JP6656792B2 - Liquid resin composition for electronic component and electronic component device - Google Patents

Liquid resin composition for electronic component and electronic component device Download PDF

Info

Publication number
JP6656792B2
JP6656792B2 JP2014067565A JP2014067565A JP6656792B2 JP 6656792 B2 JP6656792 B2 JP 6656792B2 JP 2014067565 A JP2014067565 A JP 2014067565A JP 2014067565 A JP2014067565 A JP 2014067565A JP 6656792 B2 JP6656792 B2 JP 6656792B2
Authority
JP
Japan
Prior art keywords
resin composition
liquid resin
inorganic filler
electronic component
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067565A
Other languages
Japanese (ja)
Other versions
JP2015189848A (en
Inventor
寿登 高橋
寿登 高橋
赤城 清一
清一 赤城
央視 出口
央視 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014067565A priority Critical patent/JP6656792B2/en
Publication of JP2015189848A publication Critical patent/JP2015189848A/en
Application granted granted Critical
Publication of JP6656792B2 publication Critical patent/JP6656792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子部品装置の封止用に特に好適な電子部品用液状樹脂組成物、及びこの組成物で封止された素子を備えた電子部品装置に関する。   The present invention relates to a liquid resin composition for electronic components particularly suitable for sealing electronic component devices, and an electronic component device provided with an element sealed with the composition.

従来から、トランジスタ、IC等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となり、様々な種類の樹脂組成物が適用されている。それらの中で、エポキシ樹脂が作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているため、広く用いられている。COB(Chip on Board)、COG(Chip on Glass)、TCP(Tape Carrier Package)等のベアチップ実装した半導体装置においては電子部品用液状樹脂組成物が封止材として広く使用されている。また、半導体素子をセラミック、ガラス/エポキシ樹脂、ガラス/イミド樹脂またはポリイミドフィルム等を基板とする配線基板上に直接バンプ接続してなる半導体装置(フリップチップ)では、バンプ接続した半導体素子と配線基板の間隙(ギャップ)を充填するアンダーフィル材として電子部品用液状樹脂組成物が使用されている。これらの電子部品用液状樹脂組成物は電子部品を温湿度や機械的な外力から保護するために重要な役割を果たしている。   2. Description of the Related Art Conventionally, in the field of element sealing of electronic component devices such as transistors and ICs, resin sealing has become mainstream in terms of productivity, cost, and the like, and various types of resin compositions have been applied. Among them, epoxy resins are widely used because they are balanced in various properties such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness to insert products. BACKGROUND ART In semiconductor devices mounted on bare chips such as COB (Chip on Board), COG (Chip on Glass), and TCP (Tape Carrier Package), a liquid resin composition for electronic components is widely used as a sealing material. In a semiconductor device (flip chip) in which a semiconductor element is directly bump-connected to a wiring board having a ceramic, glass / epoxy resin, glass / imide resin, polyimide film or the like as a substrate, the bump-connected semiconductor element and the wiring board The liquid resin composition for electronic parts is used as an underfill material for filling the gap. These liquid resin compositions for electronic components play an important role in protecting electronic components from temperature and humidity and mechanical external forces.

例えば、耐湿接着力、低応力性に優れた封止用エポキシ樹脂組成物、及びこれにより封止された素子を備えた信頼性(耐湿性、耐熱衝撃性)の高い電子部品装置を提供するため、(A)液状エポキシ樹脂、(B)液状芳香族アミンを含む硬化剤、(C)ゴム粒子、(D)無機充填材を含有してなる封止用エポキシ樹脂組成物、及びこの封止用エポキシ樹脂組成物により封止された素子を備えた電子部品装置が開示されている(特許文献1参照)。   For example, in order to provide an epoxy resin composition for sealing excellent in moisture resistance and low stress, and an electronic component device having high reliability (moisture resistance and thermal shock resistance) equipped with an element sealed thereby. , (A) a liquid epoxy resin, (B) a curing agent containing a liquid aromatic amine, (C) a rubber particle, (D) an epoxy resin composition for sealing comprising (F) an inorganic filler, and the sealing epoxy resin composition. An electronic component device provided with an element sealed with an epoxy resin composition has been disclosed (see Patent Document 1).

特開2001−270976号公報JP 2001-297076 A

しかしながら半導体の進歩は著しく、バンプ接続を行うフリップチップ方式ではバンプ数の増加に伴いバンプピッチ、バンプ高さが小さくなり、結果として狭ギャップ化が進んでいる。高集積化に伴いチップサイズも大きくなり、アンダーフィル材には狭ギャップで大面積を流動する特性が求められてきた。また、狭ギャップ化とともにバンプ数が増加し、バンプピッチも狭くなるため、アンダーフィル材の流動経路も複雑になり、ボイドが発生し易くなる。この様なボイドの発生はフリップチップ半導体装置の信頼性に大きな影響を与える。また、フィレット部における基板への樹脂成分の滲み出し(ブリード)は基板上に配置された半導体素子や電気的接続をとる端子を汚染する場合があり、発生しないことが好ましい。更に半導体素子裏面に樹脂成分が這い上がるクリーピングは、フリップチップ半導体装置の半導体素子裏面平坦性が確保できないために実装時のトラブル要因になるだけでなく、液状樹脂組成物硬化後に電子部品装置がオーバーモールドされた場合は、クリーピング部を起点に剥離が生じることがあり、信頼性の低下が懸念される。   However, semiconductors have made remarkable progress, and in flip-chip systems for bump connection, the bump pitch and the bump height have decreased as the number of bumps has increased, and as a result, the gap has been narrowed. With the increase in integration, the chip size has also increased, and the underfill material has been required to have the property of flowing over a large area with a narrow gap. Also, the number of bumps increases and the bump pitch narrows as the gap becomes narrower, so that the flow path of the underfill material becomes complicated, and voids are easily generated. The generation of such voids greatly affects the reliability of the flip-chip semiconductor device. In addition, the bleeding of the resin component into the substrate at the fillet portion (bleeding) may contaminate the semiconductor elements and the terminals for electrical connection arranged on the substrate, and it is preferable that the bleeding does not occur. Further, the creeping of the resin component on the back surface of the semiconductor element causes creeping of the semiconductor element back surface of the flip-chip semiconductor device because the flatness of the back surface of the semiconductor element cannot be ensured. When overmolded, peeling may occur from the creeping portion as a starting point, and there is a concern that the reliability may be reduced.

以上のようにアンダーフィル材を例にとると、半導体の進歩とともに電子部品用液状樹脂組成物にはいろいろな課題の解決が要求されている。本発明は、このような事情に鑑みなされたもので、狭ギャップでの流動性が良好であり、ボイド、ブリード及びクリーピングを抑制した電子部品用液状樹脂組成物、及びこれにより封止された電子部品装置を提供することを目的とする。   As described above, taking the underfill material as an example, with the progress of semiconductors, the liquid resin composition for electronic components is required to solve various problems. The present invention has been made in view of such circumstances, has good fluidity in a narrow gap, and suppresses voids, bleed, and creeping, and a liquid resin composition for electronic components, and is sealed by the resin. An electronic component device is provided.

本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、樹脂組成物に含まれる無機充填材に超微細の無機充填材を含有させることで樹脂組成物の流動性、耐ボイド性、耐ブリード性及び耐クリーピング性の各特性を従来以上に向上させることができた。   The present inventors have conducted intensive studies in order to solve the above-described problems, and as a result, by adding an ultrafine inorganic filler to the inorganic filler contained in the resin composition, the fluidity of the resin composition, the void resistance Properties, bleeding resistance and creeping resistance could be improved more than before.

本発明は、以下に関する。
[1](A)樹脂と(B)無機充填材と(C)レーザー回折法で100nm以下のピークを有する無機充填材とを含み、前記(B)無機充填材と前記(C)無機充填材を合わせた無機充填材の含有量が前記電子部品用液状樹脂組成物全体の67〜77質量%である、電子部品用液状樹脂組成物。
[2]前記(C)無機充填材がレーザー回折法で50nm以下のピークを有する無機充填材である前記[1]に記載の電子部品用液状樹脂組成物。
[3]前記(B)無機充填材として、レーザー回折法でのピークが0.3〜10μmである無機充填材を含有する、前記[1]又は[2]に記載の電子部品用液状樹脂組成物。
[4]前記(B)無機充填材として、レーザー回折法でのピークが0.3〜3μmである無機充填材を含有する、前記[1]〜[3]のいずれか一項に記載の電子部品用液状樹脂組成物。
[5]前記(C)無機充填材の配合量が前記電子部品用液状樹脂組成物全体に対して0.1〜10質量%である、前記[1]〜[4]のいずれか一項に記載の電子部品用液状樹脂組成物。
[6]110℃における粘度が0.2Pa.s以下である前記[1]〜[5]のいずれか一項に記載の電子部品用液状樹脂組成物。
[7]前記(A)樹脂が、(A1)エポキシ樹脂と(A2)硬化剤とを含む、前記[1]〜[6]のいずれか一項に記載の電子部品用液状樹脂組成物。
[8]さらに可撓化剤を含有する、前記[1]〜[7]のいずれか一項に記載の電子部品用液状樹脂組成物材。
[9]さらに界面活性剤を含有する、前記[1]〜[8]のいずれか一項に記載の電子部品用液状樹脂組成物。
[10]さらにイオントラップ剤を含有する、前記[1]〜[9]のいずれか一項に記載の電子部品用液状樹脂組成物。
[11]さらに硬化促進剤を含有する、前記[1]〜[10]のいずれか一項に記載の電子部品用液状樹脂組成物。
[12]さらにカップリング剤を含有する、前記[1]〜[11]のいずれか一項に記載の電子部品用液状樹脂組成物。
[13]さらに酸化防止剤を含有する、前記[1]〜[12]のいずれか一項に記載の電子部品用液状樹脂組成物。
[14]さらに有機溶媒含有率が、該有機溶剤を含む前記電子部品液状組成物全体の5%以下である、前記[1]〜[13]のいずれか一項に記載の電子部品用液状樹脂組成物。
[15]電子部品と配線基板とが接続部を介して電気的に接続された電子部品装置の接続部を封止するために用いられ、前記電子部品と前記配線基板との隙間に充填される、前記[1]〜[14]のいずれか一項に記載の電子部品用液状樹脂組成物。
[16]前記接続部が鉛を含まない、前記[15]に記載の電子部品用液状樹脂組成物。
[17]前記接続部が銅を含む、前記[15]又は[16]に記載の電子部品用液状樹脂組成物。
[18]前記[1]〜[17]のいずれか一項に記載の電子部品用液状樹脂組成物により封止された電子部品装置。
The present invention relates to the following.
[1] Including (A) a resin, (B) an inorganic filler, and (C) an inorganic filler having a peak of 100 nm or less by laser diffraction, the (B) inorganic filler and the (C) inorganic filler are included. Wherein the content of the inorganic filler is 67 to 77% by mass of the entire liquid resin composition for electronic components.
[2] The liquid resin composition for electronic components according to [1], wherein the inorganic filler (C) is an inorganic filler having a peak of 50 nm or less by a laser diffraction method.
[3] The liquid resin composition for electronic components according to [1] or [2], wherein the (B) inorganic filler contains an inorganic filler having a peak in a laser diffraction method of 0.3 to 10 μm. object.
[4] The electron according to any one of [1] to [3], wherein the (B) inorganic filler contains an inorganic filler having a peak in a laser diffraction method of 0.3 to 3 μm. Liquid resin composition for parts.
[5] The method according to any one of [1] to [4], wherein the amount of the inorganic filler (C) is 0.1 to 10% by mass based on the whole liquid resin composition for electronic components. The liquid resin composition for electronic components according to the above.
[6] A viscosity at 110 ° C. of 0.2 Pa. The liquid resin composition for an electronic component according to any one of the above [1] to [5], which is equal to or less than s.
[7] The liquid resin composition for an electronic component according to any one of the above [1] to [6], wherein the (A) resin contains (A1) an epoxy resin and (A2) a curing agent.
[8] The liquid resin composition material for an electronic component according to any one of [1] to [7], further including a flexibilizing agent.
[9] The liquid resin composition for an electronic component according to any one of the above [1] to [8], further containing a surfactant.
[10] The liquid resin composition for an electronic component according to any one of the above [1] to [9], further containing an ion trapping agent.
[11] The liquid resin composition for an electronic component according to any one of the above [1] to [10], further comprising a curing accelerator.
[12] The liquid resin composition for an electronic component according to any one of the above [1] to [11], further comprising a coupling agent.
[13] The liquid resin composition for an electronic component according to any one of the above [1] to [12], further containing an antioxidant.
[14] The liquid resin for electronic components according to any one of [1] to [13], wherein the content of the organic solvent is 5% or less of the entire electronic component liquid composition containing the organic solvent. Composition.
[15] Used to seal a connection portion of an electronic component device in which the electronic component and the wiring board are electrically connected via the connection portion, and are filled in a gap between the electronic component and the wiring board. The liquid resin composition for electronic components according to any one of [1] to [14].
[16] The liquid resin composition for an electronic component according to the above [15], wherein the connection portion does not contain lead.
[17] The liquid resin composition for an electronic component according to the above [15] or [16], wherein the connection portion contains copper.
[18] An electronic component device sealed with the liquid resin composition for electronic components according to any one of [1] to [17].

本発明の電子部品用液状樹脂組成物は、充填時間を早くできるとともにフロー時の流動の乱れを抑制でき、さらに成形時のボイドを抑制でき、またブリード及びクリーピングを抑制できる。   ADVANTAGE OF THE INVENTION The liquid resin composition for electronic components of this invention can shorten a filling time, can suppress the disturbance of the flow at the time of flow, can suppress the void at the time of shaping | molding, and can suppress bleeding and creeping.

本発明の電子部品用液状樹脂組成物は、半導体素子等の電子部品と配線基板との狭ギャップへの侵入性を向上させるために、従来から使用されている無機充填材、例えば、0.5μm〜20μmに粒度分布のピークを有する無機充填材に、新たにレーザ回折法で測定した粒度分布のピークが100nm以下の超微細の無機充填材を併用することによって、材料の低粘度化を行うことができることを見出してなされたものである。   The liquid resin composition for electronic components of the present invention is a conventionally used inorganic filler, for example, 0.5 μm, in order to improve penetration into a narrow gap between an electronic component such as a semiconductor element and a wiring board. To reduce the viscosity of the material by using an inorganic filler having a particle size distribution peak of ~ 20 μm together with an ultrafine inorganic filler having a particle size distribution peak newly measured by a laser diffraction method of 100 nm or less. It was made after finding that it could be done.

粒度分布のピークが100nm以下の超微細の無機充填材を含有する電子部品用液状樹脂組成物は、アンダーフィル材としてこれまでも検討されている。しかしながら、この超微細の無機充填材はブリード抑制の観点からチクソ性を付与する目的で使用されるのが一般的であり、樹脂組成物の粘度が高くなる傾向にある。そのため、低粘度のアンダーフィル材に含有できる無機充填材の量としては、実用的には65質量%以下に制約されていた。100nm以下の極微細の無機充填材は、例えば、材料の透明性を増す効果を利用して視認性を確保するためのアンダーフィル材として適用されている場合もある。また、粘度がやや高くなっても使用可能なノンフローアンダーフィル材としての適用も図られている。アンダーフィル材の用途以外では、半導体素子を外部環境から保護するためのパッケージングに使用する液状封止材として、100nm以下の極微細の無機充填材が、それより大粒径の無機充填材と併用して用いられる場合もある。   A liquid resin composition for electronic parts containing an ultrafine inorganic filler having a particle size distribution peak of 100 nm or less has been studied as an underfill material. However, this ultrafine inorganic filler is generally used for imparting thixotropy from the viewpoint of suppressing bleeding, and the viscosity of the resin composition tends to increase. Therefore, the amount of the inorganic filler that can be contained in the low-viscosity underfill material is practically limited to 65% by mass or less. An ultrafine inorganic filler of 100 nm or less may be used as an underfill material for ensuring visibility, for example, by utilizing the effect of increasing the transparency of the material. Further, application as a non-flow underfill material that can be used even if the viscosity is slightly increased is also attempted. Except for the use of the underfill material, an ultrafine inorganic filler of 100 nm or less is used as a liquid sealing material used for packaging for protecting a semiconductor element from an external environment, and an inorganic filler having a larger particle size. They may be used in combination.

それに対して、本発明の電子部品用液状樹脂組成物は、無機充填材の高充填量であっても材料の粘度上昇を抑え、流動性を従来よりも高くすることができ、さらに、低熱膨張性と比較的高い弾性を有することから、応力低減効果が高く、且つ、バンプ接続保持性に優れる。したがって、半導体素子等の電子部品とそれを搭載する配線基板との狭ギャップに充填するアンダーフィル材として、高信頼性の半導体装置に適用することができる。加えて、粒度分布のピークが100nm以下の無機充填材との併用は、材料の低粘度化に効果があるだけで、フロー時の流動の乱れを均一化でき成形時のボイドを抑制できる効果が得られる。これは、粒度分布のピークが100nm以下の極微細の無機充填材がそれよりも大きな無充填剤と樹脂との間に介在するようになり、フロー時に樹脂が大きな無機充填材と分離して流動することを抑制し、樹脂と無機充填材とが一体になって流動させる機能を発現するためと考えている。   On the other hand, the liquid resin composition for electronic parts of the present invention can suppress the increase in viscosity of the material even if the amount of the inorganic filler is high, can increase the fluidity as compared with the conventional one, and furthermore, has a low thermal expansion Due to its high elasticity and relatively high elasticity, the effect of reducing stress is high and the bump connection retention is excellent. Therefore, it can be applied to a highly reliable semiconductor device as an underfill material for filling a narrow gap between an electronic component such as a semiconductor element and a wiring board on which the electronic component is mounted. In addition, when used in combination with an inorganic filler having a particle size distribution peak of 100 nm or less, only the effect of lowering the viscosity of the material is obtained, and the effect of uniformizing the turbulence of the flow at the time of flow and suppressing the void at the time of molding is obtained. can get. This is because an ultrafine inorganic filler having a particle size distribution peak of 100 nm or less is interposed between the larger non-filler and the resin, and the resin separates from the large inorganic filler during flow and flows. It is believed that the resin and the inorganic filler exhibit a function of integrally flowing.

上記の機能は、配線基板への樹脂のブリードを抑制するだけでなく、樹脂が半導体素子裏面に樹脂成分が這い上がるクリーピングの抑制にも大きな効果を奏する。ブリード及びクリーピングは半導体装置の信頼性低下の大きな要因であり、高信頼性化に対しては両者の課題を同時に解決することが是非とも必要であり、粒度分布のピークが100nm以下の無機充填材との併用が特に有効であることが分かった。   The above function not only suppresses the bleeding of the resin onto the wiring board, but also has a great effect on the suppression of creeping in which the resin creeps on the back surface of the semiconductor element. Bleeding and creeping are major causes of the decrease in the reliability of semiconductor devices. To improve reliability, it is absolutely necessary to solve both problems simultaneously. It was found that the combination with the material was particularly effective.

本発明の効果の効果を奏するために、無機充填材としてピークが流動分布の100nm以下の無機充填材を併用することが必須の構成であるが、さらに超微細の粒径を小さくして、ピークが50nm以下の無機充填材を用いればアンダーフィル材としての流動性を一層向上させることができる。   In order to achieve the effects of the present invention, it is essential to use an inorganic filler having a peak of 100 nm or less in flow distribution as the inorganic filler in combination. If an inorganic filler having a particle size of 50 nm or less is used, the fluidity of the underfill material can be further improved.

以上のように、本発明の電子部品用液状樹脂組成物は、基本構成として(A)樹脂と(B)無機充填材と(C)レーザー回折法で100nm以下のピークを有する無機充填材を含み、高流動性、ボイド、ブリード及びクリーピングの抑制という成形性の向上とフリップチップ半導体装置の高信頼性の観点から(B)無機充填材と(C)無機充填材を合わせた無機充填材の含有量が電子部品用液状樹脂組成物全体の67〜77質量%であることに特徴を有する。さらに、前記(B)無機充填材は、上記で述べたバンプピッチの狭ギャップ化という技術課題に対応するため、レーザ回折法でのピークが0.3〜10μm、好ましくは0.3〜3μmである。   As described above, the liquid resin composition for an electronic component of the present invention contains (A) a resin, (B) an inorganic filler, and (C) an inorganic filler having a peak of 100 nm or less by laser diffraction as basic components. From the viewpoints of high moldability, high fluidity, suppression of voids, bleeding and creeping, and high reliability of the flip chip semiconductor device, the inorganic filler (B) and the inorganic filler (C) are combined. It is characterized in that the content is 67 to 77% by mass of the whole liquid resin composition for electronic components. Further, the inorganic filler (B) has a peak in a laser diffraction method of 0.3 to 10 μm, preferably 0.3 to 3 μm in order to cope with the technical problem of narrowing the bump pitch described above. is there.

また、本発明のおける電子部品用液状樹脂組成物は、110℃の粘度が0.3Pa・s以下であることがより好ましい。これにより、微細間隙への浸透性・流動性が向上し、充填速度を速くすることができるため、含浸時間を短くすることができ、かつ、ボイドの発生を抑制することができる。さらに、含浸時間の短縮化の観点から、0.2Pa・s以下であることが特に好ましい。粘度は、温度30〜140℃においてレオメータAR2000(TAインスツルメント)を用い、40mmパラレルプレート、せん断速度32.5(1/s)の条件のもとに各温度で測定する。そして、110℃のときの粘度を、本発明における電子部品用液状樹脂組成物の浸透性及び流動性の目安として用いる。110℃の粘度は、フリップチップ半導体装置の製造において、液状樹脂組成物を微細間隙に注入するときに実用的に採用できる最高温度であり、特に、半導体素子と基板との間隙が100μm以下、さらに狭い50μm以下を有する電子部品においてアンダーフィル材としての流動性を最も反映する物性値である。   Further, the liquid resin composition for electronic parts of the present invention more preferably has a viscosity at 110 ° C. of 0.3 Pa · s or less. Thereby, the permeability and fluidity into the fine gaps are improved, and the filling rate can be increased, so that the impregnation time can be shortened and the generation of voids can be suppressed. Further, from the viewpoint of shortening the impregnation time, it is particularly preferable that the pressure is 0.2 Pa · s or less. The viscosity is measured at each temperature at a temperature of 30 to 140 ° C. using a rheometer AR2000 (TA Instruments) under the conditions of a 40 mm parallel plate and a shear rate of 32.5 (1 / s). The viscosity at 110 ° C. is used as a measure of the permeability and fluidity of the liquid resin composition for electronic components in the present invention. The viscosity of 110 ° C. is the highest temperature that can be practically employed when a liquid resin composition is injected into a fine gap in the production of a flip-chip semiconductor device. In particular, the gap between a semiconductor element and a substrate is 100 μm or less, It is a physical property value most reflecting the fluidity as an underfill material in an electronic component having a narrow width of 50 μm or less.

本発明の電子部品用液状樹脂組成物において使用する(A)樹脂は特には制限されないが、低粘度のアクリル樹脂、低応力性のポリウレタン樹脂やシリコーン樹脂及び諸特性のバランスが得やすいエポキシ樹脂等から選ぶことができる。それらの中で、エポキシ樹脂は、諸特性のバランスが得やすいだけでなく、高信頼性の半導体装置を製造するために必要な特性である電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等が良好であるため、本発明において好適な樹脂であり、(A1)エポキシ樹脂と(A2)硬化剤とを含むことが好ましい。   The resin (A) used in the liquid resin composition for an electronic component of the present invention is not particularly limited, but includes a low-viscosity acrylic resin, a low-stress polyurethane resin and a silicone resin, and an epoxy resin that can easily obtain various properties. You can choose from. Among them, epoxy resin is not only easy to obtain a balance of various properties, but also electrical properties, moisture resistance, heat resistance, mechanical properties, insert products that are necessary for manufacturing highly reliable semiconductor devices. It is a suitable resin in the present invention since it has good adhesiveness to the resin, and preferably contains (A1) an epoxy resin and (A2) a curing agent.

本発明で用いる(A1)エポキシ樹脂としては、一分子中に1個以上のエポキシ基を有するもので常温で液状であることが好ましく、電子部品用液状樹脂組成物で一般に使用されている液状エポキシ樹脂を好適に用いることができる。本発明で使用できるエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、水添ビスフェノールA等のジグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂を代表とするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、p―アミノフェノール、ジアミノジフェニルメタン、イソシアヌル酸等のアミン化合物とエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸により酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。なかでも、流動性の観点からは液状ビスフェノール型エポキシ樹脂が好ましく、耐熱性、接着性及び流動性の観点から液状グリシジルアミン型エポキシ樹脂が好ましい。また、液状ビスフェノール型エポキシ樹脂及び液状グリシジルアミン型エポキシ樹脂を併用することが特に好ましい。   The epoxy resin (A1) used in the present invention has at least one epoxy group in one molecule, and is preferably liquid at normal temperature, and is a liquid epoxy resin generally used in a liquid resin composition for electronic parts. Resin can be suitably used. Examples of epoxy resins that can be used in the present invention include phenols represented by diglycidyl ether type epoxy resins such as bisphenol A, bisphenol F, bisphenol AD, bisphenol S, hydrogenated bisphenol A, and orthocresol novolak type epoxy resins. Epoxidized novolak resin of aldehydes, glycidyl ester type epoxy resin obtained by reaction of epichlorohydrin with polybasic acids such as phthalic acid and dimer acid, amine compounds such as p-aminophenol, diaminodiphenylmethane, isocyanuric acid and epichlorohydrin Glycidylamine type epoxy resin obtained by the reaction of the above, linear aliphatic epoxy resin, alicyclic epoxy resin obtained by oxidizing the olefin bond with a peracid such as peracetic acid, and the like. Be used et alone may be used in combination of two or more. Above all, a liquid bisphenol-type epoxy resin is preferable from the viewpoint of fluidity, and a liquid glycidylamine-type epoxy resin is preferable from the viewpoint of heat resistance, adhesiveness, and fluidity. It is particularly preferable to use a liquid bisphenol type epoxy resin and a liquid glycidylamine type epoxy resin together.

上記した2種のエポキシ樹脂はいずれか1種を単独で用いても2種以上を組合わせて用いてもよいが、その配合量は、その性能を発揮するために液状エポキシ樹脂全量に対して合わせて20質量%以上とすることが好ましく、30質量%以上がより好ましく、50質量%以上とすることがさらに好ましい。 Two epoxy resin mentioned above may be also used in the two or more combining viewed used alone either one, but the amount thereof, to liquid epoxy resin total amount in order to exhibit its performance It is preferably at least 20% by mass, more preferably at least 30% by mass, even more preferably at least 50% by mass.

また、本発明の電子部品用液状樹脂組成物には、本発明の効果が達成される範囲内であれば固形エポキシ樹脂を併用することもできるが、成形時の流動性の観点から併用する固形エポキシ樹脂はエポキシ樹脂全量に対して20質量%以下とすることが好ましい。さらに、これらのエポキシ樹脂の純度、特に加水分解性塩素量はICなど素子上のアルミ配線腐食に係わるため少ない方が好ましく、耐湿性の優れた電子部品用液状樹脂組成物を得るためには500ppm以下であることが好ましい。ここで、加水分解性塩素量とは試料のエポキシ樹脂1gをジオキサン30mlに溶解し、1N−KOHメタノール溶液5mlを添加して30分間リフラックス後、電位差滴定により求めた値を尺度としたものである。   The liquid resin composition for electronic components of the present invention may be used in combination with a solid epoxy resin as long as the effects of the present invention are achieved. It is preferable that the epoxy resin is 20% by mass or less based on the total amount of the epoxy resin. Furthermore, the purity of these epoxy resins, especially the amount of hydrolyzable chlorine, is preferably small because it is involved in the corrosion of aluminum wiring on devices such as ICs. In order to obtain a liquid resin composition for electronic parts having excellent moisture resistance, 500 ppm is required. The following is preferred. Here, the amount of hydrolyzable chlorine is a value obtained by dissolving 1 g of a sample epoxy resin in 30 ml of dioxane, adding 5 ml of a 1N-KOH methanol solution, refluxing for 30 minutes, and then measuring the value obtained by potentiometric titration. is there.

本発明に用いられる(A2)成分の硬化剤は、常温で液状であることが好ましい。硬化剤として、液状の芳香環を有するアミン、酸無水物等を含んでいてもよい。芳香環を有するアミンを含むものを例示すれば、ジエチルトルエンジアミン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、1−メチル−3,5−ジエチル−2,6−ジアミノベンゼン、1,3,5−トリエチル−2,6−ジアミノベンゼン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、3,5,3’,5’−テトラメチル−4,4’−ジアミノジフェニルメタンなどが挙げられる。これらの液状芳香族アミン化合物は、例えば、市販品として、エピキュア−W、エピキュア−Z(ジャパンエポキシレジン株式会社、商品名)、カヤハードA−A、カヤハードA−B、カヤハードA−S(日本化薬株式会社、商品名)、トートアミンHM−205(東都化成株式会社、商品名)、アデカハードナーEH−101(株式会社ADEKA、商品名)、エポミックQ−640、エポミックQ−643(三井化学株式会社、商品名)、DETDA80(Lonza社、商品名)等が入手可能で、これらは単独で用いても2種類以上を組み合わせて用いてもよい。   The curing agent (A2) used in the present invention is preferably liquid at room temperature. As the curing agent, an amine having a liquid aromatic ring, an acid anhydride, or the like may be contained. Examples which include an amine having an aromatic ring include diethyltoluenediamine, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl-2,6-diaminobenzene. 1,3,5-triethyl-2,6-diaminobenzene, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 3,5,3 ′, 5′-tetramethyl-4,4′-diamino Diphenylmethane and the like. These liquid aromatic amine compounds are commercially available, for example, as Epicur-W, Epicur-Z (Japan Epoxy Resin Co., Ltd., trade name), Kayahard AA, Kayahard AB, and Kayahard AS (Nihon Kagaku). Pharmaceutical Co., Ltd., Thothamine HM-205 (Toto Kasei Co., Ltd., trade name), Adeka Hardener EH-101 (ADEKA Corporation, trade name), Epomic Q-640, Epomic Q-643 (Mitsui Chemicals Co., Ltd.) (Company, trade name), DETDA80 (Lonza, trade name) and the like are available, and these may be used alone or in combination of two or more.

硬化剤に含まれる液状芳香族アミンとしては、保存安定性の観点からは、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン及びジエチルトルエンジアミンが好ましく、硬化剤はこれらのいずれか又はこれらの混合物を主成分とすることが好ましい。ジエチルトルエンジアミンとしては、3,5−ジエチルトルエン−2,4−ジアミン及び3,5−ジエチルトルエン−2,6−ジアミンが挙げられ、これらを単独で用いても混合物を用いてもよいが、3,5−ジエチルトルエン−2,4−ジアミンを60重量%以上含むものが好ましい。   As the liquid aromatic amine contained in the curing agent, from the viewpoint of storage stability, 3,3′-diethyl-4,4′-diaminodiphenylmethane and diethyltoluenediamine are preferable, and the curing agent is any of these or these. It is preferable to use a mixture of these as the main component. Examples of diethyltoluenediamine include 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, and these may be used alone or as a mixture. Those containing 60% by weight or more of 3,5-diethyltoluene-2,4-diamine are preferred.

硬化剤として酸無水物を例示すると、無水フタル酸、無水マレイン酸、メチルハイミック酸無水物、ハイミック酸無水物、無水コハク酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、クロレンド酸無水物、メチルテトラヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸マレイン酸付加物、メチルヘキサヒドロフタル酸、ベンゾフェノンテトラカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、メチルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物、無水マレイン酸とジエン化合物からディールス・アルダー反応で得られ、複数のアルキル基を有するトリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸等の各種環状酸無水物が挙げられる。   Illustrative acid anhydrides as curing agents include phthalic anhydride, maleic anhydride, methylhymic anhydride, hymic anhydride, succinic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, methyl Tetrahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride maleic acid adduct, methylhexahydrophthalic acid, benzophenonetetracarboxylic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, methyltetrahydrophthalic anhydride, hydrogenated methylnadic anhydride, maleic anhydride and diene compound obtained by Diels-Alder reaction, trialkyltetrahydrophthalic anhydride with multiple alkyl groups, dodecenyl Anhydrous Various cyclic acid anhydride such as click acid.

また、本発明の電子部品用液状樹脂組成物には、本発明の効果が達成される範囲内であれば芳香族アミン、酸無水物以外であってもよく、それ以外に、フェノール性硬化剤等の電子部品用液状樹脂組成物で一般に使用されている硬化剤を併用することができ、固形硬化剤も併用することもできる。   Further, the liquid resin composition for electronic components of the present invention may be other than aromatic amines and acid anhydrides as long as the effects of the present invention are achieved, and in addition, a phenolic curing agent For example, a curing agent generally used in a liquid resin composition for an electronic component such as the above can be used in combination, and a solid curing agent can also be used in combination.

(A1)エポキシ樹脂と(A2)硬化剤との当量比は特に制限はないが、それぞれの未反応分を少なく抑えるために、エポキシ樹脂に対して硬化剤を0.7当量以上1.6当量以下の範囲に設定することが好ましく、0.8当量以上1.4当量以下がより好ましく、0.9当量以上1.2当量以下がさらに好ましい。 The equivalent ratio of the (A1) epoxy resin to the (A2) curing agent is not particularly limited, but in order to reduce the amount of each unreacted component, 0.7 to 1.6 equivalents of the curing agent with respect to the epoxy resin. It is preferably set in the following range, more preferably from 0.8 to 1.4 equivalents, and even more preferably from 0.9 to 1.2 equivalents.

(B)無機充填材としては、例えば、溶融シリカ、爆燃法によって得られる爆燃シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、酸化アルミナ等のアルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミ、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填材は単独で用いても2種類以上を組み合わせて用いてもよい。なかでも溶融シリカ及び爆燃シリカであることが好ましく、電子部品用液状樹脂組成物の微細間隙への流動性・浸透性の観点からは球形シリカであることがより好ましい。   (B) As the inorganic filler, for example, fused silica, deflagrated silica obtained by a deflagration method, silica such as crystalline silica, calcium carbonate, clay, alumina such as alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate , Potassium titanate, aluminum nitride, beryllia, zirconia, zircon, powders of fosterite, steatite, spinel, mullite, titania, etc., or spherical beads or glass fibers thereof. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and the like. These inorganic fillers may be used alone or in combination of two or more. Among them, fused silica and explosive silica are preferred, and spherical silica is more preferred from the viewpoint of the fluidity and permeability of the liquid resin composition for electronic components into fine gaps.

上記の(B)無機充填材の粒径は、特に球形シリカの場合、レーザー回折法でのピークが0.2μm以上20μm以下の範囲にあるものが好ましく、0.3μm以上10μm以下の範囲にあるものがより好ましく、0.3μ以上3μm以下の範囲にあるものが特に好ましい。平均粒径が0.2μm未満では液状樹脂への分散性に劣る傾向や粘度が高くなり流動特性に劣る傾向があり、20μmを超えると沈降を起こしやすくなる傾向や、電子部品用液状樹脂組成物としての微細間隙への浸透性・流動性が低下してボイド・未充填を招きやすくなる傾向がある。(B)無機充填材は、レーザー回折法でのピークが0.3μm以上のものであれば、3μm以下の小さな値のものほど、液状樹脂組成物の低粘度化を実現しながら、ブリード及びクリーピングの発生を抑制する効果が高くなる。したがって、半導体装置の信頼性向上を優先する場合には、レーザー回折法でのピークが0.3μ以上3μm以下の範囲にある無機充填材を使用するのが実用的である。   The particle size of the inorganic filler (B) is preferably in the range of 0.2 μm or more and 20 μm or less, particularly in the range of 0.3 μm or more and 10 μm or less, in the case of spherical silica, in which the peak by laser diffraction is preferably 0.2 μm or more and 20 μm or less. More preferably, those in the range of 0.3 μm or more and 3 μm or less are particularly preferred. If the average particle size is less than 0.2 μm, the dispersibility in the liquid resin tends to be inferior, and the viscosity tends to be high, and the flow characteristics tend to be inferior. If the average particle size exceeds 20 μm, sedimentation tends to occur, and the liquid resin composition for electronic parts In this case, the permeability and fluidity into the fine gaps are reduced, and voids and unfilling tend to occur. (B) If the peak of the inorganic filler is 0.3 μm or more in the laser diffraction method, the smaller the value of 3 μm or less, the lower the viscosity of the liquid resin composition while realizing the bleeding and The effect of suppressing the occurrence of leaping is increased. Therefore, when priority is given to improving the reliability of the semiconductor device, it is practical to use an inorganic filler whose peak in the laser diffraction method is in the range of 0.3 μm or more and 3 μm or less.

(C)レーザー回折法で100nm以下のピークを有する無機充填材としては、例えば、溶融シリカ、爆燃シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、酸化アルミナ等のアルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミ、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填材は単独で用いても2種類以上を組み合わせて用いてもよい。なかでも溶融シリカ及び爆燃シリカであることが好ましく、電子部品用液状樹脂組成物の微細間隙への流動性・浸透性の観点からは球形シリカであることがより好ましい。   (C) Examples of the inorganic filler having a peak of 100 nm or less in a laser diffraction method include silica such as fused silica, deflagrated silica, and crystalline silica, calcium carbonate, clay, alumina such as alumina oxide, silicon nitride, silicon carbide, and the like. Examples include powders of boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, and the like, or spherical beads or glass fibers thereof. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and the like. These inorganic fillers may be used alone or in combination of two or more. Among them, fused silica and explosive silica are preferred, and spherical silica is more preferred from the viewpoint of the fluidity and permeability of the liquid resin composition for electronic components into fine gaps.

(C)レーザー回折法で100nm以下のピークを有する無機充填材の粒径は、特に球形シリカの場合、レーザー回折法でのピークが50μm以下の範囲が好ましい。100nm以下であることにより、樹脂と無機充填材の分離を抑制することができ、低粘度化、ボイド、ブリード及びクリーピングの抑制及び良好なフィレット形成性を発現することができる。   (C) The particle size of the inorganic filler having a peak of 100 nm or less in the laser diffraction method is preferably in the range of 50 μm or less in the case of spherical silica, particularly in the case of spherical silica. When the thickness is 100 nm or less, separation of the resin and the inorganic filler can be suppressed, and low viscosity, suppression of voids, bleeding and creeping, and good fillet formation can be exhibited.

上記の(B)無機充填材と(C)無機充填材を合わせた無機充填材の含有量は、電子部品用液状樹脂組成物全体の67質量%以上77質量%以下の範囲であり、好ましくは68質量%以上75質量%以下である。配合量が67質量%以上とすることで熱膨張係数が小さくなり耐温度サイクル性に優れる傾向があるだけでなく、ボイドの発生を抑制することができ、さらに、ブリード及びクリーピングを十分に抑制することができる。77質量%以下とすることで、電子部品用液状樹脂組成物の粘度が上昇による流動性、浸透性およびディスペンス性の低下を十分に抑制することができる。また、前記(C)無機充填材の含有量は、電子部品用液状樹脂組成物全体に対して0.1〜10質量%であることが好ましい。(C)無機充填材の含有量が0.1質量%以上とすることで、電子部品用液状樹脂組成物の粘度の低減効果及びブリード及びクリーピングの抑制効果を発現させることができる。また、(C)無機充填材の含有量が10質量%以下とすることで、電子部品用液状樹脂組成物の粘度の増大による浸透性及びディスペンス性の低下を抑制することができる。   The content of the inorganic filler obtained by combining the inorganic filler (B) and the inorganic filler (C) is in a range of 67% by mass or more and 77% by mass or less of the whole liquid resin composition for electronic parts, and is preferably It is 68% by mass or more and 75% by mass or less. When the amount is 67% by mass or more, not only the coefficient of thermal expansion tends to be small and the temperature cycle resistance tends to be excellent, but also generation of voids can be suppressed, and bleeding and creeping can be sufficiently suppressed. can do. By setting the content to 77% by mass or less, it is possible to sufficiently suppress a decrease in fluidity, permeability, and dispensing property due to an increase in the viscosity of the liquid resin composition for electronic components. The content of the inorganic filler (C) is preferably 0.1 to 10% by mass based on the whole liquid resin composition for electronic components. (C) When the content of the inorganic filler is 0.1% by mass or more, the effect of reducing the viscosity of the liquid resin composition for electronic components and the effect of suppressing bleeding and creeping can be exhibited. Further, when the content of the inorganic filler (C) is 10% by mass or less, it is possible to suppress a decrease in permeability and dispensing property due to an increase in viscosity of the liquid resin composition for electronic components.

本発明の電子部品用液状樹脂組成物において、(A)樹脂として(A1)エポキシ樹脂と(A2)硬化剤とを含むエポキシ樹脂を使用する場合は、以下に説明する可撓化剤、界面活性剤、イオントラップ剤、効果促進剤、カップリング剤及び酸化防止剤の群から選ばれる少なくとも1種を含有することで、特性及び機能の一層の向上を図ることができる。   In the liquid resin composition for electronic components of the present invention, when an epoxy resin containing (A1) an epoxy resin and (A2) a curing agent is used as the resin (A), a flexible agent and a surfactant described below are used. By containing at least one selected from the group consisting of an agent, an ion trapping agent, an effect promoter, a coupling agent, and an antioxidant, properties and functions can be further improved.

可撓化剤は、耐熱衝撃性向上及び半導体素子への応力低減などの観点から配合することができる。可撓化剤の種類としては、特に制限は無いがゴム粒子が好ましく、それらを例示すれば、スチレン−ブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、ブタジエンゴム(BR)、ウレタンゴム(UR)、アクリルゴム(AR)等のゴム粒子が挙げられる。なかでも耐熱性、耐湿性の観点からアクリルゴムを含むゴム粒子が好ましく、コアシェル型アクリル系重合体、すなわちコアシェル型アクリルゴム粒子がより好ましい。   The flexibilizing agent can be blended from the viewpoint of improving thermal shock resistance and reducing stress on the semiconductor element. Although there is no particular limitation on the type of the flexibilizer, rubber particles are preferable, and examples thereof include styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), and urethane rubber ( UR) and rubber particles such as acrylic rubber (AR). Among them, rubber particles containing acrylic rubber are preferable from the viewpoint of heat resistance and moisture resistance, and core-shell type acrylic polymers, that is, core-shell type acrylic rubber particles are more preferable.

また、上記以外の可撓化剤としてシリコーンゴム粒子も好適に用いることができ、それらを例示すれば、直鎖状のポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等のポリオルガノシロキサンを架橋したシリコーンゴム粒子、シリコーンゴム粒子の表面をシリコーンレジンで被覆したもの、乳化重合等で得られる固形シリコーン粒子のコアとアクリル樹脂等の有機重合体のシェルからなるコア−シェル重合体粒子などが挙げられる。これらのシリコーン重合体粒子の形状は無定形であっても球形であっても使用することができるが、電子部品用液状樹脂組成物の成形性に関わる粘度を低く抑えるためには球形のものを用いることが好ましい。これらのシリコーン重合体粒子は東レ・ダウコーニング・シリコーン株式会社、信越化学株式会社等から市販品が入手可能である。   In addition, silicone rubber particles can also be suitably used as a flexibilizer other than those described above, and examples thereof include linear polydimethylsiloxane, polymethylphenylsiloxane, and polydiorganosiloxane such as polydiphenylsiloxane. Silicone rubber particles, those obtained by coating the surface of silicone rubber particles with a silicone resin, core-shell polymer particles comprising a core of solid silicone particles obtained by emulsion polymerization or the like and a shell of an organic polymer such as an acrylic resin. Can be The shape of these silicone polymer particles may be amorphous or spherical, but in order to reduce the viscosity related to the moldability of the liquid resin composition for electronic components, spherical particles should be used. Preferably, it is used. These silicone polymer particles are commercially available from Dow Corning Toray Silicone Co., Ltd. and Shin-Etsu Chemical Co., Ltd.

これらの可撓化剤の一次粒径は組成物を均一に変性するためには細かい方が良好であり、平均1次粒子径が0.05μm以上10μm以下の範囲であることが好ましく、0.1μm以上5μm以下の範囲であることが更に好ましい。平均粒径が0.05μm以上とすることで、液状エポキシ樹脂組成物への分散性の低下を抑制できる傾向にあり、10μm以下とすることで、低応力化改善効果が期待でき、また、電子部品用液状樹脂組成物としての微細間隙への浸透性や流動性の低下を抑制し、ボイド、未充填の発生を十分に抑制できる傾向にある。   The primary particle size of these flexibilizers is preferably finer in order to uniformly modify the composition, and the average primary particle size is preferably in the range of 0.05 μm or more and 10 μm or less. More preferably, it is in the range of 1 μm to 5 μm. When the average particle diameter is 0.05 μm or more, a decrease in dispersibility in the liquid epoxy resin composition tends to be suppressed, and when the average particle diameter is 10 μm or less, an effect of improving low stress can be expected. There is a tendency that a decrease in permeability and fluidity into a fine gap as a liquid resin composition for parts is suppressed, and the occurrence of voids and unfilled parts can be sufficiently suppressed.

これらの可撓化剤の配合量は、充填剤を除く電子部品用液状樹脂組成物全体の1質量%以上30質量%以下の範囲に設定されるのが好ましく、より好ましくは2質量%以上20質量%以下である。ゴム粒子の配合量が1質量%以上とすることで、低応力効果が期待でき、また、30質量%以下とすることで、電子部品用液状樹脂組成物の粘度上昇による成形性(流動特性)に低下を抑制できる。   The compounding amount of these flexible agents is preferably set in the range of 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, of the entire liquid resin composition for electronic components excluding the filler. % By mass or less. When the compounding amount of the rubber particles is 1% by mass or more, a low stress effect can be expected, and when the compounding amount is 30% by mass or less, moldability (flow characteristics) due to an increase in viscosity of the liquid resin composition for electronic components. Can be suppressed.

界面活性剤は、成形時のボイド低減や各種被着体への濡れ性向上による接着力向上の観点から配合することができる。界面活性剤の種類としては、特に制限はないが非イオン性の界面活性剤が好ましく、例えばポリオキシエチレンアルキルエーテル系、ポリオキシアルキレンアルキルエーテル系、ソルビタン脂肪酸エステル系、ポリオキシエチレンソルビタン脂肪酸エステル系、ポリオキシエチレンソルビトール脂肪酸エステル系、グリセリン脂肪酸エステル系、ポリオキシエチレン脂肪酸エステル系、ポリオキシエチレンアルキルアミン系、アルキルアルカノールアミド系、ポリエーテル変性シリコーン系、アラルキル変性シリコーン系、ポリエステル変性シリコーン系、ポリアクリル系などの界面活性剤が挙げられ、これらを単独で用いても2種以上組み合わせて用いてもよい。これらの界面活性剤はビックケミー・ジャパン株式会社、花王株式会社等から市販品が入手可能である。   Surfactants can be blended from the viewpoint of reducing voids during molding and improving adhesion by improving wettability to various adherends. The type of the surfactant is not particularly limited, but a nonionic surfactant is preferable, for example, a polyoxyethylene alkyl ether type, a polyoxyalkylene alkyl ether type, a sorbitan fatty acid ester type, a polyoxyethylene sorbitan fatty acid ester type , Polyoxyethylene sorbitol fatty acid ester type, glycerin fatty acid ester type, polyoxyethylene fatty acid ester type, polyoxyethylene alkylamine type, alkyl alkanolamide type, polyether modified silicone type, aralkyl modified silicone type, polyester modified silicone type, poly A surfactant such as an acrylic surfactant may be used, and these may be used alone or in combination of two or more. These surfactants are commercially available from Big Chemie Japan K.K. and Kao K.K.

また、界面活性剤としてシリコーン変性エポキシ樹脂を添加することができる。シリコーン変性エポキシ樹脂はエポキシ基と反応する官能基を有するオルガノシロキサンとエポキシ樹脂との反応物として得ることができるが、常温で液状であることが好ましい。ここでエポキシ基と反応する官能基を有するオルガノシロキサンを例示すれば、アミノ基、カルボキシル基、水酸基、フェノール性水酸基、メルカプト基等を1分子中に1個以上有するジメチルシロキサン、ジフェニルシロキサン、メチルフェニルシロキサン等が挙げられる。該オルガノシロキサンの重量平均分子量としては500以上5000以下の範囲が好ましい。この理由としては500未満では樹脂系との相溶性が良くなり過ぎて添加剤としての効果が発揮されず、5000を超えると樹脂系に非相溶となるためシリコーン変性エポキシ樹脂が成形時に分離・しみ出しを発生し、接着性や外観を損なうためである。シリコーン変性エポキシ樹脂を得るためのエポキシ樹脂としては電子部品用液状樹脂組成物の樹脂系に相溶するものであれば特に制限は無く、電子部品用液状樹脂組成物に一般に使用されているエポキシ樹脂を用いることができ、たとえば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ナフタレンジオール、水添ビスフェノールA等とエピクロルヒドリンの反応により得られるグリシジルエーテル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類とを縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したノボラック型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよいが、常温液状のものが好ましい。   Further, a silicone-modified epoxy resin can be added as a surfactant. The silicone-modified epoxy resin can be obtained as a reaction product between an organosiloxane having a functional group that reacts with an epoxy group and the epoxy resin, but is preferably liquid at room temperature. Examples of the organosiloxane having a functional group that reacts with an epoxy group include dimethylsiloxane, diphenylsiloxane, and methylphenyl having one or more amino groups, carboxyl groups, hydroxyl groups, phenolic hydroxyl groups, and mercapto groups in one molecule. Siloxane and the like. The weight average molecular weight of the organosiloxane is preferably in the range of 500 or more and 5000 or less. The reason for this is that if it is less than 500, the compatibility with the resin system becomes too good and the effect as an additive is not exhibited. If it exceeds 5000, it becomes incompatible with the resin system and the silicone-modified epoxy resin separates during molding. This is because oozing occurs and the adhesiveness and appearance are impaired. The epoxy resin for obtaining the silicone-modified epoxy resin is not particularly limited as long as it is compatible with the resin system of the liquid resin composition for electronic components, and the epoxy resin generally used in the liquid resin composition for electronic components And glycidyl ether-type epoxy resins and ortho-cresol novolak-type epoxy resins obtained by the reaction of bisphenol A, bisphenol F, bisphenol AD, bisphenol S, naphthalene diol, hydrogenated bisphenol A, etc. with epichlorohydrin. Novolak epoxy resin obtained by condensing or co-condensing phenols and aldehydes to be obtained, epoxidized novolak resin, glycidyl ester type obtained by reaction of polybasic acid such as phthalic acid, dimer acid and epichlorohydrin Glycidylamine-type epoxy resins obtained by the reaction of epichlorohydrin with polyamines such as oxy resin, diaminodiphenylmethane and isocyanuric acid, linear aliphatic epoxy resins obtained by oxidizing olefin bonds with a peracid such as peracetic acid, and alicyclic epoxy Resins and the like may be used, and these may be used alone or in combination of two or more, but a liquid at room temperature is preferable.

界面活性剤の添加量は電子部品用液状樹脂組成物全体に対して、0.01質量%以上1.5質量%以下が好ましく、0.05質量%以上1質量%以下がより好ましい。0.01質量%以上であると十分な添加効果が得ることができ、1.5質量%以下であると硬化時に硬化物表面から発生する染み出しが発生しにくく、染み出しによる接着力の低下を抑制できる傾向がある。   The addition amount of the surfactant is preferably from 0.01% by mass to 1.5% by mass, and more preferably from 0.05% by mass to 1% by mass, based on the whole liquid resin composition for electronic components. When the content is 0.01% by mass or more, a sufficient addition effect can be obtained, and when the content is 1.5% by mass or less, exudation generated from the surface of the cured product at the time of curing is unlikely to occur, and the adhesive force is reduced due to exudation. Tend to be suppressed.

本発明の電子部品用液状樹脂組成物において(A)樹脂として好適なエポキシ樹脂を有する場合は、配線板および半導体装置への適用時における充填性や流動性を損なわない範囲で必要に応じてイオントラップ剤を耐マイグレーション性、耐湿性及び高温放置特性を向上させる観点から含有することができる。イオントラップ剤としては特に制限はなく、従来公知のものを用いることができ、特に下記組成式(I)で表されるハイドロタルサイトまたは(II)で表されるビスマスの含水酸化物が好ましい。   When the liquid resin composition for an electronic component of the present invention has an epoxy resin suitable as the resin (A), the resin may be ion-exchanged as necessary within a range that does not impair the filling property and fluidity when applied to a wiring board and a semiconductor device. A trapping agent can be contained from the viewpoint of improving migration resistance, moisture resistance and high-temperature storage characteristics. The ion trapping agent is not particularly limited, and a conventionally known ion trapping agent can be used. In particular, a hydrotalcite represented by the following composition formula (I) or a hydrated oxide of bismuth represented by the following formula (II) is preferable.

(化1)
Mg1−XAl(OH)(COX/2・mHO (I)
(式(I)中、0<X≦0.5、mは正の数。)
(化2)
BiO(OH)(NO (II)
(式(II)中、0.9≦x≦1.1、0.6≦y≦0.8、0.2≦z≦0.4)
(Formula 1)
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (I)
(In the formula (I), 0 <X ≦ 0.5, m is a positive number.)
(Formula 2)
BiO x (OH) y (NO 3 ) z (II)
(In the formula (II), 0.9 ≦ x ≦ 1.1, 0.6 ≦ y ≦ 0.8, 0.2 ≦ z ≦ 0.4)

これらイオントラップ剤の添加量としては電子部品用液状樹脂組成物全体の0.1質量%以上3.0質量%以下が好ましく、さらに好ましくは0.3質量%以上1.5質量%以下である。イオントラップ剤の平均粒径は0.1μm以上3.0μm以下が好ましく、最大粒径は10μm以下が好ましい。なお、上記式(I)の化合物は市販品としてDHT−4A(協和化学工業株式会社、商品名)として入手可能である。また、上記式(II)の化合物は市販品としてIXE500(東亞合成株式会社、商品名)として入手可能である。また必要に応じてその他の陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができる。たとえば、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。   The addition amount of these ion trapping agents is preferably 0.1% by mass or more and 3.0% by mass or less, more preferably 0.3% by mass or more and 1.5% by mass or less of the whole liquid resin composition for electronic parts. . The average particle size of the ion trapping agent is preferably 0.1 μm or more and 3.0 μm or less, and the maximum particle size is preferably 10 μm or less. The compound of the above formula (I) is commercially available as DHT-4A (Kyowa Chemical Industry Co., Ltd., trade name). The compound of the above formula (II) is commercially available as IXE500 (trade name of Toagosei Co., Ltd.). If necessary, other anion exchangers can be added. The anion exchanger is not particularly limited, and a conventionally known anion exchanger can be used. Examples include hydrated oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony and the like, and these can be used alone or in combination of two or more.

本発明の(A)樹脂として好適なエポキシ樹脂に用いられる硬化促進剤は、(A1)成分の液状エポキシ樹脂と(A2)成分の液状芳香族アミンを含む硬化剤の反応を促進するものであれば特に制限はなく、従来公知のものを用いることができるが、これらを例示すれば1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジルー2−フェニルイミダゾール、1−ベンジルー2−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジン、2−ヘプタデシルイミダゾール等のイミダゾール化合物、トリブチルホスフィン等のトリアルキルホスフィン、ジメチルフェニルホスフィン等のジアルキルアリールホスフィン、メチルジフェニルホスフィン等のアルキルジアリールホスフィン、トリフェニルホスフィン、アルキル基置換トリフェニルホスフィンなどの有機ホスフィン類、及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、及びこれらの誘導体、さらには2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のフェニルボロン塩などが挙げられ、これらの1種を単独で用いても2種以上を組合わせて用いてもよい。また、潜在性を有する硬化促進剤として、常温固体のアミノ基を有する化合物をコアとして、常温固体のエポキシ化合物のシェルを被覆してなるコア−シェル粒子が挙げられ、市販品としてアミキュア(味の素株式会社、商品名)や、マイクロカプセル化されたアミンをビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂に分散させたノバキュア(旭化成ケミカルズ株式会社、商品名)などが使用できる。   The curing accelerator used for the epoxy resin suitable as the resin (A) of the present invention is one that promotes the reaction between the liquid epoxy resin of the component (A1) and the curing agent containing the liquid aromatic amine of the component (A2). There is no particular limitation, and conventionally known ones can be used. Examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7,1,5-diaza-bicyclo (4, Cycloamidine compounds such as 3,0) nonene, 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol Tertiary amine compounds such as tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-ethyl-4-methylimidazole, Nilimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 Imidazole compounds such as hydroxymethylimidazole, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine, 2-heptadecylimidazole, trialkylphosphine such as tributylphosphine, and dimethyl Organic phosphines such as dialkylarylphosphines such as phenylphosphine, alkyldiarylphosphines such as methyldiphenylphosphine, triphenylphosphine, alkyl-substituted triphenylphosphine, and the like. Formic acid, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone Quinone compounds such as 2,3-dimethoxy-1,4-benzoquinone and phenyl-1,4-benzoquinone, and compounds having an intramolecular polarization obtained by adding a compound having a π bond such as diazophenylmethane and phenol resin; And derivatives thereof, furthermore, phenylboron salts such as 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate, and the like. They may be used in combination. Examples of the latent curing accelerator include core-shell particles obtained by coating a room temperature solid epoxy compound shell with a room temperature solid amino group-containing compound as a core, and Amicure (Ajinomoto Co., Ltd.) is a commercially available product. Novacure (trade name, Asahi Kasei Chemicals Co., Ltd.) in which a microencapsulated amine is dispersed in a bisphenol A type epoxy resin and a bisphenol F type epoxy resin.

なかでも、硬化促進作用と信頼性のバランスの観点からイミダゾール誘導体が好ましく、フェニル基及び水酸基を置換基として有するイミダゾール誘導体である2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールやマイクロカプセル化されたアミンをビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂に分散させて潜在性を付与したノバキュア(旭化成ケミカルズ株式会社、商品名)がより好ましく、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールがさらに好ましい。   Among them, imidazole derivatives are preferable from the viewpoint of the balance between the curing promoting action and reliability, and 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-imidazole derivatives having a phenyl group and a hydroxyl group as substituents. Novacure (Asahi Kasei Chemicals Corporation, trade name) in which methyl-5-hydroxymethylimidazole or a microencapsulated amine is dispersed in a bisphenol A type epoxy resin and a bisphenol F type epoxy resin to impart a potential is more preferable. -Phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are more preferred.

硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、全エポキシ樹脂の重量に対して0.2質量%〜5質量%の範囲が好ましく、0.5質量%〜3質量%の範囲がより好ましい。0.2質量%以上とすることで硬化促進剤の十分な添加効果を得ることができるため、成形時のボイドの発生をより十分に抑制できるとともに、反り低減効果も十分になる傾向があり、5質量%以下とすることで保存安定性の低下を懸念しなくてもよくなる。   The amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is preferably in the range of 0.2% by mass to 5% by mass based on the total weight of the epoxy resin. A range of 0.5% by mass to 3% by mass is more preferable. When the content is 0.2% by mass or more, a sufficient effect of adding the curing accelerator can be obtained, so that the generation of voids during molding can be more sufficiently suppressed, and the effect of reducing warpage tends to be sufficient. When the content is 5% by mass or less, there is no need to worry about a decrease in storage stability.

本発明の電子部品用液状樹脂組成物において(A)樹脂として好適なエポキシ樹脂を用いる場合は、必要に応じて、樹脂と無機充填材或いは樹脂と電子部品の構成部材との界面接着を強固にする目的でカップリング剤を使用することができる。これらのカップリング剤には特に制限はなく、従来公知のものを用いることができるが、たとえば、1級及び/又は2級及び/又は3級アミノ基を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物などが挙げられる。これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アニリノプロピルトリメトキシシラン、γ−(N−エチル)アニリノプロピルトリメトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アニリノプロピルトリエトキシシラン、γ−(N−エチル)アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、γ−(N−メチル)アニリノプロピルメチルジメトキシシラン、γ−(N−エチル)アニリノプロピルメチルジメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらの1種を単独で用いても2種類以上を組み合わせて用いてもよい。   When a suitable epoxy resin is used as the resin (A) in the liquid resin composition for an electronic component of the present invention, if necessary, the interfacial adhesion between the resin and the inorganic filler or between the resin and the components of the electronic component is strengthened. A coupling agent can be used for the purpose. These coupling agents are not particularly limited, and conventionally known coupling agents can be used. For example, silane compounds having primary and / or secondary and / or tertiary amino groups, epoxy silane, mercapto silane, Examples include various silane compounds such as alkylsilane, ureidosilane, and vinylsilane, titanium compounds, aluminum chelates, and aluminum / zirconium compounds. Examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycol. Sidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyl Triethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropyltrimethoxy Silane, γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxysilane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N -Ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N-dibutyl) amino Propyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxysilane, γ- (N, N-diethyl) aminopropylmethyldimethoxysilane, γ- (N, N-dibutyl) aminopropyl Methyldimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ) Silane coupling agents such as ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, and isopropyl Triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctane Rubis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, Isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate And the like. Titanate-based coupling agents such as The seeds may be used alone or in combination of two or more.

本発明の電子部品用液状樹脂組成物において(A)樹脂として好適なエポキシ樹脂を用いる場合は、酸化防止剤を用いることができる。酸化防止剤としては従来公知のものを用いることができ、例えばフェノール化合物系酸化防止剤でフェノール核のオルト位に少なくとも1つのアルキル基を有する化合物としては、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2´−メチレンビス−(4−メチル−6−t−ブチルフェノール)、3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、4,4´−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、4,4´−チオビス(6−t−ブチル−3−メチルフェノール)、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N´−ヘキサメチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオンアミド]、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、4,6−ビス(ドデシルチオメチル)−o−クレゾール、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム、2,4−1ビス[(オクチルチオ)メチル]−o−クレゾール、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1,3,2]ジオキサホスフェピン、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ−t−ペンチルフェニル)エチル]−4,6−ジ−t−ペンチルフェニルアクリレート、2,2´−メチレンビス−(4−エチル−6−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、トリエチレングリコール−ビス[3−(3−t−ブチル―4−ヒドロキシ―5−メチルフェニル)プロピオネート]、トリス(3,5−ジ―t−ブチル―4ヒドロキシベンジル)イソシアヌレート、ジエチル[〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル]ホスホネート、2,5,7,8−テトラメチル―2(4´,8´,12´−トリメチルトリデシル)クロマン―6―オール、2,4−ビス―(n−オクチルチオ)−6−(4−ヒドロキシ―3,5−ジ―t−ブチルアニリノ)−1,3,5−トリアジンなどが挙げられる。ジシクロヘキシルアミンとしてはD−CHA−T(新日本理化株式会社、商品名)等が市販品として入手可能であり、その誘導体としては亜硝酸ジシクロヘキシルアミンアンモニウム、N,N−ジ(3−メチル−シクロヘキシルアミン)、N,N−ジ(2−メトキシ−シクロヘキシル)アミン、N,N−ジ(4−ブロモ−シクロヘキシル)アミンなどが挙げられる。有機硫黄化合物系酸化防止剤としてはジラウリル―3,3´−チオジプロピオネート、ジミリスチル―3,3´−チオジプロピオネート、ジステアリル―3,3´−チオジプロピオネート、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)、ジトリデシル―3,3´−チオジプロピオネート、2−メルカプトベンズイミダゾール、4,4´−チオビス(6−t−ブチル−3−メチルフェノール)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、4,6−ビス(ドデシルチオメチル)−o−クレゾール、2,4−1ビス[(オクチルチオ)メチル]−o−クレゾール、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジンなど、アミン化合物系酸化防止剤としてはN,N´−ジアリル−p−フェニレンジアミン、N,N´−ジ−sec−ブチル―p−フェニレンジアミン、オクチル化ジフェニルアミン、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジンなど、リン化合物系酸化防止剤としてはトリスノニルフェニルフォスファイト、トリフェニルフォスファイト、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−[〔2,4,8,10−テトラキス(1,1−ジメチルエ−テル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル〕オキシ]−N,N−ビス[2−{〔2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル〕オキシ}−エチル]エタナミン、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1,3,2]ジオキサホスフェピン、ジエチル[〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル]ホスホネートなどが挙げられる。これらの1種を単独で用いても2種類以上を組み合わせて用いてもよい。なお、前記フェノール化合物系酸化防止剤の中には、フェノール水酸基に加え、リン原子、硫黄原子、アミンのいずれかを少なくとも一つ以上同一分子中に含む化合物は重複して挙げた。   When an epoxy resin suitable as the resin (A) is used in the liquid resin composition for electronic components of the present invention, an antioxidant can be used. As the antioxidant, a conventionally known one can be used. For example, as a compound having at least one alkyl group at an ortho position of a phenol nucleus in a phenolic compound-based antioxidant, 2,6-di-t-butyl- 4-methylphenol, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-t-butylphenol), 3, 9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5 .5] undecane, 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-) Hydroxyphenyl) propionate], N, N'-hexamethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionamide], isooctyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 4,6-bis (dodecylthio Methyl) -o-cresol, calcium bis (3,5-di-t-butyl-4-hydroxybenzylphosphonate) calcium, 2,4-1 bis [(octylthio) methyl] -o-cresol 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1,3,2] dioxaphosphepin, 2-t-butyl-6- (3-t-butyl- 2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl Acrylate, 2,2'-methylenebis- (4-ethyl-6-t-butylphenol), 2,6-di-t-butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4- Hydroxy-5-t-butylphenyl ) Butane, triethylene glycol-bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate, 2,5,7,8-tetramethyl-2 (4 ', 8', 12'-trimethyltridecyl ) Chroman-6-ol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine and the like. As dicyclohexylamine, D-CHA-T (Nippon Rika Co., Ltd., trade name) and the like are commercially available, and as its derivatives, dicyclohexylamine ammonium nitrite, N, N-di (3-methyl-cyclohexyl) Amine), N, N-di (2-methoxy-cyclohexyl) amine, N, N-di (4-bromo-cyclohexyl) amine and the like. Examples of the organic sulfur compound antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and pentaerythrityltetrakis. (3-laurylthiopropionate), ditridecyl-3,3'-thiodipropionate, 2-mercaptobenzimidazole, 4,4'-thiobis (6-t-butyl-3-methylphenol), 2,2 -Thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,6-bis (dodecylthiomethyl) -o-cresol, 2,4-1bis [( Octylthio) methyl] -o-cresol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- Examples of amine compound-based antioxidants such as 1,3,5-triazine include N, N′-diallyl-p-phenylenediamine, N, N′-di-sec-butyl-p-phenylenediamine, octylated diphenylamine, , 4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine and the like; Phytite, triphenylphosphite, calcium bis (3,5-di-t-butyl-4-hydroxybenzylphosphonate) calcium, tris (2,4-di-t-butylphenyl) phosphite, 2-[[2 , 4,8,10-Tetrakis (1,1-dimethylether) dibenzo [d, f] [1,3,2] dioxaphosphepin-6-yl] oxy] -N, N-bi [2-{[2,4,8,10-tetrakis (1,1 dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphepin-6-yl] oxy} -ethyl] Ethanamine, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1,3,2 ] Dioxaphosphepin, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate and the like. One of these may be used alone, or two or more may be used in combination. In the phenolic compound antioxidants, compounds containing at least one of a phosphorus atom, a sulfur atom, and an amine in the same molecule in addition to a phenolic hydroxyl group are repeatedly described.

本発明の電子部品用液状樹脂組成物として用いる液状封止用エポキシ樹脂組成物又はアクリル樹脂等の液状樹脂組成物には、低粘度化のために必要に応じて(D)溶剤を配合することができる。特に、エポキシ樹脂組成物の一成分として固体のエポキシ樹脂及び硬化剤を用いる場合には、液状の組成物を得るために、溶剤を配合することが必要である。   A liquid resin composition such as an epoxy resin composition for liquid encapsulation or an acrylic resin used as the liquid resin composition for an electronic component of the present invention may be mixed with a solvent (D) as necessary to reduce the viscosity. Can be. In particular, when a solid epoxy resin and a curing agent are used as one component of the epoxy resin composition, it is necessary to mix a solvent in order to obtain a liquid composition.

(D)溶剤としては、特に制限はないが、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルアセテート等のグリコールエーテル系溶剤、ブチロラクトン、バレロラクトン、カプロラクトン等のラクトン系溶剤、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶剤、トルエン、キシレンなど有機溶剤が挙げられ、これらの1種を単独で用いても2種以上を組合わせて用いてもよい。これらの中では加熱硬化時の急激な揮発による気泡形成を避ける観点からは沸点が170℃以上の溶剤が好ましい。   (D) The solvent is not particularly limited, but alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol ethyl ether; ethylene glycol methyl ether; Glycol ether solvents such as glycol butyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether acetate, butyrolactone, valerolactone, lactone solvents such as caprolactone, dimethylacetamide, dimethylformamide and the like Examples include amide solvents, organic solvents such as toluene and xylene, and two or more organic solvents may be used alone. The may be used in combination. Among them, a solvent having a boiling point of 170 ° C. or more is preferable from the viewpoint of avoiding the formation of bubbles due to rapid volatilization during heat curing.

有機溶剤の配合は、気泡を形成しない量であれば特に制限はないが、液状封止用エポキシ樹脂組成物又はアクリル樹脂等のその他の樹脂組成物に対して10質量%以下とすることが好ましく、5質量%以下がより好ましい。   The blending of the organic solvent is not particularly limited as long as it does not form bubbles, but is preferably 10% by mass or less based on the epoxy resin composition for liquid sealing or other resin compositions such as acrylic resin. , And more preferably 5% by mass or less.

本発明の電子部品用液状樹脂組成物として用いる液状封止用エポキシ樹脂組成物又はアクリル樹脂等の液状樹脂組成物には、その他の添加剤として、染料、カーボンブラック等の着色剤、希釈剤、レベリング剤、消泡剤などを必要に応じて配合することができる。   Liquid resin composition for liquid sealing epoxy resin composition or acrylic resin used as the liquid resin composition for electronic components of the present invention, as other additives, dyes, coloring agents such as carbon black, diluents, A leveling agent, an antifoaming agent and the like can be added as required.

本発明の電子部品用液状樹脂組成物は、上記各種成分を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の成分を秤量し、らいかい機、ミキシングロール、プラネタリミキサ等を用いて混合、混練し、必要に応じて脱泡することによって得ることができる。   The liquid resin composition for electronic components of the present invention can be prepared by any method as long as the above-mentioned various components can be uniformly dispersed and mixed.As a general method, a predetermined amount of components is weighed. It can be obtained by mixing and kneading using a grinder, a mixing roll, a planetary mixer and the like, and defoaming as necessary.

本発明で得られる電子部品用液状樹脂組成物により素子を封止して得られる電子部品装置としては、リードフレーム、配線済みのテープキャリア、リジッド及びフレキシブル配線板、ガラス、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などの素子を搭載し、必要な部分を本発明の電子部品用液状樹脂組成物で封止して得られる電子部品装置などが挙げられる。特にリジッド及びフレキシブル配線板やガラス上に形成した配線に半導体素子がバンプによって接続されたフリップチップボンディングした半導体装置が対象となる。具体的な例としてはフリップチップBGA/LGAやCOF(Chip On Film)等の半導体装置が挙げられ、本発明で得られる電子部品用液状樹脂組成物は信頼性に優れたフリップチップ用のアンダーフィル材として好適である。本発明の電子部品用液状樹脂組成物が特に好適なフリップチップの分野としては、配線基板と半導体素子を接続するバンプ材質が従来の鉛含有はんだではなく、Sn−Ag−Cu系などの鉛フリーはんだを用いたフリップチップ半導体部品であり、従来の鉛はんだと比較して物性的に脆い鉛フリーはんだバンプ接続をしたフリップチップに対しても良好な信頼性を維持できる。さらには、半導体素子のサイズが長い方の辺で2mm以上である素子に対して好適であり、電子部品を構成する配線基板と半導体素子のバンプ接続面の距離が200μm以下であるフリップチップ接続に対しても良好な流動性と充填性を示し、耐湿性、耐熱衝撃性等の信頼性にも優れた半導体装置を提供することができる。また、近年半導体素子の高速化に伴い低誘電率の層間絶縁膜が半導体素子に形成されているが、これら低誘電絶縁体は機械強度が弱く、外部からの応力で破壊する故障が発生し易い。この傾向は素子が大きくなる程顕著になり、アンダーフィル材からの応力低減が求められており、半導体素子のサイズが長い方の辺で2mm以上であり、誘電率3.0以下の誘電体層を有する半導体素子を搭載するフリップチップ半導体装置に対しても優れた信頼性を提供できる。   The electronic component device obtained by sealing the element with the liquid resin composition for electronic components obtained by the present invention includes a support member such as a lead frame, a wired tape carrier, a rigid and flexible wiring board, glass, and a silicon wafer. On which active elements such as semiconductor chips, transistors, diodes, thyristors, etc., and passive elements such as capacitors, resistors, resistor arrays, coils, switches, etc. are mounted. An electronic component device obtained by sealing with an object is exemplified. In particular, the present invention is applied to a flip-chip bonded semiconductor device in which a semiconductor element is connected to a wiring formed on a rigid or flexible wiring board or glass by a bump. Specific examples include semiconductor devices such as flip chip BGA / LGA and COF (Chip On Film). The liquid resin composition for electronic components obtained by the present invention is a highly reliable underfill for flip chip. It is suitable as a material. In the field of the flip chip in which the liquid resin composition for electronic parts of the present invention is particularly suitable, the bump material for connecting the wiring board and the semiconductor element is not a conventional lead-containing solder but a lead-free material such as Sn-Ag-Cu. It is a flip-chip semiconductor component using solder, and can maintain good reliability even for a flip-chip connected to a lead-free solder bump that is physically brittle compared to conventional lead solder. Further, it is suitable for an element in which the size of the semiconductor element is 2 mm or more on the longer side, and is suitable for flip-chip connection in which the distance between the wiring board forming the electronic component and the bump connection surface of the semiconductor element is 200 μm or less. In addition, it is possible to provide a semiconductor device which exhibits good fluidity and filling properties, and also has excellent reliability such as moisture resistance and thermal shock resistance. Further, in recent years, a low dielectric constant interlayer insulating film has been formed on a semiconductor element with the speeding up of the semiconductor element. However, these low dielectric insulators have low mechanical strength and are liable to be broken down by external stress. . This tendency becomes more remarkable as the element becomes larger, and it is required to reduce the stress from the underfill material, and the length of the semiconductor element is 2 mm or more on the longer side and the dielectric layer has a dielectric constant of 3.0 or less. Excellent reliability can also be provided for a flip-chip semiconductor device on which a semiconductor element having the above is mounted.

本発明の電子部品用液状樹脂組成物を用いて素子を封止する方法としては、ディスペンス方式、注型方式、印刷方式等が挙げられる。本発明において、リジッド及びフレキシブル配線板やガラス上に形成した配線に半導体素子をバンプ接続によるフリップチップボンディングした半導体装置を対象とする場合は、主にディスペンス方式による充填を行って半導体素子を封止する。   Examples of a method for sealing an element using the liquid resin composition for an electronic component of the present invention include a dispensing method, a casting method, and a printing method. In the present invention, when a semiconductor device in which a semiconductor element is flip-chip bonded by bump connection to a wiring formed on a rigid or flexible wiring board or glass, the semiconductor element is mainly sealed by performing filling by a dispense method. I do.

次に実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例および比較例において行った特性試験の試験方法を以下にまとめて示す。なお、使用した電子部品用液状樹脂組成物の粘度及び含浸時間の測定、ボイドの観察、ブリード観察及びクリーピング観察は以下の方法及び条件で行った。   The test methods of the characteristic tests performed in the examples and comparative examples are summarized below. The measurement of the viscosity and impregnation time, the observation of voids, the observation of bleed, and the observation of creeping of the used liquid resin composition for electronic parts were performed by the following methods and conditions.

評価に用いた半導体装置は、素子はサイズ20×20×0.725tmm、バンプは鉛フリーはんだ、バンプピッチは150μm、バンプ個数は14884個で、基板はサイズ35×35×1tmm、コアはE−679FG(G)(日立化成株式会社、商品名)、ソルダーレジストはAUS703(太陽インキ製造株式会社、商品名)である。 In the semiconductor device used for evaluation, the element size was 20 × 20 × 0.725 tmm, the bumps were lead-free solder, the bump pitch was 150 μm, the number of bumps was 14884, the substrate was 35 × 35 × 1 tmm, and the core was E- 679FG (G) (Hitachi Chemical Co., Ltd., trade name) and solder resist is AUS703 (Taiyo Ink Manufacturing Co., Ltd., trade name).

半導体装置は、電子部品用液状樹脂組成物をディスペンス方式でアンダーフィルし、165℃で2時間硬化することで作製した。また、各種試験片の硬化条件も同様な条件で行った。   The semiconductor device was manufactured by underfilling the liquid resin composition for electronic components by a dispense method and curing the composition at 165 ° C. for 2 hours. In addition, curing conditions of various test pieces were performed under the same conditions.

作製した実施例及び比較例の電子部品用液状樹脂組成物を次の各試験により評価した。評価結果を下記表2に示す。
(1)粘度
電子部品用液状樹脂組成物の110℃での粘度をレオメータ(TAインスツルメント、AR2000)を用いて測定した。
(2)含浸時間
半導体装置を110℃に加熱したホットプレート上に置き、デイスペンサーを用いて電子部品用液状樹脂組成物の所定量をチップの側面(1辺)に滴下し、樹脂組成物が対向する側面に浸透するまでの時間を測定した。
(3)ボイド観察
電子部品用液状樹脂組成物をアンダーフィルして作製した半導体装置の内部を超音波探傷装置AT−5500(日立建機株式会社)で観察し、ボイドの有無を調べた。
(4)ブリード観察
電子部品用液状樹脂組成物をアンダーフィルして作製した半導体装置のフィレットと接する基板をマイクロスコープで観察し、樹脂の滲み出し長さを測定した。
(5)クリーピング観察
電子部品用液状樹脂組成物をアンダーフィルして作製した半導体装置の半導体素子裏面をマイクロスコープで観察し、樹脂の滲み出し長さを測定した。
The prepared liquid resin compositions for electronic parts of Examples and Comparative Examples were evaluated by the following tests. The evaluation results are shown in Table 2 below.
(1) Viscosity The viscosity of the liquid resin composition for electronic components at 110 ° C. was measured using a rheometer (TA Instruments, AR2000).
(2) Impregnation time The semiconductor device is placed on a hot plate heated to 110 ° C., and a predetermined amount of the liquid resin composition for electronic components is dropped on a side surface (one side) of the chip by using a dispenser. The time to penetrate the opposite side was measured.
(3) Observation of Void The inside of a semiconductor device produced by underfilling the liquid resin composition for electronic components was observed with an ultrasonic flaw detector AT-5500 (Hitachi Construction Machinery Co., Ltd.) to check for voids.
(4) Bleed Observation A substrate in contact with a fillet of a semiconductor device manufactured by underfilling a liquid resin composition for electronic components was observed with a microscope, and the bleeding length of the resin was measured.
(5) Observation of creeping The back surface of the semiconductor element of the semiconductor device produced by underfilling the liquid resin composition for electronic parts was observed with a microscope, and the oozing length of the resin was measured.

(実施例1〜8、比較例1〜2)
液状エポキシ樹脂としてビスフェノールFをエポキシ化して得られるエポキシ当量160の液状ジエポキシ樹脂(エポキシ樹脂1)、アミノフェノールをエポキシ化して得られるエポキシ当量95の3官能液状エポキシ樹脂(エポキシ樹脂2)、硬化剤として活性水素当量45のジエチルトルエンジアミン(硬化剤)、硬化促進剤として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(硬化促進剤)、可撓化剤としてジメチル型固形シリコーンゴム粒子の表面がエポキシ基で修飾された平均粒径2μmの球状のシリコーン粒子、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン、着色剤としてカーボンブラック(三菱化学株式会社、商品名MA‐100)、イオントラップ剤としてビスマス系イオントラップ剤(東亞合成株式会社、商品名IXE−500)、酸化防止剤として3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、無機充填材1としてレーザー回折法でのピーク3μmの球状シリカ、無機充填材2としてレーザー回折法でのピーク0.3μmの球状シリカ、無機充填材3としてレーザー回折法でのピーク10μmの球状シリカ、無機充填材4としてレーザー回折法でのピーク10nmの球状シリカ、無機充填材5としてレーザー回折法でのピーク20nmの球状シリカ、無機充填材6としてレーザー回折法でのピーク50nmの球状シリカ、無機充填材7としてレーザー回折法でのピーク100nmの球状シリカ、無機充填材8としてレーザー回折法でのピーク250nmの球状シリカをそれぞれ下記表1に示す組成で配合し、三本ロール及び減圧可能な擂潰機にて混練分散した後、実施例1〜8及び比較例1、2の電子部品用液状樹脂組成物を作製した。表1に示す電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して70質量%である。
(Examples 1 to 8, Comparative Examples 1 and 2)
As liquid epoxy resin, a liquid diepoxy resin having an epoxy equivalent of 160 obtained by epoxidizing bisphenol F (epoxy resin 1), a trifunctional liquid epoxy resin having an epoxy equivalent of 95 obtained by epoxidizing aminophenol (epoxy resin 2), and a curing agent As an active hydrogen equivalent of 45, diethyltoluenediamine (curing agent), a curing accelerator, 2-phenyl-4-methyl-5-hydroxymethylimidazole (curing accelerator), and a surface of dimethyl-type solid silicone rubber particles as a flexible agent. Are spherical silicone particles having an average particle diameter of 2 μm modified with an epoxy group, γ-glycidoxypropyltrimethoxysilane as a coupling agent, and carbon black as a coloring agent (Mitsubishi Chemical Corporation, trade name MA-100) , Bismuth-based ion traps as ion trapping agents 3,9-Bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy]-as an antioxidant 1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, spherical silica having a peak of 3 μm in laser diffraction method as inorganic filler 1, laser diffraction as inorganic filler 2 , A spherical silica having a peak of 10 μm in a laser diffraction method as an inorganic filler 3, an inorganic filler 4, a spherical silica having a peak of 10 nm in a laser diffraction method, and a laser diffraction method as an inorganic filler 5. Silica having a peak of 20 nm in the sample, spherical silica having a peak of 50 nm in the laser diffraction method as the inorganic filler 6, and peaking in the laser diffraction method as the inorganic filler 7. 100 nm of spherical silica and 250 nm of spherical silica by laser diffraction method as the inorganic filler 8 were respectively blended in the composition shown in Table 1 and kneaded and dispersed with a three-roll mill and a crusher capable of reducing pressure. The liquid resin compositions for electronic components of Examples 1 to 8 and Comparative Examples 1 and 2 were produced. In the liquid resin composition for electronic components shown in Table 1, the content of the inorganic filler is 70% by mass with respect to the whole liquid resin composition for electronic components.

Figure 0006656792
単位:質量部
Figure 0006656792
Unit: parts by mass

各種評価結果を下記表2に示す。   Various evaluation results are shown in Table 2 below.

Figure 0006656792
Figure 0006656792

本発明における(C)レーザー回折法で100nm以下のピークを有する無機充填材(無機充填材4〜7)を含まない比較例1では粘度が高いため含浸時間が長くなった。また流動先端の乱れに起因すると考えられるボイドが見られた。これに対し、無機充填材1を適用した実施例1、7、8を比較例2と対比すると、(C)レーザー回折法で100nm以下のピークを有する無機充填材を含む樹脂組成物は低粘度化が図られ、含浸時間が短くなった。また、全ての実施例ではボイドが発生しなかったが、これは、レーザー回折法で100nm以下のピークを有する無機充填材によって先端流動を均一化する効果が発現されたためと考えられる。さらに、実施例に示すように、ブリード、クリーピングの抑制のいずれにも効果的であり、樹脂と無機充填材の分離を抑制する効果も発揮されたためと考えられる。   In Comparative Example 1 which does not contain an inorganic filler (inorganic fillers 4 to 7) having a peak of 100 nm or less in the laser diffraction method (C) of the present invention, the impregnation time was prolonged due to high viscosity. In addition, voids were observed, which were thought to be caused by the turbulence of the flow front. On the other hand, when Examples 1, 7, and 8 using the inorganic filler 1 are compared with Comparative Example 2, the resin composition containing the inorganic filler having a peak of 100 nm or less by laser diffraction (C) has a low viscosity. And the impregnation time was shortened. In addition, no void was generated in all the examples, which is considered to be because the effect of uniforming the tip flow was exhibited by the inorganic filler having a peak of 100 nm or less by the laser diffraction method. Furthermore, as shown in the examples, it is considered that this is effective in suppressing both bleeding and creeping, and that the effect of suppressing the separation between the resin and the inorganic filler was also exhibited.

また、実施例1〜3を比較例1と対比すると、粘度、含浸時間、ボイド、ブリード、クリーピングの点で優れており、この効果は(C)レーザー回折法で100nm以下のピークを有する無機充填材によって得られることが分かった。さらに、実施例1〜3の間で評価結果をそれぞれ対比すると、実施例1及び2は、実施例3と比べて、ブリード長さ及びクリーピング長さが短くなっており、半導体装置の信頼性向上という観点では、(B)無機充填材としてレーザー回折法でのピークが0.3〜3μmの範囲にある無機充填材を用いることが好ましい。ここで、実施例1及び2は実施例3よりもやや高い粘度を有するが、実用的には問題のない粘度の範囲である。   Further, when Examples 1 to 3 are compared with Comparative Example 1, they are superior in terms of viscosity, impregnation time, void, bleed, and creeping. This effect can be obtained by (C) an inorganic material having a peak of 100 nm or less by laser diffraction. It has been found that it can be obtained by the filler. Furthermore, comparing the evaluation results among Examples 1 to 3, the bleed length and the creeping length of Examples 1 and 2 are shorter than those of Example 3, and the reliability of the semiconductor device is reduced. From the viewpoint of improvement, it is preferable to use, as the inorganic filler (B), an inorganic filler having a peak in the range of 0.3 to 3 μm in a laser diffraction method. Here, Examples 1 and 2 have slightly higher viscosities than Example 3, but are within the range of viscosities that are practically acceptable.

表2において、(B)無機充填材として無機充填材1と、(C)レーザー回折法で100nm以下のピークを有する無機充填材について、その粒度をそれぞれ変えたものとを有する実施例1、4〜6を比較例2と対比すると、低粘度化、含浸時間の短縮、ボイドレス化、ブリードとクリーピングの抑制に対して、いずれも(D)レーザー回折法で10〜100nmのピークを有する無機充填材の添加の効果があり、特にレーザー回折法で50nm以下の無機充填材を使用することで効果が顕著である。それに対して、レーザー回折法で250nmのピークを有する無機充填材を添加した比較例2ではボイドの改善効果が認められず、その他の項目も微細な改善効果しか発揮できなかった。これは粒度が大きすぎると樹脂と無機充填材の分離を抑制できないためと考えられる。   In Table 2, Examples 1 and 4 each having (B) an inorganic filler 1 as an inorganic filler and (C) an inorganic filler having a peak of 100 nm or less by laser diffraction with different particle sizes. Compared with Comparative Example 2, the inorganic filler having a peak of 10 to 100 nm by (D) laser diffraction method for reducing viscosity, shortening the impregnation time, reducing voiding, and suppressing bleeding and creeping. There is an effect of adding a material, and the effect is particularly remarkable by using an inorganic filler of 50 nm or less by a laser diffraction method. On the other hand, in Comparative Example 2 in which an inorganic filler having a peak at 250 nm was added by the laser diffraction method, the effect of improving the void was not recognized, and other items could only exhibit a fine effect of improving. This is probably because if the particle size is too large, separation of the resin and the inorganic filler cannot be suppressed.

このように、本願発明の効果を奏するには、無機充填材としてピークが100nm以下の無機充填材が必須の構成であるが、さらにピークが50nm以下の無機充填材を用いることによって特性の一層の向上を図ることができる。   As described above, in order to achieve the effects of the present invention, an inorganic filler having a peak of 100 nm or less is indispensable as an inorganic filler, but further characteristics can be further improved by using an inorganic filler having a peak of 50 nm or less. Improvement can be achieved.

(実施例9〜12、比較例3〜5)
表1に示すものと同じエポキシ樹脂及び無機充填材を用いて、実施例1〜8と同じ方法で下記の表3に示す配合量で調整し、無機充填材の含有量がそれぞれ異なる実施例9〜13及び比較例3〜5の電子部品用液状樹脂組成物を作製した。
(Examples 9 to 12, Comparative Examples 3 to 5)
Example 9 was prepared using the same epoxy resin and inorganic filler as those shown in Table 1 in the same manner as in Examples 1 to 8 at the compounding amounts shown in Table 3 below. To 13 and Comparative Examples 3 to 5 were prepared.

Figure 0006656792
単位:質量部
Figure 0006656792
Unit: parts by mass

各種評価結果を下記表4に示す。   Various evaluation results are shown in Table 4 below.

Figure 0006656792
Figure 0006656792

表4において実施例9と比較例3との対比から、無機充填材の含有量が67質量%未満ではボイドの発生が見られるようになることが分かる。さらに、無機充填材の含有量が少ない場合は、応力発生やバンプ接続保持性低下による半導体装置の信頼性が低下する傾向にある。また、実施例13と比較例5との対比から分かるように、ボイドの発生は無機充填材の含有量が77質量%を超える場合でも見られる。無機充填材の含有量が多くなると半導体の信頼性は向上する傾向にあるが、逆に、粘度の上昇が顕著になり、含浸時間が長くなるため作業性の低下が避けられない。したがって、本発明においては、無機充填材の含有量は電子部品用液状樹脂組成物全体に対して67質量%〜77質量%の範囲とすることが必要である。さらに、表2の実施例1〜8及び表4の実施例9〜13に示すように、無機充填材の含有量が67〜77質量%の範囲であれば、含浸時間の短縮化とブリード及びクリーピングの抑制とを同時にバランス良く行うことができる。   From the comparison between Example 9 and Comparative Example 3 in Table 4, it can be seen that voids are observed when the content of the inorganic filler is less than 67% by mass. Further, when the content of the inorganic filler is small, the reliability of the semiconductor device tends to decrease due to the generation of stress and the decrease in bump connection retention. Further, as can be seen from the comparison between Example 13 and Comparative Example 5, the generation of voids is observed even when the content of the inorganic filler exceeds 77% by mass. As the content of the inorganic filler increases, the reliability of the semiconductor tends to improve, but conversely, the increase in viscosity becomes remarkable and the impregnation time becomes longer, so that a decrease in workability cannot be avoided. Therefore, in the present invention, the content of the inorganic filler needs to be in the range of 67% by mass to 77% by mass based on the whole liquid resin composition for electronic components. Furthermore, as shown in Examples 1 to 8 in Table 2 and Examples 9 to 13 in Table 4, if the content of the inorganic filler is in the range of 67 to 77% by mass, shortening of the impregnation time, bleeding and Suppression of creeping can be simultaneously performed with good balance.

また、実施例10〜12と比較例4との対比から分かるように、含浸時間の短縮、ボイドレス化、ブリードとクリーピングの抑制に対しては、いずれも(D)レーザー回折法で10〜100nmのピークを有する無機充填材添加の効果がある。さらに、実施例10、11は、実施例12と比べて含浸時間、ブリード長さ及びクリーピング長さのいずれも短くなっており、レーザー回折法で50nm以下の無機充填材を使用することによって本発明の顕著な効果を得ることができる。   In addition, as can be seen from the comparison between Examples 10 to 12 and Comparative Example 4, for the reduction of the impregnation time, the formation of voids, and the suppression of bleeding and creeping, the laser diffraction method (D) is 10 to 100 nm. There is an effect of adding an inorganic filler having a peak of Further, in Examples 10 and 11, all of the impregnation time, bleed length and creeping length were shorter than those in Example 12, and the use of an inorganic filler of 50 nm or less by the laser diffraction method resulted in the present invention. The remarkable effects of the invention can be obtained.

次に、本発明で用いる(A)樹脂としてアクリル樹脂を適用した例を、実施例14〜16及び比較例6〜7によって説明する。   Next, examples in which an acrylic resin is used as the resin (A) used in the present invention will be described with reference to Examples 14 to 16 and Comparative Examples 6 and 7.

(実施例14)
ジシクロペンタニルメタクリレート(ファンクリルFM−513:日立化成株式会社)75質量部、ポリエチレングリコール#400ジメタクリレート(新中村化学工業株式会社)25質量部、ラジカル発生剤として1,1−ジ−t−ブチルペルオキシシクロヘキサン0.4質量部及び無機充填材として上記無機充填材2(レーザー回折法でのピーク3μmの球状シリカ)の227質量部と上記無機充填材4(レーザー回折法でのピーク10nmの球状シリカ)の7質量部を均一に混合して電子部品用液状樹脂組成物を調整した。得られた電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して70質量%である。
(Example 14)
75 parts by mass of dicyclopentanyl methacrylate (Fancryl FM-513: Hitachi Chemical Co., Ltd.), 25 parts by mass of polyethylene glycol # 400 dimethacrylate (Shin-Nakamura Chemical Co., Ltd.), 1,1-di-t as a radical generator 0.4 parts by mass of butyl peroxycyclohexane and 227 parts by mass of the above-mentioned inorganic filler 2 (spherical silica having a peak of 3 μm by laser diffraction) as the inorganic filler and the above-mentioned inorganic filler 4 (peak of 10 nm by laser diffraction). (Spherical silica) was uniformly mixed to prepare a liquid resin composition for electronic components. In the obtained liquid resin composition for electronic parts, the content of the inorganic filler is 70% by mass based on the whole liquid resin composition for electronic parts.

(実施例15)
ジシクロペンタニルメタクリレート(ファンクリルFM−513:日立化成株式会社)75質量部、ポリエチレングリコール#400ジメタクリレート(新中村化学工業株式会社)25質量部、ラジカル発生剤として1,1−ジ−t−ブチルペルオキシシクロヘキサン0.4質量部及び無機充填材として上記無機充填材3(レーザー回折法でのピーク10μmの球状シリカ)の261質量部と上記無機充填材6(レーザー回折法でのピーク50nmの球状シリカ)の10質量部を均一に混合して電子部品用液状樹脂組成物を調整した。得られた電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して73質量%である。
(Example 15)
75 parts by mass of dicyclopentanyl methacrylate (Fancryl FM-513: Hitachi Chemical Co., Ltd.), 25 parts by mass of polyethylene glycol # 400 dimethacrylate (Shin-Nakamura Chemical Co., Ltd.), 1,1-di-t as a radical generator -Butylperoxycyclohexane 0.4 parts by mass and 261 parts by mass of the above-mentioned inorganic filler 3 (spherical silica having a peak of 10 μm by a laser diffraction method) as the inorganic filler and the above-mentioned inorganic filler 6 (peak of 50 nm by a laser diffraction method). (Spherical silica) was uniformly mixed to prepare a liquid resin composition for electronic components. In the obtained liquid resin composition for electronic parts, the content of the inorganic filler is 73% by mass based on the whole liquid resin composition for electronic parts.

(実施例16)
ジシクロペンタニルメタクリレート(ファンクリルFM−513:日立化成株式会社)75質量部、ポリエチレングリコール#400ジメタクリレート(新中村化学工業株式会社)25質量部、ラジカル発生剤として1,1−ジ−t−ブチルペルオキシシクロヘキサン0.4質量部及び無機充填材として上記無機充填材2(レーザー回折法でのピーク3μmの球状シリカ)の227質量部と上記無機充填材7(レーザー回折法でのピーク100nmの球状シリカ)の7質量部を均一に混合して電子部品用液状樹脂組成物を調整した。得られた電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して70質量%である。
(Example 16)
75 parts by mass of dicyclopentanyl methacrylate (Fancryl FM-513: Hitachi Chemical Co., Ltd.), 25 parts by mass of polyethylene glycol # 400 dimethacrylate (Shin-Nakamura Chemical Co., Ltd.), 1,1-di-t as a radical generator 0.4 parts by mass of -butylperoxycyclohexane and 227 parts by mass of the above-mentioned inorganic filler 2 (spherical silica having a peak of 3 μm by laser diffraction) as the inorganic filler and the above-mentioned inorganic filler 7 (100 nm by peak of laser diffraction). (Spherical silica) was uniformly mixed to prepare a liquid resin composition for electronic components. In the obtained liquid resin composition for electronic parts, the content of the inorganic filler is 70% by mass based on the whole liquid resin composition for electronic parts.

(比較例6)
ジシクロペンタニルメタクリレート(ファンクリルFM−513:日立化成株式会社)75質量部、ポリエチレングリコール#400ジメタクリレート(新中村化学工業株式会社)25質量部、ラジカル発生剤として1,1−ジ−t−ブチルペルオキシシクロヘキサン0.4質量部及び無機充填材として上記無機充填材2(レーザー回折法でのピーク3μmの球状シリカ)の234質量部を均一に混合して電子部品用液状樹脂組成物を調整した。得られた電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して70質量%である。
(Comparative Example 6)
75 parts by mass of dicyclopentanyl methacrylate (Fancryl FM-513: Hitachi Chemical Co., Ltd.), 25 parts by mass of polyethylene glycol # 400 dimethacrylate (Shin-Nakamura Chemical Co., Ltd.), 1,1-di-t as a radical generator 0.4 parts by weight of butyl peroxycyclohexane and 234 parts by weight of the above-mentioned inorganic filler 2 (spherical silica having a peak of 3 μm in laser diffraction method) as an inorganic filler are uniformly mixed to prepare a liquid resin composition for electronic components. did. In the obtained liquid resin composition for electronic parts, the content of the inorganic filler is 70% by mass based on the whole liquid resin composition for electronic parts.

(比較例7)
ジシクロペンタニルメタクリレート(ファンクリルFM−513:日立化成株式会社)75質量部、ポリエチレングリコール#400ジメタクリレート(新中村化学工業株式会社)25質量部、ラジカル発生剤として1,1−ジ−t−ブチルペルオキシシクロヘキサン0.4質量部及び無機充填材として上記無機充填材3(レーザー回折法でのピーク10μmの球状シリカ)の345質量部と上記無機充填材6(レーザー回折法でのピーク50nmの球状シリカ)の11質量部を均一に混合して電子部品用液状樹脂組成物を調整した。得られた電子部品用液状樹脂組成物は、無機充填材の含有量が電子部品用液状樹脂組成物全体に対して78質量%である。
(Comparative Example 7)
75 parts by mass of dicyclopentanyl methacrylate (Fancryl FM-513: Hitachi Chemical Co., Ltd.), 25 parts by mass of polyethylene glycol # 400 dimethacrylate (Shin-Nakamura Chemical Co., Ltd.), 1,1-di-t as a radical generator 0.4 parts by mass of butyl peroxycyclohexane, 345 parts by mass of the inorganic filler 3 (spherical silica having a peak of 10 μm in the laser diffraction method) as the inorganic filler, and 345 parts by mass of the inorganic filler 6 (peak of 50 nm in the laser diffraction method). 11 parts by mass of spherical silica) were uniformly mixed to prepare a liquid resin composition for electronic parts. In the obtained liquid resin composition for electronic parts, the content of the inorganic filler is 78% by mass based on the whole liquid resin composition for electronic parts.

実施例14〜16及び比較例6〜7で得られた電子部品用液状樹脂組成物を用いて、実施例1〜8と同じ方法で粘度、含浸時間、ボイド観察、ブリード観察及びクリーピング観察による各種評価を行った。各種評価結果を下記の表5に示す。ここで、半導体装置は、実施例14〜16及び比較例6〜7で得られる電子部品用液状樹脂組成物を用いてディスペンス方式でアンダーフィルし、110℃3時間さらに160℃で1時間硬化することで作製した。また、各種試験片の硬化条件も同様な条件で行った。   The viscosity, impregnation time, void observation, bleed observation and creeping observation were performed in the same manner as in Examples 1 to 8, using the liquid resin compositions for electronic components obtained in Examples 14 to 16 and Comparative Examples 6 and 7. Various evaluations were made. Various evaluation results are shown in Table 5 below. Here, the semiconductor device is underfilled by a dispense method using the liquid resin composition for electronic parts obtained in Examples 14 to 16 and Comparative Examples 6 to 7, and cured at 110 ° C. for 3 hours and further at 160 ° C. for 1 hour. It was produced by doing. In addition, curing conditions of various test pieces were performed under the same conditions.

Figure 0006656792
Figure 0006656792

表5に示すように、(A)樹脂としてアクリル樹脂を用いる場合も、エポキシ樹脂の場合と同じように、(D)レーザー回折法で10〜100nmのピークを有する無機充填材を添加することによって、含浸時間の短縮、ボイドレス化、ブリードとクリーピングの抑制を図ることができる(実施例14と比較例6との対比)。さらに、実施例14は、実施例16と比べて粘度が低く、含浸時間、ブリード長さ及びクリーピング長さのいずれも短くなっており、レーザー回折法で50nm以下の無機充填材を使用することによって本発明の顕著な効果を得ることができる。また、比較例7に示すように、無機充填材の含有量が77質量%を超える場合は、粘度の上昇が顕著になり、含浸時間が長くなるだけでなく、ボイドの発生がやや見られる。   As shown in Table 5, when an acrylic resin is used as the resin (A), as in the case of the epoxy resin, (D) by adding an inorganic filler having a peak of 10 to 100 nm by a laser diffraction method. In addition, the impregnation time can be reduced, voiding can be performed, and bleeding and creeping can be suppressed (comparison between Example 14 and Comparative Example 6). Further, in Example 14, the viscosity was lower than that in Example 16, the impregnation time, the bleed length and the creeping length were all shorter. Thereby, a remarkable effect of the present invention can be obtained. Further, as shown in Comparative Example 7, when the content of the inorganic filler is more than 77% by mass, the viscosity is remarkably increased, and not only the impregnation time is prolonged, but also the generation of voids is slightly observed.

表2及び表4に示すエポキシ樹脂組成物と表5に示すアクリル樹脂組成物とを成形性及び作業性の点から対比すると、前者が後者よりもやや優れることが分かる。したがって、本発明においては、電子部品用液状樹脂組成物としてエポキシ樹脂組成物を用いることが成形性と作業性の点からも好適である。   When the epoxy resin compositions shown in Tables 2 and 4 are compared with the acrylic resin compositions shown in Table 5 in terms of moldability and workability, it can be seen that the former is slightly better than the latter. Therefore, in the present invention, it is preferable to use an epoxy resin composition as the liquid resin composition for electronic components from the viewpoint of moldability and workability.

以上のように、本発明の電子部品用液状樹脂組成物は、液状樹脂組成物の低粘度化が可能となるため、充填時間を早くできるとともにフロー時の流動の乱れを均一化でき成形時のボイドを抑制でき、またブリード、クリーピングを抑制できるため、この電子部品用液状樹脂組成物を用いて素子を封止すれば成形性、信頼性に優れる電子部品装置を得ることができる。したがって、アンダーフィル材としてだけでなく、COB、COG、TCP等のベアチップ実装した半導体装置の封止材としても適用が可能であり、その工業的価値は極めて高い。   As described above, the liquid resin composition for electronic components of the present invention enables the viscosity of the liquid resin composition to be reduced, so that the filling time can be shortened and the turbulence of the flow at the time of flow can be uniformed. Since voids can be suppressed and bleeding and creeping can be suppressed, an electronic component device excellent in moldability and reliability can be obtained by sealing an element using the liquid resin composition for electronic components. Therefore, the present invention can be applied not only as an underfill material but also as a sealing material for a semiconductor device mounted on a bare chip such as COB, COG, and TCP, and its industrial value is extremely high.

Claims (16)

(A)樹脂と(B)レーザー回折法で0.2μm以上3μm以下のピークを有する無機充填材と(C)レーザー回折法で100nm以下のピークを有する無機充填材とを含み、前記(B)無機充填材と前記(C)無機充填材を合わせた無機充填材の含有量が電子部品用液状樹脂組成物全体の67〜77質量%であり、前記(C)無機充填材の配合量が前記電子部品用液状樹脂組成物全体に対して1.9〜10質量%であり、前記(C)無機充填材のピークに対する前記(B)無機充填材のピークの比率((B)無機充填材/(C)無機充填材)は、30〜300であり、封止に用いる電子部品用液状樹脂組成物。 (A) a resin, (B) an inorganic filler having a peak of 0.2 μm or more and 3 μm or less by laser diffraction, and (C) an inorganic filler having a peak of 100 nm or less by laser diffraction. The content of the inorganic filler in which the inorganic filler and the (C) inorganic filler are combined is 67 to 77% by mass of the entire liquid resin composition for an electronic component, and the blending amount of the (C) inorganic filler is as described above. It is 1.9 to 10% by mass based on the whole liquid resin composition for electronic parts, and the ratio of the peak of the inorganic filler (B) to the peak of the inorganic filler (C) ((B) inorganic filler / (C) an inorganic filler) is 30 to 300, and is a liquid resin composition for electronic components used for sealing. 前記(C)無機充填材がレーザー回折法で50nm以下のピークを有する無機充填材である、請求項1に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 1, wherein the (C) inorganic filler is an inorganic filler having a peak of 50 nm or less by a laser diffraction method. 110℃における粘度が0.2Pa.s以下である、請求項1又は請求項2に記載の電子部品用液状樹脂組成物。   The viscosity at 110 ° C. is 0.2 Pa. The liquid resin composition for an electronic component according to claim 1, wherein the liquid resin composition is not more than s. 前記(A)樹脂が、(A1)エポキシ樹脂と(A2)硬化剤とを含む、請求項1〜3のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to any one of claims 1 to 3, wherein the (A) resin includes (A1) an epoxy resin and (A2) a curing agent. さらに硬化促進剤を含有する、請求項4に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 4, further comprising a curing accelerator. 前記(A2)硬化剤は、ジエチルトルエンジアミンを含む請求項4又は請求項5に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 4, wherein the (A2) curing agent includes diethyltoluenediamine. さらに可撓化剤を含有する、請求項1〜6のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to any one of claims 1 to 6, further comprising a flexible agent. さらに界面活性剤を含有する、請求項1〜7のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 1, further comprising a surfactant. さらにイオントラップ剤を含有する、請求項1〜8のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for electronic components according to any one of claims 1 to 8, further comprising an ion trapping agent. さらにカップリング剤を含有する、請求項1〜9のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for electronic components according to any one of claims 1 to 9, further comprising a coupling agent. さらに酸化防止剤を含有する、請求項1〜10のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 1, further comprising an antioxidant. さらに有機溶剤含有率が、該有機溶剤を含む前記電子部品用液状樹脂組成物全体の5%以下である、請求項1〜11のいずれか一項に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to any one of claims 1 to 11, wherein the content of the organic solvent is 5% or less of the entire liquid resin composition for an electronic component containing the organic solvent. 電子部品と配線基板とが接続部を介して電気的に接続された電子部品装置の接続部を封止するために用いられ、前記電子部品と前記配線基板との隙間に充填される、請求項1〜12のいずれか一項に記載の電子部品用液状樹脂組成物。   The electronic component and the wiring board are used for sealing a connection part of an electronic component device electrically connected via the connection part, and are filled in a gap between the electronic component and the wiring board. 13. The liquid resin composition for an electronic component according to any one of 1 to 12. 前記接続部が鉛を含まない、請求項13に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 13, wherein the connection portion does not contain lead. 前記接続部が銅を含む、請求項13又は14に記載の電子部品用液状樹脂組成物。   The liquid resin composition for an electronic component according to claim 13, wherein the connection portion includes copper. 請求項1〜15のいずれか一項に記載の電子部品用液状樹脂組成物により封止された電子部品装置。   An electronic component device sealed with the liquid resin composition for an electronic component according to claim 1.
JP2014067565A 2014-03-28 2014-03-28 Liquid resin composition for electronic component and electronic component device Active JP6656792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067565A JP6656792B2 (en) 2014-03-28 2014-03-28 Liquid resin composition for electronic component and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067565A JP6656792B2 (en) 2014-03-28 2014-03-28 Liquid resin composition for electronic component and electronic component device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019090899A Division JP6825643B2 (en) 2019-05-13 2019-05-13 Liquid resin composition for electronic parts and electronic parts equipment

Publications (2)

Publication Number Publication Date
JP2015189848A JP2015189848A (en) 2015-11-02
JP6656792B2 true JP6656792B2 (en) 2020-03-04

Family

ID=54424647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067565A Active JP6656792B2 (en) 2014-03-28 2014-03-28 Liquid resin composition for electronic component and electronic component device

Country Status (1)

Country Link
JP (1) JP6656792B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171817A (en) * 2016-03-25 2017-09-28 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
JP7455017B2 (en) * 2016-10-14 2024-03-25 株式会社レゾナック Underfill material, electronic component device, and method for manufacturing electronic component device
US11186742B2 (en) * 2016-10-14 2021-11-30 Showa Denko Materials Co., Ltd. Sealing resin composition, electronic component device, and method of manufacturing electronic component device
WO2018105057A1 (en) * 2016-12-07 2018-06-14 日立化成株式会社 Resin composition for sealing, cured product, electronic component device, and method for producing electronic component device
SG11201908910VA (en) * 2017-03-31 2019-11-28 Hitachi Chemical Co Ltd Epoxy resin composition, curable resin composition and electronic component device
WO2018179438A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Epoxy resin composition, epoxy resin cured product, and electronic component device
JP2019123799A (en) * 2018-01-16 2019-07-25 日立化成株式会社 Resin composition for interlayer insulation layer, resin film for interlayer insulation layer, multilayer printed wiring board, semiconductor package and method for manufacturing multilayer printed wiring board
JP7169076B2 (en) * 2018-03-22 2022-11-10 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product, and electronic component
JP7020343B2 (en) * 2018-08-21 2022-02-16 昭和電工マテリアルズ株式会社 Encapsulating resin material
JP7404620B2 (en) * 2018-10-25 2023-12-26 株式会社レゾナック Liquid resin composition, electronic component device, and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310557B2 (en) * 1996-10-28 2002-08-05 住友ベークライト株式会社 Liquid resin composition for flow stop frame and semiconductor device using the same
JP2007182493A (en) * 2006-01-06 2007-07-19 Sekisui Chem Co Ltd Curable composition for insulating material, insulating material, method for producing electronic part device, and electronic part device
JP2009057575A (en) * 2008-12-01 2009-03-19 Hitachi Chem Co Ltd Liquid epoxy resin composition and electronic component device
JP5598343B2 (en) * 2011-01-17 2014-10-01 信越化学工業株式会社 Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device

Also Published As

Publication number Publication date
JP2015189848A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6656792B2 (en) Liquid resin composition for electronic component and electronic component device
JP6610616B2 (en) Liquid resin composition for electronic components and electronic component device
JP6331570B2 (en) Underfill material, electronic component sealed with underfill material, and manufacturing method thereof
JP2022133311A (en) Underfill material, electronic component device and method for producing electronic component device
JP6816426B2 (en) Underfill material and electronic component equipment using it
JP6825643B2 (en) Liquid resin composition for electronic parts and electronic parts equipment
JP2013028659A (en) Epoxy resin liquid sealing material for underfill and electric component apparatus using the same
JP5682470B2 (en) RESIN COMPOSITION FOR ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT DEVICE
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP2019083225A (en) Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device
JP5593259B2 (en) Liquid epoxy resin composition
JP7103401B2 (en) Underfill material and electronic component equipment using it
JP7000698B2 (en) Resin composition for underfill, manufacturing method of semiconductor device and semiconductor device
WO2019176859A1 (en) Epoxy resin composition and electronic component device
JP2018123340A (en) Underfill material, electronic component encapsulated by the underfill material and manufacturing method therefor
JP7216878B2 (en) RESIN COMPOSITION FOR UNDERFILL, ELECTRONIC COMPONENT DEVICE, AND MANUFACTURING METHOD THEREOF
JP2017028050A (en) Underfill material and electronic component device using the same
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2019001841A (en) Epoxy resin composition and semiconductor device having cured product of composition
JP7455017B2 (en) Underfill material, electronic component device, and method for manufacturing electronic component device
JP6686433B2 (en) Underfill resin composition, electronic component device, and method for manufacturing electronic component device
JP6961921B2 (en) Resin composition for underfill material and electronic component equipment using it and its manufacturing method
JP7404620B2 (en) Liquid resin composition, electronic component device, and manufacturing method thereof
WO2022239554A1 (en) Resin composition for underfill, and electronic component device and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200205

R150 Certificate of patent or registration of utility model

Ref document number: 6656792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350