JP7128483B2 - lead acid battery - Google Patents

lead acid battery Download PDF

Info

Publication number
JP7128483B2
JP7128483B2 JP2020006266A JP2020006266A JP7128483B2 JP 7128483 B2 JP7128483 B2 JP 7128483B2 JP 2020006266 A JP2020006266 A JP 2020006266A JP 2020006266 A JP2020006266 A JP 2020006266A JP 7128483 B2 JP7128483 B2 JP 7128483B2
Authority
JP
Japan
Prior art keywords
lead
positive electrode
electrode plate
active material
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006266A
Other languages
Japanese (ja)
Other versions
JP2021114404A (en
Inventor
智史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2020006266A priority Critical patent/JP7128483B2/en
Publication of JP2021114404A publication Critical patent/JP2021114404A/en
Application granted granted Critical
Publication of JP7128483B2 publication Critical patent/JP7128483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は鉛蓄電池に関する。 The present invention relates to lead-acid batteries.

近年の自動車市場では、燃費の向上や排出ガスの低減を目的とした、充電制御システムやアイドリングストップシステムを搭載した車両(以下、これらの車両を「充電制御車」、「アイドリングストップ車」と記すこともある)が主流となっている。これらの車両においては、車両側で鉛蓄電池の充電状態や劣化状態を判定し、その結果に基づいて、鉛蓄電池の充放電やエンジンのアイドリングストップを制御するようになっている。 In the automotive market in recent years, vehicles equipped with charging control systems and idling stop systems for the purpose of improving fuel efficiency and reducing exhaust gas (hereinafter these vehicles are referred to as "charging control vehicles" and "idling stop vehicles") ) is the mainstream. In these vehicles, the vehicle side determines the state of charge and the state of deterioration of the lead-acid battery, and based on the results, controls charging and discharging of the lead-acid battery and idling stop of the engine.

しかしながら、充電制御システムやアイドリングストップシステムを使用した場合には、鉛蓄電池に大きな負荷がかかるため、短寿命化しやすかった。例えば、いずれのシステムにおいても鉛蓄電池の充放電が頻繁に繰り返されるため、活物質の軟化や脱落が発生して早期に容量低下が生じるおそれがあった。また、アイドリングストップ車では鉛蓄電池の充電状態が低下しやすいので、鉛蓄電池の充電受入性が不十分だと、不動態化した硫酸鉛が極板の表面に蓄積するサルフェーションが進行し、内部抵抗の上昇と早期の容量低下が生じるおそれがあった。 However, when a charge control system or an idling stop system is used, a large load is applied to the lead-acid battery, which tends to shorten the life of the battery. For example, in any system, since the charge and discharge of the lead-acid battery is repeated frequently, there is a possibility that the active material softens or falls off, resulting in an early decrease in capacity. In addition, since the state of charge of the lead-acid battery tends to decrease in idling-stop vehicles, if the charge acceptance of the lead-acid battery is insufficient, sulfation, in which passivated lead sulfate accumulates on the surface of the electrode plate, progresses, and internal resistance increases. There was a risk of an increase in the capacity and an early capacity decline.

このような事情から、充電制御車やアイドリングストップ車に用いられる鉛蓄電池は、高い耐久性と充電受入性に加えて、充電状態や劣化状態を判定する際の正確性が求められた。鉛蓄電池の充電状態や劣化状態を判定する手法として、鉛蓄電池の内部抵抗を測定する方法が知られている。しかしながら、鉛蓄電池の内部抵抗は、充電状態、劣化状態以外の様々な要因で上昇する場合があるため、充電状態や劣化状態の正確な判定は容易ではなかった。 Under these circumstances, the lead-acid batteries used in charge control vehicles and idling stop vehicles are required to have high durability and charge acceptance, as well as accuracy in determining the state of charge and the state of deterioration. A method of measuring the internal resistance of a lead-acid battery is known as a method of determining the state of charge and the state of deterioration of the lead-acid battery. However, since the internal resistance of a lead-acid battery may increase due to various factors other than the state of charge and the state of deterioration, it has not been easy to accurately determine the state of charge and the state of deterioration.

他方、多量の電解液を保有する鉛蓄電池(例えば液式鉛蓄電池)の場合は、電解液の漏出の防止も求められる。本発明者が検討した結果、内部抵抗が上昇した鉛蓄電池は、内部抵抗が上昇していない鉛蓄電池と比べて、電解液の液面が上昇していることが分かった。液面が上昇した鉛蓄電池に対して、自動車の走行中の段差の乗り越えなどで振動が加わった場合は、液口栓等から電解液が漏出し易くなる。 On the other hand, in the case of a lead-acid battery (for example, a flooded lead-acid battery) containing a large amount of electrolyte, it is also required to prevent leakage of the electrolyte. As a result of examination by the present inventors, it was found that the liquid level of the electrolyte increased in a lead-acid battery with increased internal resistance compared to a lead-acid battery with no increase in internal resistance. When a lead-acid battery with a raised liquid level is subjected to vibration such as when a vehicle is running over a step, the electrolyte is likely to leak from the liquid port plug or the like.

特開2017-92001号公報Japanese Unexamined Patent Application Publication No. 2017-92001

本発明は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能であることに加えて、電解液の漏出が生じにくい鉛蓄電池を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention provides a lead-acid battery in which an increase in internal resistance is suppressed, the state of charge and the state of deterioration can be accurately determined by a method of measuring the internal resistance, and in addition, electrolyte leakage is less likely to occur. The task is to

本発明の一態様に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬されてセルを構成し、化成後の正極板の平面度が4.0mm以下であり、セル1個当たりの電解液の体積Vs(単位はcm3)と正極活物質の質量Mp(単位はg)と負極活物質の質量Mn(単位はg)とが、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たすことを要旨とする。 In a lead-acid battery according to an aspect of the present invention, a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and negative electrode plates having a negative electrode active material containing metallic lead are alternately laminated with separators interposed therebetween. The electrode plate group is immersed in an electrolytic solution to constitute a cell, the flatness of the positive electrode plate after chemical conversion is 4.0 mm or less, and the volume of the electrolytic solution per cell Vs (unit: cm 3 ), the mass Mp (in units of g) of the positive electrode active material, and the mass Mn (in units of g) of the negative electrode active material satisfy the relationship of 0.40≦Vs/(Mp+Mn)≦0.60. is the gist.

本発明に係る鉛蓄電池は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能であることに加えて、電解液の漏出が生じにくい。 In the lead-acid battery according to the present invention, an increase in internal resistance is suppressed, and in addition to being able to accurately determine the state of charge and the state of deterioration by a method of measuring the internal resistance, electrolyte leakage is less likely to occur. .

本発明の一実施形態に係る鉛蓄電池の構造を説明する部分断面図である。1 is a partial cross-sectional view illustrating the structure of a lead-acid battery according to one embodiment of the present invention; FIG. 極板の平面度の測定方法を説明する図である。It is a figure explaining the measuring method of the flatness of an electrode plate. 正極活物質の厚塗り度の差による湾曲の発生を模式的に示した正極板の図である。FIG. 4 is a diagram of a positive electrode plate schematically showing the occurrence of curvature due to a difference in the degree of thick coating of the positive electrode active material.

本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described. The embodiment described below is an example of the present invention, and the present invention is not limited to this embodiment. In addition, various modifications or improvements can be added to the present embodiment, and forms to which such modifications or improvements are added can also be included in the present invention.

本発明者が鋭意検討した結果、鉛蓄電池の内部抵抗の上昇及び電解液の液面の上昇に関して新たな知見が見出されたので、以下に詳細に説明する。
鉛蓄電池においては、正極板と負極板とがセパレータを介して複数枚交互に積層された極板群が、所定の群圧が負荷された状態で電槽内に収容されている。このとき、極板群の極板間には、充放電反応に必要な電解液の拡散流路やガスの排出流路が必要であるため、ベース面にリブを設けたリブ付きセパレータを極板間に介在させて、電解液の拡散流路やガスの排出流路となる隙間を確保する手法が一般的である。
As a result of intensive studies by the inventors of the present invention, new findings have been found regarding the increase in the internal resistance of the lead-acid battery and the increase in the liquid level of the electrolytic solution, which will be described in detail below.
In a lead-acid battery, an electrode plate group, in which a plurality of positive electrode plates and negative electrode plates are alternately laminated with separators interposed therebetween, is accommodated in a container under a predetermined group pressure. At this time, between the electrode plates of the electrode plate group, a diffusion channel for the electrolytic solution and a discharge channel for the gas, which are necessary for the charging and discharging reaction, are required. A common technique is to interpose between them to secure a gap that serves as a diffusion channel for the electrolytic solution and a discharge channel for the gas.

しかしながら、このようなリブ付きセパレータを用いた場合でも、内部抵抗が上昇したまま維持され、下がりにくい場合があった。このような内部抵抗が高止まりした鉛蓄電池について本発明者が調査した結果、極板群を構成する極板が湾曲しており、湾曲した極板の縁部にガスの気泡が引っかかり、極板に付着した状態となっていることが判明した。そして、ガスの気泡が極板に付着した結果、ガスが極板群内に閉じ込められて滞留し、活物質と電解液との接触面積(すなわち、反応が生じる部分の面積)が減少するため、鉛蓄電池の内部抵抗が上昇することが判明した。 However, even when such a separator with ribs is used, the internal resistance remains high and is difficult to decrease in some cases. As a result of investigations by the present inventors on lead-acid batteries in which the internal resistance remains high, the electrode plates constituting the electrode plate group are curved, and gas bubbles are caught on the edges of the curved electrode plates, It was found to be attached to the As a result of the gas bubbles adhering to the electrode plates, the gas is confined and retained within the electrode plate group, and the contact area between the active material and the electrolyte (that is, the area where the reaction occurs) decreases. It was found that the internal resistance of lead-acid batteries increased.

また、隣接する極板間の距離が湾曲により小さくなるため、ガスが極板間に閉じこめられやすくなり、極板群の外部に出にくいことも分かった。
さらに、極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在することも分かった。この事実から、極板の湾曲の大きさや湾曲の形状によっては、極板群内にガスが滞留しにくい場合があるということが分かった。
It was also found that since the curvature reduces the distance between adjacent electrode plates, gas is more likely to be confined between the electrode plates and is less likely to escape to the outside of the electrode plate group.
Furthermore, it was found that there are lead-acid batteries in which the internal resistance does not remain high even if the electrode plates are curved. Based on this fact, it has been found that depending on the degree and shape of the curvature of the electrode plate, it may be difficult for the gas to remain in the electrode plate group.

極板が湾曲する原因は、本発明者の検討により、以下の通りであることが判明した。基板の表面に活物質からなる活物質層を形成し極板を製造する際には、基板の両板面に同一厚さの活物質層を形成しようとするが、両板面に同一厚さの活物質層を形成することは容易ではなく、異なる厚さの活物質層が形成されてしまうこともある。例えば、図3の例であれば、極板100の基板101の右側の板面101aに形成された活物質層102Aの厚さよりも、左側の板面101bに形成された活物質層102Bの厚さの方が大きい。 The reason why the electrode plate is curved has been found to be as follows. When an electrode plate is manufactured by forming an active material layer made of an active material on the surface of a substrate, it is attempted to form the active material layer with the same thickness on both sides of the substrate. It is not easy to form an active material layer with different thicknesses, and active material layers with different thicknesses may be formed. For example, in the example of FIG. 3, the thickness of the active material layer 102B formed on the left plate surface 101b is greater than the thickness of the active material layer 102A formed on the right plate surface 101a of the substrate 101 of the electrode plate 100. is larger.

このように基板101の両板面101a、101bに形成された活物質層102A、102Bの厚さが異なると、図3に示すように、化成によって極板100が湾曲して、略椀状に変形する。そして、図3に示すように、活物質層102Bの厚さが大きい方の板面101bが凸面となり、活物質層102Aの厚さが小さい方の板面101aが凹面となるように、極板100が湾曲する。 When the thicknesses of the active material layers 102A and 102B formed on both plate surfaces 101a and 101b of the substrate 101 are different in this manner, the electrode plate 100 is curved by chemical conversion into a substantially bowl shape as shown in FIG. transform. Then, as shown in FIG. 3, the plate surface 101b with the larger thickness of the active material layer 102B is convex, and the plate surface 101a with the smaller thickness of the active material layer 102A is concave. 100 is curved.

これに加えて、上記のようにガスが極板間に閉じ込められることで、極板間から電解液が押し出され、電解液の液面が上昇することが分かった。特に、セル1個当たりの電解液の体積Vs(単位はcm3)と正極活物質の質量Mp(単位はg)と負極活物質の質量Mn(単位はg)とが、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たすと、鉛蓄電池の放電容量を十分に確保しつつ、電解液の量を少なくできることが分かった。 In addition to this, it has been found that the gas is trapped between the electrodes as described above, so that the electrolyte is pushed out from between the electrodes and the liquid level of the electrolyte rises. In particular, the volume Vs (in units of cm 3 ) of the electrolyte solution per cell, the mass Mp (in units of g) of the positive electrode active material, and the mass Mn (in units of g) of the negative electrode active material are determined by the formula 0.40≦ It was found that satisfying the relationship of Vs/(Mp+Mn)≦0.60 can reduce the amount of electrolytic solution while ensuring a sufficient discharge capacity of the lead-acid battery.

したがって、電解液の液面が上昇した場合でも、電解液の液面と電槽の蓋との距離を十分に確保することができ、自動車の走行中の段差の乗り越えなどで振動が加わった場合の電解液の漏出を抑制することができる。
一方、セル1個当たりの電解液の体積Vsと正極活物質の質量Mpと負極活物質の質量Mnとが、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たさず、Vs/(Mp+Mn)が0.40未満であった場合には、電解液の漏出は抑制することができるものの、放電容量を十分に確保できなくなるおそれがある。
Therefore, even if the liquid level of the electrolyte rises, the distance between the liquid level of the electrolyte and the lid of the container can be sufficiently secured, and even if vibrations are applied when the vehicle is running over a step, etc. leakage of electrolyte can be suppressed.
On the other hand, the volume Vs of the electrolytic solution, the mass Mp of the positive electrode active material, and the mass Mn of the negative electrode active material per cell do not satisfy the relationship of the formula 0.40 ≤ Vs / (Mp + Mn) ≤ 0.60, and Vs If /(Mp+Mn) is less than 0.40, leakage of the electrolytic solution can be suppressed, but a sufficient discharge capacity may not be ensured.

正極活物質の質量Mpと負極活物質の質量Mnの比率Mp/Mnは、鉛蓄電池の用途に応じて任意に決定してよい。例えば、鉛蓄電池がアイドリングストップ車用である場合は、Mp/Mnは0.80以上0.95以下の範囲であることが好ましい。また、活物質の密度も放電容量に影響するパラメータであり、これも鉛蓄電池の用途に応じて任意に決定してよい。例えば、鉛蓄電池がアイドリングストップ車用である場合は、正極活物質の密度は4.1g/cm3以上4.3g/cm3以下であることが好ましく、負極活物質の密度は3.9g/cm3以上4.1g/cm3以下であることが好ましい。 The ratio Mp/Mn between the mass Mp of the positive electrode active material and the mass Mn of the negative electrode active material may be arbitrarily determined according to the application of the lead-acid battery. For example, when the lead-acid battery is for an idling stop vehicle, Mp/Mn is preferably in the range of 0.80 or more and 0.95 or less. Moreover, the density of the active material is also a parameter that affects the discharge capacity, and this may also be arbitrarily determined according to the use of the lead-acid battery. For example, when the lead-acid battery is for an idling stop vehicle, the density of the positive electrode active material is preferably 4.1 g/cm 3 or more and 4.3 g/cm 3 or less, and the density of the negative electrode active material is 3.9 g/cm 3 . cm 3 or more and 4.1 g/cm 3 or less is preferable.

以上の検討結果から、本発明者は、極板の湾曲を抑えれば、化成、充放電等による内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池が得られることを見出し、さらに、電解液の量と正負極活物質の質量との比を制御すれば、内部抵抗の上昇に伴う電解液の液面の上昇を抑制し、自動車の走行中の振動等による電解液の漏出を抑制することが可能な鉛蓄電池が得られることを見出し、本発明を完成するに至った。 From the above study results, the present inventors found that if the curvature of the electrode plate is suppressed, the increase in internal resistance due to formation, charging and discharging, etc. is suppressed, and the charged state and deterioration state can be accurately determined by the method of measuring the internal resistance. Furthermore, by controlling the ratio between the amount of the electrolyte and the mass of the positive and negative electrode active materials, the increase in the liquid level of the electrolyte due to the increase in internal resistance can be suppressed. As a result, the inventors have found that a lead-acid battery capable of suppressing the leakage of electrolyte due to vibrations or the like during running of automobiles can be obtained, and have completed the present invention.

すなわち、本発明の一実施形態に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬されてセルを構成し、化成後の正極板の平面度が4.0mm以下であり、セル1個当たりの電解液の体積Vs(単位はcm3)と正極活物質の質量Mp(単位はg)と負極活物質の質量Mn(単位はg)とが、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たすことを特徴とするものである。極板群内の全ての正極板の平面度が4.0mm以下であることが好ましい。
なお、正極板と負極板とでは、化成時に正極板の方が湾曲しやすい。このことから、本発明の目的を達成するためには、正極板の平面度を小さく制御することが重要となる。
That is, in a lead-acid battery according to an embodiment of the present invention, a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and negative electrode plates having a negative electrode active material containing metallic lead are alternately arranged with a separator interposed therebetween. The electrode plate group is immersed in an electrolytic solution to form a cell, the flatness of the positive electrode plate after chemical conversion is 4.0 mm or less, and the volume of the electrolytic solution per cell is Vs (unit: cm 3 ), mass Mp (unit: g) of the positive electrode active material, and mass Mn (unit: g) of the negative electrode active material satisfy the formula 0.40≦Vs/(Mp+Mn)≦0.60. It is characterized by satisfying The flatness of all the positive plates in the electrode plate group is preferably 4.0 mm or less.
Between the positive electrode plate and the negative electrode plate, the positive electrode plate is more likely to be bent during chemical formation. Therefore, in order to achieve the object of the present invention, it is important to control the flatness of the positive electrode plate to be small.

本発明の一実施形態に係る鉛蓄電池の構造について、図1を参照しながら、さらに詳細に説明する。本実施形態に係る鉛蓄電池は、正極板10と負極板20とがセパレータ30を介して複数枚交互に積層された極板群1を備えている。この極板群1は、その積層方向が水平方向に沿うように(すなわち、正極板10及び負極板20の板面が鉛直方向に沿うように)、図示しない電解液とともに電槽41内に収容され、電槽41内で電解液に浸漬されている。すなわち、本実施形態に係る鉛蓄電池は、極板群1と、極板群1を浸漬した電解液と、を有している。 The structure of a lead-acid battery according to one embodiment of the present invention will be described in more detail with reference to FIG. The lead-acid battery according to this embodiment includes an electrode plate group 1 in which a plurality of positive electrode plates 10 and negative electrode plates 20 are alternately laminated with separators 30 interposed therebetween. The electrode plate group 1 is housed in a battery container 41 together with an electrolyte (not shown) so that the stacking direction is horizontal (that is, the plate surfaces of the positive electrode plate 10 and the negative electrode plate 20 are vertical). and is immersed in the electrolytic solution in the container 41 . That is, the lead-acid battery according to the present embodiment has the electrode group 1 and the electrolytic solution in which the electrode group 1 is immersed.

正極板10は、例えば、鉛合金からなる板状格子体の開口部に、二酸化鉛を含有する正極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、二酸化鉛を含有する正極活物質からなる活物質層を形成したものである。負極板20は、例えば、鉛合金からなる板状格子体の開口部に、金属鉛を含有する負極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、金属鉛を含有する負極活物質からなる活物質層を形成したものである。正極板10、負極板20の基板である板状格子体は、鋳造法、打ち抜き法、エキスパンド方式で製造することができる。セパレータ30は、例えば、樹脂、ガラス等からなる多孔質の膜状体である。 For the positive electrode plate 10, for example, a positive electrode active material containing lead dioxide is filled in the openings of a plate-like lattice made of a lead alloy, and lead dioxide is added to both plate surfaces of the plate-like lattice made of a lead alloy. An active material layer made of the contained positive electrode active material is formed. The negative electrode plate 20 is formed by, for example, filling the openings of a plate-like lattice made of a lead alloy with a negative electrode active material containing metallic lead, and adding metallic lead to both plate surfaces of the plate-like lattice made of a lead alloy. An active material layer made of the contained negative electrode active material is formed. The plate-like lattice bodies, which are substrates of the positive electrode plate 10 and the negative electrode plate 20, can be manufactured by a casting method, a punching method, or an expanding method. The separator 30 is, for example, a porous film-like body made of resin, glass, or the like.

正極板10及び負極板20の上端部には、それぞれ集電耳11、21が形成されており、各正極板10の集電耳11は正極ストラップ13で連結され、各負極板20の集電耳21は負極ストラップ23で連結されている。そして、正極ストラップ13は正極端子15の一端に接続され、負極ストラップ23は負極端子25の一端に接続されており、正極端子15の他端及び負極端子25の他端が、電槽41の開口部を閉塞する蓋43を貫通して、電槽41と蓋43からなる鉛蓄電池のケース体の外部に露出している。 Current collecting tabs 11 and 21 are formed on upper ends of the positive electrode plate 10 and the negative electrode plate 20 , respectively. The ears 21 are connected by a negative strap 23 . The positive electrode strap 13 is connected to one end of the positive electrode terminal 15 , the negative electrode strap 23 is connected to one end of the negative electrode terminal 25 , and the other end of the positive electrode terminal 15 and the other end of the negative electrode terminal 25 are connected to the opening of the battery case 41 . It is exposed to the outside of the case body of the lead-acid battery composed of the container 41 and the lid 43 through the lid 43 that closes the part.

このような構造を有する本実施形態に係る鉛蓄電池において、化成後の正極板10の平面度は4.0mm以下とされている。平面度の数値が小さいほど正極板10は平らであり、ガスの気泡が正極板10の表面に付着しにくい。化成後の正極板10の平面度が4.0mm以下であれば、ガスは極板群1の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。 In the lead-acid battery according to this embodiment having such a structure, the flatness of the positive electrode plate 10 after formation is 4.0 mm or less. The smaller the numerical value of the flatness, the flatter the positive electrode plate 10 , and the harder it is for gas bubbles to adhere to the surface of the positive electrode plate 10 . If the flatness of the positive electrode plate 10 after chemical conversion is 4.0 mm or less, the gas is easily discharged to the outside of the electrode plate group 1, so that the increase in the internal resistance of the lead-acid battery is suppressed, and the internal resistance is measured. Therefore, it becomes possible to accurately determine the state of charge and the state of deterioration.

化成後の正極板10の平面度を4.0mm以下とする方法は特に限定されるものではなく、化成による湾曲を抑える方法により鉛蓄電池を製造してもよいし、化成により湾曲した正極板10を矯正して平面度を4.0mm以下としてもよい。
前述したように、正極板の両板面に形成した活物質層の厚さが異なると、化成時に正極板に湾曲が生じるので、両板面に略同一厚さの活物質層が形成された正極板を化成に供すれば、湾曲を抑えて平面度を4.0mm以下とすることができる。
The method for making the flatness of the positive electrode plate 10 after chemical conversion 4.0 mm or less is not particularly limited, and the lead-acid battery may be manufactured by a method of suppressing the curvature due to chemical conversion, or the positive electrode plate 10 curved by chemical conversion may be used. may be corrected to make the flatness 4.0 mm or less.
As described above, if the thicknesses of the active material layers formed on both sides of the positive electrode plate are different, the positive electrode plate will be curved during chemical conversion. By subjecting the positive electrode plate to chemical conversion, it is possible to suppress the curvature and make the flatness 4.0 mm or less.

両板面に同一厚さの活物質層を形成する方法としては、例えば、以下の2つの方法を挙げることができる。第一の方法は、厚さの異なる活物質層が両板面に形成された正極板を、負極板及びセパレータと積層する前に、正極板の厚さの大きい方の活物質層を削って、厚さの小さい方の活物質層と厚さを一致させる方法である。
正極板の両板面に同時に活物質層を形成しようとすると、同一厚さの活物質層を形成することが難しくなるので、第二の方法は、正極活物質のペーストを板状格子体の開口部に片面ずつ充填して活物質層を形成することにより、同一厚さの活物質層を形成する方法である。
As a method of forming active material layers of the same thickness on both plate surfaces, for example, the following two methods can be mentioned. In the first method, before stacking a positive electrode plate having active material layers with different thicknesses formed on both sides thereof with a negative electrode plate and a separator, the thicker active material layer of the positive electrode plate is shaved off. , the thickness of which is the same as that of the active material layer having a smaller thickness.
If it is attempted to simultaneously form the active material layers on both surfaces of the positive electrode plate, it becomes difficult to form the active material layers with the same thickness. This is a method of forming an active material layer with the same thickness by filling the openings one side at a time to form an active material layer.

ただし、化成後の正極板10の平面度が0.5mm未満の場合は、ガスが極板群1の外部に排出されやすくなるものの、極板群1を電槽41内に収容した際に電槽41の内壁面により極板群1に負荷される群圧が不十分となるおそれがある。その結果、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。よって、化成後の正極板10の平面度は0.5mm以上とすることが好ましい。 However, when the flatness of the positive electrode plate 10 after chemical conversion is less than 0.5 mm, the gas is easily discharged to the outside of the electrode plate group 1, but when the electrode plate group 1 is accommodated in the battery case 41, the battery cannot be charged. The group pressure applied to the electrode plate group 1 by the inner wall surface of the tank 41 may be insufficient. As a result, the positive electrode active material tends to soften and come off, and the performance and life of the lead-acid battery may deteriorate. Therefore, it is preferable that the flatness of the positive electrode plate 10 after anodization is 0.5 mm or more.

正極板の平面度は、JIS B0419:1991に規定された方法によって測定することができる。すなわち、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置して、湾曲した正極板の凸面の頂点(基台の平面から最も離れた部分)と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 The flatness of the positive electrode plate can be measured by the method specified in JIS B0419:1991. That is, as shown in FIG. 2, the positive electrode plate is placed on the plane of the base so that the plate surface of the positive electrode plate and the plane of the base are substantially parallel to each other, and the curved convex surface of the positive electrode plate faces upward. is placed, and the distance h between the vertex of the convex surface of the curved positive electrode plate (the part farthest from the plane of the base) and the plane of the base is measured. Then, the value obtained by subtracting the thickness of the positive electrode plate from this distance h is taken as the flatness.

なお、従来の鉛蓄電池においても極板は湾曲しており、平面度が4.0mm以下の極板を有する鉛蓄電池は確認されていなかった。例えば特許文献1の図面には、湾曲していない平らな極板が描画されているが、便宜上、平らに描画されているのであって、実際には極板は平らではなく湾曲していた。また、極板の湾曲によってガスが極板群の内部に閉じ込められ内部抵抗が上昇するという知見は、当業者においても全く知られていなかった。 The electrode plates of conventional lead-acid batteries are also curved, and no lead-acid battery having electrode plates with a flatness of 4.0 mm or less has been confirmed. For example, in the drawing of Patent Document 1, a non-curved flat electrode plate is drawn, but for the sake of convenience, it is drawn flat, and the actual electrode plate is not flat but curved. Moreover, even those skilled in the art were completely unaware of the knowledge that gas is confined inside the electrode plate group due to the curvature of the electrode plate and the internal resistance increases.

また、上記のような構造を有する本実施形態に係る鉛蓄電池において、セル1個当たりの電解液の体積Vs(単位はcm3)と正極活物質の質量Mp(単位はg)と負極活物質の質量Mn(単位はg)とは、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たしている。これにより、電解液の液面が上昇しにくくなり、鉛蓄電池からの電解液の漏出が生じにくくなっている。 Further, in the lead-acid battery according to the present embodiment having the structure as described above, the volume Vs (unit: cm 3 ) of the electrolytic solution per cell, the mass Mp (unit: g) of the positive electrode active material, and the negative electrode active material The mass Mn (unit: g) satisfies the relationship of 0.40≦Vs/(Mp+Mn)≦0.60. As a result, the liquid level of the electrolytic solution is less likely to rise, and leakage of the electrolytic solution from the lead-acid battery is less likely to occur.

以上のように、本実施形態に係る鉛蓄電池は、化成、定電圧充電等による内部抵抗の上昇が生じにくく、充電後の内部抵抗の低下も早い。また、本実施形態に係る鉛蓄電池は、優れた耐久性と高い充電受入性(充電効率が高く短時間で充電可能)も有している。さらに、本実施形態に係る鉛蓄電池は、電解液の漏出が生じにくい。よって、本実施形態に係る鉛蓄電池は、充電制御車、アイドリングストップ車のような充電制御を行う車両に搭載され且つ主に部分充電状態で用いられる鉛蓄電池として好適である。なお、部分充電状態とは、充電状態が例えば70%超過100%未満の状態である。 As described above, in the lead-acid battery according to the present embodiment, the internal resistance is less likely to increase due to formation, constant voltage charging, etc., and the internal resistance decreases quickly after charging. In addition, the lead-acid battery according to the present embodiment also has excellent durability and high charge acceptance (high charging efficiency and short charging time). Furthermore, the lead-acid battery according to the present embodiment is less prone to electrolyte leakage. Therefore, the lead-acid battery according to the present embodiment is suitable as a lead-acid battery that is mounted in a vehicle that performs charge control, such as a charge control car or an idling stop car, and that is mainly used in a partially charged state. Note that the partially charged state is a state in which the charged state is more than 70% and less than 100%, for example.

また、本実施形態に係る鉛蓄電池は、車両の内燃機関を起動する電源としての用途のみならず、電動自動車、電動フォークリフト、電動バス、電動バイク、電動スクータ、小型電動モペッド、ゴルフ用カート、電気機関車等の動力電源としても使用可能である。さらに、本実施形態に係る鉛蓄電池は、照明用電源、予備電源としても使用可能である。あるいは、太陽光発電、風力発電等により発電された電気エネルギーの蓄電装置としても使用可能である。 In addition, the lead-acid battery according to the present embodiment can be used not only as a power source for starting the internal combustion engine of a vehicle, but also for electric vehicles, electric forklifts, electric buses, electric motorcycles, electric scooters, small electric mopeds, golf carts, electric It can also be used as a power source for locomotives and the like. Furthermore, the lead-acid battery according to this embodiment can also be used as a lighting power source and a standby power source. Alternatively, it can be used as a power storage device for electric energy generated by solar power generation, wind power generation, or the like.

なお、本実施形態に係る鉛蓄電池においては、化成後の負極板の平面度は特に限定されるものではないが、化成後の正極板と同様に平面度は小さくてもよく、例えば4.0mm以下としてもよい。また、化成後の正極板の平面度と化成後の負極板の平面度は、同一であってもよいし異なっていてもよいが、異なっている方が好ましい。例えば、正極板の平面度に対する負極板の平面度の比を、極板群内において平均で50%以上80%以下とすれば、極板群内にガスが滞留しにくく、極板群からのガスの排出が生じやすい。 In the lead-acid battery according to the present embodiment, the flatness of the negative electrode plate after chemical conversion is not particularly limited, but the flatness may be small, for example, 4.0 mm, like the positive electrode plate after chemical conversion. The following may be used. The flatness of the positive electrode plate after chemical conversion and the flatness of the negative electrode plate after chemical conversion may be the same or different, but are preferably different. For example, if the ratio of the flatness of the negative electrode plate to the flatness of the positive electrode plate is 50% or more and 80% or less on average in the electrode plate group, the gas is less likely to stay in the electrode plate group, and the gas from the electrode plate group is less likely to stagnate. Gas emissions are likely to occur.

以下に、本実施形態に係る鉛蓄電池について、さらに詳細に説明する。
〔電解液の量と正極活物質の量、負極活物質の量の関係について〕
前述したように、本実施形態に係る鉛蓄電池においては、セル1個当たりの電解液の体積Vsと正極活物質の質量Mpと負極活物質の質量Mnとは、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たす。このような構成であれば、鉛蓄電池に振動が加わった際でも電解液の漏出が生じにくいとともに、放電容量が十分に確保される。
The lead-acid battery according to this embodiment will be described in more detail below.
[Regarding the relationship between the amount of the electrolyte solution, the amount of the positive electrode active material, and the amount of the negative electrode active material]
As described above, in the lead-acid battery according to the present embodiment, the volume Vs of the electrolyte per cell, the mass Mp of the positive electrode active material, and the mass Mn of the negative electrode active material are expressed by the formula 0.40≦Vs/( Mp+Mn)≦0.60. With such a configuration, even when vibration is applied to the lead-acid battery, leakage of the electrolytic solution is unlikely to occur, and a sufficient discharge capacity is ensured.

Vs/(Mp+Mn)が0.40未満であると、セル1個当たりの電解液の量が少なくなり、放電容量が低下するおそれがある。一方、Vs/(Mp+Mn)が0.60超過であると、セル1個当たりの電解液の量が多くなるため、電解液の漏出が生じやすくなるおそれがある。
電解液の漏出の生じにくさと放電容量の効果をより優れたものとするためには、Vs/(Mp+Mn)は0.45以上0.55以下であることがより好ましい。
If Vs/(Mp+Mn) is less than 0.40, the amount of electrolytic solution per cell may decrease, and the discharge capacity may decrease. On the other hand, when Vs/(Mp+Mn) exceeds 0.60, the amount of electrolytic solution per cell increases, so that the electrolytic solution may easily leak.
Vs/(Mp+Mn) is more preferably 0.45 or more and 0.55 or less in order to prevent leakage of the electrolytic solution and to improve the effect of discharge capacity.

〔正極板の湾曲の形状について〕
前述したように、正極板の湾曲の形状によっては、極板群内にガスが滞留しにくい場合があり、化成後の正極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在する。例えば、湾曲した正極板の凸面の頂点が、鉛蓄電池内に配されている状態の正極板の鉛直方向中央よりも下方側部分に位置するような湾曲形状であれば、ガスの気泡の出口となる鉛直方向中央よりも上方側部分の湾曲度合いは小さいと言えるので、ガスは極板群内に滞留しにくい。
[Regarding the curved shape of the positive electrode plate]
As described above, depending on the curved shape of the positive electrode plate, it may be difficult for gas to stay in the electrode plate group, and there are lead-acid batteries in which the internal resistance does not remain high even if the positive electrode plate is curved after formation. . For example, if the convex surface of the curved positive electrode plate has a curved shape in which the apex of the convex surface is positioned below the center in the vertical direction of the positive electrode plate disposed in the lead-acid battery, the gas bubble outlet is formed. Since it can be said that the degree of curvature of the upper portion is smaller than that of the center in the vertical direction, the gas is less likely to stay in the electrode plate group.

すなわち、ガスの気泡が極板群から外部に排出される際の出口となる部分である、正極板の鉛直方向中央よりも上方側部分の湾曲度合いが小さければ、ガスは極板群内に滞留しにくく排出されやすいので、鉛蓄電池の内部抵抗の上昇が抑制される。よって、化成後の正極板のうち、鉛直方向中央よりも上方側部分の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が抑制されるという効果が奏される。 That is, if the degree of curvature of the portion above the center of the positive electrode plate in the vertical direction, which is the portion that serves as the outlet for the gas bubbles to be discharged from the electrode plate group, is small, the gas stays in the electrode plate group. Since it is difficult to remove and is easy to discharge, an increase in the internal resistance of the lead-acid battery is suppressed. Therefore, if the flatness of the portion above the center in the vertical direction of the anodized positive electrode plate is 4.0 mm or less, an effect of suppressing an increase in the internal resistance of the lead-acid battery is exhibited.

〔電解液について〕
電解液の組成は特に限定されるものではなく、一般的な鉛蓄電池に使用される電解液を問題なく適用することができるが、鉛蓄電池の充電受入性を優れたものとするためには、電解液にアルミニウムが含有されていることが好ましく、電解液中のアルミニウムイオンの含有量は0.01モル/L以上とすることが好ましい。ただし、電解液中のアルミニウムイオンの含有量が高いと、ガスが極板群から外部に排出されにくくなるため、電解液中のアルミニウムイオンの含有量は0.3モル/L以下とすることが好ましい。
また、電解液はナトリウムイオンを含有していてもよい。電解液中のナトリウムイオンの含有量は、0.002モル/L以上0.05モル/L以下とすることができる。
[About electrolyte]
The composition of the electrolyte is not particularly limited, and electrolytes used in general lead-acid batteries can be applied without problems. The electrolytic solution preferably contains aluminum, and the content of aluminum ions in the electrolytic solution is preferably 0.01 mol/L or more. However, if the content of aluminum ions in the electrolytic solution is high, it becomes difficult for the gas to escape from the electrode plate assembly to the outside, so the content of aluminum ions in the electrolytic solution is preferably 0.3 mol/L or less. preferable.
Moreover, the electrolytic solution may contain sodium ions. The content of sodium ions in the electrolytic solution can be 0.002 mol/L or more and 0.05 mol/L or less.

〔極板群に負荷される群圧について〕
前述したように、極板群を電槽内に収容した際には電槽の内壁面により極板群に群圧が負荷されるが、群圧が不十分であると、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。一方、群圧が高すぎると、正極活物質中にガスが滞留して、鉛蓄電池の内部抵抗が上昇するおそれがある。よって、極板群に負荷される群圧は10kPa以下とすることが好ましい。
[Regarding the group pressure applied to the electrode plate group]
As described above, when the electrode plate group is accommodated in the battery case, the inner wall surface of the battery case applies a group pressure to the electrode plate group. If the group pressure is insufficient, the positive electrode active material softens. The lead-acid battery performance and life may be reduced. On the other hand, if the group pressure is too high, gas may remain in the positive electrode active material, increasing the internal resistance of the lead-acid battery. Therefore, the group pressure applied to the electrode plate group is preferably 10 kPa or less.

〔正極活物質が含有する二酸化鉛について〕
二酸化鉛には、斜方晶系であるα相(α-二酸化鉛)と、正方晶系のβ相(β-二酸化鉛)がある。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、20%以上40%以下であることが好ましい。このような構成であれば、電解液の成層化が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
[Regarding lead dioxide contained in positive electrode active material]
Lead dioxide has an orthorhombic α-phase (α-lead dioxide) and a tetragonal β-phase (β-lead dioxide). The ratio α/(α+β) between the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is preferably 20% or more and 40% or less. With such a configuration, stratification of the electrolytic solution is unlikely to occur, so that the effect of improving the life of the lead-acid battery is exhibited.

α-二酸化鉛は、多孔性に乏しく比表面積が小さいため放電能力が小さいが、結晶の崩壊が極めて徐々に進行するため軟化速度が小さい。一方、β-二酸化鉛は、多孔性に富み比表面積が大きいため放電能力が大きい反面、結晶の崩壊が速く進み軟化速度が大きい。よって、鉛蓄電池の長寿命化と優れた放電能力との両立のためには、正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下となるように、正極活物質内にα-二酸化鉛とβ-二酸化鉛が分散していることが好ましい。 α-Lead dioxide has low porosity and a small specific surface area, and thus has a low discharge capability. On the other hand, β-lead dioxide is highly porous and has a large specific surface area, so that it has a high discharge capacity, but on the other hand, its crystals collapse rapidly and its softening rate is high. Therefore, in order to achieve both a long service life and excellent discharge capacity of lead-acid batteries, the ratio α/(α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is It is preferable that α-lead dioxide and β-lead dioxide are dispersed in the positive electrode active material so as to be 20% or more and 40% or less.

α-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%より小さいと、鉛蓄電池の寿命が不十分となるおそれがある。一方、α-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が40%より大きいと、鉛蓄電池の容量が低下するおそれがある。 If the ratio α/(α+β) between the mass α of α-lead dioxide and the mass β of β-lead dioxide is less than 20%, the life of the lead-acid battery may be insufficient. On the other hand, if the ratio α/(α+β) between the mass α of α-lead dioxide and the mass β of β-lead dioxide is greater than 40%, the capacity of the lead-acid battery may decrease.

なお、正極活物質の活物質層の厚さとは、正極板の表面と、これに対向する正極基板の板面との間の距離であり、すなわち、正極板の表面に直交する仮想直線のうち、正極板の表面から正極基板の板面までの部分の長さである。正極板の表面は、段差、屈曲、湾曲等がマクロスケール(数十μm~数mm程度)においては実質的に存在しない一つの平坦な平面である。正極活物質の活物質層の厚さは、正極板の表面と正極基板の板面との間の距離を1箇所測定して得た値でもよいし、正極板の表面と正極基板の板面との間の距離を複数箇所測定して得た値の平均値でもよい。 Note that the thickness of the active material layer of the positive electrode active material is the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate facing it, that is, the thickness of the virtual straight line perpendicular to the surface of the positive electrode plate. , is the length of the portion from the surface of the positive electrode plate to the plate surface of the positive electrode substrate. The surface of the positive electrode plate is a single flat plane with substantially no steps, bends, curves, etc. on a macroscale (about several tens of μm to several mm). The thickness of the active material layer of the positive electrode active material may be a value obtained by measuring the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate at one point, or the thickness of the surface of the positive electrode plate and the plate surface of the positive electrode substrate. It may be the average value of the values obtained by measuring the distance between and at multiple points.

例えば、正極基板として板状格子体を用いた場合には、正極板の表面と、板状格子体の格子網目を形成する縦横の格子骨の表面とが対向するので、正極板の表面と格子骨の表面との間の距離を測定して、その測定値を正極活物質の活物質層の厚さとすればよい。また、板状格子体において格子骨は複数並んでいるので、複数の格子骨において、正極板の表面と格子骨の表面との間の距離を測定し、それら測定値の平均値を正極活物質の活物質層の厚さとしてもよい。 For example, when a plate-like grid is used as the positive electrode substrate, the surface of the positive electrode plate and the surface of the vertical and horizontal grid bones forming the grid mesh of the plate-like grid face each other. The distance to the surface of the bone is measured, and the measured value is used as the thickness of the active material layer of the positive electrode active material. In addition, since a plurality of lattice ribs are arranged in the plate-shaped lattice body, the distance between the surface of the positive electrode plate and the surface of the lattice ribs is measured in the plurality of lattice ribs, and the average value of the measured values is taken as the positive electrode active material. may be the thickness of the active material layer.

また、板状格子体の格子骨の断面形状(格子骨の長手方向に直交する平面で切断した場合の断面の形状)は、基本的には矩形であるので、正極板の表面とこれに対向する格子骨の表面とは平行をなす。ただし、エキスパンド方式で製造した板状格子体では、製造過程で板状格子体に捩れや歪みが生じる場合がある。板状格子体に捩れや歪みが生じた場合には、格子骨の表面が正極板の表面に対して傾斜するか又は曲面状となるため、正極板の表面とこれに対向する格子骨の表面とは非平行となる。このような場合には、正極板の表面と格子骨の表面との間の距離は測定箇所によって大きく異なるので、各格子骨において、格子骨の表面と正極板の表面との最短距離を測定し、それらの測定値の平均値を正極活物質の活物質層の厚さとするとよい。 In addition, since the cross-sectional shape of the lattice ribs of the plate-shaped lattice body (the shape of the cross section when cut along a plane orthogonal to the longitudinal direction of the lattice ribs) is basically rectangular, parallel to the lattice bone surface. However, in the grid plate produced by the expansion method, the grid plate may be twisted or distorted during the manufacturing process. When the plate-shaped lattice body is twisted or distorted, the surface of the lattice ribs becomes inclined or curved with respect to the surface of the positive electrode plate, so that the surface of the positive electrode plate and the surface of the lattice ribs facing the positive electrode plate are deformed. is non-parallel to In such a case, since the distance between the surface of the positive electrode plate and the surface of the lattice rib varies greatly depending on the measurement point, the shortest distance between the surface of the lattice bone and the surface of the positive electrode plate is measured for each lattice bone. , and the average value of these measured values may be used as the thickness of the active material layer of the positive electrode active material.

〔実施例〕
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(A)内部抵抗の上昇に対する正極板の平面度の影響についての検討
まず、Pb-Ca系又はPb-Ca-Sn系の鉛合金からなる板状格子体を鋳造し、該板状格子体の所定の位置に集電耳を形成した。次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。
〔Example〕
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples.
(A) Examination of the effect of the flatness of the positive electrode plate on the increase in internal resistance A current collecting ear was formed at a predetermined position. Next, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a positive electrode active material paste. Similarly, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a negative electrode active material paste.

そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、さらに、化成槽において化成を行って、極板の両板面に二酸化鉛を含有する正極活物質の活物質層が形成された即用式(化成済み)の正極板を得た。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、さらに、化成槽において化成を行って、極板の両板面に金属鉛を含有する負極活物質の活物質層が形成された即用式(化成済み)の負極板を得た。正極板については、後述する方法により平面度を測定した。 After filling the positive electrode active material paste into the plate-shaped lattice, aging and drying are performed, and further, chemical conversion is performed in a chemical conversion tank to activate the positive electrode active material containing lead dioxide on both plate surfaces of the electrode plate. A ready-to-use (formed) positive electrode plate on which a material layer was formed was obtained. Similarly, after the negative electrode active material paste is filled in the plate-like lattice body, it is aged and dried, and further chemically formed in a chemical conversion tank to form a negative electrode active material containing metallic lead on both plate surfaces of the electrode plate. A ready-to-use (formed) negative electrode plate on which an active material layer was formed was obtained. The flatness of the positive electrode plate was measured by the method described later.

上記のようにして作製した正極板と負極板とを、多孔質の合成樹脂からなるセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。そして、正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。なお、電槽は、セルを収容するセル室を複数有しているが、セル室1個当たりのアッパーレベル(最高液面線)以下の部分の容積は570cm3である。 A plurality of positive electrode plates and negative electrode plates produced as described above were alternately laminated with a separator made of a porous synthetic resin interposed therebetween to produce an electrode plate assembly. This electrode plate group was housed in a battery case, the current collecting tabs of each positive electrode plate were connected with a positive electrode strap, and the current collecting tabs of each negative electrode plate were connected with a negative electrode strap. The positive strap was connected to one end of the positive terminal, and the negative strap was connected to one end of the negative terminal. The container has a plurality of cell chambers for accommodating cells, and the volume of each cell chamber below the upper level (highest liquid level line) is 570 cm 3 .

さらに、蓋で電槽の開口部を閉塞した。正極端子と負極端子は、蓋を貫通させ、正極端子の他端と負極端子の他端を鉛蓄電池の外部に露出させた。蓋に形成された注液口から、比重1.28の希硫酸からなる電解液を電槽のアッパーレベルまで注入し、注液口を栓体により封口して鉛蓄電池を得た。このとき、注入した電解液の量はセル1個当たり(すなわちセル室1個当たり)375cm3であり、したがって極板群と正極ストラップ及び負極ストラップが電解液に浸漬した部分の体積は195cm3であった。セル1個当たりの電解液の体積Vsと正極活物質の質量Mpと負極活物質の質量Mnとの関係Vs/(Mp+Mn)は、0.45である。 Furthermore, the opening of the container was closed with a lid. The positive electrode terminal and the negative electrode terminal penetrated the lid, and the other end of the positive electrode terminal and the other end of the negative electrode terminal were exposed to the outside of the lead-acid battery. An electrolytic solution composed of dilute sulfuric acid having a specific gravity of 1.28 was injected to the upper level of the battery case through a liquid inlet formed in the lid, and the liquid inlet was sealed with a stopper to obtain a lead-acid battery. At this time, the amount of injected electrolyte per cell (that is, per cell chamber) was 375 cm 3 , so the volume of the portion where the electrode plate group, positive electrode strap, and negative electrode strap were immersed in the electrolyte was 195 cm 3 . there were. The relationship Vs/(Mp+Mn) between the volume Vs of the electrolyte per cell, the mass Mp of the positive electrode active material, and the mass Mn of the negative electrode active material is 0.45.

電池サイズはM-42とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。正極板と負極板は連続製法により作製した。化成後の正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。 The battery size was M-42, and the number of positive electrode plates and the number of negative electrode plates constituting the electrode plate group was 6 and 7, respectively. A positive electrode plate and a negative electrode plate were produced by a continuous manufacturing method. The flatness of the positive electrode plate after chemical conversion was adjusted by changing the thickness ratio of the active material layers of the positive electrode active material formed on both surfaces of the positive electrode plate before chemical conversion.

また、セパレータの厚さは、極板群に所定の群圧が負荷されるように調整した。正極板が有する正極活物質の密度は、4.2g/cm3である。負極板が有する負極活物質の密度は、4.0g/cm3である。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、30%である。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。 Also, the thickness of the separator was adjusted so that a predetermined group pressure was applied to the electrode group. The density of the positive electrode active material included in the positive electrode plate is 4.2 g/cm 3 . The density of the negative electrode active material included in the negative plate is 4.0 g/cm 3 . The ratio α/(α+β) between the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is 30%. The electrolytic solution used contained aluminum sulfate at a concentration of 0.1 mol/L.

次に、作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
Next, after performing initial charge to the produced lead-acid battery, aging was performed for 48 hours. Then, the internal resistance of the lead-acid battery was measured. This internal resistance measurement value was taken as the "initial value".
Subsequently, constant-voltage charging was performed on the lead-acid battery in a fully charged state after aging, and the internal resistance was measured immediately after the completion of constant-voltage charging. This internal resistance measurement value was defined as the "value immediately after charging". The conditions for constant voltage charging are a maximum current of 100 A, a control voltage of 14.0 V, and a charging time of 10 minutes (this lead-acid battery has a 5-hour rate capacity (rated capacity) of 32 Ah).
After the constant voltage charging was completed, the battery was allowed to stand still for 1 hour, and the internal resistance after standing was measured. This internal resistance measurement value was taken as the "value after standing".

正極板の平面度は、以下のようにして測定した。まず、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 The flatness of the positive electrode plate was measured as follows. First, using a micrometer, the thickness is measured at a plurality of locations on the positive electrode plate, and the average value is taken as the thickness of the positive electrode plate. Next, as shown in FIG. 2, the positive electrode plate is placed on the plane of the base such that the plate surface of the positive electrode plate and the plane of the base are substantially parallel to each other and the convex surface of the curved positive electrode plate faces upward. The plate is placed, and a height gauge is used to measure the distance h between the apex of the convex surface of the curved positive electrode plate and the plane of the base. Then, the value obtained by subtracting the thickness of the positive electrode plate from this distance h is taken as the flatness.

これらの結果を表1に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]-[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]-[初期値])/[初期値]により算出した。 These results are shown in Table 1. Using the initial value of internal resistance, the value immediately after charging, and the value after standing, the rate of increase in internal resistance was calculated. The rate of increase of the value immediately after charging with respect to the initial value is calculated by ([value immediately after charging] - [initial value]) / [initial value], and the rate of increase of the value after standing relative to the initial value is ([static Post-placement value]−[initial value])/[initial value].

そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるか又は充電直後の値の上昇率に対して静置後の値の上昇率が4%以上低い値であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表1においては○印で示した。 Then, condition A that the rate of increase of the value immediately after charging with respect to the initial value is 10% or less, and the rate of increase of the value after standing relative to the initial value is 5% or less, or the rate of increase of the value immediately after charging. On the other hand, when both condition B that the rate of increase in the value after standing is lower by 4% or more, it is determined that the increase in internal resistance is significantly suppressed, and in Table 1, it is indicated by the ○ mark. Indicated.

条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表1においては△印で示した。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表1においては×印で示してある。 When only one of condition A and condition B is satisfied, it is determined that although the increase in internal resistance is sufficiently suppressed, it cannot be said that it is significantly suppressed. marked. When neither condition A nor condition B is satisfied, it is determined that the suppression of the increase in internal resistance is somewhat insufficient or completely insufficient, and is indicated by x in Table 1.

Figure 0007128483000001
Figure 0007128483000001

表1に示す結果から、正極板の平面度が4.0mm以下である実施例1~4は、内部抵抗の上昇が顕著に抑制されていることが分かる。
これに対して、正極板の平面度が5.0mmである比較例1は、初期値に対する充電直後の値の上昇率が高いことが分かる。また、初期値に対する静置後の値の上昇率も高いことから、内部抵抗の低下速度が遅いことが分かる。
From the results shown in Table 1, it can be seen that Examples 1 to 4, in which the flatness of the positive electrode plate was 4.0 mm or less, significantly suppressed the increase in internal resistance.
On the other hand, in Comparative Example 1 in which the flatness of the positive electrode plate is 5.0 mm, the rate of increase in the value immediately after charging relative to the initial value is high. In addition, since the rate of increase in the value after standing relative to the initial value is high, it can be seen that the rate of decrease in internal resistance is slow.

(B)鉛蓄電池の性能に対するVs/(Mp+Mn)の影響についての検討
次に、セル1個当たりの電解液の体積Vsと正極活物質の質量Mpと負極活物質の質量Mnとの関係Vs/(Mp+Mn)の影響について検討した。鉛蓄電池の構成及び製造方法については、Vs/(Mp+Mn)の値が異なる点を除いて、特に断りが無い限り、上記(A)の検討の場合と同様である。
(B) Examination of the effect of Vs/(Mp+Mn) on the performance of lead-acid batteries The influence of (Mp+Mn) was examined. Unless otherwise specified, the configuration and manufacturing method of the lead-acid battery are the same as in the above study (A), except that the value of Vs/(Mp+Mn) is different.

正極活物質の質量Mpと負極活物質の質量Mnの比率Mp/Mnは、いずれの実施例、比較例においても0.9とした。また、各実施例、比較例においては、注入した電解液の液面の高さは、電槽のアッパーレベルに合わせた。
鉛蓄電池の性能については、上記(A)の検討と同様の方法により内部抵抗及びその上昇率について評価するとともに、以下の方法により溢液特性と放電容量についても評価した。
The ratio Mp/Mn between the mass Mp of the positive electrode active material and the mass Mn of the negative electrode active material was set to 0.9 in both the examples and the comparative examples. Further, in each of the examples and comparative examples, the height of the liquid surface of the injected electrolytic solution was adjusted to the upper level of the battery case.
Regarding the performance of the lead-acid battery, the internal resistance and its rate of increase were evaluated by the same method as in the examination of (A) above, and the overflow characteristics and discharge capacity were also evaluated by the following methods.

溢液特性については、SBA S0101 2014の8.4.6 耐振動性試験により評価した。鉛蓄電池の放電容量については、JIS D5301規格の20時間率放電試験により評価した。評価結果を表2にまとめて示す。
溢液特性の判定については、試験実施中又は試験終了時に液口栓から電解液が漏れていることを目視で確認できた場合は、表2においては×印で示してある。また、液漏れが確認できなかった場合は、表2においては○印で示してある。
The overflow properties were evaluated according to SBA S0101 2014, 8.4.6 Vibration resistance test. The discharge capacity of the lead-acid battery was evaluated by a 20 hour rate discharge test according to JIS D5301 standard. Table 2 summarizes the evaluation results.
Regarding the determination of the overflow characteristics, when it was possible to visually confirm that the electrolyte leaked from the liquid port plug during the test or at the end of the test, it is marked with an X in Table 2. In addition, in Table 2, ◯ marks indicate cases in which liquid leakage could not be confirmed.

鉛蓄電池の放電容量の判定については、20時間率放電容量の測定値が、M-42の定格容量である35Ah以上であった場合は、放電容量が十分であると判定し、表2においては○印で示してある。20時間率放電容量の測定値が30Ah以上35Ah未満であった場合は、放電容量が必要最低限には足りているものの、顕著に優れているとまでは言えないと判定し、表2においては△印で示してある。20時間率放電容量の測定値が30Ah未満であった場合は、放電容量不足と判定し、表2においては×印で示してある。 Regarding the determination of the discharge capacity of the lead-acid battery, if the measured value of the 20-hour rate discharge capacity is 35 Ah or more, which is the rated capacity of M-42, it is determined that the discharge capacity is sufficient. It is indicated by the ○ mark. When the measured value of the 20-hour rate discharge capacity was 30 Ah or more and less than 35 Ah, it was determined that although the discharge capacity was sufficient to the minimum required, it could not be said to be remarkably excellent. It is indicated by a △ mark. When the measured value of the 20-hour rate discharge capacity was less than 30 Ah, it was determined that the discharge capacity was insufficient, and is indicated by an X mark in Table 2.

(B)の総合判定については、内部抵抗上昇量、溢液特性、20時間率放電容量が全て○印の判定であった場合は、表2の総合判定は○印を示し、内部抵抗、溢液特性が○印の判定で、放電容量が○印の判定でないものは、極板の利用率を向上することにより放電容量が改善される余地があると判定し、表2の総合判定は△印を示してある。内部抵抗、溢液特性のいずれかが×印の判定であった場合は、表2の総合判定は×印を示してある。
表2に示す評価結果から、Vs/(Mp+Mn)が0.40以上0.60以下であると、放電容量が確保されるとともに、内部抵抗の上昇と電解液の漏出が十分に抑制されることが分かる。
Regarding the comprehensive judgment of (B), if the internal resistance increase amount, the overflow characteristics, and the 20 hour rate discharge capacity are all marked with ○ marks, the comprehensive judgment in Table 2 shows ○ marks, and the internal resistance, overflow If the liquid characteristics are marked with ○ and the discharge capacity is not marked with ○, it is determined that there is room for improving the discharge capacity by improving the utilization rate of the electrode plate, and the overall evaluation in Table 2 is △. marked. If either the internal resistance or the overflow characteristic is judged as x, the overall judgment in Table 2 is shown as x.
From the evaluation results shown in Table 2, when Vs / (Mp + Mn) is 0.40 or more and 0.60 or less, the discharge capacity is ensured, and the increase in internal resistance and the leakage of the electrolyte are sufficiently suppressed. I understand.

Figure 0007128483000002
Figure 0007128483000002

(C)鉛蓄電池の性能に対する二酸化鉛のαβ比率の影響についての検討
正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)の影響について検討した。鉛蓄電池の構成及び製造方法については、二酸化鉛のαβ比率が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、以下の方法により電解液の成層化と電池寿命についても評価した。
(C) Examination of the influence of the αβ ratio of lead dioxide on the performance of lead-acid batteries Examination of the influence of the ratio α/(α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material did. Except for the fact that the αβ ratio of lead dioxide is different, the configuration and manufacturing method of the lead-acid battery are the same as in the case of the above study (A) unless otherwise specified. As for the performance of the lead-acid battery, the rise in internal resistance was evaluated in the same manner as in the examination of (A) above, and the stratification of the electrolyte solution and battery life were also evaluated by the following methods.

電解液の成層化と電池寿命については、欧州規格(EN規格)のEN 50342-6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差を測定した。 Electrolyte stratification and battery life were evaluated by the 17.5% DOD life test described in European Standard (EN Standard) EN 50342-6:2015. That is, the following operations (1), (2), and (3) are repeated for a plurality of cycles, and when the voltage reaches 10 V, it is determined that the battery life has been reached, and the number of cycles performed so far is regarded as the battery life. The difference in specific gravity between the top and bottom of the liquid was measured.

(1)充電状態(SOC)を50%に調整する。
(2)放電深度(DOD)17.5%の充放電を85回繰り返す。
(3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。
(1) Adjust the state of charge (SOC) to 50%.
(2) Repeat charging and discharging at a depth of discharge (DOD) of 17.5% 85 times.
(3) Carry out a 20HR capacity test with a full charge. After the capacity test is completed, fully charge the battery again.

評価結果を表3、4に示す。電池寿命が800サイクル以上であるという条件Cと、電解液の成層化(電解液の上部と下部での比重の差)が0.03以下であるという条件Dとを両方満たす場合は、鉛蓄電池の性能が顕著に優れていると判定し、表4においては○印で示した。条件Cと条件Dのいずれか一方の条件のみを満たす場合は、鉛蓄電池の性能が十分に優れているものの、顕著に優れているとまでは言えないと判定し、表4においては△印で示した。条件Cと条件Dのいずれも満たさない場合は、鉛蓄電池の性能が若干不十分又は全く不十分であると判定し、表4においては×印で示した。 Evaluation results are shown in Tables 3 and 4. If both the condition C that the battery life is 800 cycles or more and the condition D that the stratification of the electrolyte (difference in specific gravity between the top and bottom of the electrolyte) is 0.03 or less are satisfied, the lead-acid battery It was determined that the performance of was remarkably excellent, and was indicated by a circle mark in Table 4. When only one of condition C and condition D is satisfied, it is determined that the performance of the lead-acid battery is sufficiently excellent, but not remarkably excellent, and is indicated by the △ mark in Table 4. Indicated. When neither condition C nor condition D was satisfied, it was determined that the performance of the lead-acid battery was slightly insufficient or completely insufficient, and indicated by x in Table 4.

Figure 0007128483000003
Figure 0007128483000003

Figure 0007128483000004
Figure 0007128483000004

表3、4に示す評価結果から、二酸化鉛のαβ比率α/(α+β)が20%以上40%以下であると、内部抵抗の上昇が十分に抑制されているとともに内部抵抗の低下速度が速いことが分かる。また、鉛蓄電池の電池寿命が優れており、且つ、電解液の成層化が生じにくいことが分かる。 From the evaluation results shown in Tables 3 and 4, when the αβ ratio α/(α+β) of lead dioxide is 20% or more and 40% or less, the increase in internal resistance is sufficiently suppressed and the rate of decrease in internal resistance is fast. I understand. In addition, it can be seen that the battery life of the lead-acid battery is excellent and the stratification of the electrolytic solution is unlikely to occur.

(D)内部抵抗の上昇及び充電受入性に対する電解液中のアルミニウムイオンの濃度の影響についての検討
電解液中のアルミニウムイオンの濃度の影響について検討した。鉛蓄電池の構成及び製造方法については、電解液中のアルミニウムイオンの濃度が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、充電受入性についても評価した。
(D) Investigation of Effect of Aluminum Ion Concentration in Electrolyte on Increase in Internal Resistance and Charge Acceptability The effect of aluminum ion concentration in the electrolyte was investigated. Unless otherwise specified, the structure and manufacturing method of the lead-acid battery are the same as those described in (A) above, except that the concentration of aluminum ions in the electrolyte is different. Regarding the performance of the lead-acid battery, the increase in internal resistance was evaluated in the same manner as in the examination of (A) above, and the charge acceptance was also evaluated.

充電受入性は、以下のようにして評価した。鉛蓄電池に対して完全充電を施し、電解液の温度が23℃以上27℃以下の範囲内であることを確認した後に、5時間率電流で0.5時間放電した。次に、鉛蓄電池を23℃以上27℃以下の温度で20時間静置し、電解液の温度が23℃以上27℃以下の範囲内であることを確認した後に、23℃以上27℃以下の温度、13.9V以上14.1V以下の電圧、最大電流100Aとの条件で定電圧充電を行い、充電開始5秒後の充電電流を測定した。 Charge acceptance was evaluated as follows. After fully charging the lead-acid battery and confirming that the temperature of the electrolytic solution was within the range of 23° C. or more and 27° C. or less, the battery was discharged for 0.5 hour at a 5-hour rate current. Next, the lead-acid battery is allowed to stand at a temperature of 23° C. or higher and 27° C. or lower for 20 hours, and after confirming that the temperature of the electrolyte is within the range of 23° C. or higher and 27° C. or lower, Constant voltage charging was performed under conditions of temperature, voltage of 13.9 V or more and 14.1 V or less, and maximum current of 100 A, and the charging current was measured 5 seconds after the start of charging.

評価結果を表5に示す。充電受入性の評価結果については、電解液中のアルミニウムイオンの濃度が0モル/Lである参考例に比べて、充電電流が10A以上高い場合は、表5においては○印で示し、0A超過10A未満高い場合は、表5においては△印で示した。また、充電電流が参考例と同値か又は参考例よりも低い場合は、表5においては×印で示した。 Table 5 shows the evaluation results. Regarding the evaluation results of charge acceptability, when the charging current is 10 A or more higher than the reference example in which the concentration of aluminum ions in the electrolyte solution is 0 mol / L, it is indicated by a circle in Table 5, and exceeds 0 A. In Table 5, the Δ mark indicates a value higher than 10 A. In addition, in Table 5, x mark indicates the case where the charging current is the same as or lower than that of the reference example.

さらに、内部抵抗の上昇率と充電受入性の評価結果を総合して、総合判定を行った。結果を表5に示す。表5においては、内部抵抗の上昇率と充電受入性の両方が○印の判定であった場合は、総合判定は○印を示し、内部抵抗の上昇率と充電受入性の少なくとも一方が△印又は×印の判定であった場合は、総合判定は×印を示してある。 Furthermore, the rate of increase in internal resistance and the evaluation results of charge acceptance were combined to make a comprehensive judgment. Table 5 shows the results. In Table 5, when both the rate of increase in internal resistance and the charge acceptance are marked with ○, the comprehensive judgment is marked with ○, and at least one of the rate of increase in internal resistance and charge acceptance is marked with △. Or, in the case of the determination of the x mark, the comprehensive determination is indicated by the x mark.

Figure 0007128483000005
Figure 0007128483000005

電解液にアルミニウムイオンを添加すると、充電受入性が向上することが知られている。しかしながら、平面度が大きい極板を使用した鉛蓄電池において、電解液にアルミニウムイオンを添加した場合は、平面度が大きくなることによって極板間にガスが溜まり、内部抵抗が上昇するため、アルミニウムイオンの添加効果が小さくなることが分かった。
また、電解液にアルミニウムイオンやナトリウムイオンを過剰に添加すると、電解液の抵抗及び粘度が上昇するためガスが抜けにくくなり、内部抵抗がより上昇しやすいことが分かった。よって、平面度とともに、電解液中のアルミニウムイオン及びナトリウムイオンの濃度を適正なものとすることが重要である。
It is known that the addition of aluminum ions to the electrolyte improves charge acceptance. However, when aluminum ions are added to the electrolyte in a lead-acid battery using plates with a large degree of flatness, gas accumulates between the plates due to the increased flatness, which increases the internal resistance. It was found that the addition effect of
Further, it was found that excessive addition of aluminum ions or sodium ions to the electrolytic solution increases the resistance and viscosity of the electrolytic solution, making it difficult for gas to escape, and the internal resistance tends to increase more easily. Therefore, it is important to make the concentration of aluminum ions and sodium ions in the electrolytic solution appropriate as well as the flatness.

(E)内部抵抗の上昇及び充電受入性に対する電解液中のナトリウムイオンの濃度の影響についての検討
電解液中のナトリウムイオンの濃度の影響について検討した。鉛蓄電池の構成及び製造方法については、電解液中のアルミニウムイオン及びナトリウムイオンの濃度が異なる点を除いて、特に断りがない限り、上記(D)の検討の場合と同様である。鉛蓄電池の性能については、上記(D)の検討と同様に内部抵抗の上昇と充電受入性について評価するとともに、上記(C)の検討と同様に電池寿命についても評価した。
(E) Examination of Effect of Sodium Ion Concentration in Electrolyte on Increase in Internal Resistance and Charge Acceptability The influence of sodium ion concentration in the electrolyte was studied. Unless otherwise specified, the configuration and manufacturing method of the lead-acid battery are the same as in the above study (D), except that the concentrations of aluminum ions and sodium ions in the electrolyte are different. As for the performance of the lead-acid battery, the increase in internal resistance and charge acceptance were evaluated in the same manner as in the examination of (D) above, and the battery life was also evaluated in the same manner as in the examination of (C) above.

評価結果を表6に示す。電池寿命の評価結果については、電池寿命が800サイクル以上である場合は、表6においては○印で示し、800サイクル未満である場合は、表6においては×印で示した。
さらに、内部抵抗の上昇率と充電受入性と電池寿命の評価結果を総合して、総合判定を行った。結果を表6に示す。表6においては、内部抵抗の上昇率と充電受入性と電池寿命の全てが○印の判定であった場合は、総合判定は○印を示し、内部抵抗の上昇率と充電受入性と電池寿命のうち少なくとも一つが△印又は×印の判定であった場合は、総合判定は×印を示してある。
Table 6 shows the evaluation results. As for the evaluation results of the battery life, in Table 6, when the battery life is 800 cycles or more, it is indicated by ◯, and when it is less than 800 cycles, it is indicated by X in Table 6.
Furthermore, the evaluation results of the rate of increase in internal resistance, charge acceptance, and battery life were combined to make a comprehensive judgment. Table 6 shows the results. In Table 6, when the rate of increase in internal resistance, charge acceptance, and battery life are all marked with ○, the overall judgment is marked with ○, indicating the rate of increase in internal resistance, charge acceptance, and battery life. When at least one of the evaluation results is marked with Δ or x, the comprehensive evaluation is marked with x.

Figure 0007128483000006
Figure 0007128483000006

電解液中のナトリウムイオンの存在は有害であり、アルミニウムイオン等による充電率改善効果を阻害していることが分かった。電解液中のナトリウムイオンの濃度は、0.002モル/L以上0.05モル/L以下であることが好ましい。
負極の添加剤として用いられるリグニンは一般にナトリウム塩であるため、ナトリウムイオンの濃度を0.002モル/L未満とすると、リグニンの添加量を削減することになるため、この点で却って鉛蓄電池の寿命を低下させることになる。
It was found that the presence of sodium ions in the electrolyte is harmful and inhibits the charge rate improving effect of aluminum ions and the like. The concentration of sodium ions in the electrolytic solution is preferably 0.002 mol/L or more and 0.05 mol/L or less.
Since lignin used as a negative electrode additive is generally a sodium salt, if the concentration of sodium ions is less than 0.002 mol / L, the amount of lignin added will be reduced. It will shorten the life.

1 極板群
10 正極板
20 負極板
30 セパレータ
1 Electrode Plate Group 10 Positive Electrode Plate 20 Negative Electrode Plate 30 Separator

Claims (4)

二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、前記極板群が電解液に浸漬されてセルを構成し、
前記極板群に負荷された群圧が10kPa以下であり、
化成後の前記正極板の平面度が4.0mm以下であり、
前記セル1個当たりの前記電解液の体積Vs(単位はcm3)と前記正極活物質の質量Mp(単位はg)と前記負極活物質の質量Mn(単位はg)とが、式0.40≦Vs/(Mp+Mn)≦0.60の関係を満たす鉛蓄電池。
an electrode plate group in which a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and negative electrode plates having a negative electrode active material containing metallic lead are alternately laminated via separators, wherein the electrode plate group is immersed in the electrolyte to form a cell,
A group pressure applied to the electrode plate group is 10 kPa or less,
The flatness of the positive electrode plate after chemical conversion is 4.0 mm or less,
The volume Vs (unit: cm 3 ) of the electrolytic solution per cell, the mass Mp (unit: g) of the positive electrode active material, and the mass Mn (unit: g) of the negative electrode active material are expressed by the formula 0.0. A lead-acid battery that satisfies the relationship 40≦Vs/(Mp+Mn)≦0.60.
前記正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下である請求項1に記載の鉛蓄電池。 2. The lead-acid battery according to claim 1, wherein the ratio α/(α+β) between the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in said positive electrode active material is 20% or more and 40% or less. 前記正極活物質の密度が4.1g/cm3以上4.3g/cm3以下であり、前記負極活物質の密度が3.9g/cm3以上4.1g/cm3以下である請求項1又は請求項2に記載の鉛蓄電池。 2. The density of the positive electrode active material is 4.1 g/cm 3 or more and 4.3 g/cm 3 or less, and the density of the negative electrode active material is 3.9 g/cm 3 or more and 4.1 g/cm 3 or less. Or the lead-acid battery according to claim 2. 前記電解液のアルミニウムイオンの含有量が0.01モル/L以上0.3モル/L以下である請求項1~3のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 3, wherein the content of aluminum ions in the electrolytic solution is 0.01 mol/L or more and 0.3 mol/L or less.
JP2020006266A 2020-01-17 2020-01-17 lead acid battery Active JP7128483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006266A JP7128483B2 (en) 2020-01-17 2020-01-17 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006266A JP7128483B2 (en) 2020-01-17 2020-01-17 lead acid battery

Publications (2)

Publication Number Publication Date
JP2021114404A JP2021114404A (en) 2021-08-05
JP7128483B2 true JP7128483B2 (en) 2022-08-31

Family

ID=77077149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006266A Active JP7128483B2 (en) 2020-01-17 2020-01-17 lead acid battery

Country Status (1)

Country Link
JP (1) JP7128483B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044759A (en) 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lead-acid storage battery and manufacturing method of the same
JP2006059671A (en) 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006318659A (en) 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008130516A (en) 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP5596241B1 (en) 2012-12-21 2014-09-24 パナソニック株式会社 Lead acid battery
JP2014192079A (en) 2013-03-28 2014-10-06 Furukawa Battery Co Ltd:The Separator and lead storage battery
JP2016115396A (en) 2013-04-05 2016-06-23 パナソニック株式会社 Lead power storage battery
JP2016192406A (en) 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery
WO2017170422A1 (en) 2016-03-30 2017-10-05 日立化成株式会社 Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
JP2017228530A (en) 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery
WO2018105067A1 (en) 2016-12-07 2018-06-14 日立化成株式会社 Lead acid storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177256A (en) * 1988-12-28 1990-07-10 Japan Storage Battery Co Ltd Manufacture of plate for paste type lead accumulator
JPH08213023A (en) * 1995-02-08 1996-08-20 Matsushita Electric Ind Co Ltd Lead-acid battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044759A (en) 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lead-acid storage battery and manufacturing method of the same
JP2006059671A (en) 2004-08-20 2006-03-02 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006318659A (en) 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008130516A (en) 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP5596241B1 (en) 2012-12-21 2014-09-24 パナソニック株式会社 Lead acid battery
JP2014192079A (en) 2013-03-28 2014-10-06 Furukawa Battery Co Ltd:The Separator and lead storage battery
JP2016115396A (en) 2013-04-05 2016-06-23 パナソニック株式会社 Lead power storage battery
WO2017170422A1 (en) 2016-03-30 2017-10-05 日立化成株式会社 Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
JP2016192406A (en) 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery
WO2018105067A1 (en) 2016-12-07 2018-06-14 日立化成株式会社 Lead acid storage battery
JP2017228530A (en) 2017-06-29 2017-12-28 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JP2021114404A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6670903B1 (en) Lead storage battery
JP6726349B1 (en) Lead acid battery
CN112042041B (en) Lead-acid battery
JP7348081B2 (en) liquid lead acid battery
EP3352285B1 (en) Lead storage battery
JP2021163612A (en) Lead-acid battery
JP7128483B2 (en) lead acid battery
JP6705873B2 (en) Lead acid battery
JP7152441B2 (en) liquid lead acid battery
JP2021163618A (en) Lead-acid battery
JP7149046B2 (en) liquid lead acid battery
JPWO2019087684A1 (en) Lead-acid battery for idling stop
JP7097403B2 (en) Lead-acid battery
JP7002518B2 (en) Lead-acid battery
JP2021163608A (en) Lead-acid battery
JP6817264B2 (en) Lead-acid battery
JP6705874B2 (en) Lead acid battery
JP2021163610A (en) Lead-acid battery
JP2021163537A (en) Lead-acid battery
JP2021163616A (en) Lead-acid battery
JP2021163609A (en) Lead-acid battery
JP7219366B1 (en) liquid lead acid battery
JP2020053298A (en) Lead storage battery
JP2020053292A (en) Lead storage battery
JP2020053296A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7128483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150