JP6647830B2 - 半導体装置及びそれを用いた半導体集積回路 - Google Patents

半導体装置及びそれを用いた半導体集積回路 Download PDF

Info

Publication number
JP6647830B2
JP6647830B2 JP2015206627A JP2015206627A JP6647830B2 JP 6647830 B2 JP6647830 B2 JP 6647830B2 JP 2015206627 A JP2015206627 A JP 2015206627A JP 2015206627 A JP2015206627 A JP 2015206627A JP 6647830 B2 JP6647830 B2 JP 6647830B2
Authority
JP
Japan
Prior art keywords
region
transistor
gate
drain
parasitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015206627A
Other languages
English (en)
Other versions
JP2017079266A (ja
Inventor
山本 精一
精一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2015206627A priority Critical patent/JP6647830B2/ja
Priority to US15/292,475 priority patent/US10026738B2/en
Publication of JP2017079266A publication Critical patent/JP2017079266A/ja
Application granted granted Critical
Publication of JP6647830B2 publication Critical patent/JP6647830B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、溝素子分離構造を有する半導体装置及びそれを用いた半導体集積回路に関する。
近年、溝素子分離構造を有する半導体装置としてSTI(Shallow Trench Isolation;浅溝素子分離帯)構造やDTI(Deep Trench Isolation;深溝素子分離帯)構造を有する半導体装置が注目されている。
図29は、STI構造を有する従来の半導体装置10の構成を示す模式的平面図である。図30は、図29の半導体装置10のA−A線における模式的断面図である。図31は、図29の半導体装置10のB−B線における模式的断面図である。図32は、図29の半導体装置10の主トランジスタ及び寄生トランジスタを示す模式的平面図である。図33は、図29の半導体装置10の主トランジスタと寄生トランジスタとの関係を示す回路図である。図34は、図29の半導体装置10のゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性を表すグラフである。
以下、従来のSTI構造を有する半導体装置10について図面を参照しながら説明する。また、図29から図32においては、矢印X、矢印Y及び矢印Zで示すように、互いに直交する3方向をX方向、Y方向及びZ方向と定義する。また、同一機能を有するものについては同一符号を付し、その繰り返しの説明は省略する。
図29に示すように、半導体装置10は、絶縁体で構成される素子分離領域11、ソース領域12、ドレイン領域13、ゲート電極14、ゲート絶縁膜16及び半導体領域15を含み、トランジスタを構成している。
半導体領域15は、ソース領域12及びドレイン領域13が形成される領域であり、素子分離領域11に囲まれた領域である。NMOSトランジスタを形成する場合には、シリコン基板と同じP型の領域からなる。
ドレイン領域13は、半導体領域15の主面に略長方形状に形成されている。ドレイン領域13の長辺はY方向すなわちチャネル幅W1及びチャネル幅W2の方向に延びており、ドレイン領域13の短辺はX方向すなわちチャネル長L1の方向に延びている。Y方向及びX方向におけるドレイン領域13の端部は素子分離領域11に接している。
ソース領域12は、ドレイン領域13に対してX方向に一定間隔をおいて半導体領域15の主面に略長方形状に形成されている。ソース領域12の長辺はY方向に延びており、ソース領域12の短辺はX方向に延びている。Y方向及びX方向におけるソース領域12の端部はドレイン領域13と同様に素子分離領域11に接している。
Y方向におけるソース領域12のチャネル幅W1とY方向におけるドレイン領域13のチャネル幅W2とは素子分離領域11の形状で決まる。通常は、チャネル幅W1とチャネル幅W2とは略等しく作られる。ソース領域12の端部からドレイン領域13の端部までの長さL1は通常チャネル長と称される。
素子分離領域11は、ソース領域12及びドレイン領域13を取り囲むように半導体領域15の主面及びその内部に形成されている。
ゲート絶縁膜16は、ソース領域12とドレイン領域13との間の半導体領域15の上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜16の両端部は、素子分離領域11と繋がっている。X方向におけるゲート絶縁膜16の一端部は、ソース領域12にほぼ重なっている。X方向におけるゲート絶縁膜16の他端部は、ドレイン領域13にほぼ重なっている。
ゲート電極14は、ゲート絶縁膜16に重なるように略長方形状に形成されている。ゲート電極14の長辺はY方向に延びており、ゲート電極14の短辺はX方向に延びている。
図30は図29の半導体装置10のA−A線における模式的断面図である。図30に示すように、半導体基板17の主面に、半導体領域15が形成されている。図30において、半導体領域15と半導体基板17とは同じ導電型であるが、異なる導電型であってもよい。素子分離領域11、ソース領域12及びドレイン領域13は、半導体領域15の主面からZ方向に一定の深さを有している。素子分離領域11は、ソース領域12及びドレイン領域13よりも、例えば、深く形成される。また、半導体領域15のうちソース領域12とドレイン領域13との間には、チャネル領域chが形成される。ソース領域12及びドレイン領域13の端部は素子分離領域11に接するように形成される。
図31は図29の半導体装置10のB−B線における模式的断面図である。図31に示すように、Y方向すなわちチャネル幅W1及びチャネル幅W2の方向におけるチャネル領域chと素子分離領域11との境界部のゲート絶縁膜16の両端部の厚さoxは、他の部分の厚さより小さくなることがある。
図32は、図29の半導体装置10における主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。図32に示すように、半導体装置10は、主トランジスタQ10、寄生トランジスタQ11及び寄生トランジスタQ12を含む。寄生トランジスタQ11及び寄生トランジスQ12は、Y方向すなわちチャネル幅W1及びチャネル幅W2の方向におけるチャネル領域chと素子分離領域11との境界部に形成されている。主トランジスタQ10は、寄生トランジスタQ11及び寄生トランジスタQ12が形成されない半導体領域15内のチャネル領域chに形成されている。なお、半導体装置10において、主トランジスタQ10と、寄生トランジスタQ11及び寄生トランジスタQ12との境界を明確に線引きすることは不可能であるが、本書では、説明の便宜上、このように区別している。寄生トランジスタは2個に限定されるものではなく多数存在する。
図33は、図32の半導体装置10を模式的な等価回路図で示したものである。主トランジスタQ10のソース、ドレイン及びゲートには、寄生トランジスタQ11及び寄生トランジスタQ12のソース、ドレイン及びゲートがそれぞれ接続されている。すなわち、主トランジスタQ10、寄生トランジスタQ11及び寄生トランジスタQ12が並列に接続され、主トランジスタQ10、寄生トランジスタQ11及び寄生トランジスタQ12のソース、ドレイン及びゲートがそれぞれ共通のソースS、共通のドレインD及び共通のゲートGを形成している。共通のソースS、共通のドレインD及び共通のゲートGによって半導体装置10が構成されている。
主トランジスタQ10のゲート厚t10は、寄生トランジスタQ11のゲート厚t11及び寄生トランジスタQ12のゲート厚t12より大きく、t10>t11(t12)の関係を有することがある。この場合、主トランジスタQ10のゲート幅がある一定の範囲内では主トランジスタQ10の閾値電圧より寄生トランジスタQ11及び寄生トランジスタQ12の閾値電圧は低くなることがある。また、寄生トランジスタQ11のゲート厚t11及び寄生トランジスタQ12のゲート厚t12は、主トランジスタQ10のゲート厚t10と異なり製造上一定の範囲に抑えることは困難である。その厚さは図31に示した厚さoxとなる。
寄生トランジスタQ11及び寄生トランジスタQ12のチャネル表面電位と主トランジスタQ10のチャネル表面電位とは異なる。寄生トランジスタQ11及び寄生トランジスタQ12は、ゲート絶縁膜が薄く出来上がることが多く、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態でドレイン電流(Id)が流れる。サブスレッショルド領域における主トランジスタQ10のドレイン電流は、寄生トランジスタQ11及び寄生トランジスタQ12のドレイン電流よりも少なくなることが起こり得る。主トランジスタQ10のサブスレッショルド領域のドレイン電流を制御することによる所望の回路動作が、寄生トランジスタQ11及び寄生トランジスタQ12のドレイン電流によって阻害されることがある。
図34は、図29の半導体装置10及び図33の等価回路図においてのゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性を示している。符号Xは、寄生トランジスタQ11及び寄生トランジスタQ12のゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性を示す曲線である。符号Yは、主トランジスタのゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性を示す曲線である。ゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性曲線に示すように、寄生トランジスタQ11及び寄生トランジスタQ12が存在すると、主トランジスタQ10のゲート・ソース間電圧Vgsが小さい弱反転領域すなわちサブスレッショルド領域において、主トランジスタQ10のドレイン電流よりも寄生トランジスタQ11及び寄生トランジスタQ12のドレイン電流が支配的となる。そのため、ゲート・ソース間電圧の増加と共に寄生トランジスタQ11及び寄生トランジスタQ12が強反転領域に達し、強反転領域に達していない主トランジスタQ10の弱反転領域のドレイン電流が寄生トランジスタの電流量を超えた場合に、ドレイン電流Idが急増するハンプ(キンク)現象が発生する。
以上のように、図29から図34に示した半導体装置10においては、低閾値電圧をもった寄生トランジスタQ11及び寄生トランジスタQ12によって逆狭チャネル効果が生じる。それにより、主トランジスタQ10で期待される電気的特性と異なってしまうことがあり、寄生トランジスタQ11及び寄生トランジスタQ12による期待しない回路動作を引き起こす可能性がある。
次に、従来の半導体装置の他の構成について説明する。図35は、従来の半導体装置の他の構成を示す模式的平面図である。図36は、図35の半導体装置20のC−C線における模式的断面図である。図37は、図35の半導体装置20のD−D線における模式的断面図である。図38は、図35の半導体装置20のE−E線における斜視断面図である。図39は、図35の半導体装置20の主トランジスタ及び寄生トランジスタを示す模式的平面図である。図40は、図35の半導体装置20の主トランジスタと寄生トランジスタとの関係を示す回路図である。
以下、STI構造を有する従来の半導体装置の他の構成について図面を参照しながら説明する。また、図35から図39においては、矢印X、矢印Y及び矢印Zで示すように、互いに直交する3方向をX方向、Y方向及びZ方向と定義する。また、同一機能を有するものについては同一符号を付し、その繰り返しの説明は省略する。
図35に示すように、半導体装置20は、トランジスタ20a及びトランジスタ20bを含む。トランジスタ20aは、ソース領域22a、ドレイン領域23a、ゲート電極24a、ゲート絶縁膜26a及び半導体領域25を含む。トランジスタ20bは、トランジスタ20aと同様に、ソース領域22b、ドレイン領域23b、ゲート電極24b、ゲート絶縁膜26b及び半導体領域25を含む。トランジスタ20aとトランジスタ20bとは、Y方向のE−E線を軸として、対称な構成を有する。
半導体領域25は、ソース領域22a、ドレイン領域23a、ソース領域22b及びドレイン領域23bが形成される領域であり、素子分離領域21に囲まれた領域である。NMOSトランジスタを形成する場合には、シリコン基板と同じP型の領域からなる。
ドレイン領域23a及びドレイン領域23bは、半導体領域25の主面に互いに隣接するようにそれぞれ略長方形状に形成されている。ドレイン領域23a及びドレイン領域23bは電気的に共通に接続されている。ドレイン領域23a及びドレイン領域23bの長辺はY方向すなわちチャネル幅W3及びチャネル幅W4の方向に延びており、ドレイン領域23a及びドレイン領域23bの短辺はX方向すなわちチャネル長L2a及びチャネル長L2bの方向に延びている。Y方向におけるドレイン領域23a及びドレイン領域23bの端部は素子分離領域21に接している。
ソース領域22aは、ドレイン領域23aに対してX方向に一定間隔をおいて半導体領域25の主面に略長方形状に形成されている。ソース領域22aの長辺はY方向に延びており、ソース領域22aの短辺はX方向に延びている。ソース領域22bは、ドレイン領域23aに対してX方向に一定間隔をおいて略長方形状に形成されている。ソース領域22aの長辺はY方向に延びており、ソース領域22aの短辺はX方向に延びている。Y方向及びX方向におけるソース領域22a及びソース領域22bの端部は素子分離領域21に接している。
Y方向におけるソース領域22aのチャネル幅W3及びY方向におけるドレイン領域23aのチャネル幅W4は同じである。また、Y方向におけるソース領域22bのチャネル幅W3及びY方向におけるドレイン領域23bのチャネル幅W4は同じである。X方向におけるソース領域22aの端部からX方向におけるドレイン領域23aの端部までのチャネル長L2aは、X方向におけるソース領域22bの端部からX方向におけるドレイン領域23bの端部までのチャネル長L2bと同じである。
素子分離領域21は、ソース領域22a、ドレイン領域23a、ソース領域22b及びドレイン領域23bを取り囲むように半導体領域25の主面及びその内部に形成されている。
ゲート絶縁膜26aは、ソース領域22aとドレイン領域23aとの間の半導体領域25aの上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜26aの両端部は、素子分離領域21と繋がっている。X方向におけるゲート絶縁膜26aの一端部は、ソース領域22aにほぼ重なっている。X方向におけるゲート絶縁膜26aの他端部は、ドレイン領域23aにほぼ重なっている。
ゲート絶縁膜26bは、ソース領域22bとドレイン領域23bとの間の半導体領域25bの上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜26bの両端部は、素子分離領域21と繋がっている。X方向におけるゲート絶縁膜26bの一端部は、ソース領域22bにほぼ重なっている。X方向におけるゲート絶縁膜26bの他端部は、ドレイン領域23bにほぼ重なっている。
ゲート電極24aは、ゲート絶縁膜26aに重なるように略長方形状に形成されている。ゲート電極24aの長辺はY方向に延びており、ゲート電極24aの短辺はX方向に延びている。ゲート電極24bは、ゲート絶縁膜26bに重なるように略長方形状に形成されている。ゲート電極24bの長辺はY方向に延びており、ゲート電極24bの短辺はX方向に延びている。
図36は、図35の半導体装置20のC−C線における模式的断面図を示す。図36に示すように、半導体基板27の主面に、半導体領域25が形成されている。図36において、半導体領域25と半導体基板27とは同じ導電型であるが、異なる導電型であってもよい。ソース領域22a、ドレイン領域23a、ソース領域22b、ドレイン領域23b及び素子分離領域21は、半導体領域25の主面からZ方向に一定の深さを有している。素子分離領域21は、ソース領域22a、ドレイン領域23a、ソース領域22b及びドレイン領域23bよりも、例えば、深く形成される。半導体領域25のうちソース領域22aとドレイン領域23aとの間及びソース領域22bとドレイン領域23bとの間には、チャネル領域chが形成される。
図37は、図35の半導体装置20のD−D線における模式的断面図を示す。図37は、図35において素子分離領域21とソース領域22a、ドレイン領域23a、ソース領域22b及びドレイン領域23bとの境界部分の断面図である。そのため、図37に示すゲート絶縁膜26aの厚さは、図36に示すゲート絶縁膜26aの厚さより小さい。このように、ゲート絶縁膜26aの厚さが小さい部分oxに、後述する図39及び図40に示す寄生トランジスタQ21a及び寄生トランジスタQ22aが形成される。また、ゲート絶縁膜26bの厚さは、図36に示すゲート絶縁膜26bの厚さより小さい。このように、ゲート絶縁膜26bの厚さが小さい部分oxに、後述する図39及び図40に示す寄生トランジスタQ21b及び寄生トランジスタQ22bが形成される。ゲート絶縁膜26a及びゲート絶縁膜26bの厚さが小さくなると、ゲート絶縁膜26a及びゲート絶縁膜26bの閾値電圧は低下する。
図38は、図35の半導体装置20のE−E線における斜視断面図であり、トランジスタ20aを見た図である。図38に示すように、トランジスタ20aは、ソース領域22a、ドレイン領域23a、ゲート電極24a、ゲート絶縁膜26a及び半導体領域25を含む。X方向におけるドレイン領域23aの端部は素子分離領域21と接している。ドレイン領域の端部が素子領域に接している構成は、例えば、図32に示した従来例と同じである。なお、切断面の関係でソース領域22aと素子分離領域21との境界部における関係は図38には表れていないが、ソース領域22aの端部は素子分離領域21に接している。
図39は、図35の半導体装置20の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。図39に示すように、トランジスタ20aは、主トランジスタQ20a、寄生トランジスタQ21a及び寄生トランジスタQ22aを含む。トランジスタ20bは、主トランジスタQ20b、寄生トランジスタQ21b及び寄生トランジスタQ22bを含む。寄生トランジスタQ21a及び寄生トランジスタQ22aは、トランジスタ20aのY方向すなわちチャネル幅W3及びチャネル幅W4の方向におけるチャネル領域chと素子分離領域21との境界部に形成される。主トランジスタQ20aは、寄生トランジスタQ21aと寄生トランジスタQ22aとの間に形成される。寄生トランジスタQ21b及び寄生トランジスタQ22bは、トランジスタ20bのY方向におけるチャネル領域chと素子分離領域21との境界部に形成される。主トランジスタQ20bは、寄生トランジスタQ21b及び寄生トランジスタQ22bが形成されない半導体領域25内のチャネル領域chに形成される。なお、半導体装置20において、主トランジスタQ20a及び主トランジスタQ20bと、寄生トランジスタQ21a、寄生トランジスタQ22a、寄生トランジスタQ21b及び寄生トランジスタQ22bとの境界を明確に線引きすることは不可能であるが、本書では、説明の便宜上、このように区別している。寄生トランジスタは4個に限定されるものではなく多数存在する。
図40は、図39の半導体装置20を模式的な等価回路図で示したものである。主トランジスタQ20aのソース、ドレイン及びゲートには、寄生トランジスタQ21a及び寄生トランジスタQ22aのソース、ドレイン及びゲートがそれぞれ接続されている。すなわち、主トランジスタQ20a、寄生トランジスタQ21a及び寄生トランジスタQ22aが並列に接続されている。主トランジスタQ20a、寄生トランジスタQ21a及び寄生トランジスタQ22aのソース及びゲートがそれぞれ共通のソースS及び共通のゲートGを形成している。
また、主トランジスタQ20bのソース、ドレイン及びゲートには、寄生トランジスタQ21b及び寄生トランジスタQ22bのソース、ドレイン、及びゲートがそれぞれ接続されている。すなわち、主トランジスタQ20b、寄生トランジスタQ21b及び寄生トランジスタQ22bが並列に接続されている。主トランジスタQ20b、寄生トランジスタQ21b及び寄生トランジスタQ22bのソース及びゲートがそれぞれ共通のソースS及び共通のゲートGを形成している。
さらに、主トランジスタQ20aのドレインと主トランジスタQ20bのドレインとが接続されている。すなわち、主トランジスタQ20a、寄生トランジスタQ21a、寄生トランジスタQ22a、主トランジスタQ20b、寄生トランジスタQ21b及び寄生トランジスタQ22bのドレインが共通のドレインDを形成している。共通のソースS、共通のドレインD及び共通のゲートGによって半導体装置20が構成されている。
主トランジスタQ20aのゲート厚t20aは、寄生トランジスタQ21aのゲート厚t21a及び寄生トランジスタQ22aのゲート厚t22aより大きく、t20a>t21a(t22a)の関係を有することがある。この場合、主トランジスタQ20aのゲート幅がある一定の範囲内では主トランジスタQ20aの閾値電圧より寄生トランジスタQ21a及び寄生トランジスタQ22aの閾値電圧は低くなることがある。また、寄生トランジスタQ21aのゲート厚t21a及び寄生トランジスタQ22aのゲート厚t22aは、主トランジスタQ20aのゲート厚t20aと異なり製造上一定の範囲に抑えることは困難である。その厚さは図31に示した厚さoxとなる。
主トランジスタQ20bのゲート厚t20bは、寄生トランジスタQ21bのゲート厚t21b及び寄生トランジスタQ22bのゲート厚t22bより大きく、t20b>t21b(t22b)の関係を有することがある。この場合、主トランジスタQ20bのゲート幅がある一定の範囲内では主トランジスタQ20bの閾値電圧より寄生トランジスタQ21b及び寄生トランジスタQ22bの閾値電圧は低くなることがある。また、寄生トランジスタQ21bのゲート厚t21b及び寄生トランジスタQ22bのゲート厚t22bは、主トランジスタQ20bのゲート厚t20bと異なり製造上一定の範囲に抑えることは困難である。その厚さは図31に示した厚さoxとなる。
寄生トランジスタQ21a及び寄生トランジスタQ22aのチャネル表面電位と主トランジスタQ20aのチャネル表面電位とは異なる。寄生トランジスタQ21a及び寄生トランジスタQ22aは、ゲート絶縁膜が薄く出来上がることが多く、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態でドレイン電流(Id)が流れる。サブスレッショルド領域における主トランジスタQ20aのドレイン電流は、寄生トランジスタQ21a及び寄生トランジスタQ22aのドレイン電流よりも少なくなることが起こり得る。主トランジスタQ20aのサブスレッショルド領域のドレイン電流を制御することによる所望の回路動作が、寄生トランジスタQ21a及び寄生トランジスタQ22aのドレイン電流によって阻害されることがある。
寄生トランジスタQ21b及び寄生トランジスタQ22bのチャネル表面電位と主トランジスタQ20bのチャネル表面電位とは異なる。寄生トランジスタQ21b及び寄生トランジスタQ22bは、ゲート絶縁膜が薄く出来上がることが多く、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態でドレイン電流(Id)が流れる。サブスレッショルド領域における主トランジスタQ20bのドレイン電流は、寄生トランジスタQ21b及び寄生トランジスタQ22bのドレイン電流よりも少なくなることが起こり得る。主トランジスタQ20bのサブスレッショルド領域のドレイン電流を制御することによる所望の回路動作が、寄生トランジスタQ21b及び寄生トランジスタQ22bのドレイン電流によって阻害されることがある。
以上のように、図35から図40に示した半導体装置20においては、寄生トランジスタQ21a、寄生トランジスタQ22a、寄生トランジスタQ21b及び寄生トランジスタQ22bを有するため、逆狭チャネル効果及びハンプ(キンク)現象が発生する。それにより、主トランジスタQ20a及び主トランジスタQ20bで期待される電気的特性と異なってしまうことがあり、寄生トランジスタQ21a、寄生トランジスタQ22a、寄生トランジスタQ21b及び寄生トランジスタQ22bによる期待しない回路動作を引き起こす可能性がある。
上記問題を解決するために種々の対策が採られている。
特許文献1に開示された半導体装置では、STI構造を構成する素子分離溝を埋めるシリコン酸化膜(SiO膜)が基板表面上で素子分離溝の外側まで延在しかつ基板表面から上方にわずかに突出するように形成される。それにより、SiO膜上にゲート電極が延在しても基板中に電界集中が生じることなく、閾値電圧の変動の問題が回避される。
特許文献2に開示された半導体装置では、NMOS(Nチャネル型金属酸化物半導体電界効果トランジスタ)とPMOS(Pチャネル型金属酸化物半導体電界効果トランジスタ)とで形状差を作ることで、熱プロセスにより生じたチャネル不純物の横方向の分布とバランスをとり、素子分離溝の上端部付近での閾値電圧がゲート電極中央部付近の閾値電圧と変わらないようにしている。そのため、素子分離溝の形成に伴い発生するNMOSの逆狭チャネル効果と、PMOSの逆チャネル効果とを同時に抑制することができる。さらに、サブスレッショルド領域におけるハンプ(キンク)現象の発生を防ぐことができる。
特許文献3に開示された半導体装置では、トランジスタのゲート電極が覆うチャネルコーナー部分に位置するトレンチの側壁の傾斜を緩くしているため、ゲート電極からの電界集中を緩和することができ、STI構造特有のトランジスタのチャネルコーナー部分のしきい値電圧の低下を防止できる。
特許文献4に開示された半導体装置では、MOSトランジスタのゲート下部のチャネルエッジ部が、ソース・ドレイン領域を形成するための高濃度不純物イオンを注入する領域の外になるように構成される。チャネルエッジ部がMOSトランジスタの動作領域外に存在するためハンプ(キンク)現象が発生しない。
特許文献5に開示された半導体装置では、素子形成領域と素子分離領域の境界近傍で実効的な抵抗がチャネル中央よりも大きくなるように素子形成領域又はゲート電極の形状が形成される。これにより、閾値の低いチャネル部分がドレイン電流に及ぼす影響を減少する。
特許4136145号公報 特開2003−168779号公報 特許3397693号公報 特開2001−160623号公報 特開平07−086582号公報
特許文献1に記載の半導体装置では、SiO膜が基板表面から上方にわずかに突出するように形成されるため、半導体装置の製造工程数が増加しかつ半導体装置の製造工程が複雑になる。
特許文献2に記載の半導体装置では、NMOS及びPMOSの形状差でチャネル不純物の横方向の分布とのバランスをとり、素子分離溝の上端部付近での閾値電圧がゲート電極中央部付近の閾値電圧と変わらないようにするため、半導体装置の製造工程数が増加しかつ半導体装置の製造工程が複雑になる。
特許文献3に記載の半導体装置では、トランジスタのゲート電極が覆うチャネルコーナー部分に位置するトレンチの側壁の傾斜を緩くする必要があるため、半導体装置の製造工程数が増加しかつ半導体装置の製造工程が複雑になる。
特許文献4に記載の半導体装置では、高濃度不純物イオン注入領域以外の活性領域がむき出しになっている。そのため、このむき出しの活性領域が他の電界の影響によってフィールド反転してしまい、ハンプ(キンク)現象が発生することがある。
特許文献5に記載の半導体装置では、素子形成領域と素子分離領域との境界近傍で実効的な抵抗がチャネル中央よりも大きくなるように素子形成領域又はゲート電極の形状を形成される。この場合、素子形成領域又はゲート電極の形状を調整する必要があるため、半導体装置の製造工程数が増加しかつ半導体装置の製造工程が複雑化する。
以上に説明した従来の半導体装置には、逆狭チャネル効果及びハンプ(キンク)現象を抑制するための対策が施されている。しかし、半導体装置の製造工程が複雑になるという不具合を有している。
そこで、本発明は、上記の不具合を解消した半導体装置及びそれを用いた半導体集積回路を提供することを目的とする。
本発明に係る第1の半導体装置は、第1導電型のチャネル領域と、第1導電型のチャネル領域上に形成されるゲート絶縁膜と、ゲート絶縁膜上に形成されるゲート電極と、ゲート電極を挟みかつゲート電極に沿って相対して形成される第2導電型の第1領域及び第2導電型の第2領域と、第1領域、第2領域、及びチャネル領域が形成される第2導電型領域と、第2導電型領域の一部に形成される素子分離領域とを備える。ゲート電極はチャネル領域と素子分離領域との境界部を跨いで配線され、第1領域及び第2領域のチャネル幅方向において、第1領域の幅は第2領域の幅よりも短い。
本発明に係る第1の半導体装置の第1領域及び第2領域のチャネル幅方向において、第1領域の両端は、第2領域の両端よりも内側に位置し、第1領域及び第2領域のチャネル幅方向において、第1領域の両端は、素子分離領域と第2導電型領域との境界よりも内側に位置してもよい。
本発明に係る第2の半導体装置は、第1導電型の第1領域と、第1領域を挟むように形成される第1導電型の第2領域及び第1導電型の第3領域と、第1領域と第2領域との間に形成される第2導電型の第1チャネル領域と、第1領域と第3領域との間に形成される第2導電型の第2チャネル領域と、第1チャネル領域上に形成される第1ゲート絶縁膜と、第1ゲート絶縁膜上に形成される第1ゲート電極と、第2チャネル領域上に形成される第2ゲート絶縁膜と、第2ゲート絶縁膜上に形成される第2ゲート電極と、第1領域、第2領域、第3領域、第1チャネル領域及び第2チャネル領域が形成される第2導電型領域と、第2導電型領域を取り囲む素子分離領域とを備える。第1ゲート電極は第1チャネル領域と素子分離領域との境界部を跨いで配線される。第2ゲート電極は第2チャネル領域と素子分離領域との境界部を跨いで配線される。第1領域、第2領域及び第3領域のチャネル幅方向において、第1領域の幅は第2領域の幅及び第3領域の幅よりも短い。
本発明に係る第2の半導体装置の第1領域、第2領域及び第3領域のチャネル幅方向において、第1領域の両端は、第2領域及び第3領域の両端よりも内側に位置し、第1領域、第2領域及び第3領域のチャネル幅方向において、ゲート絶縁膜の両端よりも内側に位置してもよい。
本発明に係る第2の半導体装置は、素子分離領域と第1領域との間の第2導電型領域上に第3ゲート絶縁膜及び第4ゲート絶縁膜がさらに形成されてもよい。第3ゲート絶縁膜及び第4ゲート絶縁膜上に第3ゲート電極及び第4ゲート電極がさらに形成されてもよい。第1ゲート絶縁膜から第4ゲート絶縁膜は一体化され、第1ゲート電極から第4ゲート電極は一体化されてもよい。
本発明の半導体集積回路は、本発明に係る第1の半導体装置又は第2の半導体装置による少なくとも1つのトランジスタが用いられてもよい。
本発明の半導体集積回路は、本発明に係る第1の半導体装置又は第2の半導体装置による少なくとも2つのトランジスタが用いられ、少なくとも2つのトランジスタがソース共通結合又はドレイン共通結合がされた差動対トランジスタを含んでもよい。
トランジスタはMOSトランジスタ動作領域の弱反転領域(サブスレッショルド領域)で作動するように構成されてもよい。
トランジスタはMOSトランジスタ動作領域の強反転領域で作動するように構成されてもよい。
トランジスタはMOSトランジスタ動作領域の非飽和領域で作動するように構成されてもよい。
トランジスタは、差動増幅器、カスコード回路、カレントミラー回路、コンパレータ及び演算増幅器の少なくとも1つに使用されてもよい。
本発明に係る第1又は第2の半導体装置によって、1つの半導体基板上にMOS型回路が構成されてもよい。
MOS型回路がCMOSインバータであってもよい。
半導体集積回路の少なくとも1つのトランジスタに基板バイアス効果が生じるように基板電極が所定の電位に固定されていてもよい。
本発明によれば、マスクレイアウトの変更のみで製造工程数を増加させることなくかつ製造工程を複雑化することなく、逆狭チャネル効果及びハンプ(キンク)現象の発生が防止されかつトランジスタのオフ状態におけるリーク電流の低減が可能な半導体装置及びそれを用いた半導体集積回路を提供することができる。
本発明の第1の実施の形態に係る半導体装置の構成を示す模式的平面図である。 本発明の第1の実施の形態に係る半導体装置のF−F線における模式的断面図である。 本発明の第1の実施の形態に係る半導体装置のG−G線における模式的断面図である。 本発明の第1の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。 本発明の第1の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す回路図である。 本発明の第2の実施の形態に係る半導体装置の構成を示す模式的平面図である。 本発明の第2の実施の形態に係る半導体装置のH−H線における模式的断面図である。 本発明の第2の実施の形態に係る半導体装置のI−I線における模式的断面図である。 本発明の第2の実施の形態に係る半導体装置のJ−J線における模式的斜視断面図である。 本発明の第2の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。 本発明の第2の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す回路図である。 本発明の第3の実施の形態に係る半導体装置の構成を示す模式的平面図である。 本発明の第3の実施の形態に係る半導体装置のK−K線における模式的断面図である。 本発明の第3の実施の形態に係る半導体装置のL−L線における模式的断面図である。 本発明の第3の実施の形態に係る半導体装置のM−M線における模式的斜視断面図である。 本発明の第3の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。 本発明の第3の実施の形態に係る半導体装置の主トランジスタと寄生トランジスタとの関係を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を半導体集積回路に用いた一例を示す回路図である。 図18に示した半導体集積回路の差動対トランジスタの箇所を平面図で示した模式図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を差動増幅器又は差動比較器に用いた一例を示す回路図である。 図20の半導体装置のゲート・ソース間電圧(Vgs)―ドレイン電流(Id)特性を表すグラフである。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をカスコード回路に用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をMOS型回路に用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をカレントミラー回路に用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を差動増幅器に用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をコンパレータに用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を演算増幅器に用いた構成を示す回路図である。 本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をCMOSインバータに用いた構成を示す回路図である。 従来の半導体装置の構成を示す模式的平面図である。 図29の半導体装置のA−A線における模式的断面図である。 図29の半導体装置のB−B線における模式的断面図である。 図29の半導体装置の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。 図29の半導体装置の主トランジスタと寄生トランジスタとの関係を示す回路図である。 図29の半導体装置のゲート・ソース間電圧(Vgs)−ドレイン電流(Id)特性を表すグラフである。 従来の半導体装置の他の例を示す模式的平面図である。 図35の半導体装置のC−C線における模式的断面図である。 図35の半導体装置のD−D線における模式的断面図である。 図35の半導体装置のE−E線における模式的斜視断面図である。 図35の半導体装置の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。 図35の半導体装置の主トランジスタと寄生トランジスタとの関係を示す回路図である。
以下の実施の形態を説明するための全図において同一機能を有するものについては同一符号を付し、その繰り返しの説明は省略する。また、図1から図4、図6から図10、図12から図16において、矢印X、矢印Y及び矢印Zで示すように、互いに直交する3方向をX方向、Y方向及びZ方向と定義する。
(第1の実施の形態)
以下、本発明の第1の実施の形態について図面を参照しながら説明する。図1は、本発明の第1の実施の形態に係る半導体装置100の構成を示す模式的平面図である。図2は、図1の半導体装置100のF−F線における模式的断面図である。図3は、図1の半導体装置100のG−G線における模式的断面図である。図4は、図1の半導体装置100の主トランジスタと寄生トランジスタを示す模式的平面図である。図5は、図1の半導体装置100の主トランジスタと寄生トランジスタとの関係を示す回路図である。
図1に示すように、半導体装置100は、ソース領域102、ドレイン領域103、ゲート電極104、ゲート絶縁膜106及び半導体領域105を含み、トランジスタを構成している。半導体装置100は、例えば、Si(シリコン)半導体、SiC(炭化シリコン)半導体、SiGe(シリコンゲルマニウム)半導体、GaN(窒化ガリウム)半導体等から形成される。
半導体領域105は、ソース領域102及びドレイン領域103が形成される領域であり、素子分離領域101に囲まれた領域である。NMOSトランジスタを形成する場合には、シリコン基板と同じ、例えば、P型の領域からなる。素子分離領域101が形成されることで半導体領域105が一義的に画定される。
ドレイン領域103は、素子分離領域101からY方向にチャネル幅ΔWの間隔をおいて、半導体領域105の主面に略長方形状に形成されている。ドレイン領域103の長辺はY方向すなわちチャネル幅W5及びチャネル幅W6の方向に延びており、ドレイン領域103の短辺はX方向すなわちチャネル長L3の方向に延びている。X方向におけるドレイン領域103の端部は素子分離領域101に接しているが、Y方向におけるドレイン領域103の端部は素子分離領域101に接していない。なお、ドレイン領域103の端部は、素子分離領域101に接する必要はなく、ドレイン領域103と素子分離領域101との間に半導体領域105の一部が介在されるようにしてもよい。また、ドレイン領域103の端部を素子分離領域101に接しさせる場合に、素子分離領域101は、絶縁膜である必要はなく、例えば、P型又はN型のウェル領域であってもよい。
ソース領域102は、ドレイン領域103に対してX方向に一定間隔をおいて半導体領域105の主面に略長方形状に形成されている。ソース領域102の長辺はY方向に延びており、ソース領域102の短辺はX方向に延びている。Y方向及びX方向におけるソース領域102の端部は素子分離領域101に接している。なお、X方向におけるソース領域202a及びソース領域202bの端部は素子分離領域201に接していなくともよい。
ソース領域102及びドレイン領域103は、シリコン基板とは逆導電型の例えばN型で形成され、ゲート電極104に沿い相対して形成される。なお、ソース領域102及びドレイン領域103は、略長方形状に限らず、正方形、円形、楕円形等であってもよい。
図1には、ソース領域102、ドレイン領域103のゲート電極104側の長辺(破線で表示)がゲート電極104の内側に入り込むように示したが、これに限定されない。例えば、ゲート電極104の端部とソース領域102、ドレイン領域103の上記長辺とが重なるように構成してもよい。また、ソース領域102、ドレイン領域103の上記長辺がゲート電極104から少し外側に配置されるように構成してもかまわない。上記の許容条件は第1の実施の形態だけではなく、後述する第2の実施の形態、第3の実施の形態にも同様に適用される。
Y方向におけるドレイン領域103のチャネル幅W6は、Y方向におけるソース領域102のチャネル幅W5よりも短い。すなわち、ドレイン領域103のチャネル幅W6方向の両端はソース領域102のチャネル幅W5方向の両端よりもチャネル領域chの中央部すなわち内側に位置されている。チャネル領域chは、シリコン基板と同じ例えばP型で形成されている。本書において、第1導電型がP型であるとき、第2導電型はN型となるが、この関係に限定されない。すなわち、第1導電型がN型であるとき、第2導電型はP型となる。
素子分離領域101は、ソース領域102及び、ドレイン領域103を取り囲むように半導体基板105の主面及びその内部に形成されている。素子分離領域101は、例えば、STI、DTI又はLOCOS(Local Oxidation of Silicon)で構成されている。素子分離領域101には、具体的には、二酸化シリコン(SiO)が埋め込まれている。なお、素子分離領域101の全領域を、例えば、STIやDTIで構成することが好ましいが、これに限定されない。例えば、素子分離領域101の一部がP型又はN型の、ウェル領域で形成されてもかまわない。また、素子分離領域101は、ソース領域102及びドレイン領域103を完全に取り囲む必要はない。
ゲート絶縁膜106は、ソース領域102とドレイン領域103との間の半導体領域105の上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜106の両端部は、素子分離領域101と繋がっている。X方向におけるゲート絶縁膜106の一端部は、ソース領域102にほぼ重なっている。X方向におけるゲート絶縁膜106の他端部は、ドレイン領域103にほぼ重なっている。
なお、ゲート絶縁膜106、ソース領域102、ドレイン領域103及び素子分離領域101の形状は、矩形状に限定されない。通常、この種の半導体装置の設計にあたっては、まず、ソース領域102、ドレイン領域103の大きさと形状が決定され、その形状に応じて素子分離領域101及びゲート絶縁膜106の形状が一義的に定められる。したがって、こうしたゲート絶縁膜と各種領域の形状は、矩形に限らず、例えば、円形状、半円状、楕円状、三角形状、六角形状、八角形状等が考えられる。
ゲート電極104は、ゲート絶縁膜106に重なるように略長方形状に形成されている。さらに、ゲート電極104は、ソース領域102とドレイン領域103との間に形成されたチャネル領域chと素子分離領域101との境界部を跨いで配線される。ゲート電極104の材料は、例えば、P型又はN型元素材料を高ドープし導電性を持たせたポリシリコンやアルミなどの導電性を有した金属等である。
図1に示した半導体装置100の特徴は、第1に、ドレイン領域103のチャネル幅W6がソース領域102のチャネル幅W5に比べて短いことである。第2に、ドレイン領域103のチャネル幅W6の方向の端部が素子分離領域101に接していないことである。ドレイン領域103及びソース領域102のチャネル長L3の方向の端部は素子分離領域101に接している。なお、素子分離領域101は、STI、DTIで構成されてもよく、これらとP型又N型のウェル領域との組み合わせであってもよい。このような構成は、チャネル幅W6の方向でのドレイン領域103と素子分路領域101との接触を防止する。さらに具体的に述べると、素子分離領域101とチャネル領域chとの境界に存在する寄生トランジスタQ101及び寄生トランジスタQ102がドレイン領域103と直結することを防止している。
なお、図1には、ソース領域102のチャネル幅W5とドレイン領域103のチャネル幅W6との関係がW6<W5であるものを示した。しかし、チャネル幅W5をチャネル幅W6よりも小さくしてもよい。すなわち、チャネル幅W5とチャネル幅W6との関係がW5<W6であってもよい。
図2は、図1の半導体装置100のF−F線における模式的断面図である。図2に示すように、半導体基板107の主面に、半導体領域105が形成されている。図2において、半導体領域105と半導体基板107とは同じ導電型であるが、異なる導電型であってもよい。素子分離領域101、ソース領域102、ドレイン領域103は、半導体領域105の主面からZ方向に一定の深さを有している。素子分離領域101は、ソース領域102及びドレイン領域103よりも深く形成される。なお、素子分離領域101は、ソース領域102及びドレイン領域103よりも浅く形成されてもよい。また、半導体領域105のうちソース領域102とドレイン領域103との間には、チャネル領域chが形成される。素子分離領域101の深さは、例えば、数十nmから数百μmである。なお、本書において半導体基板の中にはウェル領域も含む。例えば、本来の半導体基板にPウェル領域を形成し、このPウェル領域にNMOSトランジスタを形成する場合や、Nウェル領域内にPMOSトランジスタを形成する場合には、こうしたPウェル領域又はNウェル領域は本書での半導体基板の範疇に入る。また、NMOSトランジスタを形成する場合に、ディープNウェル領域の中にPウェル領域を形成し、この中にNMOSトランジスタを作ることもある。こうした場合には、本発明での半導体基板107に相当するのはPウェル領域となる。したがって、こうした構成下においては、半導体基板107をゲートとして用いる、いわゆるバックゲートはPウェル領域(図示せず)となる。さらに、ディープNウェル領域を広範囲に形成しておき、その中にNウェル領域を形成するならば、そのNウェル領域が素子分離の役割を担うと共に、この中にPMOSトランジスタを形成することができる。
図3は、図1の半導体装置100のG−G線における模式的断面図である。図3は、図1において素子分離領域101とソース領域102及びドレイン領域103との境界部分の断面図である。そのため、図3に示すゲート絶縁膜106の厚さは、図2に示すゲート絶縁膜106の厚さより小さい。このように、ゲート絶縁膜106の厚さが小さい部分に、後述する図4及び図5に示す寄生トランジスタQ101及び寄生トランジスタQ102が形成される。ゲート絶縁膜106の厚さが小さくなると、ゲート絶縁膜106の閾値電圧は低下する。一方、図1に示すように、ドレイン領域103の幅W6がソース領域102の幅W5よりも短いため、図3のゲート絶縁膜106が薄くなっている部分には、ドレイン領域103が存在しない。
図4は、図1の半導体装置100における主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。図4に示すように、半導体装置100は、主トランジスタQ100、寄生トランジスタQ101から寄生トランジスタQ104を含む。寄生トランジスタQ101及び寄生トランジスタQ102は、Y方向すなわちチャネル幅W5及びチャネル幅W6の方向におけるチャネル領域chと素子分離領域101との境界部に形成されている。また、寄生トランジスタQ103及び寄生トランジスタQ104は、チャネル領域ch内かつY方向における素子分離領域101とドレイン領域103との間に形成されている。寄生トランジスタQ103及び寄生トランジスタQ104の大きさは、チャネル幅ΔWの大きさにより決定される。また、主トランジスタQ100は、寄生トランジスタQ101から寄生トランジスタQ104の影響が極めて抑制された半導体領域105内のチャネル領域chに形成される。なお、半導体装置100において、主トランジスタQ100と、寄生トランジスタQ101、寄生トランジスタQ102、寄生トランジスタ103及び寄生トランジスタ104との境界を明確に線引きすることは不可能であるが、本書では、説明の便宜上、このように区別している。寄生トランジスタは4個に限定されるものではなく多数存在する。
図5は、図4の半導体装置100を模式的な等価回路図示したものである。主トランジスタQ100のソース及びゲートには、寄生トランジスタQ101及び寄生トランジスタQ102のソース及びゲートがそれぞれ接続されている。寄生トランジスタQ101は、寄生トランジスタQ103を介して、主トランジスタQ100のドレインに接続され、寄生トランジスタQ102は、寄生トランジスタQ104を介して、主トランジスタQ100のドレインに接続される。すなわち、寄生トランジスタQ101と寄生トランジスタQ103とが直列接続され、寄生トランジスタQ102と寄生トランジスタQ104とが直列接続され、これら2組の直列接続と主トランジスタQ100とが並列接続される。主トランジスタQ100、寄生トランジスタQ101及び寄生トランジスタQ102のソースが共通のソースSを形成している。主トランジスタQ100、寄生トランジスタQ101、寄生トランジスタQ102、寄生トランジスタQ103及び寄生トランジスタQ104のゲートが共通のゲートGを形成している。主トランジスタQ100、寄生トランジスタQ103及び寄生トランジスタQ104のドレインが共通のドレインDを形成している。共通のソースS、共通のドレインD及び共通のゲートGによって半導体装置100が構成されている。
主トランジスタQ100のゲート厚t100は、寄生トランジスタQ101のゲート厚t101及び寄生トランジスタQ102のゲート厚t102より大きく、t100>t101(t102)の関係を有することがある。この場合、主トランジスタQ100のゲート幅がある一定の範囲内では主トランジスタQ100の閾値電圧より寄生トランジスタQ101及び寄生トランジスタQ102の閾値電圧低くなることがある。また、寄生トランジスタQ101のゲート厚t101及び寄生トランジスタQ102のゲート厚t102は、主トランジスタQ100のゲート厚t100と異なり、製造上一定の範囲に抑えることは困難である。さらに、寄生トランジスタQ103のゲート厚t103及び寄生トランジスタQ104のゲート厚t104は、主トランジスタQ100のゲート厚t100とほぼ同じである。そのため、寄生トランジスタQ103及び寄生トランジスタQ104の閾値電圧は、主トランジスタQ100の閾値電圧とほぼ同じである。
寄生トランジスタQ101及び寄生トランジスタQ102のチャネル表面電位と主トランジスタQ100のチャネル表面電位とは異なる。一方、寄生トランジスタQ103及び寄生トランジスタQ104のチャネル表面電位と主トランジスタQ100のチャネル表面電位とはほぼ同じである。寄生トランジスタQ101及び寄生トランジスタQ102は、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態で表面電位が主トランジスタQ100、寄生トランジスタQ103及び寄生トランジスタQ104よりも反転してしまう。そのため、寄生トランジスタQ101及び寄生トランジスタQ102は、主トランジスタQ100、寄生トランジスタQ103及び寄生トランジスタQ104に比べ電流が流れやすい状態となる。しかしながら、寄生トランジスタQ101と寄生トランジスタQ103とが直列接続され、寄生トランジスタQ102と寄生トランジスタQ104とが直列接続されているため、寄生トランジスタQ103及び寄生トランジスタQ104が寄生トランジスタQ101及び寄生トランジスタQ102の電流を妨げる。
以上のように、半導体装置100は、寄生トランジスタQ101及び寄生トランジスタQ102を有する。しかし、ドレイン領域103と寄生トランジスタQ101との間及びドレイン領域103と寄生トランジスタQ102との間に、寄生トランジスタQ103及び寄生トランジスタQ104が形成されるため、寄生トランジスタQ101及び寄生トランジスタQ102が低いゲート・ソース間電圧(Vgs)で表面電位が反転しようとしても、寄生トランジスタQ103及び寄生トランジスタQ104が低いゲート・ソース間電圧(Vgs)で表面電位が寄生トランジスタQ101及び寄生トランジスタQ102よりも反転しないため、逆狭チャネル効果が生じず、ハンプ(キンク)現象が発生しない。それにより、所望の表面電位以下のゲート電圧でトランジスタが導通してしまわず、オフ状態のリーク電流の低減にも寄与する。また、ドレイン領域103のチャネル幅W6をソース領域102のチャネル幅W5よりも短くするだけでよいため、マスクレイアウトの変更のみでよく、製造工程数が増加することなくかつ製造工程が複雑化することがない。
(第2の実施の形態)
次に、本発明の第2の実施の形態について図面を参照しながら説明する。図6は、本発明の第2の実施の形態に係る半導体装置200の構成を示す模式的平面図である。図7は、図6の半導体装置200のH−H線における模式的断面図である。図8は、図6の半導体装置200のI−I線における模式的断面図である。図9は、図6の半導体装置200のJ−J線における斜視断面図である。図10は、図6の半導体装置200のトランジスタと寄生トランジスタを示す模式的平面図である。図11は、図6の半導体装置200のトランジスタと寄生トランジスタとの関係を示す回路図である。
図6に示すように、半導体装置200は、トランジスタ200a及びトランジスタ200bを含む。半導体装置200は、例えば、Si半導体、SiC半導体、SiGe半導体GaN半導体等から形成される。トランジスタ200aは、ドレイン領域203a、ソース領域202a、ゲート電極204a、ゲート絶縁膜206a及び半導体領域205を含む。トランジスタ200bは、トランジスタ200aと同様に、ドレイン領域203b、ソース領域202b、ゲート電極204b、ゲート絶縁膜206b及び半導体領域205を含む。トランジスタ200aとトランジスタ200bとは、Y方向のJ−J線を軸として、対称な構成を有する。
半導体領域205は、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bが形成される領域であり、素子分離領域201に囲まれた領域である。NMOSトランジスタを形成する場合には、シリコン基板と同じ、例えば、P型の領域からなる。素子分離領域201が形成されることで半導体領域205が一義的に画定される。
ドレイン領域203a及びドレイン領域203bは、半導体領域205の主面に互いに隣接するようにそれぞれ略長方形状に形成されている。ドレイン領域203a及びドレイン領域203bは電気的に共通に接続されている。ドレイン領域203a及びドレイン領域203bの長辺はY方向すなわちチャネル幅W7及びチャネル幅W8の方向に延びており、ドレイン領域203a及びドレイン領域203bの短辺はX方向すなわちチャネル長L4a及びチャネルL4bの方向に延びている。Y方向におけるドレイン領域203a及びドレイン領域203bの端部は素子分離領域201に接していない。なお、ドレイン領域203a及びドレイン領域203bの端部は、素子分離領域201に接する必要はなく、ドレイン領域203a及びドレイン領域203bと素子分離領域201との間に半導体領域205の一部が介在されるようにしてもよい。また、ドレイン領域203a及びドレイン領域203bの端部を素子分離領域201に接しさせる場合に、素子分離領域201は、絶縁膜である必要はなく、例えば、P型又はN型のウェル領域であってもよい。
ソース領域202aは、ドレイン領域203aに対してX方向に一定間隔をおいてかつ素子分離領域201からY方向に一定間隔をおいて、半導体領域205の主面に略長方形状に形成されている。ソース領域202aの長辺はY方向に延びており、ソース領域202aの短辺はX方向に延びている。ソース領域202bは、ドレイン領域203bに対してX方向に一定間隔をおいてかつ素子分離領域201からY方向に一定間隔をおいて、半導体領域205の主面に略長方形状に形成されている。ソース領域202bの長辺はY方向に延びており、ソース領域202bの短辺はX方向に延びている。Y方向及びX方向におけるソース領域202a及びソース領域202bの端部は素子分離領域201に接している。なお、X方向におけるソース領域202a及びソース領域202bの端部は素子分離領域201に接していなくともよい。
ソース領域202a及びドレイン領域203aは、シリコン基板とは逆導電型の例えばN型で形成され、ゲート電極204aに沿い相対して形成される。また、ソース領域202b及びドレイン領域203bは、シリコン基板とは逆導電型の例えばN型で形成され、ゲート電極204bに沿い相対して形成される。なお、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bは、略長方形状に限らず、正方形、円形、楕円形等であってもよい。
Y方向におけるドレイン領域203aのチャネル幅W8は、Y方向におけるソース領域202aのチャネル幅W7よりも短い。Y方向におけるドレイン領域203bのチャネル幅W8は、Y方向におけるソース領域202bのチャネル幅W7よりも短い。すなわち、ドレイン領域203aのチャネル幅W8方向の両端はソース領域202aのチャネル幅W7方向の両端よりもチャネル領域chの中央部すなわち内側に位置されている。同様に、ドレイン領域203bのチャネル幅W8方向の両端はソース領域202bのチャネル幅W7方向の両端よりもチャネル領域chの中央部すなわち内側に位置されている。チャネル領域chは、シリコン基板と同じ例えばP型で形成されている。本書において、第1導電型がP型であるとき、第2導電型はN型となるが、この関係に限定されない。すなわち、第1導電型がN型であるとき、第2導電型はP型となる。X方向におけるソース領域202aの端部からX方向におけるドレイン領域203aの端部までのチャネル長L4aは、X方向におけるソース領域202bの端部からX方向におけるドレイン領域203bの端部までのチャネル長L4bと同じである。
素子分離領域201は、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bを取り囲むように半導体領域205の主面及びその内部に形成されている。素子分離領域201とは、例えば、STI、DTI又はLOCOSで構成されている。素子分離領域201には、具体的には、二酸化シリコン(SiO)が埋め込まれている。なお、素子分離領域201の全領域を、例えば、STIやDTIで構成することが好ましいが、これに限定されない。例えば、素子分離領域201の一部がP型又はN型のウェル領域で形成されてもかまわない。また、素子分離領域201は、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bを完全に取り囲む必要はない。
ゲート絶縁膜206aは、ソース領域202aとドレイン領域203aとの間の半導体領域205aの上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜206aの両端部は、素子分離領域201と繋がっている。X方向におけるゲート絶縁膜206aの一端部は、ソース領域202aにほぼ重なっている。X方向におけるゲート絶縁膜206aの他端部は、ドレイン領域203aにほぼ重なっている。
ゲート絶縁膜206bは、ソース領域202bとドレイン領域203bとの間の半導体領域205bの上部に略長方形状に形成されている。Y方向におけるゲート絶縁膜206bの両端部は、素子分離領域201と繋がっている。X方向におけるゲート絶縁膜206bの一端部は、ソース領域202bにほぼ重なっている。X方向におけるゲート絶縁膜206bの他端部は、ドレイン領域203bにほぼ重なっている。
なお、ゲート絶縁膜206a、ゲート絶縁膜206b、ソース領域202a、ドレイン領域203a、ソース領域202b、ドレイン領域203b及び素子分離領域201の形状は、矩形に限定されない。通常、この種の半導体装置の設計にあたっては、まず、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bの大きさと形状が決定され、その形状に応じて素子分離領域201、ゲート絶縁膜206a及びゲート絶縁膜206bの形状が一義的に定められる。したがって、こうしたゲート絶縁膜と各種領域の形状は、矩形に限らず、例えば、円形状、半円状、楕円状、三角形状、六角形状、八角形状等が考えられる。
ゲート電極204aは、ゲート絶縁膜206aに重なるように略長方形状に形成されている。ゲート電極204bは、ゲート絶縁膜206bに重なるように略長方形状に形成されている。ゲート電極204aは、ソース領域202aとドレイン領域203aとの間に形成されたチャネル領域chと素子分離領域201との境界部を跨いで配線される。さらに、ゲート電極204bは、ソース領域202bとドレイン領域203bとの間に形成されたチャネル領域chと素子分離領域201との境界部を跨いで配線される。ゲート電極204a及びゲート電極204bの材料は、例えば、P型又はN型元素材料を高ドープし導電性を持たせたポリシリコンやアルミなどの導電性を有した金属等である。
なお、図6には、ソース領域202a及びソース領域202bのチャネル幅W7とドレイン領域203a及びドレイン領域203bのチャネル幅W8との関係がW8<W7であるものを示した。しかし、チャネル幅W7をチャネル幅W8よりも小さくしてもよい。すなわち、チャネル幅W7とチャネル幅W8との関係がW7<W8であってもよい。
図7は、図6の半導体装置200のH−H線における模式的断面図を示す。図7に示すように、半導体基板207の主面に、半導体領域205が形成されている。図7において、半導体領域205と半導体基板207とは同じ導電型であるが、異なる導電型であってもよい。ソース領域202a、ドレイン領域203a、ソース領域202b、ドレイン領域203b及び素子分離領域201は、半導体領域205の主面からZ方向に一定の深さを有している。素子分離領域201は、ソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bよりも深く形成される。半導体領域205のうちソース領域202aとドレイン領域203aとの間及びソース領域202bとドレイン領域203bとの間には、チャネル領域chが形成される。素子分離領域201の深さは、例えば、数十nmから数百μmである。なお、本書において半導体基板の中にはウェル領域も含む。例えば、本来の半導体基板にPウェル領域を形成し、このPウェル領域にNMOSトランジスタを形成する場合や、Nウェル領域内にPMOSトランジスタを形成する場合には、こうしたPウェル領域又はNウェル領域は本書での半導体基板の範疇に入る。また、NMOSトランジスタを形成する場合に、ディープNウェル領域の中にPウェル領域を形成し、この中にNMOSトランジスタを作ることもある。こうした場合には、本発明での半導体基板207に相当するのはPウェル領域となる。したがって、こうした構成下においては、半導体基板207をゲートとして用いるいわゆるバックゲートはPウェル領域(図示せず)となる。さらに、ディープNウェル領域を広範囲に形成しておき、その中にNウェル領域を形成するならば、そのNウェル領域が素子分離の役割を担うと共に、この中にPMOSトランジスタを形成することができる。
図8は、図6の半導体装置200のI−I線における模式的断面図である。図8は、図6において素子分離領域201とソース領域202a、ドレイン領域203a、ソース領域202b及びドレイン領域203bとの境界部分の断面図である。そのため、図8に示すゲート絶縁膜206aの厚さは、図7に示すゲート絶縁膜206aの厚さより小さい。このように、ゲート絶縁膜206aの厚さが小さい部分に、後述する図10及び図11に示す寄生トランジスタQ201a及び寄生トランジスタQ202aが形成される。また、図8に示すゲート絶縁膜206bの厚さは、図7に示すゲート絶縁膜206bの厚さより小さい。このように、ゲート絶縁膜206bの厚さが小さい部分に、後述する図10及び図11に示す寄生トランジスタQ201b及び寄生トランジスタQ202bが形成される。ゲート絶縁膜206a及びゲート絶縁膜206bの厚さが小さくなると閾値電圧は低下する。一方、図6に示すように、ドレイン領域203aの幅W8がソース領域202aの幅W7よりも短いため、図8のゲート絶縁膜206aが薄くなっている部分には、ドレイン領域203aが存在しない。また、ドレイン領域203bの幅W8がソース領域202bの幅W7よりも短いため、ゲート絶縁膜206bが薄くなっている部分には、ドレイン領域203bが存在しない。
図9は、図6の半導体装置200のJ−J線における斜視断面図であり、トランジスタ200aを見た図である。図9に示すように、トランジスタ200aは、ソース領域202a、ドレイン領域203a、ゲート電極204a、ゲート絶縁膜206a及び半導体領域205を含む。X方向におけるドレイン領域203aの端部は、素子分離領域201と接していない。なお、切断面の関係でソース領域202aと素子分離領域201との境界部における関係は、図9には現れていないが、ソース領域202aの端部は素子分離領域201に接している。
図10は、図6の半導体装置200の主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。図10に示すように、トランジスタ200aは、主トランジスタQ200a、寄生トランジスタQ201a及び寄生トランジスタQ202aを含む。トランジスタ200bは、主トランジスタQ200b、寄生トランジスタQ201b及び寄生トランジスタQ202bを含む。寄生トランジスタQ201a及び寄生トランジスタQ202aは、トランジスタ200aのY方向すなわちチャネル幅W7及びチャネル幅W8の方向におけるチャネル領域chと素子分離領域201との境界部に形成される。寄生トランジスタQ201b及び寄生トランジスタQ202bは、トランジスタ200bのY方向におけるチャネル領域chと素子分離領域201との境界部に形成される。
寄生トランジスタQ203a及び寄生トランジスタQ204aは、チャネル領域ch内かつY方向における素子分離領域201とドレイン領域203aとの間に形成されている。寄生トランジスタQ203a及び寄生トランジスタQ204aの大きさは、素子分離領域205とドレイン領域203aとの間隔により決定される。寄生トランジスタQ203b及び寄生トランジスタQ204bは、チャネル領域ch内かつY方向における素子分離領域201とドレイン領域203bとの間に形成されている。寄生トランジスタQ203b及び寄生トランジスタQ204bの大きさは、素子分離領域205とドレイン領域203bとの間隔により決定される。
主トランジスタQ200aは、寄生トランジスタQ201a、寄生トランジスタQ202a、寄生トランジスタQ203a及び寄生トランジスタQ204aの影響が極めて抑制された半導体領域205内のチャネル領域chに形成される。主トランジスタQ200bは、寄生トランジスタQ201b、寄生トランジスタQ202b、寄生トランジスタQ203b及び寄生トランジスタQ204bの影響が極めて抑制された半導体領域205内のチャネル領域chに形成される。なお、半導体装置200において、主トランジスタQ200a及び主トランジスタQ200bと、寄生トランジスタQ101aから寄生トランジスタQ104a、寄生トランジスタ101bから寄生トランジスタ104bとの境界を明確に線引きすることは不可能であるが、本書では、説明の便宜上、このように区別している。寄生トランジスタは8個に限定されるものではなく多数存在する。
図11は、図10の半導体装置200を模式的な等価回路図で示したものである。主トランジスタQ200aのソース及びゲートには、寄生トランジスタQ201a及び寄生トランジスタQ202aのソース及びゲートがそれぞれ接続されている。寄生トランジスタQ201aは、寄生トランジスタQ203aを介して、主トランジスタQ200aのドレインに接続され、寄生トランジスタQ202aは、寄生トランジスタQ204aを介して、主トランジスタQ200aのドレインに接続される。すなわち、寄生トランジスタQ201aと寄生トランジスタQ203aとが直列接続され、寄生トランジスタQ202aと寄生トランジスタQ204aとが直列接続され、これら2つの直列接続体と主トランジスタQ200bとが並列接続されている。主トランジスタQ200a、寄生トランジスタQ201a及び寄生トランジスタQ202aのソースが共通のソースSを形成している。主トランジスタQ200a、寄生トランジスタQ201a、寄生トランジスタQ202a、寄生トランジスタQ203a及び寄生トランジスタQ204aのゲートが共通のゲートGを形成している。
また、主トランジスタQ200bのソース及びゲートには、寄生トランジスタQ201b及び寄生トランジスタQ202bのソース及びゲートがそれぞれ接続されている。寄生トランジスタQ201bは、寄生トランジスタQ203bを介して、主トランジスタQ200bのドレインに接続され、寄生トランジスタQ202bは、寄生トランジスタQ204bを介して、主トランジスタQ200bのドレインに接続される。すなわち、寄生トランジスタQ201bと寄生トランジスタQ203bとが直列接続され、寄生トランジスタQ202bと寄生トランジスタQ204bとが直列接続され、これら2つの直列接続体と主トランジスタQ201bとが並列接続されている。主トランジスタQ200b、寄生トランジスタQ201b及び寄生トランジスタQ202bのソースが共通のソースSを形成している。主トランジスタQ200b、寄生トランジスタQ201b、寄生トランジスタQ202b、寄生トランジスタQ203b及び寄生トランジスタQ204bのゲートが共通のゲートGを形成している。
さらに、主トランジスタQ200a、寄生トランジスタQ203a、寄生トランジスタQ204aのドレイン、主トランジスタQ200b、寄生トランジスタQ203b及び寄生トランジスタQ204bのドレインが共通のドレインDを形成している。共通のソースS、共通のドレインD及び共通のゲートGによって半導体装置200が構成されている。
主トランジスタQ200aのゲート厚t200aは、寄生トランジスタQ201aのゲート厚t201a及び寄生トランジスタQ202aのゲート厚t202aより大きく、t200a>t201a(t202a)の関係を有することがある。この場合、主トランジスタQ200aのゲート幅がある一定の範囲内では主トランジスタQ200aの閾値電圧より寄生トランジスタQ201a及び寄生トランジスタQ202aの閾値電圧は低くなることがある。
寄生トランジスタQ201aのゲート厚t201a及び寄生トランジスタQ202aのゲート厚t202aは、主トランジスタQ200aのゲート厚t200aと異なり、製造上一定の範囲に抑えることは困難である。さらに、寄生トランジスタQ203aのゲート厚t203a及び寄生トランジスタQ204aのゲート厚t204aは、主トランジスタQ200aのゲート厚t200aとほぼ同じである。そのため、寄生トランジスタQ203a及び寄生トランジスタQ204aの閾値電圧は、主トランジスタQ200aの閾値電圧とほぼ同じである。
主トランジスタQ200bのゲート厚t200bは、寄生トランジスタQ201bのゲート厚t201b及び寄生トランジスタQ202bのゲート厚t202bより大きく、t200b>t201b(t202b)の関係を有することがある。この場合、主トランジスタQ200bのゲート幅がある一定の範囲内では主トランジスタQ200bの閾値電圧より寄生トランジスタQ201b及び寄生トランジスタQ202bの閾値電圧は、主トランジスタQ200bの閾値電圧より低くなることがある。
寄生トランジスタQ201bのゲート厚t201b及び寄生トランジスタQ202bのゲート厚t202bは、主トランジスタQ200bのゲート厚t200bと異なり、製造上一定の範囲に抑えることは困難である。さらに、寄生トランジスタQ203bのゲート厚t203b及び寄生トランジスタQ204bのゲート厚t204bは、主トランジスタQ200bのゲート厚t200bとほぼ同じである。そのため、寄生トランジスタQ203b及び寄生トランジスタQ204bの閾値電圧は、主トランジスタQ200bの閾値電圧とほぼ同じである。
寄生トランジスタQ201a及び寄生トランジスタQ202aのチャネル表面電位と主トランジスタQ200aのチャネル表面電位とは異なる。一方、寄生トランジスタQ203a及び寄生トランジスタQ204aのチャネル表面電位と主トランジスタQ200aのチャネル表面電位とはほぼ同じである。寄生トランジスタQ201a及び寄生トランジスタQ202aは、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態で表面電位が主トランジスタQ200a、寄生トランジスタQ203a及び寄生トランジスタQ204aよりも反転してしまう。そのため、寄生トランジスタQ201a及び寄生トランジスタQ202aは、主トランジスタQ200a、寄生トランジスタQ203a及び寄生トランジスタQ204aに比べ電流が流れやすい状態となる。しかしながら、寄生トランジスタQ201aと寄生トランジスタQ203aとが直列接続され、寄生トランジスタQ202aと寄生トランジスタQ204aとが直列接続されているため、寄生トランジスタQ203a及び寄生トランジスタQ204aが寄生トランジスタQ201a及び寄生トランジスタQ202aの電流を妨げる。
寄生トランジスタQ201b及び寄生トランジスタQ202bのチャネル表面電位と主トランジスタQ200bのチャネル表面電位とは異なる。一方、寄生トランジスタQ203b及び寄生トランジスタQ204bのチャネル表面電位と主トランジスタQ200bのチャネル表面電位とはほぼ同じである。寄生トランジスタQ201b及び寄生トランジスタQ202bは、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態で表面電位が主トランジスタQ200b、寄生トランジスタQ203b及び寄生トランジスタQ204bよりも反転してしまう。そのため、寄生トランジスタQ201b及び寄生トランジスタQ202bは、主トランジスタQ200b、寄生トランジスタQ203b及び寄生トランジスタQ204bに比べ電流が流れやすい状態となる。しかしながら、寄生トランジスタQ201bと寄生トランジスタQ203bとが直列接続され、寄生トランジスタQ202bと寄生トランジスタQ204bとが直列接続されているため、寄生トランジスタQ203b及び寄生トランジスタQ204bが寄生トランジスタQ201b及び寄生トランジスタQ202bの電流を妨げる。
以上のように、半導体装置200は、寄生トランジスタQ201a、寄生トランジスタQ202a、寄生トランジスタQ201b及び寄生トランジスタQ202bを有する。しかし、ドレイン領域203aと寄生トランジスタQ201aとの間及びドレイン領域203aと寄生トランジスタQ202aとの間に、寄生トランジスタQ203a及び寄生トランジスタQ204aが形成され、ドレイン領域203bと寄生トランジスタQ201bとの間及びドレイン領域203bと寄生トランジスタQ202bとの間に、寄生トランジスタQ203b及び寄生トランジスタQ204bが形成されるため、寄生トランジスタQ201a、寄生トランジスタQ202a、寄生トランジスタQ201b寄生トランジスタQ202bがゲート・ソース間電圧(Vgs)で表面電位が反転しようとしても、寄生トランジスタQ203a、寄生トランジスタQ204a、寄生トランジスタ203b及び寄生トランジスタ204bが低いゲート・ソース間電圧(Vgs)で表面電位が寄生トランジスタQ201a、寄生トランジスタQ202a、寄生トランジスタQ201b及び寄生トランジスタ202bよりも反転しないため、逆狭チャネル効果が生じず、ハンプ(キンク)現象が発生しない。それにより、所望の表面電位以下のゲート電圧でトランジスタが導通してしまわず、オフ状態のリーク電流の低減にも寄与する。また、ドレイン領域203aのチャネル幅W8をソース領域202aのチャネル幅W7よりも短くし、ドレイン領域203bのチャネル幅W8をソース領域202bのチャネル幅W7よりも短くするだけでよいため、マスクレイアウトの変更のみでよく、製造工程数が増加することなくかつ製造工程が複雑化することがない。
(第3の実施の形態)
次に、本発明の第3の実施の形態について図面を参照しながら説明する。図12は、本発明の第3の実施の形態に係る半導体装置の構成を示す模式的平面図である。図13は、図12の半導体装置のK−K線における模式的断面図である。図14は、図12の半導体装置のL−L線における模式的断面図である。図15は、図12の半導体装置のM−M線における斜視断面図である。図16は、図12の半導体装置のトランジスタと寄生トランジスタを示す模式的平面図である。図17は、図12の半導体装置のトランジスタと寄生トランジスタとの関係を示す回路図である。
図12に示すように、半導体装置300は、トランジスタ300a及びトランジスタ300bを含む。半導体装置300は、例えば、Si半導体、SiC半導体、SiGe半導体、GaN半導体等から形成される。トランジスタ300aは、ドレイン領域303a、ソース領域302a、ゲート電極304a、ゲート絶縁膜306a及び半導体領域305を含む。トランジスタ300bは、トランジスタ300aと同様に、ドレイン領域303b、ソース領域302b、ゲート電極304b、ゲート絶縁膜306b及び半導体領域305を含む。トランジスタ300aとトランジスタ300bとは、Y方向のK−K線を軸として、対称な構成を有する。
半導体領域305は、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bが形成される領域であり、素子分離領域301に囲まれた領域である。NMOSトランジスタを形成する場合には、シリコン基板と同じ、例えば、P型の領域からなる。素子分離領域301が形成されることで半導体領域305が一義的に画定される。
ドレイン領域303a及びドレイン領域303bは、半導体領域305の主面に互いに隣接するようにそれぞれ略長方形状に形成されている。ドレイン領域303a及びドレイン領域303bは電気的に共通に接続されている。ドレイン領域303a及びドレイン領域303bの長辺はY方向すなわちチャネル幅W9及びチャネル幅W10の方向に延びており、ドレイン領域303a及びドレイン領域303bの短辺はX方向すなわちチャネル長L5a及びチャネル長L5bの方向に延びている。Y方向におけるドレイン領域303a及びドレイン領域303bの端部は素子分離領域301に接していない。なお、ドレイン領域303a及びドレイン領域303bの端部は、素子分離領域301に接する必要はなく、ドレイン領域303a及びドレイン領域303bと素子分離領域301との間に半導体領域305の一部が介在されるようにしてもよい。また、ドレイン領域303a及びドレイン領域303bの端部を素子分離領域301に接しさせる場合に、素子分離領域301は、絶縁膜である必要はなく、例えば、P型又はN型のウェル領域であってもよい。
ソース領域302aは、ドレイン領域303aに対してX方向に一定間隔をおいてかつ素子分離領域301からY方向に一定間隔をおいて、半導体領域305の主面に略長方形状に形成されている。ソース領域302aの長辺はY方向に延びており、ソース領域302aの短辺はX方向に延びている。ソース領域302bは、ドレイン領域303bに対してX方向に一定間隔をおいてかつ素子分離領域301からY方向に一定間隔をおいて、半導体領域305の主面に略長方形状に形成されている。ソース領域302bの長辺はY方向に延びており、ソース領域302bの短辺はX方向に延びている。Y方向及びX方向におけるソース領域302a及びソース領域302bの端部は素子分離領域301に接している。なお、X方向におけるソース領域302a及びソース領域302bの端部は素子分離領域301に接していなくともよい。
ソース領域302a及びドレイン領域303aは、シリコン基板とは逆導電型の例えばN型で形成され、ゲート電極304aに沿い相対して形成される。また、ソース領域302b及びドレイン領域303bは、シリコン基板とは逆導電型の例えばN型で形成され、ゲート電極304bに沿い相対して形成される。なお、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bは、略長方形状に限らず、正方形、円形、楕円形等であってもよい。
Y方向におけるドレイン領域303aのチャネル幅W10は、Y方向におけるソース領域302aのチャネル幅W9よりも短い。Y方向におけるドレイン領域303bのチャネル幅W10は、Y方向におけるソース領域302bのチャネル幅W9よりも短い。すなわち、ドレイン領域303aのチャネル幅W10方向の両端はソース領域302aのチャネル幅W9方向の両端よりもチャネル領域chの中央部すなわち内側に位置されている。同様に、ドレイン領域303bのチャネル幅W10方向の両端はソース領域302bのチャネル幅W9方向の両端よりもチャネル領域chの中央部すなわち内側に位置されている。チャネル領域chは、シリコン基板と同じ例えばP型で形成されている。本書において、第1導電型がP型であるとき、第2導電型はN型となるが、この関係に限定されない。すなわち、第1導電型がN型であるとき、第2導電型はP型となる。X方向におけるソース領域302aの端部からX方向におけるドレイン領域303aの端部までのチャネル長L5aは、X方向におけるソース領域302bの端部からX方向におけるドレイン領域303bの端部までのチャネル長L5bと同じである。
素子分離領域301は、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bを取り囲むように形成されている。素子分離領域301とは、例えば、STI、DTI又はLOCOSで構成されている。素子分離領域301には、具体的には、二酸化シリコン(SiO)が埋め込まれている。なお、素子分離領域301の全領域を、例えば、STIやDTIで構成することが好ましいが、これに限定されない。例えば、素子分離領域301の一部がP型又はN型のウェル領域で形成されてもかまわない。また、素子分離領域301は、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bを完全に取り囲む必要はない。
ゲート絶縁膜306aは、ソース領域302aとドレイン領域303aとの間の半導体領域305aの上部、及びドレイン領域303aと素子分離領域301との間の半導体領域305aの上部に形成されている。Y方向におけるゲート絶縁膜306aの両端部は、素子分離領域301と繋がっている。X方向におけるゲート絶縁膜306aの一端部は、ソース領域302aにほぼ重なっている。X方向におけるゲート絶縁膜306aの他端部は、ドレイン領域303aにほぼ重なっている。
ゲート絶縁膜306bは、ソース領域302bとドレイン領域303bとの間の半導体領域305bの上部、及びドレイン領域303bと素子分離領域301との間の半導体領域305bの上部に形成されている。Y方向におけるゲート絶縁膜306bの両端部は、素子分離領域301と繋がっている。X方向におけるゲート絶縁膜306bの一端部は、ソース領域302bにほぼ重なっている。X方向におけるゲート絶縁膜306bの他端部は、ドレイン領域303bにほぼ重なっている。
本発明の第3の実施の形態では、ゲート絶縁膜306a及びゲート絶縁膜306bは一体的に形成されて矩形の枠形状に形成されている。すなわち、平面視状、ドレイン領域303a及びドレイン領域303bの周囲は、ゲート絶縁膜306a及びゲート絶縁膜306bで囲まれている。枠形状のゲート絶縁膜の外縁部のうち、Y方向における両端部は素子分離領域301に重なっており、X方向における両端部はそれぞれソース領域302a及びソース領域302bに重なっている。枠形状のゲート絶縁膜の内縁部はドレイン領域303a及びドレイン領域303bに重なっている。
なお、ゲート絶縁膜306a、ゲート絶縁膜306b、ソース領域302a、ドレイン領域303a、ソース領域302b、ドレイン領域303b及び素子分離領域301の形状は、矩形に限定されない。通常、この種の半導体装置の設計にあたっては、まず、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bの大きさと形状が決定され、その形状に応じて素子分離領域301、ゲート絶縁膜306a及びゲート絶縁膜306bの形状が一義的に定められる。したがって、こうしたゲート絶縁膜と各種領域の形状は、矩形に限らず、例えば、円形状、半円状、楕円状、三角形状、六角形状、八角形状等が考えられる。
ゲート電極304aは、ゲート絶縁膜306aに重なるように形成されている。ゲート電極304bは、ゲート絶縁膜306bに重なるように形成されている。ゲート電極304aは、ソース領域302aとドレイン領域303aとの間に形成されたチャネル領域chと素子分離領域301との境界部を跨いで配線される。さらに、ゲート電極304bは、ソース領域302bとドレイン領域303bとの間に形成されたチャネル領域chと素子分離領域301との境界部を跨いで配線される。ゲート電極304a及びゲート電極304bの材料は、例えば、P型又はN型元素材料を高ドープし導電性を持たせたポリシリコンやアルミなどの導電性を有した金属等である。
本発明の第3の実施の形態では、ゲート電極304a及びゲート電極304bは一体化されて矩形の枠形状に形成されている。枠形状のゲート絶縁膜の外縁部のうち、Y方向における両端部は素子分離領域301に重なっており、X方向における両端部はそれぞれソース領域302a及びソース領域302bに重なっている。枠形状のゲート電極の内縁部はドレイン領域303a及びドレイン領域303bにほぼ重なっている。なお、ゲート電極304a及びゲート電極304bは、ドレイン領域303a及びドレイン領域303bを完全に包囲する必要はなく、例えば、U字状になるように形成されてもよい。
図13は、図12の半導体装置300のK−K線における模式的断面図である。図13に示すように、半導体基板307の主面に、半導体領域305が形成されている。図13において、半導体領域305と半導体基板307とは同じ導電型であるが、異なる導電型であってもよい。ソース領域302a、ドレイン領域303a、ソース領域302b、ドレイン領域303b及び素子分離領域301は、半導体領域305の主面からZ方向に一定の深さを有している。素子分離領域301は、ソース領域302a、ドレイン領域303a、ソース領域302b及びドレイン領域303bよりも深く形成される。半導体領域305のうちソース領域302aとドレイン領域303aとの間及びソース領域302bとドレイン領域303bとの間には、チャネル領域chが形成される。素子分離領域301の深さは、例えば、数十nmから数百μmである。なお、本書において半導体基板の中にはウェル領域も含む。例えば、本来の半導体基板にPウェル領域を形成し、このPウェル領域にNMOSトランジスタを形成する場合や、Nウェル領域内にPMOSトランジスタを形成する場合には、こうしたPウェル領域又はNウェル領域は本書での半導体基板の範疇に入る。また、NMOSトランジスタを形成する場合に、ディープNウェル領域の中にPウェル領域を形成し、この中にNMOSトランジスタを作ることもある。こうした場合には、本発明での半導体基板307に相当するのはPウェル領域となる。したがって、こうした構成下においては、半導体基板307をゲートとして用いるいわゆるバックゲートはPウェル領域(図示せず)となる。さらに、ディープNウェル領域を広範囲に形成しておき、その中にNウェル領域を形成するならば、そのNウェル領域が素子分離の役割を担うと共に、この中にPMOSトランジスタを形成することができる。
図14は、図12の半導体装置300のL−L線における模式的断面図である。図14は、図12において素子分離領域301とソース領域302a、ドレイン領域302a、ソース領域302b及びドレイン領域303bとの境界部分の断面図である。そのため、図14に示すゲート絶縁膜306aの厚さは、図13に示すゲート絶縁膜306aの厚さより小さい。このように、ゲート絶縁膜306aの厚さが小さい部分に、後述する図16及び図17に示す寄生トランジスタQ301a及び寄生トランジスタQ302aが形成される。また、図14に示すゲート絶縁膜306bの厚さは、図13に示すゲート絶縁膜306bの厚さより小さい。このように、ゲート絶縁膜306bの厚さが小さい部分に、後述する図16及び図17に示す寄生トランジスタQ301b及び寄生トランジスタQ302bが形成される。ゲート絶縁膜306a及びゲート絶縁膜306bの厚さが小さくなると閾値電圧は低下する。一方、図12に示すように、ドレイン領域303aの幅W10がソース領域302aの幅W9よりも短いため、図14のゲート絶縁膜306aが薄くなっている部分には、ドレイン領域303aが存在しない。また、ドレイン領域303bの幅W10がソース領域302bの幅W9よりも短いため、ゲート絶縁膜306bが薄くなっている部分には、ドレイン領域303bが存在しない。
図15は、図12の半導体装置300のM−M線における斜視断面図であり、トランジスタ300aを見た図である。図15に示すように、トランジスタ300aは、ソース領域302a、ドレイン領域303a、ゲート電極304a、ゲート絶縁膜306a及び半導体領域305を含む。X方向におけるドレイン領域303aの端部は、素子分離領域201と接していない。なお、切断面の関係でソース領域302aと素子分離領域301との境界部における関係は、図15には現れていないが、ソース領域302aの端部は素子分離領域301に接している。
図16は、図12の半導体装置300における主トランジスタと寄生トランジスタとの関係を示す模式的平面図である。図16に示すように、トランジスタ300aは、主トランジスタQ300a、寄生トランジスタQ301a及び寄生トランジスタQ302aを含む。トランジスタ300bは、主トランジスタQ300b、寄生トランジスタQ301b及び寄生トランジスタQ302bを含む。寄生トランジスタQ301a及び寄生トランジスタQ302aは、トランジスタ300aのY方向すなわちチャネル幅W9及びチャネル幅W10の方向におけるチャネル領域chと素子分離領域301との境界部に形成される。寄生トランジスタQ301b及び寄生トランジスタQ302bは、トランジスタ300bのY方向におけるチャネル領域chと素子分離領域301との境界部に形成される。
寄生トランジスタQ303及び寄生トランジスタQ304は、チャネル領域ch内かつY方向における素子分離領域301とドレイン領域303a及びドレイン領域303bとの間に形成されている。寄生トランジスタQ303及び寄生トランジスタQ304の大きさは、素子分離領域305とドレイン領域303a及びドレイン領域303bとの間隔により決定される。
主トランジスタQ300aは、寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ303及び寄生トランジスタQ304の影響が極めて抑制された半導体領域305内のチャネル領域chに形成される。主トランジスタQ300bは、寄生トランジスタQ301b、寄生トランジスタQ302b、寄生トランジスタQ303及び寄生トランジスタQ304の影響が極めて抑制された半導体領域305内のチャネル領域chに形成される。なお、半導体装置300において、主トランジスタQ300a及び主トランジスタQ300bと、寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b、寄生トランジスタ302b、寄生トランジスタ303及び寄生トランジスタQ304との境界を明確に線引きすることは不可能であるが、本書では、説明の便宜上、このように区別している。寄生トランジスタは6個に限定されるものではなく多数存在する。
図17は、図16の半導体装置300を模式的な等価回路図で示したものである。主トランジスタQ300aのソース及びゲートには、寄生トランジスタQ301a及び寄生トランジスタQ302aのソース及びゲートがそれぞれ接続されている。寄生トランジスタQ301aは、寄生トランジスタQ303を介して、主トランジスタQ300aのドレインに接続され、寄生トランジスタQ302aは、寄生トランジスタQ304を介して、主トランジスタQ300aのドレインに接続される。すなわち、寄生トランジスタQ301aと寄生トランジスタQ303とが直列接続され、寄生トランジスタQ302aと寄生トランジスタQ304aとが直列接続され、これら2つの直列接続体と主トランジスタQ300aとが並列接続されている。
主トランジスタQ300bのソース及びゲートには、寄生トランジスタQ301b及び寄生トランジスタQ302bのソース及びゲートがそれぞれ接続されている。寄生トランジスタQ301bは、寄生トランジスタQ303を介して、主トランジスタQ300bのドレインに接続され、寄生トランジスタQ302bは、寄生トランジスタQ304を介して、主トランジスタQ300bのドレインに接続される。すなわち、寄生トランジスタQ301bと寄生トランジスタQ303とが直列接続され、寄生トランジスタQ302bと寄生トランジスタQ304bとが直列接続され、これら2つの直列接続体と主トランジスタQ300bとが並列接続されている。
主トランジスタQ300a、寄生トランジスタQ301a及び寄生トランジスタQ302aのソースが共通のソースSを形成している。主トランジスタQ300b、寄生トランジスタQ301b及び寄生トランジスタQ302bのソースが共通のソースSを形成している。主トランジスタQ300a、寄生トランジスタQ301a、寄生トランジスタQ302a、主トランジスタQ300b、寄生トランジスタQ301b、寄生トランジスタQ302b、寄生トランジスタQ303及び寄生トランジスタQ304のゲートが共通のゲートGを形成している。主トランジスタ300a、主トランジスタ300b、寄生トランジスタQ303及び寄生トランジスタ304が共通のドレインDを形成している。共通のソースS、共通のドレインD及び共通のゲートGによって半導体装置300aが構成されている。
主トランジスタQ300aのゲート厚t300aは、寄生トランジスタQ301aのゲート厚t301a及び寄生トランジスタQ302aのゲート厚t302aより大きく、t300a>t301a(t302a)の関係を有することがある。この場合、主トランジスタQ300aのゲート幅がある一定の範囲内では主トランジスタQ300aの閾値電圧より寄生トランジスタQ301a及び寄生トランジスタQ302aの閾値電圧は低くなることがある。また、寄生トランジスタQ301aのゲート厚t301a及び寄生トランジスタQ302aのゲート厚t302aは、主トランジスタQ300aのゲート厚t300aと異なり、製造上一定の範囲に抑えることは困難である。
主トランジスタQ300bのゲート厚t300bは、寄生トランジスタQ301bのゲート厚t301b及び寄生トランジスタQ302bのゲート厚t302bより大きく、t300b>t301b(t302b)の関係を有することがある。この場合、主トランジスタQ300bのゲート幅がある一定の範囲内では主トランジスタQ300bの閾値電圧より寄生トランジスタQ301b及び寄生トランジスタQ302bの閾値電圧は低くなることがある。また、寄生トランジスタQ301bのゲート厚t301b及び寄生トランジスタQ302bのゲート厚t302bは、主トランジスタQ300bのゲート厚t300bと異なり、製造上一定の範囲に抑えることは困難である。
さらに、寄生トランジスタQ303のゲート厚t303及び寄生トランジスタQ304のゲート厚t304は、主トランジスタQ300aのゲート厚t300a及び主トランジスタQ300bのゲート厚t300bとほぼ同じである。そのため、寄生トランジスタQ303及び寄生トランジスタQ304の閾値電圧は、主トランジスタQ300a及び主トランジスタQ300bの閾値電圧とほぼ同じである。
寄生トランジスタQ301a及び寄生トランジスタQ302aのチャネル表面電位と主トランジスタQ300aのチャネル表面電位とは異なる。また、寄生トランジスタQ301b及び寄生トランジスタQ302bのチャネル表面電位と主トランジスタQ300bのチャネル表面電位とは異なる。一方、寄生トランジスタQ303及び寄生トランジスタQ304のチャネル表面電位と主トランジスタQ300a及び主トランジスタQ300bのチャネル表面電位とはほぼ同じである。寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b及び寄生トランジスタQ302bは、閾値電圧が低いので、ゲート・ソース間電圧(Vgs)が低い状態で表面電位が主トランジスタQ300a、主トランジスタ300b、寄生トランジスタQ303及び寄生トランジスタQ304よりも反転してしまう。そのため、寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b及び寄生トランジスタQ302bは、主トランジスタQ300a、主トランジスタQ300b、寄生トランジスタQ303及び寄生トランジスタQ304に比べ電流が流れやすい状態となる。しかしながら、寄生トランジスタQ301a及び寄生トランジスタQ301bと寄生トランジスタQ303とが直列接続され、寄生トランジスタQ302a及び寄生トランジスタQ302bと寄生トランジスタQ304とが直列接続されているため、寄生トランジスタQ303及び寄生トランジスタQ304が寄生トランジスタQ301a、寄生トランジスタ302a、寄生トランジスタQ301b及び寄生トランジスタQ302bの電流を妨げる。
以上のように、半導体装置300は、寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b及び寄生トランジスタQ302bを有する。しかし、ドレイン領域303aと寄生トランジスタQ301a及び寄生トランジスタQ301bとの間及びドレイン領域303aと寄生トランジスタQ302a及び寄生トランジスタQ302bとの間に、寄生トランジスタQ303及び寄生トランジスタQ304が形成されるため、寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b寄生トランジスタQ302bがゲート・ソース間電圧(Vgs)で表面電位が反転しようとしても、寄生トランジスタQ303及び寄生トランジスタQ304がゲート・ソース間電圧(Vgs)で表面電位が寄生トランジスタQ301a、寄生トランジスタQ302a、寄生トランジスタQ301b及び寄生トランジスタ302bよりも反転しないため、逆狭チャネル効果が生じず、ハンプ(キンク)現象が発生しない。それにより、所望の表面電位以下のゲート電圧でトランジスタが導通してしまわず、オフ状態のリーク電流の低減にも寄与する。また、ドレイン領域303aのチャネル幅W10をソース領域302aのチャネル幅W9よりも短くし、ドレイン領域303bのチャネル幅W10をソース領域302bのチャネル幅W9よりも短くするだけでよいため、マスクレイアウトの変更のみでよく、製造工程数が増加することなくかつ製造工程が複雑化することがない。
本発明の第3の実施の形態では、ドレイン領域303a及びドレイン領域303bと素子分離領域301との間の半導体領域305の上部がゲート絶縁膜306a、ゲート絶縁膜306b、ゲート電極304a及びゲート電極304bで覆われているため、半導体装置300の上方に配線が存在する場合であってもトランジスタのドレイン、ソース、ゲート、バックゲートに印加する電位以外の電界による影響でフィールド反転しない。そのため、より寄生トランジスタによる低閾値電圧での導通を防止し、より逆狭チャネル効果が生じにくく、よりハンプ(キンク)現象の発生を防止することができる。
(第4の実施の形態)
次に、本発明の第4の実施の形態について図面を参照しながら説明する。図18は、本発明の第4の実施の形態に係る半導体集積回路の構成を示す模式的回路図である。図18の半導体集積回路は、第1の実施の形態から第3の実施の形態で述べた半導体装置を半導体集積回路に適用した一例を示している。第1の実施の形態から第3の実施の形態で述べた半導体装置は、例えば、差動対トランジスタ、差動増幅器、カレントミラー回路、コンパレータ、演算増幅器等に採用され、半導体集積回路に作り込まれる。差動対トランジスタとは、同じ導電型の2つのトランジスタで構成され、両トランジスタの入力信号の差分、入力電圧の差分及び入力電流の差分に応じて動作する回路の総称である。差動増幅器は差動対トランジスタを主体とし、さらに別の差動対トランジスタ、定電流源、抵抗及びキャパシタを含む場合がある。コンパレータは基本的には複数段(一段以上)の差動増幅器で構成される。本発明の半導体集積回路には、これらの構成に加え、論理回路等が含まれてもよい。
本発明に係る半導体装置の半導体集積回路への適用は、差動対トランジスタを用いない、例えば、CMOS回路にも可能である。すなわち、本発明の半導体装置となるNMOSトランジスタ及びPMOSトランジスタを第1の実施の形態、第2の実施の形態又は第3の実施の形態のいずれか1つで作製し、該半導体装置によってCMOS回路を形成し、該CMOS回路によって半導体集積回路を構成してもよい。CMOS回路の代表的な回路はCMOSインバータである。こうしたCMOSインバータはハンプ(キンク)現象が排除されたものとなり、MOSトランジスタ動作領域の弱反転領域(五極管領域、サブスレッショルド領域)から強反転領域(三極管領域)にかけて素子特性バラつきの低減された安定した回路動作を行わせることができる。総括すれば本発明に係る半導体装置は半導体基板上に少なくとも2つのトランジスタを含む半導体集積回路全般に適用することができる。
図18は、P型のMOSトランジスタ100aとP型のMOSトランジスタ100bとによって差動対トランジスタ100cを構成した回路を示している。通常、MOSトランジスタ100a及びMOSトランジスタ100bには揃った電気的特性が要求される。MOSトランジスタ100aはソースSa、ドレインDa及びゲートGaを有する。MOSトランジスタ100bは、MOSトランジスタ100aと同じ導電型であり、ソースSb、ドレインDb及びゲートGbを有する。MOSトランジスタ100aのソースSaとMOSトランジスタ100bのソースSbは共通に接続され、定電流源Issに接続されている。定電流源Issによる定電流issは、MOSトランジスタ100aのソースSa及びMOSトランジスタのソースSbに供給される。なお、定電流源Issによる定電流issの代わりに図示しない電源電圧又は図示しない任意の電圧に接続された抵抗器などを介して電流が供給されてもよい。
MOSトランジスタ100aのドレインDaは、配線Pa、負荷抵抗Raを介して接地電位GNDに、MOSトランジスタ100bのドレインDbは、配線Pb、負荷抵抗Rbを介して接地電位GNDにそれぞれ接続されている。MOSトランジスタ100aのドレインDaはさらに、コンパレータCMPの反転入力端子(−)に、MOSトランジスタ100bのドレインDbはさらに、コンパレータCMPの非反転入力端子(+)にそれぞれ接続されている。MOSトランジスタ100a、MOSトランジスタ100b、負荷抵抗Ra及び負荷抵抗Rbによって差動増幅器が構成されている。なお、負荷抵抗Ra及び負荷抵抗Rbに相当する負荷として、カレントミラー回路、ダイオード等が用いられてもよい。
コンパレータCMPの反転入力端子(−)には第1の差動対出力Vaが、非反転入力端子(+)には第2の差動対出力Vbが印加される。第1の差動対出力Vaと第2の差動対出力Vbの大きさは、定電流源Issから供給される定電流issの大きさと負荷抵抗Ra及び負荷抵抗Rbの大きさで決定される。差動対出力Va及び差動対出力Vbの大きさは、MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbに印加される入力電圧の差分に応じて決定される。ゲートGaの電位がゲートGbの電位よりも十分に低いときには、定電流issの大部分は、MOSトランジスタ100aに流れ、第1の差動対出力Vaは第2の差動対出力Vbよりも十分に大きくなるため、第2の差動対出力Vbはほぼ0となる。ゲートGbの電位がゲートGaの電位よりも十分に低いときには、定電流issの大部分は、MOSトランジスタ100bに流れ、第2の差動対出力Vbは第1の差動対出力Vaよりも十分に大きくなるため、第1の差動対出力Vaはほぼ0となる。
コンパレータCMPの出力OUTからは、出力電圧Voが出力される。出力電圧Voは、第1の差動対出力Vaと第2の差動対出力Vaの大きさに応じて、ハイレベルH又はローレベルLになる。第1の差動対出力Vaが第2の差動対出力Vbよりも大きいときには、出力電圧VoはローレベルLとなる。第2の差動対出力Vbが第1の差動対出力Vaよりも大きいときには、出力電圧VoはハイレベルHとなる。
コンパレータCMPについての具体的な回路構成は図示しないが、コンパレータCMPには、MOSトランジスタ100a及びMOSトランジスタ100bとほぼ同様な差動対トランジスタが回路構成の一部として含まれている。すなわち、コンパレータCMPの反転入力端子(−)および非反転入力端子(+)のそれぞれは、差動対トランジスタの一方のゲートGと他方のゲートGに接続されている。したがって、コンパレータCMPは、差動対トランジスタを含む半導体集積回路の1つである。さらに、コンパレータCMPは、差動増幅器も含んでいる。MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbとの電位差がコントロールされることにより差動対出力Va及び差動対出力Vbが変化する差動増幅器が構成されており、差動対出力Va及び差動対出力Vbが差動増幅器の出力となる。また、差動対出力Va及び差動対出力Vbを発生するために使用される抵抗器は能動負荷、ダイオード等の電流を電圧に変換できるものであってもよい。MOSトランジスタ100aのドレインDa及びMOSトランジスタ100bドレインDbの各々の電流が差動増幅器の電流出力である。
図18に模式的に示した、差動対トランジスタ、差動増幅器及びコンパレータCMPにより構成された半導体集積回路では、MOSトランジスタ100aのゲートGa及びMOSトランジスタ100bのゲートGbに印加する入力電圧を可変することにより第1の差動対出力Va及び第2の差動対出力Vbを測定することができる。また、トランジスタの相互コンダクタンスgmに応じてドレインから出力される電流差が、ドレインと、例えば、接地電位に接続されたインピーダンスによって電圧変換され、通常は、MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbとの電位差を増幅して出力することができる。そのため、コンパレータCMPにより、MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbとの電位の大小関係を高感度に検知することもできる。MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbとの電位差を増幅することができる。
本発明の第4の実施の形態に係る半導体集積回路では、MOSトランジスタの動作領域は、省消費電力の点から直線領域、すなわち、弱反転領域で作動させることが考えられる。弱反転領域はサブスレッショルド領域とも称される。
従来のSTI構造又はDTI構造を有するトランジスタをカレントミラー回路、差動増幅器、コンパレータ、オペアンプ、論理回路等の半導体集積回路に適用すると、前に述べたようにハンプ(キンク)現象が生じることがあるため、MOSトランジスタに流す電流を所定の量に制御することが困難となる。このようなハンプ(キンク)現象は逆狭チャネル効果として知られている現象の原因となる。
本発明の第4の実施の形態に係る半導体集積回路では、ハンプ(キンク)現象が発生しないMOSトランジスタを用いているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、本発明の第4の実施の形態に係る半導体集積回路によると、弱反転領域においても製造上及び回路設計上において想定された動作が可能となる。
図19も、本発明の第4の実施形態に係る半導体回路である。図18との根本的な違いは、差動対トランジスタ100cを構成するMOSトランジスタ100a及びMOSトランジスタ100bを平面的に表し、その他の回路構成部は、図18と同様に回路記号で示したことである。こうした図は本発明にかかるMOSトランジスタ100a及びMOSトランジスタ100bの構造上の特徴をより明確に説明し、さらにそれ以外の表示は簡略化するために有用である。
図19において、MOSトランジスタ100aとMOSトランジスタ100bとは差動対トランジスタの電気的特性を揃えさせるために隣同士に又は近接して配置される。このような配置は従前よく採用される。ここで、差動対トランジスタの電気的特性としては、例えば、MOSトランジスタの閾値電圧、ゲート・ソース間電圧Vgsとドレイン電流Idとの間の電気的特性、ドレイン・ソース間電圧とドレイン電流との間の特性、MOSトランジスタのコンダクタンスgm等がある。コンダクタンスgmは、ゲート・ソース間電圧Vgsの変化に対するドレイン電流Idの変化を表した電気的特性である。これらの電気的特性は、MOSトランジスタ単体の組み合わせからなる半導体集積回路においてはさほどの影響は受けないが、差動対トランジスタを主体構成とした半導体集積回路においては大きな影響を受ける。
図19において、MOSトランジスタ100aのチャネル幅W5は、チャネル幅W6よりも大きい。言い換えれば、チャネル幅W6は、その長辺方向の2つの端部においてそれぞれチャネル幅△Wだけチャネル幅W5に比べて短くなるように構成されている。すなわち、チャネル幅W6とチャネル幅W5とは、W6=W5−2ΔW、の関係を有する。
MOSトランジスタ100aは、ソース領域102及びドレイン領域103を有する。ドレイン領域103のチャネル幅W6方向の両端部は、素子分離領域101から所定のチャネル幅ΔWの間隔を有しているため、素子分離領域101に接していない。ドレイン領域103のチャネル長L3方向の一端は素子分離領域101に接している。ソース領域102のチャネル幅W5方向の両端部はドレイン領域103とは異なり、素子分離領域101に接している。ソース領域102のチャネル長L3方向の一端も素子分離領域101に接している。このような構成は図1に示した半導体装置100の構成とほぼ同じである。なお、チャネル長L3方向において、ソース領域102及びドレイン領域103は、素子分離領域101に接していなくてもよい。
MOSトランジスタ100bは、MOSトランジスタ100aと同じ構成である。すなわちソース領域102及びドレイン領域103を有する。ドレイン領域103のチャネル幅W6方向の両端部は、素子分離領域101から所定のチャネル幅ΔWの間隔を有しているため、素子分離領域101に接していない。ドレイン領域103のチャネル長L3方向の一端は素子分離領域101に接している。ソース領域102のチャネル幅W5方向の両端部はドレイン領域103とは異なり、素子分離領域101に接している。ソース領域102のチャネル長L3方向の一端も素子分離領域101に接している。このような構成は図1に示した半導体装置100の構成とほぼ同じである。なお、チャネル長L3方向において、ソース領域102及びドレイン領域103は、素子分離領域101に接していなくてもよい。
図19は、P型のMOSトランジスタ100aとP型のMOSトランジスタ100bとによって差動対トランジスタ100cを構成した回路を示している。MOSトランジスタ100aはソースSa、ドレインDa及びゲートGaを有する。MOSトランジスタ100bは、MOSトランジスタ100aと同じ導電型であり、ソースSb、ドレインDb及びゲートGbを有する。MOSトランジスタ100aのソースSaとMOSトランジスタ100bのソースSbは共通に接続され、定電流源Issに接続されている。定電流源Issによる定電流issの代わりに図示しない電源電圧又は図示しない任意の電圧に接続された抵抗器などを介して電流が供給されてもよい。
MOSトランジスタ100aのドレインDaは、配線Pa、負荷抵抗Raを介して接地電位GNDに、MOSトランジスタ100bのドレインDbは、配線Pb、負荷抵抗Rbを介して接地電位GNDにそれぞれ接続されている。MOSトランジスタ100aのドレインDaはさらに、コンパレータCMPの反転入力端子(−)に、MOSトランジスタ100bのドレインDbはさらに、コンパレータCMPの非反転入力端子(+)にそれぞれ接続されている。MOSトランジスタ100a、MOSトランジスタ100b、負荷抵抗Ra及び負荷抵抗Rbによって差動増幅器が構成されている。なお、負荷抵抗Ra及び負荷抵抗Rbに相当する負荷として、カレントミラー回路、ダイオード等が用いられてもよい。
コンパレータCMPの反転入力端子(−)には第1の差動対出力Vaが、非反転入力端子(+)には第2の差動対出力Vbが印加される。第1の差動対出力Vaと第2の差動対出力Vbの大きさは、定電流源Issから供給される定電流issの大きさと負荷抵抗Ra及び負荷抵抗Rbの大きさで決定される。差動対出力Va及び差動対出力Vbの大きさは、MOSトランジスタ100aのゲートGaとMOSトランジスタ100bのゲートGbに印加される入力電圧の差分に応じて決定される。ゲートGaの電位がゲートGbの電位よりも十分に低いときには、定電流issの大部分は、MOSトランジスタ100aに流れ、第1の差動対出力Vaは第2の差動対出力Vbよりも十分に大きくなるため、第2の差動対出力Vbはほぼ0となる。ゲートGbの電位がゲートGaの電位よりも十分に低いときには、定電流issの大部分は、MOSトランジスタ100bに流れ、第2の差動対出力Vbは第1の差動対出力Vaよりも十分に大きくなるため、第1の差動対出力Vaはほぼ0となる。
コンパレータCMPの出力OUTからは、出力電圧Voが出力される。出力電圧Voは、第1の差動対出力Vaと第2の差動対出力Vaの大きさに応じて、ハイレベルH又はローレベルLになる。第1の差動対出力Vaが第2の差動対出力Vbよりも大きいときには、出力電圧VoはローレベルLとなる。第2の差動対出力Vbが第1の差動対出力Vaよりも大きいときには、出力電圧VoはハイレベルHとなる。
本発明の第4の実施の形態に係る半導体集積回路では、ハンプ(キンク)現象が発生しないMOSトランジスタを用いているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、本発明の第4の実施の形態に係る半導体集積回路によると、弱反転領域においても安定的な動作が可能となる。なお、ここで「安定的な動作」とは、Vgs以外の温度や電位、素子の物理的構造や寸法の変化などが無視できる状況においては、一般的に弱反転領域ではVgsとIdは指数関数で表される関係を持ち、Vgsの増加に対し、log(Id)の増加は略直線的に単調増加することであって、Vgsの変化量に対してIdの変化率が略一定となることを指す。回路動作点は、半導体集積回路が置かれた温度、半導体集積回路を構成する各素子のばらつき等によって変化する。また、本書でいう「増幅率」とは、例えば、相互コンダクタンスgm、すなわち、ゲート・ソース間電圧Vgsの変化に対するドレイン電流idsの変化の割合(Δids/ΔVgs)を指す。なお、以下の説明で「安定的な動作」とは、相互コンダクタンスgm、すなわち、増幅率が弱反転領域において、VgsとIdが指数関数の関係の上に成り立っていて、Vgsの増加に対し、log(Id)の増加は略直線的に単調増加することであって、Vgsの変化量に対してIdの変化率が略一定となる関係の上に成り立っていることを意味している。
MOS型回路において、MOSトランジスタの基板をソース、グランド端子(低電位端子)又は任意の電圧源に接続して使用する場合がある。半導体集積回路に作り込まれるMOSトランジスタはソース、ドレイン、ゲートの3つの電極の他に基板電極を有する。基板電極の扱い方によって、MOSトランジスタは、基板バイアス効果(バックゲート効果)と呼ばれる物理的効果を受ける。以下の説明では、基板バイアス効果(バックゲート効果)とハンプ(キンク)現象との関係について述べる。
図20は、従来のNMOSトランジスタ400a及びNMOSトランジスタ400bで構成された差動増幅器又は差動比較器を示す。NMOSトランジスタ400aはドレインDa、ゲートGa、ソースSa及び基板電極Subaを有する。NMOSトランジスタ400bは、NMOSトランジスタ400aと同様に、ドレインDb、ゲートGb、ソースSb及び基板電極Subbを有する。NMOSトランジスタ400aのドレインDaは抵抗Raを介して、NMOSトランジスタ400bのドレインDbは抵抗Rbを介して共通に接続され、電源端子(高電位端子)VDDに接続されている。NMOSトランジスタ400aのゲートGaには入力電圧V1が供給されている。NMOSトランジスタ400bのゲートGbには入力電圧V2が供給されている。NMOSトランジスタ400aのソースSa及びNMOSトランジスタ400bのソースSbは、共通に接続され、定電流源ICC1に接続されている。
NMOSトランジスタ400aの基板電極Suba及びNMOSトランジスタ400bの基板電極Subbは、共通に接続され、グランド端子(低電位端子)GNDに接続されている。すなわち、図20は、差動増幅器又は差動比較器の基板電極Suba及び基板電極Subbがグランド端子(低電位端子)GNDに接続された場合を示している。しかし、基板電極Suba及び基板電極Subbは、グランド端子(低電位端子)GNDではなく、NMOSトランジスタ400aのソースSa及びNMOSトランジスタ400bのソースSbと異なる電位に接続されてもよい。
NMOSトランジスタ400aのドレインDaは出力端子OUT1に接続されている。NMOSトランジスタ400bのドレインDbは出力端子OUT2に接続されている。差動増幅器又は差動比較器は、入力電圧V1と入力電圧V2との差電圧ΔVinに応じた差動出力電圧ΔVoutが出力される。
図20に示したように、基板電極がグランド端子(低電位端子)GNDに接続されている場合又は他の電圧源に接続されている場合でも、図20の従来のNMOSトランジスタを用いた差動増幅器又は差動比較器においてハンプ(キンク)現象が生じる。しかしながら、本発明の第1の実施の形態から本発明の第3の実施の形態の半導体装置を用いた差動増幅器又は差動比較器では、このハンプ(キンク)現象が生じない。そのため、差動増幅器又は差動比較器において、「安定的な動作」を得ることができる。
図21は、図20の差動増幅器又は差動比較器の基板電極Suba(Subb)とソースSa(Sb)との間の電位差すなわちバックゲートバイアスVbsを0Vに設定した場合及びバックゲートバイアスVbsを0Vよりも高く設定した場合のゲート・ソース間電圧(Vgs)とドレイン電流(Id)との関係を示す。図中符号Y1はバックゲートバイアスVbs=0Vに、図中符号Y2はバックゲートバイアスVbs>0Vにそれぞれ設定された場合を模式的に示す。
図21に示すように、バックゲートバイアスVbsを0Vから上昇させると、ハンプ(こぶ)の形状が変化すると共に閾値電圧も変化している。この基板バイアス効果は、ゲート酸化膜容量、チャネル基板に発生する空乏層の容量等によって影響を受ける度合いが変化するが、一般的にトランジスタの閾値が高くなるほどバックゲートバイアス増加による閾値の増分が大きい。そのため、寄生トランジスタの閾値と主トランジスタの閾値とが異なると、バックゲートバイアスの変化による主トランジスタの閾値変動量と寄生トランジスタの閾値変動量とは異なる。主トランジスタの閾値よりも寄生トランジスタの閾値が低い場合は、バックゲートバイアスの増加によって、図21のようにVgs−Id特性の相対的な位置が変化し、双方を合わせたVgs−Id特性の形状が変化する。そのため、入力電圧V1及び入力電圧V2の電位によって、相互コンダクタンスgm(ΔId/ΔVgs)が変化し、入力電圧V1と入力電圧V2との差分電圧ΔVinと出力差分電圧ΔVoutとの関係に歪みが生じる。そのため、このような特性を有する差動増幅器及び差動比較器は好ましくない。しかしながら、本発明の第1の実施の形態から本発明の第3の実施の形態の半導体装置を用いた差動増幅器又は差動比較器では、このハンプ(キンク)現象が生じないため、バックゲートバイアスVbsが0Vであっても0Vより高く設定されている場合であっても「安定的な動作」を得ることができる。
図22は、一般的にカスコード接続と称されるMOS型回路(カスコード回路)を示す。カスコード接続は電圧利得Gv=Vout/Vinの利得を向上させるための一方法として一般的によく用いられる。図22の従来のカスコード接続は、従来のNMOSトランジスタ400c、NMOSトランジスタ400d及び定電流源ICC2を有する。NMOSトランジスタ400cはドレインDc、ゲートGc、ソースSc及び基板電極Subcを有する。NMOSトランジスタ400dはドレインDd、ゲートGd、ソースSd及び基板電極Subdを有する。
NMOSトランジスタ400cのソースScはグランド端子(低電位端子)GNDに接続される。NMOSトランジスタ400cのドレインDcはNMOSトランジスタ400dのソースSdに接続される。NMOSトランジスタ400dのドレインDdは定電流源ICC2に接続されている。NMOSトランジスタ400dのドレインDdから出力電圧Voutが取り出される。NMOSトランジスタ400cのゲートGcには入力電圧Vinが印加されている。NMOSトランジスタ400dのゲートGbには所定の参照電圧Vrefが印加されている。NMOSトランジスタ400cの基板電極Subc及びNMOSトランジスタ400dの基板電極Subdは、共通に接続され、グランド端子(低電位端子)GNDに接続されている。
図22に示した従来のカスコード接続において、入力電圧Vinの変動によって生じるドレイン電流Id1の変化は、NMOSトランジスタ400cのドレインDc側の出力インピーダンスによって電圧変化として現れる。この電圧変化をNMOSトランジスタ400dのゲートGdのゲート接地により抑え、出力インピーダンスの変動を抑えることで電圧利得Gvの低下を抑えるようにしている。しかし、NMOSトランジスタ400dにハンプ(キンク)現象が生じていると、NMOSトランジスタ400cのドレイン電流Id1の変化に対して、NMOSトランジスタ400cのドレイン電圧の変化がハンプ(キンク)現象によって歪みを持ち、これが出力インピーダンスの変動につながり、これが電圧利得Gvの変化として現れることになる。図20に示した差動増幅器又は差動比較器と同様に、ハンプ(キンク)現象が排除できない半導体装置(トランジスタ)でカスコード接続が構成され、基板電極がバックゲートとして用いられている場合には、電圧利得Gvに歪みが生じることになり、不具合を排除することはできない。
図20に示した差動増幅器又は差動比較器、及び図22に示したカスコード接続の回路動作において、基板電極がバックゲートとして用いられている場合には、バックゲートバイアスの大きさによって、ハンプ(キンク)現象の影響を大きく受けることは上述のとおりである。本発明の第1の実施の形態から本発明の第3の実施の形態の半導体装置では、ハンプ現象を排除することができるため、基板バイアス効果(バックゲート効果)の有無に依存することなく電圧制御の歪みを排除できる。なお、以下に示す本発明の第1の実施の形態から本発明の第3の実施の形態の半導体装置が用いられる他の実施の形態の半導体集積回路及びMOS型回路においては、基板バイアス効果(バックゲート効果)については触れないが、図20に示した差動増幅器又は差動比較器、及び図22に示したカスコード接続と同様の効果が奏される。
(他の実施の形態)
本発明の第1の実施の形態から第3の実施の形態に係る半導体装置が半導体集積回路に用いられる一例は図18、図19で説明したが、ここからは、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置がMOS型回路及び他の半導体集積回路全般に用いられる場合について説明する。
図23は本発明に係る半導体装置をMOS型回路に用いた例を示す。説明の便宜上、MOS型回路はNMOS型の1つのトランジスタと1つの電流源で構成される極めてシンプルなものを示している。NMOSトランジスタ400はドレインDa、ゲートGa、及びソースSaを有する。ソースSaはグランド端子(低電位端子)GNDに、ドレインDaは定電流源Issにそれぞれ接続されている。定電流源IssからNMOSトランジスタ400に定電流issが供給される。ドレインDaには出力端子OUTが接続され、出力端子OUTには、ゲートGaに印加される図示しない入力信号、入力電圧に応じた出力Voが取り出される。
NMOSトランジスタ400に流れるドレイン電流idsは、定電流issと等しくなる。NMOSトランジスタ400のゲート・ソース間電圧Vgsは、ドレイン電流idsの大きさに応じて一義的に決定される。本発明の半導体装置は、ハンプ現象が生じないので、ドレイン電流idsの変化に対するゲート・ソース間電圧Vgsの変化の割合、言い換えれば、ゲート・ソース間電圧Vgsの変化に対するドレイン電流idsの変化の割合、すなわち、相互コンダクタンスgm(Δids/ΔVgs)の変動を小さく(低く)抑えることができる。相互コンダクタンスgmの変化が小さいため、MOS型回路をリニア回路、デジタル回路のいずれで使用しても歪みを低く抑えられる。
一方、ハンプ現象が生じる半導体装置をMOS型回路に用いた場合には、ゲート・ソース間電圧Vgsの変化とドレイン電流idsとの変化の割合、すなわち、相互コンダクタンスgm(Δids/ΔVgs)が、ハンプ現象が生じる電流領域とその前後の電流領域で大きく変動するために、電圧、電流、信号等に生じる歪みが大きくなるという不具合が生じる。
図24は、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をカレントミラー回路(半導体集積回路)に用いた構成の一例を示す回路図である。
図24のカレントミラー回路は、PMOSトランジスタ500a、PMOSトランジスタ500b及び定電流源Idd1を含む。PMOSトランジスタ500aのソース及びPMOSトランジスタ500bのソースは共通に接続され、電源端子(高電位端子)Vssに接続される。PMOSトランジスタ500aのゲート、ドレイン及びPMOSトランジスタ500bのゲートは共通に接続され、これらの共通接続点は定電流源Idd1に接続される。定電流源Idd1の電流によりPMOSトランジスタ500bのドレインに電流Idd2が流れる。
図24のカレントミラー回路では、ハンプ(キンク)現象が発生しないMOSトランジスタが用いられているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、図24のカレントミラー回路によると、比較的電流の小さな領域である弱反転領域(五極管領域、サブスレッショルド領域)において特に安定的な動作が可能となる。
図24のカレントミラー回路は、差動対トランジスタが用いられているとはいえない。しかし、PMOSトランジスタ500a及びPMOSトランジスタ500bは、ほぼ揃った電気的特性が要求される。そのため、実質的には差動対トランジスタを用いた回路構成と同等の特性が要求される。このことは図18のPMOSトランジスタ100a及びPMOSトランジスタ100bにほぼ揃った電気的特性が要求されることと同じである。したがって、本発明に係る半導体装置は、差動対トランジスタを有する回路構成だけではなく、特に複数の半導体素子に揃った電気的特性が要求される半導体集積回路全般に好適である。
図25は、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を差動増幅器に用いた構成の一例を示す回路図である。
図25の差動増幅器は、定電流源Iss、PMOSトランジスタ600a、PMOSトランジスタ600b、抵抗Ra及び抵抗Rbを含む。図25の差動増幅器は、PMOSトランジスタ600a及びPMOSトランジスタ600bから成る差動対トランジスタを含む。
PMOSトランジスタ600aのソース及びPMOSトランジスタ600bのソースは共通に接続され、定電流源Issを介して電源端子(高電位端子)Vssに接続される。PMOSトランジスタ600aのゲートには、入力電圧Vi1が印加される。PMOSトランジスタ600bのゲートには、入力電圧Vi2が印加される。PMOSトランジスタ600aのドレインは、抵抗Raの一端及び出力端子OUT1に接続される。PMOSトランジスタ600bのドレインは、抵抗Rbの一端及び出力端子OUT2に接続される。抵抗Raの他端はグランド端子(低電位端子)GNDに接続される。抵抗Rbの他端はグランド端子(低電位端子)GNDに接続される。出力電圧Vo1及び出力電圧Vo2は、入力電圧Vi1の大きさ、入力電圧Vi2の大きさ、定電流源Issから供給される電流の大きさ、抵抗Raの大きさ及び抵抗Rbの大きさに基づいて決定される。
図25の差動増幅器では、ハンプ(キンク)現象が発生しないMOSトランジスタが用いられているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、図25の差動増幅器によると、特に、弱反転領域(五極管領域、サブスレッショルド領域)においても安定的な動作が可能となる。
図26は、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をコンパレータに用いた構成の一例を示す回路図である。
図26のコンパレータは、PMOSトランジスタ700a、PMOSトランジスタ700b、NMOSトランジスタ700c、NMOSトランジスタ700d、PMOSトランジスタ700e及びNMOSトランジスタ700fを含む。端的に言えば、PMOSトランジスタ700a及びPMOSトランジスタ700bからカレントミラー回路が構成され、NMOSトランジスタ700c及びNMOSトランジスタ700dから差動増幅器が構成されている。
PMOSトランジスタ700aのソース及びPMOSトランジスタ700bのソースは電源端子(高電位端子)Vssに接続される。PMOSトランジスタ700aのゲート及びPMOSトランジスタ700bのゲートは、共通に接続され、PMOSトランジスタ700aのドレインに接続される。PMOSトランジスタ700aのドレインは、NMOSトランジスタ700cのドレインに接続される。トランジスタ700bのドレインはNMOSトランジスタ700dのドレインに接続される。NMOSトランジスタ700cのソース及びNMOSトランジスタ700dのソースは共通に接続され、NMOSトランジスタ700gのドレインに接続される。NMOSトランジスタ700gのソースはグランド端子(低電位端子)GNDに接続される。NMOSトランジスタ700cのゲートには、入力電圧Vi1が入力される。NMOSトランジスタ700dのゲートには入力電圧Vi2が入力される。PMOSトランジスタ700eのゲートは、PMOSトランジスタ700bのドレインに接続される。PMOSトランジスタ700eのソースは電源端子(高電位端子)Vssに接続される。PMOSトランジスタ700eのドレインはNMOSトランジスタ700fのドレインに接続される。NMOSトランジスタ700fのゲートはNMOSトランジスタ700gのゲートに接続される。NMOSトランジスタ700fのソースはグランド端子(低電位端子)GNDに接続される。NMOSトランジスタ700eのドレインは、出力端子OUTに接続される。出力端子OUTには出力電圧Voが出力される。
図26のコンパレータでは、ハンプ(キンク)現象が発生しないMOSトランジスタが用いられているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、図26のコンパレータによると、弱反転領域(五極管領域、サブスレッショルド領域)においても安定的な動作が可能となる。
図27は、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置を演算増幅器に用いた構成の一例を示す回路図である。
図27の演算増幅器は、PMOSトランジスタ800a、PMOSトランジスタ800b、NMOSトランジスタ800c、NMOSトランジスタ800d、PMOSトランジスタ800e、NMOSトランジスタ800f及びキャパシタCを含む。演算増幅器は、コンパレータとほぼ同じ回路構成部を有する。そのため、図27の演算増幅器の回路構成の一部は図26のコンパレータの回路構成の一部とほぼ同じである。
PMOSトランジスタ800aのソース及びPMOSトランジスタ800bのソースは電源端子(高電位端子)Vssに接続される。PMOSトランジスタ800aのゲート及びPMOSトランジスタ800bのゲートは、共通に接続され、PMOSトランジスタ800aのドレインに接続される。PMOSトランジスタ800aのドレインは、NMOSトランジスタ800cのドレインに接続される。トランジスタ800bのドレインはNMOSトランジスタ800dのドレインに接続される。NMOSトランジスタ800cのソース及びNMOSトランジスタ800dのソースは共通に接続され、NMOSトランジスタ800gのドレインに接続される。NMOSトランジスタ800gのソースはグランド端子(低電位端子)GNDに接続される。NMOSトランジスタ800cのゲートには、入力電圧Vi1が入力される。NMOSトランジスタ800dのゲートには入力電圧Vi2が入力される。PMOSトランジスタ800eのゲートは、PMOSトランジスタ800bのドレインに接続される。PMOSトランジスタ800eのソースは電源端子(高電位端子)Vssに接続される。PMOSトランジスタ800eのドレインはNMOSトランジスタ800fのドレインに接続される。NMOSトランジスタ800fのゲートはNMOSトランジスタ800gのゲートに接続される。NMOSトランジスタ800fのソースはグランド端子(低電位端子)GNDに接続される。NMOSトランジスタ800eのドレインは、出力端子OUTに接続される。出力端子OUTには出力電圧Voが出力される。PMOS800eのゲートとPMOS800ドレインとの間にキャパシタCが接続される。キャパシタCにより位相補償がなされる。
図27の演算増幅器では、ハンプ(キンク)現象が発生しないMOSトランジスタが用いられているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、図27の演算増幅器によると、弱反転領域(五極管領域、サブスレッショルド領域)においても安定的な動作が可能となる。
図28は、本発明の第1の実施の形態から第3の実施の形態に係る半導体装置をCMOSインバータに用いた構成の一例を示す回路図である。
図28のCMOSインバータは、PMOSトランジスタ900a及びNMOSトランジスタ900bを含む。
PMOSトランジスタ900aのソースは電源端子(高電位端子)Vssに接続される。NMOSトランジスタ900bのソースはグランド端子(低電位端子)GNDに接続される。PMOSトランジスタ900aのゲート及びNMOSトランジスタ900bのゲートは共通に接続され、入力端子INに接続される。PMOSトランジスタ900aのドレイン及びNMOSトランジスタ900bのドレインは共通に接続され、出力端子OUTに接続される。入力端子INには入力電圧Viが入力される。出力端子OUTには出力電圧Voが入力される。
図28のCMOSインバータに限らず一般的にCMOSインバータは、図25〜図27に示された差動対トランジスタを有していない。しかし、PMOSトランジスタ900a及びNMOSトランジスタの電気的特性に不揃いが生じると、両者トランジスタのオン・オフのタイミングがずれてくる。そのため、本発明に係る半導体装置は差動対トランジスタを用いる半導体集積回路だけではなく、CMOSインバータにも好適である。
図28のCMOSインバータでは、ハンプ(キンク)現象が発生しないMOSトランジスタが用いられているため、MOSトランジスタに流れる電流を所定の大きさに制御することができる。すなわち、図28のCMOSインバータによると、弱反転領域(五極管領域、サブスレッショルド領域)においても安定的な動作が可能となる。
なお、上記第1の実施の形態から第4の実施の形態において、ドレイン領域とソース領域とが逆に配置されてもよい。また、N型のドレイン領域及びN型のソース領域の代わりにP型のドレイン領域及びP型のソース領域が用いられ、P型の半導体領域の代わりにN型の半導体領域が用いられてもよい。さらに、半導体装置100から半導体装置300に用いるトランジスタは、MOSトランジスタだけではなく、MISトランジスタ全般であればよく、また、半導体集積回路もMOS型回路全般であればよい。
本発明は、半導体装置及びそれを用いた半導体集積回路、及びこれらを用いた装置全般に利用することができる。そのため、本発明は、産業上の利用可能性が高い。
10,20,100,200,300 半導体装置
11,21,101,201,301 素子分離領域
12,22a,22b,102,202a,202b,302a,302b ソース領域(ドレイン領域)
13,23a,23b,103,203a,203b,303a,303b ドレイン領域(ソース領域)
14,24a,24b,104,204a,204b,304a,304b ゲート電極
15,25,105,205,305 半導体領域
16,26a,26b,106,206a,206b,306a,306b ゲート絶縁膜
17,27,107,207,307 半導体基板
20a,20b,200a,200b,300a,300b トランジスタ
100a,100b,400,400a〜400d,500a,500b,600a,600b,700a〜700f,800a〜800g,900a,900b MOSトランジスタ
100c 差動対トランジスタ
C キャパシタ
ch チャネル領域
CMP コンパレータ
D,Da〜Dd ドレイン
G,Ga〜Gd ゲート
GND グランド端子(低電位端子)
IN 入力端子
Id1,ids ドレイン電流
Iss,Idd1,ICC1,ICC2 定電流源
iss,Idd2 定電流
L1,L2a,L2b,L3,L4a,L4b,L5a,L5b,L6 チャネル長
OUT,OUT1,OUT2 出力端子
Pa,Pb 配線
Q10,Q20a,Q20b,Q100,Q200a,Q200b,Q300a,Q300b 主トランジスタ
Q11,Q12,Q21a,Q22a,Q21b,Q22b,Q101〜Q104,Q201a〜Q204a,Q201b〜Q204b,Q301a,Q302a,Q301b,Q302b,Q303,Q304 寄生トランジスタ
Ra,Rb 負荷抵抗
S,Sa〜Sd ソース
Suba〜Subd 基板電極
t10〜t12,t20a〜t22a,t20b〜t22b,t100〜t104,t200a〜t204a,t200b〜t204b,t300a〜t302a,t300b〜t302b,t303,t304 ゲート厚
V1,V2,Vi,Vi1,Vi2,Vin 入力電圧
Va,Vb,Vo,Vo1,Vo2,Vout 出力電圧
Vgs,Vgs1,Vgs2 ゲート・ソース間電圧
Vref 参照電圧
Vss,VDD 電源端子(高電位端子)
W1〜W10,ΔW ゲート幅

Claims (6)

  1. 第1導電型の第1領域と、
    前記第1領域を挟むように形成される第1導電型の第2領域及び第1導電型の第3領域と、
    前記第1領域と前記第2領域との間に形成される第2導電型の第1チャネル領域と、
    前記第1領域と前記第3領域との間に形成される第2導電型の第2チャネル領域と、
    前記第1チャネル領域上に形成される第1ゲート絶縁膜と、
    前記第1ゲート絶縁膜上に形成される第1ゲート電極と、
    前記第2チャネル領域上に形成される第2ゲート絶縁膜と、
    前記第2ゲート絶縁膜上に形成される第2ゲート電極と、
    前記第1領域、前記第2領域、前記第3領域、前記第1チャネル領域及び前記第2チャネル領域を取り囲む素子分離領域とを備え、
    前記第1ゲート電極は前記第1チャネル領域と前記素子分離領域との境界部を跨いで配線され、
    前記第2ゲート電極は前記第2チャネル領域と前記素子分離領域との境界部を跨いで配線され、
    前記第1領域、前記第2領域及び前記第3領域のチャネル幅方向において、前記第1領域の幅は前記第2領域の幅及び前記第3領域の幅よりも短く、
    前記第1領域、前記第2領域及び前記第3領域のチャネル幅方向において、前記第1領域の両端は、前記第2領域及び前記第3領域の両端よりも内側に位置し、
    前記第1領域、前記第2領域及び前記第3領域のチャネル幅方向において、前記第1領域の両端は、前記第1ゲート絶縁膜及び前記第2ゲート絶縁膜の両端よりも内側に位置し、
    前記第1ゲート絶縁膜と前記第2ゲート絶縁膜は、前記第1領域を取り囲むことなく、互いに分離して形成されており、
    前記第1ゲート電極と前記第2ゲート電極は、前記第1領域を取り囲むことなく、互いに分離して形成されている、半導体装置。
  2. 請求項1に記載の半導体装置による少なくとも2つのトランジスタが用いられ、前記少なくとも2つのトランジスタがソース共通結合又はドレイン共通結合がされた差動対トランジスタを含む、半導体集積回路。
  3. 前記トランジスタはMOSトランジスタ動作領域の弱反転領域(サブスレッショルド領域)で作動する、請求項2に記載の半導体集積回路。
  4. 前記トランジスタはMOSトランジスタ動作領域の強反転領域で作動する、請求項2に記載の半導体集積回路。
  5. 前記トランジスタは差動増幅器、カスコード回路、カレントミラー回路、コンパレータ及び演算増幅器の少なくとも1つに使用される、請求項3又は請求項4に記載の半導体集積回路。
  6. 前記トランジスタに基板バイアス効果が生じるように基板電極が所定の電位に固定されている、請求項2〜5のいずれか一項に記載の半導体集積回路。
JP2015206627A 2015-10-20 2015-10-20 半導体装置及びそれを用いた半導体集積回路 Expired - Fee Related JP6647830B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015206627A JP6647830B2 (ja) 2015-10-20 2015-10-20 半導体装置及びそれを用いた半導体集積回路
US15/292,475 US10026738B2 (en) 2015-10-20 2016-10-13 Semiconductor device and semiconductor integrated circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206627A JP6647830B2 (ja) 2015-10-20 2015-10-20 半導体装置及びそれを用いた半導体集積回路

Publications (2)

Publication Number Publication Date
JP2017079266A JP2017079266A (ja) 2017-04-27
JP6647830B2 true JP6647830B2 (ja) 2020-02-14

Family

ID=58523168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206627A Expired - Fee Related JP6647830B2 (ja) 2015-10-20 2015-10-20 半導体装置及びそれを用いた半導体集積回路

Country Status (2)

Country Link
US (1) US10026738B2 (ja)
JP (1) JP6647830B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545495B2 (en) 2017-06-29 2023-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Preventing gate-to-contact bridging by reducing contact dimensions in FinFET SRAM
CN110060998B (zh) * 2019-04-29 2022-05-17 厦门天马微电子有限公司 一种反相电路结构、栅极驱动电路及显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831516B1 (ja) * 1969-10-17 1973-09-29
JPH0786582A (ja) 1993-09-13 1995-03-31 Toshiba Corp 半導体装置
JP3397693B2 (ja) 1998-06-29 2003-04-21 株式会社東芝 半導体装置とその製造方法
JP4136145B2 (ja) 1998-12-25 2008-08-20 富士通株式会社 半導体装置の製造方法
JP2001160623A (ja) 1999-12-02 2001-06-12 Nec Ic Microcomput Syst Ltd 半導体装置とその製造方法
JP2003168779A (ja) 2001-11-30 2003-06-13 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法および半導体装置
KR100961192B1 (ko) * 2003-06-27 2010-06-09 주식회사 하이닉스반도체 증가된 유효 채널 길이를 가지는 반도체 소자

Also Published As

Publication number Publication date
JP2017079266A (ja) 2017-04-27
US10026738B2 (en) 2018-07-17
US20170110455A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
KR100756317B1 (ko) 딥 엔웰 씨모스 공정으로 구현한 수직형 바이폴라 정션트랜지스터를 이용한 전압 기준 회로 및 전류 기준 회로
CN107947757B (zh) 阻抗电路
US20150364471A1 (en) Semiconductor device
US10054974B1 (en) Current mirror devices using cascode with back-gate bias
JP6647830B2 (ja) 半導体装置及びそれを用いた半導体集積回路
Baschirotto et al. Low power analog design in scaled technologies
TWI612639B (zh) 半導體積體電路裝置
JP2013115056A (ja) 半導体装置および半導体装置の製造方法
JP4137510B2 (ja) 差動増幅回路を有する半導体装置
JP5394680B2 (ja) 半導体集積回路装置
JP2015056472A (ja) 半導体装置
US6492687B2 (en) Merged semiconductor device and method
US10554179B2 (en) Differential circuit
US20170154949A1 (en) Diffused resistor
US10635126B2 (en) Constant current circuit, semiconductor device, electronic apparatus, and method of manufacturing semiconductor device
JP6058960B2 (ja) カレントミラー回路
JP4609308B2 (ja) 半導体回路装置
KR100801056B1 (ko) 딥 엔웰 씨모스 공정으로 구현한 수직형 바이폴라 정션트랜지스터를 이용한 반도체 회로
KR20180047698A (ko) 트렌치 구조의 수직형 모스펫
JP4763555B2 (ja) 半導体装置
JP2000165222A (ja) アナログスイッチ
JP2014175804A (ja) 差動増幅回路
TW202133385A (zh) 靜電保護電路以及半導體裝置
JP2007324438A (ja) 半導体装置
KR100745970B1 (ko) 달링톤 회로 및 그의 레이 아웃 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees