム0.015重量%、バリウム0.008重量%、残部が鉛と不可避の不純物からなり、ブックモールドによる鋳造式基板を製造した。鋳造は毎分15枚の速度で行った。そして鋳造した基板は120℃で3時間熱処理を施し、時効硬化させた。次に、正極用鉛粉にビスマス、カルシウム、錫は硫酸塩として、アンチモン、砒素は酸化物として加えて混合した。これらの添加物の種類や添加量は種々変化させた。この鉛粉を用いて公知の方法で調製した正極ペーストを先の基板に充填し、その後40℃、湿度95%の雰囲気で24時間熟成し、乾燥して正極未化成板とした。これを公知の方法で製造した負極未化成板とポリエチレンセパレータを組み合わせ、アルミニウムイオン、セレンイオン、チタンイオンを硫酸塩として添加した電解液を注入して電槽化成を行い、5時間率容量が50AhのD23サイズの12V電池を試作した。尚、アルミニウムイオン、セレンイオン、チタンイオンの添加量は種々変化させた。
(Manufacture of batteries)
As the positive electrode substrate, the alloy composition is 0.04% by weight calcium, 1.0% by weight tin, 0.015% by weight aluminum, 0.008% by weight barium, the balance is made of lead and inevitable impurities, and is cast by a book mold. A substrate was manufactured. Casting was performed at a rate of 15 sheets per minute. The cast substrate was heat-treated at 120 ° C. for 3 hours and age hardened. Next, bismuth, calcium, and tin were added as sulfates and antimony and arsenic were added as oxides to the lead powder for the positive electrode and mixed. The types and amounts of these additives were variously changed. A positive electrode paste prepared by a known method using this lead powder was filled in the above substrate, then aged in an atmosphere of 40 ° C. and a humidity of 95% for 24 hours and dried to obtain a positive electrode unformed sheet. This is combined with a negative electrode unformed plate manufactured by a known method and a polyethylene separator, and an electrolytic solution in which aluminum ions, selenium ions, and titanium ions are added as sulfates is injected to form a battery case, and the 5-hour rate capacity is 50 Ah. A prototype D23 size 12V battery was prepared. The addition amount of aluminum ion, selenium ion, and titanium ion was variously changed.

(アイドルストップ寿命試験)
電池を25℃、5時間率電流で完全充電した。次に、25℃雰囲気で50A、59秒間及び300A、1秒間の定電流放電と100A、60秒間、上限電圧14.0Vの定電流・定電圧充電の組合せを1サイクルとするアイドルストップ寿命試験を行い、放電時の電圧が7.2V以下になった時点を寿命として、寿命に至るサイクル数を測定した。サイクル数としては30000サイクル以上が望ましい。また、試験中の電池温度はジュール熱や反応熱で徐々に上昇し、約50℃で安定した。結果を図1、図2に示した。
(Idle stop life test)
The battery was fully charged at 25 ° C. with a 5 hour rate current. Next, an idle stop life test in which a combination of constant current / constant voltage charging with a constant current / constant voltage charge of 50A, 59 seconds and 300A, 1 second and 100A, 60 seconds, upper limit voltage 14.0V in a 25 ° C. atmosphere is performed. And the number of cycles to the end of life was measured with the time when the voltage during discharge became 7.2 V or less. The number of cycles is preferably 30000 cycles or more. In addition, the battery temperature during the test gradually increased with Joule heat or reaction heat, and stabilized at about 50 ° C. The results are shown in FIGS.

図1は、横軸に正極に添加したBi、Sb、Ca、Sn、Asの添加量を示し、縦軸はサイクル寿命回数を示す。黒丸はBiの添加量を種種変化させた場合のサイクル寿命推移を、白丸は電解液に0.1mol/lのAlを添加して、Biの添加量を種種変化させた場合のサイクル寿命の推移をそれぞれ示す。なお、いずれも最左端の半黒丸は正極への金属の添加なしにおけるサイクル寿命を示す。図1から明らかな通り、Biを添加することでサイクル寿命の向上が見られるが、その添加量が0.005質量%〜0.5質量%の範囲で、好ましい特性を示す。更に、電解液中にAlを添加することでより向上する。
Bi添加で最もサイクル寿命が向上した0.05%BiとAl添加の組合せに対し、これの正極に更にSnの添加量を種種変化させた場合のサイクル寿命の推移を二重丸で示す。Snを添加することで更に特性は向上し、その好ましい範囲は0.005〜0.1質量%である。
In FIG. 1, the horizontal axis represents the amount of Bi, Sb, Ca, Sn, and As added to the positive electrode, and the vertical axis represents the cycle life number. The black circle shows the cycle life transition when the amount of Bi added is changed, and the white circle shows the cycle life transition when the amount of Bi added is changed by adding 0.1 mol / l Al to the electrolyte. Respectively. In each case, the leftmost half black circle indicates the cycle life without adding metal to the positive electrode. As is apparent from FIG. 1, the cycle life is improved by adding Bi, but preferable characteristics are exhibited when the addition amount is in the range of 0.005 mass% to 0.5 mass%. Furthermore, it improves more by adding Al in electrolyte solution.
With respect to the combination of 0.05% Bi and Al addition, the cycle life of which has been improved most by the addition of Bi, the transition of the cycle life when the addition amount of Sn is further changed to the positive electrode is shown by a double circle. By adding Sn, the characteristics are further improved, and the preferred range is 0.005 to 0.1% by mass.

更に、正極に0.05質量%Sb添加し、電解液に0.1mol/lのAlを添加した場合の結果を白三角で、これに更に0.05質量%のAsを負極に追加添加した場合の結果を黒三角で、0.1質量%のSnを負極に追加添加した場合の結果を二重白三角で示す。いずれも良い結果が得られた。そしてその好ましい範囲は、正極に添加する金属の添加量は正極活物質に対し、金属に換算して、ビスマスの場合0.005〜0.5質量%、アンチモンの場合0.005重量%〜0.2質量%、カルシウムの場合0.05質量%〜1.5質量%、錫の場合0.005質量%〜1.0質量%、砒素の場合0.005質量%〜0.2質量%、である。 Furthermore, 0.05 mass% Sb was added to the positive electrode, and the result when 0.1 mol / l Al was added to the electrolyte was a white triangle, and 0.05 mass% As was further added to the negative electrode. The case results are indicated by black triangles, and the results when 0.1 mass% of Sn is additionally added to the negative electrode are indicated by double white triangles. In both cases, good results were obtained. The preferred range is that the amount of metal added to the positive electrode is 0.005 to 0.5% by mass for bismuth and 0.005% to 0% for antimony in terms of metal relative to the positive electrode active material. 2 mass%, 0.05 mass% to 1.5 mass% for calcium, 0.005 mass% to 1.0 mass% for tin, 0.005 mass% to 0.2 mass% for arsenic, It is.

図2は種種の電解液に対する特性で、横軸に電解液に添加したAl、Se、Tiの添加量を示し、縦軸はサイクル寿命回数を示す。正極活物質に0.05質量%のBiを添加したものにおいて、電解液にAlの添加量を種種変化させた場合の特性を白丸で、Tiの添加量を種種変化させた場合の特性を白四角で、Seを添加した場合を白三角で夫々示した。黒三角は0.001mol/lSeと0.1mol/lAlを混合して添加した場合の特性を示す。なお、最左端は、電解液へのこれらAl、Se、Tiの添加のない場合を示す。図2から明らかな通り、Alの添加量は0.01mol/l〜0.30mol/l、Seの添加量は0.0002mol/l〜0.0012mol/l、Tiの添加量は0.001mol/l〜0.1mol/lがそれぞれより好ましい結果をもたらした。 FIG. 2 shows characteristics with respect to various types of electrolytic solutions. The horizontal axis indicates the amount of Al, Se, and Ti added to the electrolytic solution, and the vertical axis indicates the cycle life. In the case where 0.05% by mass of Bi is added to the positive electrode active material, the characteristics when the amount of addition of Al is changed in the electrolyte are white circles, and the characteristics when the amount of addition of Ti is changed are white. The squares indicate the case where Se is added as white triangles. The black triangle indicates the characteristics when 0.001 mol / l Se and 0.1 mol / l Al are mixed and added. In addition, the leftmost end shows a case where these Al, Se, and Ti are not added to the electrolytic solution. As is clear from FIG. 2, the addition amount of Al is 0.01 mol / l to 0.30 mol / l, the addition amount of Se is 0.0002 mol / l to 0.0012 mol / l, and the addition amount of Ti is 0.001 mol / l. Each of l-0.1 mol / l gave more favorable results.

なお、図2はBiの場合のみ示したが、その他Sb、Ca、Sn、As等を正極へ添加した場合も同様の効果があった。 Although FIG. 2 shows only the case of Bi, the same effect was obtained when Sb, Ca, Sn, As, etc. were added to the positive electrode.

更に使用する正極基板としては、上記実施の形態に記載のものに、更に0.005重量%以上0.07重量%以下の銀、0.01重量%以上0.10重量%以下のビスマス、0.001重量%以上0.05重量%以下のタリウムよりなる群から選ばれた少なくとも一種の元素を添加した合金を用いても同様の結果が得られた。
また、正極へ添加する元素はこれを正極基板表面に塗布したものでも良い。
Further, as the positive electrode substrate to be used, 0.005% by weight to 0.07% by weight of silver, 0.01% by weight to 0.10% by weight of bismuth, Similar results were obtained using an alloy to which at least one element selected from the group consisting of 0.001 wt% and 0.05 wt% thallium was added.
Further, the element added to the positive electrode may be one in which this is applied to the positive electrode substrate surface.

なお、本発明は連続鋳造、圧延加工などの方法による基板にも適用することができる。また、本実施例では夫々の金属を硫酸塩や酸化物として活物質に添加したが、硫酸水溶液や水に可溶性であれば混合し易く、硫酸塩、亜硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、水酸化物、酸化物、夫々の金属酸塩などの化合物として活物質に添加することができる。また、ビスマス、アンチモン、カルシウム、錫、砒素は上記化合物として正極格子表面に層状に塗布したり、金属をメッキしたりすることもできる。アルミニウムやセレンは硫酸に可溶であるため、金属小片や粉末として正極や負極活物質中に添加混合するか、電槽中の電解液に接触する場所に設置して、電解液中にイオンとして溶解させることができる。 In addition, this invention is applicable also to the board | substrate by methods, such as continuous casting and rolling. In this example, each metal was added to the active material as a sulfate or oxide. However, if it is soluble in an aqueous sulfuric acid solution or water, it can be easily mixed, and sulfate, sulfite, carbonate, bicarbonate, phosphorus It can add to an active material as compounds, such as an acid salt, a borate, a hydroxide, an oxide, and each metal acid salt. Bismuth, antimony, calcium, tin, and arsenic can be applied as a layer on the surface of the positive electrode lattice as the above compound, or can be plated with a metal. Since aluminum and selenium are soluble in sulfuric acid, they are added and mixed in the positive electrode and negative electrode active materials as metal pieces and powders, or placed in contact with the electrolytic solution in the battery case, and as ions in the electrolytic solution. Can be dissolved.

正極に添加する元素の添加量とサイクル寿命の関係を示す特性図である。It is a characteristic view which shows the relationship between the addition amount of the element added to a positive electrode, and cycle life. 電解液に添加する元素の添加量とサイクル寿命の関係を示す特性図である。It is a characteristic view which shows the relationship between the addition amount of the element added to electrolyte solution, and cycle life.

Claims (9)

鉛−カルシウム系合金からなる正極基板表面及び/又は正極活物質にビスマス、アンチモン、カルシウムから選ばれた少なくとも一種を含み、且つ電解液にアルミニウムイオン、セレンイオン、チタンイオンから選ばれた少なくとも一種を含むことを特徴とする鉛蓄電池。 The positive electrode substrate surface comprising a lead-calcium alloy and / or the positive electrode active material contains at least one selected from bismuth, antimony, and calcium, and the electrolyte contains at least one selected from aluminum ions, selenium ions, and titanium ions. A lead-acid battery comprising: 鉛−カルシウム系合金からなる正極基板表面及び/又は正極活物質にビスマス、カルシウムから選ばれた少なくとも一種と同時に錫を含むことを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the positive electrode substrate surface and / or positive electrode active material made of a lead-calcium alloy contains tin at the same time as at least one selected from bismuth and calcium. 鉛−カルシウム系合金からなる正極基板表面及び/又は正極活物質にアンチモンと同時に錫及び/又は砒素を含むことを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the positive electrode substrate surface and / or positive electrode active material made of a lead-calcium alloy contains tin and / or arsenic simultaneously with antimony. 正極に添加する金属の添加量は正極活物質に対し、金属に換算して、ビスマスの場合0.005〜0.5重量%、アンチモンの場合0.005重量%〜0.2重量%、カルシウムの場合0.05重量%〜1.5重量%、錫の場合0.005重量%〜1.0重量%、砒素の場合0.005重量%〜0.2重量%、である請求項1乃至3記載の鉛蓄電池。 The amount of metal added to the positive electrode is 0.005 to 0.5% by weight in the case of bismuth, 0.005% to 0.2% by weight in the case of antimony in terms of metal relative to the positive electrode active material, calcium. 1 to 0.05% by weight in the case of tin, 0.005% to 1.0% by weight in the case of tin, and 0.005% to 0.2% by weight in the case of arsenic. 3. The lead acid battery according to 3. 電解液に添加する金属イオンの添加量は、アルミニウムイオンの場合0.01mol/l〜0.3mol/l、セレンイオンの場合0.0002mol/l〜0.0012mol/l、チタンイオンの場合0.001mol/l〜0.1mol/lである請求項1記載の鉛蓄電池。 The amount of metal ions added to the electrolyte is 0.01 mol / l to 0.3 mol / l for aluminum ions, 0.0002 mol / l to 0.0012 mol / l for selenium ions, and 0. 2. The lead acid battery according to claim 1, which is 001 mol / l to 0.1 mol / l. 電解液にアルミニウムイオン、セレンイオン、チタンイオンから選ばれた少なくとも一種を添加する方法であって、硫酸水溶液に可溶性のこれらの化合物、及び/又は可溶性のこれらの金属を正極及び/又は負極活物質中に添加するか、及び/又は電槽中の電解液に接触する所に設置して電解液中にイオンとして溶解することによる電解液へのアルミニウムイオン、セレンイオン、チタンイオンから選ばれた少なくとも一種の金属イオンの添加方法。 A method of adding at least one selected from aluminum ion, selenium ion, and titanium ion to an electrolytic solution, wherein these compounds soluble in an aqueous sulfuric acid solution and / or these metals soluble as a positive electrode and / or a negative electrode active material At least selected from aluminum ion, selenium ion, titanium ion to electrolyte solution by adding in and / or installing in place in contact with electrolyte solution in battery case and dissolving as ion in electrolyte solution A method of adding a kind of metal ion. 基板合金の組成がカルシウム0.02重量%以上0.05重量%未満、スズ0.4重量%以上2.5重量%以下、アルミニウム0.005重量%以上0.04重量%以下、バリウム0.002重量%以上0.014重量%以下で、残部が鉛と不可避の不純物からなることを特徴とした請求項1記載の鉛蓄電池。 The composition of the substrate alloy is 0.02% by weight or more and less than 0.05% by weight of calcium, 0.4% by weight or more and 2.5% by weight or less of tin, 0.005% by weight or more and 0.04% by weight or less of aluminum. 2. The lead acid battery according to claim 1, wherein the balance is 002 wt% or more and 0.014 wt% or less, and the balance is composed of lead and inevitable impurities. 0.005重量%以上0.07重量%以下の銀、0.01重量%以上0.10重量%以下のビスマス、0.001重量%以上0.05重量%以下のタリウムよりなる群から選ばれた少なくとも一種の元素を含む請求項7記載の鉛蓄電池。 Selected from the group consisting of 0.005% to 0.07% by weight silver, 0.01% to 0.10% by weight bismuth, and 0.001% to 0.05% by weight thallium. The lead acid battery according to claim 7, further comprising at least one element. 請求項7又は8記載の鉛蓄電池において、該基板は重力鋳造法、連続鋳造法、圧延・加工法等によって製造した基板を正極に用いたことを特徴とする鉛蓄電池。 9. The lead acid battery according to claim 7, wherein the substrate is a substrate manufactured by a gravity casting method, a continuous casting method, a rolling / processing method, or the like, as a positive electrode.
JP2007082616A 2007-03-27 2007-03-27 Lead acid storage battery Pending JP2008243606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082616A JP2008243606A (en) 2007-03-27 2007-03-27 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082616A JP2008243606A (en) 2007-03-27 2007-03-27 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2008243606A true JP2008243606A (en) 2008-10-09

Family

ID=39914693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082616A Pending JP2008243606A (en) 2007-03-27 2007-03-27 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2008243606A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089296A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2013140678A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery, battery system using the same and usage of liquid lead-acid battery
JP2013140677A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery and battery system using the same
JP2015167142A (en) * 2010-09-29 2015-09-24 株式会社Gsユアサ Lead storage battery, and idling stop vehicle using same
WO2016121327A1 (en) * 2015-01-30 2016-08-04 パナソニックIpマネジメント株式会社 Lead storage cell
JP2016171018A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Lead storage battery
JP2017079166A (en) * 2015-10-21 2017-04-27 日立化成株式会社 Lead storage battery
WO2020066290A1 (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
JP2020053294A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
JP2020053295A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
JP2020053293A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
CN112768640A (en) * 2020-12-30 2021-05-07 蚌埠睿德新能源科技有限公司 Positive active material of lead-acid storage battery electrode and product thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317331A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid battery
JP2005347145A (en) * 2004-06-04 2005-12-15 Furukawa Battery Co Ltd:The Lead accumulator
JP2006004636A (en) * 2004-06-15 2006-01-05 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2006040722A (en) * 2004-07-27 2006-02-09 Kobe Steel Ltd Secondary battery
JP2006086039A (en) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006147287A (en) * 2004-11-18 2006-06-08 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2006210059A (en) * 2005-01-26 2006-08-10 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
JP4799560B2 (en) * 2005-09-27 2011-10-26 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317331A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid battery
JP2005347145A (en) * 2004-06-04 2005-12-15 Furukawa Battery Co Ltd:The Lead accumulator
JP2006004636A (en) * 2004-06-15 2006-01-05 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2006040722A (en) * 2004-07-27 2006-02-09 Kobe Steel Ltd Secondary battery
JP2006086039A (en) * 2004-09-16 2006-03-30 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006147287A (en) * 2004-11-18 2006-06-08 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2006210059A (en) * 2005-01-26 2006-08-10 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
JP4799560B2 (en) * 2005-09-27 2011-10-26 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225302A (en) * 2010-09-29 2016-12-28 株式会社Gsユアサ Lead acid storage battery and idling stop vehicle using the same
JP2015167142A (en) * 2010-09-29 2015-09-24 株式会社Gsユアサ Lead storage battery, and idling stop vehicle using same
JP2012089296A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2013140678A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery, battery system using the same and usage of liquid lead-acid battery
JP2013140677A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery and battery system using the same
WO2016121327A1 (en) * 2015-01-30 2016-08-04 パナソニックIpマネジメント株式会社 Lead storage cell
JPWO2016121327A1 (en) * 2015-01-30 2017-11-24 株式会社Gsユアサ Lead acid battery
JP2016171018A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Lead storage battery
JP2017079166A (en) * 2015-10-21 2017-04-27 日立化成株式会社 Lead storage battery
JP2020053294A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
WO2020066290A1 (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
JP2020053295A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
JP2020053293A (en) * 2018-09-27 2020-04-02 古河電池株式会社 Lead storage battery
CN112768640A (en) * 2020-12-30 2021-05-07 蚌埠睿德新能源科技有限公司 Positive active material of lead-acid storage battery electrode and product thereof

Similar Documents

Publication Publication Date Title
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
JP2008243606A (en) Lead acid storage battery
JP2008243487A (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JPWO2009142220A1 (en) Lead-acid battery and method for manufacturing the same
JP2008243489A (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
JP4509660B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2006086039A (en) Lead-acid storage battery
RU2342744C1 (en) Lead battery and method for its manufacturing
JP2006114417A (en) Lead-acid storage battery
JP2006210059A (en) Lead acid storage battery
JP4364054B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2002100347A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery
JP4483308B2 (en) Lead acid battery
JP2006140033A (en) Lead storage battery
JP4610294B2 (en) Lead acid battery
JP2006079973A (en) Lead storage battery
JP2006140032A (en) Lead-acid battery
JP2005268061A (en) Lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120