JP6639181B2 - 撮像装置、生産システム、撮像方法、プログラム及び記録媒体 - Google Patents

撮像装置、生産システム、撮像方法、プログラム及び記録媒体 Download PDF

Info

Publication number
JP6639181B2
JP6639181B2 JP2015201855A JP2015201855A JP6639181B2 JP 6639181 B2 JP6639181 B2 JP 6639181B2 JP 2015201855 A JP2015201855 A JP 2015201855A JP 2015201855 A JP2015201855 A JP 2015201855A JP 6639181 B2 JP6639181 B2 JP 6639181B2
Authority
JP
Japan
Prior art keywords
imaging
work
light source
image
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201855A
Other languages
English (en)
Other versions
JP2017076169A (ja
Inventor
林 禎
禎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015201855A priority Critical patent/JP6639181B2/ja
Priority to US15/767,877 priority patent/US10957003B2/en
Priority to PCT/JP2016/080634 priority patent/WO2017065308A1/en
Publication of JP2017076169A publication Critical patent/JP2017076169A/ja
Application granted granted Critical
Publication of JP6639181B2 publication Critical patent/JP6639181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)
  • Image Input (AREA)

Description

本発明は、搬送装置により搬送されるワークを自動で撮像する撮像装置、生産システム、撮像方法、プログラム及び記録媒体に関する。
一般に、ロボットやベルトコンベアなどを用いて物体(ワーク)を搬送する搬送装置がある。ワークは、搬送装置に対して位置及び姿勢にバラツキがある状態で搬送される場合が多く、一般には搬送終了後、作業位置手前においてワークの位置及び姿勢を計測して、適宜ワークの位置及び姿勢を修正してから作業を開始している。またワークの検査においても、ワークの位置及び姿勢を修正後、検査を専門に行うステーションにワークを送ってから実施することが一般的である。即ち、生産システムにおいては、ワークの位置及び姿勢やワークの欠陥等のワークの状態を計測する必要がある。
特許文献1には、ワークを積載する組立パレットに、LEDや再帰反射材などのマークを置いてカメラで撮像することによって、組立パレットの位置及び姿勢を求め、これにより、ワークの位置及び姿勢を求める技術が記載されている。
特開2010−221381号公報
しかし、特許文献1に記載の技術では、組立パレット等の搬送装置の位置及び姿勢を求めることは可能であるが、搬送装置に搬送されているワークの位置及び姿勢を求めるには、ワークが搬送装置に対して正確に位置決めされていることが前提となる。したがって、特許文献1に記載の技術は、ワークが搬送装置に対し任意の位置及び姿勢で搬送される場合を想定したものではない。即ち、特許文献1には、カメラによりLEDや再帰反射材等のマークを撮像して、マークの位置及び姿勢から組立パレットに位置決されたワークの位置及び姿勢を、間接的に求める技術が記載されているものである。
これに対し、カメラを用いて搬送装置に搬送されているワークを撮像し、撮像画像から、直接、ワークの位置及び姿勢や欠陥等の状態を計測する方法が考えられる。ワークが写り込んでいる撮像画像を解析することで、ワークの状態を計測することができる。ワークを撮像した撮像画像から正確に情報を引き出すには、大きな解像度(画素数)とする必要がある。
ここで、特許文献1では組立パレットを一旦停止させてからカメラにより撮像させているが、近年、ワークを撮像する際の時間を短縮するため、ワークを搬送しながら撮像することが求められている。
高速で移動するワークに対して、ワークの状態を計測するのに用いる撮像画像においてブレを防ぐために、速いシャッタ速度と強い照明が必要である。このような状況では、最適撮像条件の範囲が狭くなり、露出条件やワークの表面状態によって撮像結果が大きく変わる。このため、ワークを撮像する際の照明条件は、ワークに応じて細かく設定する必要がある。
一方、ワークを搬送しながら撮像するには、ワークを撮像するタイミングが重要であり、この撮像タイミングを正確に求めなければならない。そこで、実際に必要な計測用の撮像画像を取得する前に、撮像タイミングを検出するための撮像画像を連続して取得し、これら撮像画像からワークの撮像タイミングを検出することが考えられる。その際、ワークを高速搬送した状態で撮像タイミングを検出する場合は、高いフレームレートが必要となる。
しかし、ワーク全体を撮像する際の照明条件に合わせて照度を上げると、撮像タイミングを検出する際の撮像画像においても背景が写ってしまい、背景分離が必要となるため、演算負荷が高くなり、作業速度の低下が発生する。即ち、ワークの撮像タイミングを検出する際に、ワークを撮像する照明条件と同じ照明条件で撮像しようとすると、演算負荷が高くなるので撮像タイミングを検出するのに多大な時間を要し、フレームレートを高くすることができない。したがって、ワークの搬送速度を低くせざるを得なかった。
そこで、本発明は、ワークを高速搬送しながら確実にワークを撮像することを目的とする。
本発明の撮像装置は、搬送装置に搬送されて撮像範囲内を通過するワークを撮像する撮像部と、前記撮像範囲内を通過する前記ワークに光を照射する照明部と、前記撮像部及び前記照明部を制御する制御部と、を備え、前記照明部は、前記ワークを撮像するのに必要な開口を有する第1光源と、前記第1光源よりも開口の小さい第2光源と、を有し、前記制御部は、前記搬送装置による前記ワークの搬送中、前記第1光源を消灯し、かつ前記第2光源を点灯した状態で前記撮像部に撮像させる撮像動作を繰り返し行い、前記搬送装置又は前記ワークに設けられたマークからの反射光が写り込んだ撮像画像を取得する第1撮像処理と、前記搬送装置による前記ワークの搬送中、前記第1光源を点灯させた状態で前記撮像部により撮像させ、前記ワークが写り込んだ撮像画像を取得する第2撮像処理と、前記第1撮像処理にて得られた前記反射光が写り込んだ撮像画像に基づき、前記第1撮像処理から前記第2撮像処理に切り替えるタイミングを設定する切替処理と、を実行する。
本発明によれば、第2光源を用いることにより、フレームレートを高めてマークからの反射光が写り込んだ撮像画像を取得することができ、これによって設定したタイミングで、第1光源による光照射の下、移動しているワークを撮像することができる。したがって、ワークを高速搬送しながら確実にワークを撮像することができる。
第1実施形態に係る生産システムの概略構成を示す模式図である。 (a)は、ロボットハンドに把持されたワークをカメラ側から見た平面図である。(b)は、カメラをロボットハンドに把持されたワーク側から見た平面図である。 第1実施形態に係る生産システムの制御系の構成を示すブロック図である。 第1実施形態に係る生産システムの制御系の別の構成を示すブロック図である。 (a)は、ワークの他に背景が写り込んだ画像を示す模式図である。(b)は、背景を遮蔽した画像を示す模式図である。 (a)は、第1実施形態で用いられる再帰反射材の一例を示す模式図である。(b)は、第1実施形態で用いられる再帰反射材の一例の原理を示す説明図である。(c)は、第1実施形態で用いられる再帰反射材の別の例を示す模式図である。(d)は、第1実施形態で用いられる再帰反射材の別の例の原理を示す説明図である。 光源により照射された光が鏡面反射した場合にカメラにて結像する説明図である。 (a)は、ワーク面が光沢面であった場合に撮像される撮像画像を示す模式図である。(b)は、ワーク面が散乱面であった場合に撮像される撮像画像を示す模式図である。(c)は、ワーク面を再帰反射シートとした場合に撮像される撮像画像を示す模式図である。 (a)は、ワーク面が鏡面に近い場合に第2光源から照射された光の経路を示す模式図である。(b)は、(a)の状態でカメラ本体に撮像される画像を示す模式図である。 (a)は、第1光源で照明した場合にワークをカメラ本体に撮像させて得られる撮像画像を示す模式図である。(b)は、第2光源で照明した場合にワークをカメラ本体に撮像させて得られる撮像画像を示す模式図である。(c)は、ワークを移動させて第1光源で照明した場合にワークをカメラ本体に撮像させて得られる撮像画像を示す模式図である。(d)は、ワークを移動させて第2光源で照明した場合にワークをカメラ本体に撮像させて得られる撮像画像を示す模式図である。 第1実施形態に係る撮像方法を示すフローチャートである。 第1実施形態において、撮像制御回路にて取り込まれる画素領域の一例を示した模式図である。 第2実施形態に係る撮像方法を示すフローチャートである。 第2実施形態において、撮像制御回路にて取り込まれる画素領域の一例を示した模式図である。 (a)及び(b)は、第3実施形態に係る撮像装置により撮像されたワークが写り込んだ撮像画像において、画像処理装置に出力する部分画像を示す模式図である。 第4実施形態において、5つの再帰反射材をロボットに配した場合を示す模式図である。 (a)は、金属板を切削加工した際に生じる引き目の断面形状と第2光源の光を金属板の表面に照射した際に生じる光条を示す説明図である。(b)は、光条が発生する原理を説明するための図である。(c)は、光条が発生している状態を示す模式図である。
以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。
[第1実施形態]
図1は、第1実施形態に係る生産システムの概略構成を示す模式図である。生産システム100は、ワークWを搬送する搬送装置であるロボット200と、撮像装置であるカメラ300と、画像処理装置400と、ロボット制御装置500と、を備えている。
ロボット200は、ワークWを保持してワークWを搬送するものである。ロボット200は、ロボットアーム201(図1ではロボットアーム201の先端部分のみ図示)と、ロボットアーム201の先端に取り付けられたロボットハンド202とを有する。ロボットアーム201は、本実施形態では垂直多関節型であるが、水平多関節型のロボットアーム、パラレルリンク型のロボットアーム、直交ロボット等、いかなるロボットアームであってもよい。また、搬送装置はロボット200に限らず、単軸の搬送器であってもよい。また、搬送装置の駆動方法についても限定はなく、電動式に限らず、空圧、油圧、ばねや人力による駆動でも構わない。
ロボットハンド202は、ハンド本体210と、ハンド本体210に支持された複数(例えば3つ)のフィンガー211と、を有している。ロボットハンド202は、複数のフィンガー211により、ワークWを把持することができる。なお、ロボットハンド202の構成はこれに限定するものではなく、ワークWを保持できればよく、例えば吸着型であってもよい。
カメラ300は、検査計測対象であるワークWを自動で撮像する装置である。画像処理装置400は、カメラ300から取得した撮像画像を用いて、ワークWの状態を計測するものである。本実施形態では、画像処理装置400は、ワークWの状態として、撮像画像からワークWの位置及び姿勢を求める場合について説明するが、ワークWの欠陥等を検出する場合であってもよい。
ロボット制御装置500には、ロボット200がワークWを搬送中、カメラ300の撮像可能範囲を通過するように、ロボット200の軌道データがプログラミングされている。
また、ロボット制御装置500は、画像処理装置400から画像処理結果、つまりロボット200に対するワークWの位置及び姿勢のデータを取得する。ロボット制御装置500は、ワークWがカメラ300の撮像可能範囲を通過後、位置及び姿勢のデータに基づきロボット200の姿勢を修正する。これにより、ロボット制御装置500は、ワークWの位置及び姿勢を修正して、別の作業、例えば別のワークにワークWを組み付ける作業をロボット200に行わせる。また、ロボット制御装置500は、ワークWを搬送させる動作をロボット200にさせるときに、ワークWを搬送させていることを示す信号をカメラ300に出力する。
ロボット200又はワークWには、光を反射するマーク、具体的には再帰反射性を有する部材である再帰反射材220が設けられている。本実施形態では、ロボット200に再帰反射材220が設けられている。したがって、本実施形態では、全てのワークWにマークを付す必要がない。
再帰反射材220は、ワークWの把持状態にかかわらずカメラ300にて撮像可能なように、ロボットハンド202に設けられている。より詳細に説明すると、ロボットハンド202のフィンガー211の先端に再帰反射材220が設けられている。本実施形態では、再帰反射材220は、複数のフィンガー211それぞれに設けられている。つまり、複数の再帰反射材220がロボット200に設けられている。
カメラ300は、撮像部であるカメラ本体310と、照明部320とを有して構成される。カメラ本体310は、ロボット200に搬送されて撮像範囲内を通過するワークWを撮像するものである。カメラ本体310は、筐体311と、筐体311に取り付けられたレンズ312とを有している。
照明部320は、カメラ本体310の撮像範囲内を通過するワークWに、光を照射する装置である。照明部320は、第1光源である光源321と、第2光源である光源322とを有している。2つの光源321,322は、いずれも撮像照明に使用するものである。光源321は、ワークWを撮像するのに必要な開口を有している。光源322は、光源321よりも開口が小さくなっている。光源322は、カメラ本体310の近傍に配置されている。これにより、光源322により照射された光は、再帰反射材220にて反射したとき、再び光源322に向かって反射(再帰反射)する。光源322はカメラ本体310に隣接して配置されているので、カメラ本体310には、再帰反射材220からの反射光が入射する。これらカメラ本体310、光源321及び光源322は、所定の位置関係になるように配置されている。
図2(a)は、ロボットハンド202に把持されたワークWをカメラ300側から見た平面図である。図2(a)に示すように、すべての再帰反射材220がカメラ300から見えるように配置されている。図2(b)は、カメラ300をロボットハンド202に把持されたワークW側から見た平面図である。図2(b)に示すように、ロボットハンド202(ワークW)側から見て、光源321,322は、障害物に遮蔽されることがないように配置される。
図3は、第1実施形態に係る生産システムの制御系の構成を示すブロック図である。本実施形態では、照明の工夫により複雑な演算が必要でないが、遅延は小さい必要がある。このためオーバーヘッドが大きいCPU(Central Processing Unit)を用いずに、すべてハードウエアロジック回路で実装されるのが望ましい。図3でカメラ300のロジック(制御部)は、画素整列回路361、外部出力回路362、ワーク判別回路363、撮像制御回路364からなる制御ユニット360で構成される。EEPROM(Electrically Erasable Programmable Read Only Memory)332には設定情報が記憶されている。ワーク判別回路363及び撮像制御回路364は、EEPROM332から読み出した設定情報に従って、カメラ本体310の撮像センサ350及び各光源321,322を制御して撮像方法の各工程を実行する。またワーク判別回路363は後述する判定ロジックにより、撮影条件の変更や外部出力の有無の切替信号を発生する。
なお、搬送速度が低いなどの動作遅延が問題ない場合は制御部としてCPUを用いてもよい。この場合の構成を示す。図4は、第1実施形態に係る生産システムの制御系の別の構成を示すブロック図である。
カメラ300は、制御部(処理部)としてのCPU331を備えている。また、カメラ300は、記憶部として、EEPROM332、RAM(Random Access Memory)333を備えている。また、カメラ300は、撮像センサ350、光源321,322(照明部320)、及びインタフェース334,335を備えている。
CPU331には、EEPROM332、RAM333、撮像センサ350、光源321,322、インタフェース334,335が、バス330を介して接続されている。EEPROM332は、後述する演算処理を実行させるためのプログラム340が記録された不揮発性の記憶装置である。CPU331は、EEPROM332に記録(格納)されたプログラム340に基づいてカメラ本体310の撮像センサ350及び各光源321,322を制御して撮像方法の各工程を実行する。RAM333は、CPU331の演算結果等を一時的に記憶する記憶装置である。
なお、制御部としてCPUを用いる場合では、コンピュータ読み取り可能な記録媒体がEEPROM332であり、EEPROM332にプログラム340が格納されるが、これに限定するものではない。プログラム340は、コンピュータ読み取り可能な記録媒体であれば、いかなる記録媒体に記録されていてもよい。例えば、プログラム340を供給するための記録媒体としては、不揮発性のメモリや記録ディスク、外部記憶装置等を用いてもよい。具体例を挙げて説明すると、記録媒体として、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、ROM、USBメモリ等を用いることができる。
制御部としてCPUを使う場合には、CPU331は、プログラム340を実行することにより、図3のワーク判別回路363および撮像制御回路364の機能に相当する動作を実行する。
前述したとおり、カメラ300は、カメラ本体310と照明部320とを有している。カメラ本体310は、筐体311とレンズ312の他に、筐体311の内部に配置された撮像センサ350を有している。なお、制御ユニット360は、筐体311の内部に配置されているが、筐体311の外部に配置されていてもよい。
撮像センサ350は、面状に配列された多数の画素を有し、所定の時間露光することで、レンズ312を通してセンサ面上に結像した画像を電気信号に変換する画像センサである。撮像センサ350は、センサ面に結像した画像を画素ごとのデジタルデータとして出力する。
主な撮像センサとしてCCD(Charge Coupled Device)イメージセンサと、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとがある。
CCDイメージセンサは、全画素を同時に露光するグローバルシャッタを備えているため、移動体を撮像するのに向いている。これに対してCMOSイメージセンサは、水平スキャンごとに露光タイミングをずらして画像データを出力するローリングシャッタが一般的である。ローリングシャッタを有するCMOSイメージセンサで移動体を撮像すると水平方向ごとに露光タイミングが異なるため実際の形状から歪んでしまう。ただしCMOSイメージセンサでも画素ごとに一時的にデータを保存する仕組みを持ったものがあり、このようなセンサではグローバルシャッタを実現できるので移動体を撮像しても出力画像が歪まない。
本実施形態では移動体を扱うため、撮像センサ350として、CCDイメージセンサ、若しくはグローバルシャッタ付きのCMOSイメージセンサが望ましい。形状の変化が問題とならない検査であれば、通常のCMOSイメージセンサを用いることも可能である。なお後述するようにワークを待っている間のフレームレートを高めるために全画素を出力するのではなく部分領域の画素を選択出力する。一般にCCDイメージセンサは、構造上水平方向にしか画素を選択できないのに対してCMOSイメージセンサは縦横自由に選択できる。以上よりグローバルシャッタ付きのCMOSイメージセンサが本実施形態に最も適している。
画素整列回路361は、撮像センサ350からの画素出力を画像処理装置400に転送するために、画素順を整列させたり、並列化したりする。整列順は転送インタフェースの規格により様々な形式がある。
外部出力回路362は、インタフェースの規格に応じてデジタル信号を転送に適した状態にする。本実施形態ではさらに外部に出力するか否かも選択できるようになっている。
ワーク判別回路363は、ワークWが規定範囲内にあるかどうか(又は次のタイミングで規定範囲内に入るかどうか)を判断する。
EEPROM332には、カメラ本体310の撮像条件を示すデータが予め記憶されている。撮像制御回路364は、ワークWを撮像する本撮像を行う前の待ち受け時には、EEPROM332に記憶されている待ち受け時の撮像条件(第1撮像条件)にカメラ本体310を設定する。撮像制御回路364は、待ち受け時には、できるだけフレームレートを高めるため、再帰反射材220の軌跡部分のみ取得して画素数を減らした設定とするのが好ましい。撮像制御回路364は、ワークWを撮像する本撮像時には、EEPROM332に記憶されている本撮像時の撮像条件(第2撮像条件)にカメラ本体310を設定する。また、撮像制御回路364は、照明条件として、待ち受け時には光源322を使用する第1照明条件とし、本撮像時には光源321を使用する第2照明条件とするように照明部320を制御する。外部出力回路362は、待ち受け時、外部に画像を出力しないようにする。
次に、光源321,322と再帰反射材220について説明する。高速な移動体に対して正確に自動撮像を行うためには、μsecオーダーの処理時間しか許されない。これに対してカメラ300内でハード処理を行って、転送時間をカットすることで時間を短縮できる。しかしこれだけでは不十分であり、ワークの位置検出(つまり、撮像タイミングの検出)のための画像処理に時間がかかっていては、検出時点でワークが通過した後となってしまって、ワークを撮像することができなくなる。
時間のかかる画像処理は種々ある。図5(a)は、ワークの他に背景が写り込んだ画像Iを示す模式図である。図5(a)のような画像Iを用いて複雑な背景からワークを分離して位置を正確に特定する演算処理は、演算負荷が高い。図5(b)は、背景を遮蔽した画像Iを示す模式図である。専用の検査装置であれば背景とワークの間に遮蔽材を置いて図5(b)のような背景を遮蔽した画像Iを得ることによって後の画像処理の負担を減らして高速化することが可能である。しかし、組み立て作業等を行う生産システムにおいては、遮蔽物が作業の邪魔となるため、画像処理のために背景を遮蔽することができない場合が多い。この様な装置では、例えば図5(a)のように、画像I上では背景のエッジとワークのエッジが混ざってしまい、簡単にワークを分離することが困難となる。
本実施形態では、再帰反射材220と照明条件(光源321を消灯し、かつ光源322を点灯する第1照明条件、光源321を点灯する第2照明条件)を適切に設定する。これによって、図5(b)と同等の状態で画像を取得することによってワーク検出のための画像処理を簡素化して高速フレームレートを実現する。
図6は、第1実施形態で用いられる再帰反射材220の構造例と原理を示した説明図である。図6(a)は、第1実施形態で用いられる再帰反射材220の一例を示す模式図である。図6(a)に示す再帰反射材220は、マイクロビーズ221と呼ばれるガラス等の高屈折材料、および底面に設置した反射材222を用いたものである。
図6(b)は、第1実施形態で用いられる再帰反射材220の一例の原理を示す説明図である。図6(b)に示すように、再帰反射材220のマイクロビーズ221に入射した光は、マイクロビーズ221による2度の屈折により元の入射方向に反射する。いずれの方向から入射した光も元の方向に反射する現象を再帰反射と呼んでいる。ビーズ221の大きさを小さくして隙間なく敷き詰めれば、マクロ的には面全体で反射しているのと等価である。
図6(c)は、第1実施形態で用いられる再帰反射材220の別の例を示す模式図である。図6(c)に示す再帰反射材220は、互いに所定の角をなし凹状になるように張り合わされた平面鏡223からなる構造となったコーナーキューブと呼ばれるものである。
図6(d)は、第1実施形態で用いられる再帰反射材220の別の例の原理を示す説明図である。この場合も図6(d)に示すように、入射した光は平面鏡223で何回か反射することによって元の方向に帰っていくという再帰反射性を示す。
これら再帰反射材220は、マイクロビーズ221や平面鏡223による減衰を抑えることによってほぼ正反射と同等の明るさを得ることができる。なお、再帰反射材220は、これらに限定するものではなく、再帰反射性を有するいかなるものを使ってもよい。
光源について詳細に説明する。図7は、光源により照射された光が鏡面反射した場合にカメラにて結像する説明図である。光源から光が発せられる部分の大きさを開口15と呼ぶ。円形の照明の場合は開口15を円の直径で表すことができ、矩形の照明の場合は開口15を長辺と短辺の長さで表現することができる。実際にカメラで撮像する面をワーク面16とし、カメラの位置に像面18を定義する。ワーク面16を鏡面とし、ワーク面16の領域17に光が照射された場合、領域17からの反射光が像面18の領域19に写る。領域17は明視野領域と呼ばれ、各種の検査や計測に用いられる。領域17以外は暗視野領域と呼ばれる。
図8(a)は、ワーク面が光沢面であった場合に撮像される撮像画像を示す模式図である。図7のワーク面16が光沢面であった場合、図8(a)のように開口に相当する部分だけ明るく光る明視野領域Rと、それ以外の部分は暗くなる画像Iが撮像される。なお照明〜ワーク間とワーク〜カメラ間の距離が等距離の場合は、相似関係より明視野領域Rは照明の開口の相似比で1/2となる。
図8(b)は、ワーク面が散乱面であった場合に撮像される撮像画像を示す模式図である。図7のワーク面16が散乱面であった場合、図8(b)のように一様に少し暗い暗視野画像Iが得られる。
本実施形態では、図1のように光源322を照明として使用した場合、カメラ本体310に光源322の開口が近接しているので、原理的には光源322から発せられた光は、再帰反射材220により、カメラ本体310の方向に戻ってくる。
図8(c)は、ワーク面16を再帰反射シートとした場合に撮像される撮像画像を示す模式図である。すなわち、図7のワーク面16を再帰反射シートとした場合、図8(c)の点線で示した照明の光が届く範囲(配光範囲)において明視野相当の明るい画像Iが得られる。
光源322の開口であるが、再帰反射光の反射方向は、マーク内のどの位置でもほぼ光源の方向に帰ってくるため、制限はない。ただしワーク面16の配光範囲をできるだけ明るくかつ均一に照らすために適当な大きさの開口が必要である。
図9(a)は、ワーク面が鏡面に近い場合に光源322から照射された光の経路を示す模式図である。図9(b)は、図9(a)の状態でカメラ本体に撮像される画像を示す模式図である。ワーク面16が鏡面に近い場合は、光源322に対しても、光源322の開口に対して相似比1/2の明視野領域Rが存在する。
この明視野領域Rは、常に正反射で光っているため、再帰反射材(マーク)220の反射光との分離ができない。すなわちこの領域Rではマークであるの否かの検出ができない特異スポットとなる。したがって、光源322の開口は、できるだけ小さいほうがよい。
このとき再帰反射材(マーク)220よりも光源322の開口が小さければ、光点の面積で正反射部なのか再帰反射光なのかを区別することができる。これにより、安定してワークWの位置を検出することが可能となる。このため、再帰反射材(マーク)220が1つの場合、再帰反射材220の面積は光源322の開口の面積よりも大きいことが望ましい。
なお、再帰反射材(マーク)220がロボットハンド202に複数設けられる場合、これら複数の再帰反射材220を包含する最小面積となる領域(最小領域)の面積が、光源322の開口の面積よりも大きいことが望ましい。この領域の面積を光源322の開口面積より大きくすれば、特異点を避けたマーク部分が必ず存在することになり、大きなマークを使用した場合と同等の効果が得られる。
光源322の光の強さとカメラ本体310の露出設定は、散乱体や暗視野領域に対する光沢面に対しては十分に暗く、再帰反射に対しては十分明るくなるように設定するとよい。例えば、前者の部分の明るさの平均をμd、標準偏差をσd、後者の部分の明るさの平均をμb、標準偏差をσbとすると、(μb−μd)/(σb+σd)≧3となるように設定すれば実用上、両領域間を明確に分離できる。
図10(a)は、光源321で照明した場合にワークWをカメラ本体310に撮像させて得られる撮像画像を示す模式図である。図10(b)は、光源322で照明した場合にワークWをカメラ本体310に撮像させて得られる撮像画像を示す模式図である。図10(c)は、ワークWを移動させて光源321で照明した場合にワークWをカメラ本体310に撮像させて得られる撮像画像を示す模式図である。図10(d)は、ワークWを移動させて光源322で照明した場合にワークWをカメラ本体310に撮像させて得られる撮像画像を示す模式図である。
カメラ本体310から見てワークが左から右へ移動したとき、光源321を照明として用いると、図10(a)に示す撮像画像Iと図10(c)に示す撮像画像Iが得られる。一方、カメラ本体310から見てワークが左から右へ移動したとき、光源322を照明として用いると、図10(b)に示す撮像画像Iと図10(d)に示す撮像画像Iが得られる。
このように光源322を用いて撮像すると、背景は十分な光量がないため暗く沈むが、再帰反射材220を設置した部分だけ光源322を直接撮像したのに近い明るさが得られるため、図10(b)及び図10(d)のようにこの部分だけが明るく写り込む。なお図10(b)及び図10(d)では光源322の配置の結果生じる特異スポットに正反射部材がないと仮定している。正反射部材が特異スポットに存在し、機械的に移動できない場合は、判定時にその領域の部分はマスクして評価しないようにすればよい。
光源321は計測や検査の目的に沿って選ばれる。例えば、明視野測定する場合はワークに対してより大きい明視野領域を持つように開口の大きな照明を設置する。また暗視野で用いる場合は光源322より光量が多く広い面積でむらのない照明が設置される。広い面積でむらのない照明を実現するには、均一で広い開口を持つ照明が必要である。したがって、明視野撮像又は暗視野撮像のいずれの場合であっても、光源321の開口は、光源322の開口よりも大きく設定される。換言すれば、光源322の開口は、光源321の開口よりも小さく設定される。
次に、本実施形態に係る撮像方法について説明する。図11は、第1実施形態に係る撮像方法を示すフローチャートである。ここで、特許文献1では、組立パレットの位置及び姿勢を計測する目的でマークを用いているが、本実施形態では、ワークWを撮像するタイミングを検出するために用いる。
まず、ワーク判別回路363は、ロボット制御装置500からワークWを搬送中であることを示す信号を入力したか否か、つまりロボット200がワークWを搬送中であるか否かを判断する(S1)。ワーク判別回路363は、ロボット200がワークWを搬送中ではない場合(S1:No)、ロボット200がワークWを搬送中となるまで待ち受ける。
ワーク判別回路363は、ロボット200がワークWを搬送中の場合(S1:Yes)、照明部320による照明条件及びカメラ本体310により撮像させる撮像条件を設定し、これら設定された条件でカメラ本体310に撮像させる(S2)。このとき、照明条件は、光源321を消灯し、光源322を点灯する第1照明条件とする。
また、ステップS2にて撮像される画像は、ワークWを撮像するタイミング(位置)を検出するためのものであるので、画像処理装置400にとって必ずしも必要なものではない。したがって、外部出力回路362において画像出力はオフに設定される。なお、外部の画像入力機器が解像度の高速な切り替えに対応できる場合はオンしていてもよい。
このステップS2において、撮像制御回路364は、撮像条件を低解像度とする第1撮像条件とする。即ち、撮像制御回路364は、撮像画像における全ての画素を取得してもよいが、第1実施形態では、撮像画像中の部分領域のみの画素を取得する。具体的には、予めマーク位置を教示しておき、その周辺部分のみを切り出せばよい。好ましくは解像度を、撮像の最適位置を検出するのに必要最低限に限定する。
図12は、第1実施形態において、撮像制御回路364にて取り込まれる画素領域の一例を示した模式図である。図12中、太枠で囲んだ内側が撮像制御回路364にて取り込まれる画素領域(部分領域)RT1である。画素領域RT1は、目標撮像位置での再帰反射材220からの反射光の像とほぼ同じ大きさの画素を取得する領域を示している。ワーク判別回路363にて演算に使用する画素数を削減することができ、演算負荷が低くなるので、フレームレートを高くすることが可能となる。したがってより高速なワークWの移動に対応できる形態となる。
撮像制御回路364は、さらに必要に応じて、後述する評価値(重心位置)を高速に計算するために使用する領域を限定する(S3)。たとえば前回計算した重心位置から移動速度等を考慮してこの範囲を決めることができる。
次に、ワーク判別回路363は、ステップS2の撮像により得られた撮像画像、つまり画素領域RT1の各画素に対して2値化処理を行う(S4)。次に、ワーク判別回路363は、2値化処理した画像中の画素の輝度に関する評価値を求める(S5)。より具体的には、ワーク判別回路363は、所定輝度(所定値)よりも明るい画素の座標値の和ΣP(x,y)を求める。そして、ワーク判別回路363は、所定輝度よりも明るい画素の個数nを求めて、重心位置ΣP(x,y)/nを評価値として求める。そして、ワーク判別回路363は、求めた評価値に基づき、照明条件及び撮像条件を切り替えるか否かの判断を行う(S6)。本実施形態では、以上のステップS3〜S6の処理が切替処理(切替工程)である。
ワーク判別回路363は、切り替えないと判断した場合は(S6:No)、ステップS2の処理に戻り、切り替えると判断するまで撮像を繰り返し行う。即ち、ワーク判別回路363は、ロボット200によるワークWの搬送中、光源321を消灯し、かつ光源322を点灯した状態で、評価値が所定範囲内となるまで、カメラ本体310に撮像させる撮像動作を繰り返し行う(第1撮像処理、第1撮像工程)。このルーチンにより、撮像制御回路364は、再帰反射材220からの反射光が写り込んだ撮像画像、より具体的には、図12に示す画素領域RT1に再帰反射材220からの反射光が写り込んだ撮像画像を取得することになる。
撮像制御回路364は、ステップS6にて切り替えると判断した場合(S6:Yes)、この判断をトリガとして照明部320による照明条件及びカメラ本体310により撮像させる撮像条件を変更し、変更された条件でカメラ本体310に撮像させる(S7)。このとき、照明条件は、光源321を点灯する第2照明条件とする。また、撮像条件は、第1撮像条件よりも高解像度とする第2撮像条件とする。なお、第2照明条件において光源322は、点灯したままでもよいが第1実施形態では消灯する。
つまり、撮像制御回路364は、照明条件を、第2照明条件に切り替えると共に、カメラ本体310の設定や撮像条件を、第2撮像条件に切り替えて最終的な撮像を行う。このとき、解像度は、少なくともワーク全体が入り十分な分解能が得られる設定とする。さらにワーク判別回路363において外部出力はオンに設定され、主たる画像処理を行う画像処理装置400に、ワークWが写り込んだ撮像画像が出力される。
即ち、撮像制御回路364は、ステップS7では、ロボット200によるワークWを搬送中、光源321を点灯させた状態でカメラ本体310により撮像させて、ワークWが写り込んだ撮像画像を取得する(第2撮像処理、第2撮像工程)。そして、外部出力回路362は、ステップS7にて取得した撮像画像を、画像処理装置(外部機器)400に出力する(S8:出力処理、出力工程)。
ステップS6について更に具体的に説明すると、ワーク判別回路363は、求めた評価値が、最適な撮像位置(目標撮像位置)での評価値を含む所定範囲内にあるか否かを判断する。評価値(第1実施形態では重心位置)が所定範囲外であった場合(S6:No)はステップS2へ戻って再撮像する。つまり、図12に示す画素領域RT1に反射光が写り込んでいない場合、再度撮像をする。所定範囲は、照明、ワークカメラの位置関係から計算される許容誤差(たとえば特徴点が見える又は見えない、正反射条件などで決定される。)、想定される移動体の速度やカメラの撮像間隔などによって決められる。
そして、ワーク判別回路363は、求めた評価値が、最適な撮像位置での評価値を含む所定範囲内にあると判断した時(S6:Yes)を撮像タイミングとする。撮像制御回路364は、この時をトリガとして、第2照明条件及び第2撮像条件へ切り替えて、ワークWの撮像を行う。つまり、図12に示す画素領域RT1に反射光が写り込んだことになるので、この時をトリガとしてワークWの撮像を行う。なお、前回の評価値を用いればフレーム間の移動量や速度が求められるのでこれを用いてフレーム間でサブサンプリング的に判定を行ってもよい。
このように、ワーク判別回路363は、ステップS6では、ステップS2にて得られた反射光が写り込んだ撮像画像に基づき、第1撮像処理から第2撮像処理に切り替えるタイミング、つまり撮像タイミングを設定することになる。つまり、ワーク判別回路363は、求めた評価値に応じて、撮像タイミングを検出するための第1撮像処理から、ワークWを撮像する第2撮像処理に切り替える。
以上、ワークWを撮像するタイミングとなる所定の条件(本実施形態では評価値が所定範囲内となる条件)が満たされるまで繰り返し撮像を実施する。そして、所定の条件が満たされた場合、光源322を点灯する第2照明条件及び高解像度とする第2撮像条件で1回撮像して撮像動作を終了する。
本実施形態によれば、ワークWを待ち受けている際は、光源322を点灯させることで、シャッタ速度を高速化し、フレームレートを高めてマークである再帰反射材220からの反射光が写り込んだ撮像画像を取得することができる。そして、再帰反射材220の写り込んだ撮像画像によって設定したタイミングで、光源321による光照射の下、移動しているワークWを撮像することができる。したがって、ワークWを高速搬送しながら確実にワークWを撮像することができる。つまり、再帰反射材220を用いて撮像時のタイミングを検出し、ワークWが撮像画像に写り込むタイミングで、別の明るく開口の広い光源321に切り替えることにより、高速に安定して良好な位置で自動撮像が可能となる。
またワーク判別回路363の計算は、全フレームを取得してから演算する画像処理と異なり、いずれも撮像センサ350からの画素出力と同期、並列してほぼ同時に実行できるため、演算遅延量が非常に少ない。したがって、動きのある物体の撮像位置(つまり撮像タイミング)を、設定することができる。したがって本実施形態によれば、搬送中に移動体であるワークWを止めずに所定の位置で自動撮像することが可能となり、高速に安定して良好な位置で自動撮像が可能となる。
また、マークとして再帰反射材220を用いたので、カメラ本体310による撮像可能範囲内であれば、どの位置に再帰反射材220が位置していても、再帰反射材220からの反射光がカメラ本体310に入射することになる。したがって、光源322をロボットハンド202の位置に応じて移動させる必要がない。
また、ステップS2においては、撮像画像中の部分領域RT1のみの画素を取得するようにしたので、演算時間を短縮でき、よりフレームレートを高めることができる。したがって、高速に移動するワークWを同じ撮像位置で撮像することが可能となる。
また、ステップS6では、評価値に応じて、再帰反射材220からの反射光を撮像する撮像処理からワークWを撮像する撮像処理に切り替えるので、ロボット200に搬送されるワークWを同じ撮像位置で撮像することが可能となる。特に、評価値として、所定輝度よりも明るい画素の重心位置を求め、この重心位置が所定範囲内となった場合に撮像処理を切り替えているので、同じ撮像位置でワークWを撮像することができる。
また、画像処理装置400に必要な画像のみを転送できるので、ワークWが撮像位置に到着するまでの間、画像処理装置400において余計な画像処理が不要となる。すなわち、画像処理装置400において、不必要な画像を廃棄したり、転送されてきた画像が必要な画像かどうかの判断をする必要がなくなったりするため、システムの構築が容易となる。
ここで、複数の再帰反射材220それぞれの形状または色を互いに異ならせるとよい。これにより、ワークの位置を判定する際に、撮像面上で再帰反射材220が互いの位置関係および形状や色が既知の位置に面的に配置されるので、正確に再帰反射材220の位置を特定することが可能となる。
[変形例1]
第1実施形態では、評価値として、2値化処理を行い、所定輝度よりも明るい画素について重心位置を求めたが、これに限定するものではない。2値化を行わずに座標値p(x,y)に画素の輝度bを掛けたものの総和を求め、輝度の総和Σbで割って得られた演算値Σ(b・P(x,y))/Σbを評価値として求めてもよい。この場合、図11のステップS6では、演算値Σ(b・P(x,y))/Σbが所定範囲内となったか否かを判断すればよい。
[変形例2]
また、重心位置を計算する方法に代わり、マークの連続性を利用して、部分領域で明点が連続して存在することをもって評価値としてもよい。即ち、所定輝度よりも明るい連続する画素の面積(画素数)を評価値として求めてもよい。この場合も、図11のステップS6では、面積(画素数)が所定範囲内となったか否かを判断すればよい。この場合、重心位置の計算をせずに済むので、非常に速い撮像位置の評価が可能である。
[変形例3]
さらに、重心位置の計算に代わる方法として、部分領域の範囲内での明暗の切り替わり位置を検出する方法も可能である。この方法であればごく狭い領域のみ評価すればよいのでさらに高速化が可能である。
[第2実施形態]
次に、本発明の第2実施形態に係る撮像装置(撮像方法)について説明する。なお、第2実施形態の撮像装置は、第1実施形態で説明した撮像装置と同様の構成であり、プログラム340の内容、即ち撮像方法が第1実施形態と異なる。
図13は、第2実施形態に係る撮像方法を示すフローチャートである。図13に示す撮像方法は、図3に示すワーク判別回路363及び撮像制御回路364のハードウエアロジックを実行することによって実施される。図13におけるステップS11〜S15の処理は、図11のステップS1〜S5の処理と略同様である。その際、ステップS12において、撮像画像における全ての画素を取得してもよいが、第2実施形態では、撮像画像中の部分領域のみの画素を取得する。
図14は、第2実施形態において、撮像制御回路364にて取り込まれる画素領域の一例を示した模式図である。図14中、太枠で囲んだ内側が撮像制御回路364にて取り込まれる画素領域(部分領域)RT2である。ワーク判別回路にて演算に使用する画素数を削減することができ、演算負荷が低くなるので、フレームレートを高くすることが可能となる。したがってより高速なワークWの移動に対応できる形態となる。
ここで、部分領域RT2は、予め再帰反射材220を用いたマークが通過する軌道が決まっている場合に好適な画素選択領域である。選択された画素はマークの軌道をカバーする位置にある。そして、ステップS15では、第1実施形態と同様、評価値として、再帰反射材220の反射光が写り込んだ像の重心位置の座標値を計算する。これにより、現在のワークWの位置を推定できる。
第2実施形態では、ワーク判別回路363は、求めた評価値が、画像に再帰反射材220の反射光が写り込んだと判断できる値となったか否かを判断する(S16)。第2実施形態では、再帰反射材220が複数あるので、複数の再帰反射材220の反射光の全てが画像に写り込んだか否かを判断する。
ワーク判別回路363は、全ての再帰反射材220の反射光が画像に写り込んだと判断した場合、再帰反射材220の反射光が写り込んだ少なくとも2つのフレーム(画像)を取得する(S17)。
ワーク判別回路363は、前後のフレームで計算した重心位置を用いて速度ベクトルを求め、現時点での位置と速度ベクトルおよび最終的な目標撮像位置から、ワークが目標撮像位置に到達する推定の時刻(推定時刻)を計算する(S18)。即ち、ワーク判別回路363は、フレーム間の重心位置の変化から重心位置が所定範囲内に移動する推定時刻を求める。
ワーク判別回路363は、推定時刻に達したか否かを判断し(S19)、推定時刻となったタイミングで(S19:Yes)、第1撮像処理から次の第2撮像処理へ切り替えて撮像する(S20)。本実施形態では、以上のステップS13〜S19の処理が切替処理(切替工程)である。ステップS20の処理は、図11のステップS7と同様である。また、次のステップS21の処理も、図11のステップS8と同様である。
ステップS18〜S20の処理は、フレームサンプリング間隔よりも細かく切り替え時刻を設定できるサブサンプリング処理の一種である。これにより、高速搬送されるワークWを再現性よく所定範囲内(目標撮像位置又はその近傍)で撮像することができる。
図14に示す、再帰反射材220からの反射光の像の軌道を含む部分領域RT2は、速度ベクトルを求めるために必要な最低限の領域であり、上記サブサンプリング処理の実現を可能にしながら、サンプリング間隔自体も短縮が実現できる。この場合もより高速のワークWに対応可能となる。
なお、第1実施形態の変形例2と同様、マークの連続性を利用して部分領域で明点が連続して存在することをもって評価値としてもよい。この場合は重心計算をせずに済むので非常に速い撮像位置の評価が可能である。
また、求めた速度ベクトルにより次の取得画素を決定する動的な取得画素決定法も可能である。すなわち次のサンプリングで移動する領域を推定して画素を取得する方法である。この場合はよりサンプリングレートを高めることが可能である。本実施形態ではいずれも再帰反射材を用いることによって、サンプリング間の演算は2値化重心検出などの演算負荷の低い処理であるためこのようなことが可能となる。
[第3実施形態]
次に、本発明の第3実施形態に係る撮像装置(撮像方法)について説明する。なお、第3実施形態の撮像装置は、第1実施形態で説明した撮像装置と同様の構成である。
図15(a)及び図15(b)は、第3実施形態に係る撮像装置により撮像されたワークが写り込んだ撮像画像において、画像処理装置に出力する部分画像を示す模式図である。
第1及び第2実施形態では、ワークWを撮像した撮像画像の全画素を出力する場合について説明したが、第3実施形態では、撮像画像中、ワークWが写り込んでいる部分を切り出した部分画像を画像処理装置400に出力する。即ち、図11のステップS8または図13のステップS21では、外部出力回路362は、ワークが写り込んでいる撮像画像中、図15(a)に示す部分画像IPA、又は図15(b)に示す部分画像IPBを出力する。
図15(a)の場合、ワークを考慮して少し余裕を持って部分画像(外部出力範囲)IPAが設定される。これにより、画像データの転送時間が短くなりスループットが向上する。
また、図15(b)の場合、再帰反射材を用いて短時間で撮像時のワークの位置姿勢が推測できることを利用して、さらに狭めた部分画像(外部出力範囲)IPBに設定される。これにより、毎回誤差があっても、より少ない画素を出力すればよいことになり、より転送時間を短くすることができる。例えば図15(b)の例の場合、全画素出力に対して転送する画素はほぼ1/8となる。
以上第3実施形態によれば、上記第1及び第2実施形態と同様、マークの位置を検出することにより、高速なワーク位置推定が可能となる。これに加え、第3実施形態によれば、より高速に移動するワークに対応できるようになりスループットを向上することが可能となる。
[第4実施形態]
次に、本発明の第4実施形態に係る生産システムについて説明する。第1実施形態では再帰反射材220がロボット200に3つ設けられている場合について説明したが、これに限定するものではなく、3つ以上が好ましく、第4実施形態では例えば5つ設けられている場合について説明する。
図16は、第4実施形態において、5つの再帰反射材(マーク)220をロボット200に配置した場合を示す模式図である。図16中、点線で示したのが再帰反射材220であり、カメラ300から見て、3つ以上が直線上に並ばないようにそれぞれ配置されている。このような配置にすることにより、ワークWの状態によって光源322による光条が撮像画像に現れたとしても、ワークWを撮像するタイミングを検出することができる。
ここで、光条現象について説明する。図17(a)は、金属板を切削加工した際に生じる引き目の断面形状と光源322の光を金属板の表面に照射した際に生じる光条を示す説明図である。切削加工では、バイトの形状に応じて図17(a)に示すような引き目がワークWの表面WAにつくことがあり、その形状は特定の曲率を持った凸形状であることが多い。
図17(b)は、光条が発生する原理を説明するための図である。引き目が大きい場合、そこに光源322からの光を照射すると、図17(b)に示すような凸面鏡の効果で光が拡散し、正反射を生じる特異スポットを中心として引き目と垂直方向の両側、または片側に光の帯がカメラに撮像される。この現象のことを光条現象と呼ぶ。光条現象が発生すると、その明るさは再帰反射材の像と同等以上となるので光条下の再帰反射材220の反射光は見分けることができなくなる。
図17(c)は、光条が発生している状態を示す模式図である。図17(c)のように5つの再帰反射材220を3つ以上が直線上に並ばないように配置した場合、光条が発生しても、最低限1つの再帰反射材220の反射光を検出できる。したがって、例えば2つの位置に光条がかかった場合でも、残りの反射光の像を使って正しい撮像位置を検出することができる。このため、ワークWの評価値(重心位置)をより正確に求め、正確に撮像タイミングを決めることが可能となる。
また特異スポットや光条のみならず、立体形状により光源322によって正反射するスポットがあったとしても、複数の再帰反射材220の位置関係によってそれらを分離することが可能となる。
なお、図16では、各再帰反射材220(マーク)を同形状としたが、形状や色を変えることにより各マークを識別することも可能である。こうすることにより、確実にさまざまな外乱に対処可能となる。つまり、ワークの位置を判定する際に、撮像面上で再帰反射材220が互いの位置関係および形状や色が既知の位置に面的に配置されるので、正確に再帰反射材220の位置を特定することが可能となる。
以上、第4実施形態では、ワークWの状態によらず、つまり光条が撮像画像に写り込んでも、最低限の再帰反射材220を見つけることができるので、撮像ミスを低減することが可能となる。
なお、本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されない。
本発明は、演算速度が問題にならない場合には上述の実施形態の1以上の機能を実現する回路を、プログラムを実行するCPUに置き換えてもよい。その際、プログラムをネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。
また、上述の実施形態では、マークとして、再帰反射材を用いた場合について説明したが、再帰反射材に限定するものではなく、単なる反射材を用いてもよい。この場合は、マークからの反射光が撮像部に入射するように、搬送装置と同期して第2光源又は撮像部を移動させればよい。なお、この場合、第2光源又は撮像部を移動させる移動装置が必要となるので、上述の実施形態では、マークとして再帰反射材を用いることで、第2光源及び撮像部を移動させなくてもよい、つまり移動装置を省略できることになる。
100…生産システム、200…ロボット(搬送装置)、220…再帰反射材(マーク)、300…カメラ(撮像装置)、310…カメラ本体(撮像部)、320…照明部、321…光源(第1光源)、322…光源(第2光源)、360…制御ユニット(制御部)

Claims (18)

  1. 搬送装置に搬送されて撮像範囲内を通過するワークを撮像する撮像部と、
    前記撮像範囲内を通過する前記ワークに光を照射する照明部と、
    前記撮像部及び前記照明部を制御する制御部と、を備え、
    前記照明部は、前記ワークを撮像するのに必要な開口を有する第1光源と、前記第1光源よりも開口の小さい第2光源と、を有し、
    前記制御部は、
    前記搬送装置による前記ワークの搬送中、前記第1光源を消灯し、かつ前記第2光源を点灯した状態で前記撮像部に撮像させる撮像動作を繰り返し行い、前記搬送装置又は前記ワークに設けられたマークからの反射光が写り込んだ撮像画像を取得する第1撮像処理と、
    前記搬送装置による前記ワークの搬送中、前記第1光源を点灯させた状態で前記撮像部により撮像させ、前記ワークが写り込んだ撮像画像を取得する第2撮像処理と、
    前記第1撮像処理にて得られた前記反射光が写り込んだ撮像画像に基づき、前記第1撮像処理から前記第2撮像処理に切り替えるタイミングを設定する切替処理と、を実行する撮像装置。
  2. 前記マークは、前記第2光源により照射された光を前記第2光源に向けて再帰反射する再帰反射材であり、
    前記第2光源は、前記再帰反射材からの前記反射光が前記撮像部に入射するように前記撮像部の近傍に配置されている請求項1に記載の撮像装置。
  3. 前記制御部は、前記第1撮像処理では、撮像画像中の部分領域のみの画素を取得する請求項1又は2に記載の撮像装置。
  4. 前記制御部は、前記切替処理では、前記第1撮像処理にて得られた撮像画像中の画素の輝度に関する評価値を求め、前記評価値に応じて前記第1撮像処理から前記第2撮像処理に切り替える請求項1乃至3のいずれか1項に記載の撮像装置。
  5. 前記制御部は、前記切替処理では、前記評価値として、所定輝度よりも明るい画素の重心位置を求め、前記重心位置が所定範囲内となった場合に前記第1撮像処理から前記第2撮像処理へ切り替える請求項4に記載の撮像装置。
  6. 前記制御部は、前記切替処理では、前記評価値として、所定輝度よりも明るい画素の重心位置を求め、フレーム間の前記重心位置の変化から前記重心位置が所定範囲内に移動する推定時刻を求め、前記推定時刻となるタイミングで、前記第1撮像処理から前記第2撮像処理へ切り替える請求項4に記載の撮像装置。
  7. 前記制御部は、前記切替処理では、前記評価値として、画素の座標値に輝度を掛けたものの総和を、画素の輝度の総和で割った演算値を求め、前記演算値が所定範囲内となった場合に前記第1撮像処理から前記第2撮像処理へ切り替える請求項4に記載の撮像装置。
  8. 前記制御部は、前記切替処理では、前記評価値として、所定輝度よりも明るい連続する画素の面積を求め、前記面積が所定範囲内となった場合に前記第1撮像処理から前記第2撮像処理へ切り替える請求項4に記載の撮像装置。
  9. 前記制御部は、前記第2撮像処理にて取得した撮像画像を、外部機器に出力する出力処理を更に実行する請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記制御部は、前記出力処理では、前記ワークが写り込んでいる部分を切り出した部分画像を前記外部機器に出力する請求項9に記載の撮像装置。
  11. 前記マークの面積が前記第2光源の開口の面積よりも大きい請求項1乃至10のいずれか1項に記載の撮像装置。
  12. 前記マークが複数設けられており、前記複数のマークを包含する最小領域の面積が前記第2光源の開口の面積よりも大きい請求項1乃至10のいずれか1項に記載の撮像装置。
  13. 前記マークの反射光が、前記撮像部により撮像された撮像画像中、直線上に3つ以上並ばないように、前記搬送装置又は前記ワークに3つ以上の前記マークが設けられている請求項1乃至12のいずれか1項に記載の撮像装置。
  14. 請求項1乃至13のいずれか1項に記載の撮像装置と、
    前記ワークを搬送する搬送装置と、を備えた生産システム。
  15. 前記搬送装置は、前記ワークを保持して搬送するロボットである請求項14に記載の生産システム。
  16. 撮像部及び照明部を制御する制御部が、搬送装置に搬送され撮像範囲内を通過するワークを、前記撮像部に撮像させる際に、前記撮像範囲内を通過する前記ワークに光を照明部に照射させる撮像方法であって、
    前記照明部が、前記ワークを撮像するのに必要な開口を有する第1光源と、前記第1光源よりも開口の小さい第2光源と、を有しており、
    前記制御部が、前記搬送装置による前記ワークの搬送中、前記第1光源を消灯し、かつ前記第2光源を点灯した状態で前記撮像部に撮像させる撮像動作を繰り返し行い、前記搬送装置又は前記ワークに設けられたマークからの反射光が写り込んだ撮像画像を取得する第1撮像工程と、
    前記制御部が、前記搬送装置による前記ワークの搬送中、前記第1光源を点灯させた状態で前記撮像部により撮像させ、前記ワークが写り込んだ撮像画像を取得する第2撮像工程と、
    前記制御部が、前記第1撮像工程にて得られた前記反射光が写り込んだ撮像画像に基づき、前記第1撮像工程から前記第2撮像工程に切り替えるタイミングを設定する切替工程と、を備えた撮像方法。
  17. コンピュータに請求項16に記載の撮像方法の各工程を実行させるためのプログラム。
  18. 請求項17に記載のプログラムが記録された、コンピュータが読み取り可能な記録媒体。
JP2015201855A 2015-10-13 2015-10-13 撮像装置、生産システム、撮像方法、プログラム及び記録媒体 Active JP6639181B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015201855A JP6639181B2 (ja) 2015-10-13 2015-10-13 撮像装置、生産システム、撮像方法、プログラム及び記録媒体
US15/767,877 US10957003B2 (en) 2015-10-13 2016-10-07 Imaging apparatus, production system, imaging method, program, and recording medium
PCT/JP2016/080634 WO2017065308A1 (en) 2015-10-13 2016-10-07 Imaging apparatus, production system, imaging method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201855A JP6639181B2 (ja) 2015-10-13 2015-10-13 撮像装置、生産システム、撮像方法、プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2017076169A JP2017076169A (ja) 2017-04-20
JP6639181B2 true JP6639181B2 (ja) 2020-02-05

Family

ID=57321380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201855A Active JP6639181B2 (ja) 2015-10-13 2015-10-13 撮像装置、生産システム、撮像方法、プログラム及び記録媒体

Country Status (3)

Country Link
US (1) US10957003B2 (ja)
JP (1) JP6639181B2 (ja)
WO (1) WO2017065308A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034242A (ja) * 2016-08-31 2018-03-08 セイコーエプソン株式会社 ロボット制御装置、ロボット、及びロボットシステム
JP2019158500A (ja) 2018-03-12 2019-09-19 オムロン株式会社 外観検査システム、画像処理装置、撮像装置および検査方法
JP7167453B2 (ja) * 2018-03-12 2022-11-09 オムロン株式会社 外観検査システム、設定装置、画像処理装置、設定方法およびプログラム
CN109421050B (zh) * 2018-09-06 2021-03-26 北京猎户星空科技有限公司 一种机器人的控制方法及装置
JP2020197611A (ja) 2019-05-31 2020-12-10 パナソニックi−PROセンシングソリューションズ株式会社 カメラ装置および生産システム
JP7052840B2 (ja) * 2020-08-18 2022-04-12 オムロン株式会社 位置特定装置、位置特定装置の制御方法、情報処理プログラム、および記録媒体
WO2023166814A1 (ja) * 2022-03-03 2023-09-07 株式会社エヌテック 撮像装置および撮像方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305122A (en) 1988-08-31 1994-04-19 Canon Kabushiki Kaisha Image reading and processing apparatus suitable for use as a color hand-held scanner
EP0607706B1 (en) 1993-01-01 2000-09-20 Canon Kabushiki Kaisha Image processing apparatus and method
JPH08130631A (ja) 1994-10-28 1996-05-21 Canon Inc 画像処理装置及び画像処理方法
FR2770317B1 (fr) * 1997-10-24 2000-12-08 Commissariat Energie Atomique Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles et son application a la mesure de position tridimentionnelle d'objets fixes
JPH11346094A (ja) * 1998-06-02 1999-12-14 Matsushita Electric Ind Co Ltd 部品実装機
JP2002187025A (ja) * 2000-12-20 2002-07-02 Matsushita Electric Ind Co Ltd マグネット部品の位置決め装置
US6987875B1 (en) * 2001-05-22 2006-01-17 Cognex Technology And Investment Corporation Probe mark inspection method and apparatus
JP2003097916A (ja) * 2001-09-25 2003-04-03 Juki Corp 基板マーク認識方法及び装置
TWI396225B (zh) * 2004-07-23 2013-05-11 尼康股份有限公司 成像面測量方法、曝光方法、元件製造方法以及曝光裝置
US20060067572A1 (en) * 2004-09-14 2006-03-30 Tattile, L.L.C. Object imaging system
DE102008042260B4 (de) * 2008-09-22 2018-11-15 Robert Bosch Gmbh Verfahren zur flexiblen Handhabung von Objekten mit einem Handhabungsgerät und eine Anordnung für ein Handhabungsgerät
JP2010221381A (ja) 2009-03-25 2010-10-07 Fuji Xerox Co Ltd 部品組立方法および部品組立装置
JP5509645B2 (ja) * 2009-03-25 2014-06-04 富士ゼロックス株式会社 位置・姿勢認識方法、部品把持方法、部品配置方法、部品組立方法、位置・姿勢認識装置、部品把持装置、部品配置装置、および部品組立装置
US8319831B2 (en) 2009-03-25 2012-11-27 Fuji Xerox Co., Ltd. Component manipulating method, component extracting method, component assembling method, component manipulating apparatus, component extracting apparatus, and component assembling apparatus
JP2012022639A (ja) * 2010-07-16 2012-02-02 Ntt Docomo Inc 表示装置、映像表示システムおよび映像表示方法
JP5899951B2 (ja) * 2012-01-18 2016-04-06 セイコーエプソン株式会社 ロボット装置および位置姿勢検出方法
US10482471B2 (en) * 2013-01-16 2019-11-19 Amazon Technologies, Inc. Unauthorized product detection techniques
JP6245886B2 (ja) * 2013-08-08 2017-12-13 キヤノン株式会社 画像撮像方法及び画像撮像装置
US9870049B2 (en) * 2015-07-31 2018-01-16 Google Llc Reflective lenses to auto-calibrate a wearable system
US11576127B2 (en) * 2018-02-20 2023-02-07 Netgear, Inc. Mesh-based home security system
US10098204B1 (en) * 2018-03-13 2018-10-09 Cisco Technology, Inc. System to determine the placement of smart light emitters
US10616980B1 (en) * 2019-04-12 2020-04-07 Honeywell International Inc. System and approach for lighting control based on location

Also Published As

Publication number Publication date
US10957003B2 (en) 2021-03-23
JP2017076169A (ja) 2017-04-20
WO2017065308A1 (en) 2017-04-20
WO2017065308A9 (en) 2017-08-31
US20180308192A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6639181B2 (ja) 撮像装置、生産システム、撮像方法、プログラム及び記録媒体
JP6685776B2 (ja) 撮像システム、計測システム、生産システム、撮像方法、プログラム、記録媒体および計測方法
DK1738136T3 (en) MEASURING APPARATUS AND PROCEDURE IN A DISTRIBUTION SYSTEM
US7353954B1 (en) Tray flipper and method for parts inspection
US11727613B2 (en) Systems and methods for stitching sequential images of an object
JP5109633B2 (ja) 測定方法及び検査方法並びに測定装置及び検査装置
JP2013505464A (ja) カメラアレイ及びコンパクトな組み込み照明装置を備えた高速光学検査システム
KR20060132715A (ko) 표면 검사 방법 및 시스템
JPH10332320A (ja) 製品スキャニング装置及び方法
JP2007147433A (ja) セラミック板の欠陥検出方法と装置
WO2018137233A1 (en) Optical inspection system
JP2009293999A (ja) 木材欠陥検出装置
JPWO2002023123A1 (ja) 光学式センサ
JP6198312B2 (ja) 3次元測定装置、3次元測定方法および基板の製造方法
JP7135297B2 (ja) 検査装置、検査システム、および検査方法
KR102227972B1 (ko) 기판 모서리 위치 특정 방법
JP2015200604A (ja) 欠陥検出方法及び欠陥検出装置
JP2007292606A (ja) 表面検査装置
JP2016080517A (ja) 表面検査装置
JP2018132468A (ja) 形状測定システム及び形状測定方法
JP2010236998A (ja) 形状測定装置
JP2006078421A (ja) パターン欠陥検出装置及びその方法
JP3831498B2 (ja) 光学部材検査装置
EP4360070A1 (en) Systems and methods for assigning a symbol to an object
JP3325191B2 (ja) 貝の判別方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R151 Written notification of patent or utility model registration

Ref document number: 6639181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151