JP6638426B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6638426B2
JP6638426B2 JP2016015137A JP2016015137A JP6638426B2 JP 6638426 B2 JP6638426 B2 JP 6638426B2 JP 2016015137 A JP2016015137 A JP 2016015137A JP 2016015137 A JP2016015137 A JP 2016015137A JP 6638426 B2 JP6638426 B2 JP 6638426B2
Authority
JP
Japan
Prior art keywords
indoor
expansion valve
outdoor
opening
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015137A
Other languages
Japanese (ja)
Other versions
JP2017133777A (en
Inventor
慎太郎 真田
慎太郎 真田
賢一 ▲高▼野
賢一 ▲高▼野
博俊 竹内
博俊 竹内
亮 ▲高▼岡
亮 ▲高▼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016015137A priority Critical patent/JP6638426B2/en
Publication of JP2017133777A publication Critical patent/JP2017133777A/en
Application granted granted Critical
Publication of JP6638426B2 publication Critical patent/JP6638426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続された空気調和装置に係わり、より詳細には、冷媒回路における室内機の運転台数変化時の急激な冷媒流量の変化による不具合を防止する空気調和装置に関する。   The present invention relates to an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a refrigerant pipe. More specifically, the present invention relates to an air conditioner in which the number of operating indoor units in a refrigerant circuit changes rapidly. The present invention relates to an air conditioner that prevents problems caused by changes.

圧縮機と四方弁と室外熱交換器と膨張弁を有する室外機と、室内熱交換器を有する室内機が液管とガス管で接続して構成される冷媒回路を有する空気調和装置では、圧縮機から吐出されて凝縮器として機能している熱交換器に流入して凝縮した冷媒は、膨張弁を介して蒸発器として機能している熱交換器に流入して蒸発し、再び圧縮機に吸入されることで冷凍サイクルを形成している。   In an air conditioner having a refrigerant circuit configured by connecting an outdoor unit having a compressor, a four-way valve, an outdoor heat exchanger, and an expansion valve, and an indoor unit having an indoor heat exchanger with a liquid pipe and a gas pipe, The refrigerant discharged from the machine and flowing into the heat exchanger functioning as a condenser and condensed flows into the heat exchanger functioning as an evaporator via an expansion valve and evaporates, and then returns to the compressor. The inhalation forms a refrigeration cycle.

上記のような空気調和装置では、膨張弁の開度を制御して冷媒の温度を適正に制御して所望の冷凍能力で運転できるようにしている。具体的には、圧縮機から吐出される冷媒の吐出温度が目標値となるように吐出温度と目標値の差に応じて膨張弁の開度制御を行う吐出温度調節ステップや、凝縮温度と凝縮器出口温度の温度差(過冷却度)が予め定められた目標値となるように膨張弁の開度制御を行う過冷却度調節ステップや、蒸発温度と蒸発器出口温度の温度差(過熱度)が予め定められた目標値となるように膨張弁の開度制御を行う過熱度調節ステップなどがある。   In the air conditioner as described above, the degree of opening of the expansion valve is controlled to appropriately control the temperature of the refrigerant so that the refrigerant can be operated at a desired refrigeration capacity. Specifically, a discharge temperature adjustment step for controlling the degree of opening of the expansion valve according to the difference between the discharge temperature and the target value so that the discharge temperature of the refrigerant discharged from the compressor becomes the target value, A supercooling degree adjusting step for controlling the opening degree of the expansion valve so that the temperature difference (supercooling degree) of the outlet temperature of the vessel becomes a predetermined target value, and a temperature difference (superheating degree ) Is a superheat degree adjustment step of controlling the opening degree of the expansion valve so that the target value becomes a predetermined target value.

上記の過冷却度調節ステップおよび過熱度調節ステップは、室内機毎に異なる空調負荷に対して適切な冷媒循環量を各室内機へ分配する目的で行われる。このとき、ユーザが1台の室内機5に対して運転開始若しくは運転停止を指示する操作を行うと、運転する室内機(サーモオン状態の室内機)容量の変化によって、各室内機に流れる冷媒循環量が急激に変化する。そのため、各室内機5が必要とする冷媒循環量と実際に流入した冷媒循環量とが大きく離れてしまい、圧縮機21への液バックや吐出温度Tdの過昇という問題が生じる場合がある。この問題の解決策として、運転台数が変化した際に予め室外膨張弁24の開度を調整する方法がある。例えば、運転台数の変化台数に応じたパルスを各室外膨張弁24に加減算する方法や、外気温又は室温に対応した開度となるように各膨張弁24を制御する方法がある。また、予め、膨張弁開度の上限値と下限値を運転台数に応じて設定して、その範囲で膨張弁の開度制御を行う方法がある(例えば、特許文献1)。   The supercooling degree adjusting step and the superheating degree adjusting step are performed for the purpose of distributing an appropriate amount of circulating refrigerant to each indoor unit with respect to an air conditioning load different for each indoor unit. At this time, when the user performs an operation of instructing one indoor unit 5 to start or stop the operation, the refrigerant circulating through each indoor unit is changed due to a change in the operating indoor unit (the indoor unit in the thermo-on state). The amount changes rapidly. For this reason, the amount of circulating refrigerant required by each indoor unit 5 and the amount of circulating refrigerant that has actually flowed in are greatly separated from each other, which may cause problems such as liquid back to the compressor 21 and an excessive rise in the discharge temperature Td. As a solution to this problem, there is a method of adjusting the opening degree of the outdoor expansion valve 24 in advance when the number of operating units changes. For example, there is a method of adding or subtracting a pulse corresponding to the number of operating vehicles to or from each outdoor expansion valve 24, or a method of controlling each expansion valve 24 so that the opening degree corresponds to the outside air temperature or room temperature. In addition, there is a method in which an upper limit value and a lower limit value of the opening degree of the expansion valve are set in advance according to the number of operating units, and the opening degree of the expansion valve is controlled within the range (for example, Patent Document 1).

特開2005−147541号公報JP 2005-147541 A

しかし、これらの方法はいずれも運転台数変化前に各膨張弁が適正開度(各室内機で必要としている冷媒循環量を適切に分配できる開度)となっていても、運転台数が変化すると再度適正開度となるまで室外膨張弁を制御する必要があり、各膨張弁の開度が安定するまでに時間を要していた。   However, in any of these methods, even if each expansion valve has an appropriate opening degree (an opening degree capable of appropriately distributing the amount of circulating refrigerant required in each indoor unit) before the number of operating units changes, the number of operating units changes. It was necessary to control the outdoor expansion valve until the opening reached the proper degree again, and it took time for the degree of opening of each expansion valve to stabilize.

本発明は以上述べた問題点を解決するものであって、運転台数が変化しても各膨張弁の開度を各室内機で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができるマルチ型空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and even if the number of operating units changes, the opening degree of each expansion valve is quickly and stably set to an opening degree that can appropriately distribute the refrigerant circulation amount required in each indoor unit. It is an object to provide a multi-type air conditioner that can be operated.

上記の課題を解決するために、本発明の空気調和装置は、一台の室外機に対して、室内熱交換器を有する室内機を複数台接続し、当該各室内機を個別に運転可能としたマルチタイプ空気調和機において、サーモオン状態の前記室内機の台数が変化したとき、前記室内機の運転台数変化前の前記各室内機に対応する膨張弁の開度からそれぞれの開度流量を算出し、サーモオン状態の前記室内機の台数が変化する直前の前記開度流量の合計値を維持するように前記各膨張弁を開度制御する。   In order to solve the above problems, the air conditioner of the present invention is configured such that a plurality of indoor units having an indoor heat exchanger are connected to one outdoor unit, and each of the indoor units can be individually operated. In the multi-type air conditioner, when the number of the indoor units in the thermo-on state changes, the respective opening degree flow rates are calculated from the opening degrees of the expansion valves corresponding to the respective indoor units before the number of operating indoor units changes. Then, the opening of each of the expansion valves is controlled so as to maintain the total value of the opening flow rates immediately before the number of the indoor units in the thermo-on state changes.

また、好ましくは、前記室内機の運転台数変化時に新たにサーモオン状態に移行した前記室内機に対応する前記膨張弁は、当該新たにサーモオン状態に移行した前記室内機の能力が前記マルチタイプ空気調和機全体の能力に占める比率と前記開度流量の合計値に基づいて定められる開度となるように制御される。   Preferably, the expansion valve corresponding to the indoor unit that has newly transitioned to the thermo-on state when the number of operating indoor units changes, the capacity of the indoor unit that has newly transitioned to the thermo-on state is the multi-type air conditioning. The opening is controlled so as to be determined based on the ratio of the capacity of the entire machine and the total value of the opening flow rate.

また、好ましくは、前記室内機の運転台数変化後、前記室外機に備えられる圧縮機の回転数の変化率に応じて前記各開度流量を算出し、算出した前記各開度流量となるように前記各膨張弁の開度を制御する。   Preferably, after the number of operating indoor units changes, the respective opening flow rates are calculated according to a rate of change in the number of revolutions of a compressor provided in the outdoor unit, and the calculated opening flow rates are obtained. Next, the opening degree of each expansion valve is controlled.

上記のように構成した本発明のマルチ型空気調和装置によれば、運転台数が変化しても各膨張弁の開度を各室内機で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができる。   According to the multi-type air conditioner of the present invention configured as described above, even if the number of operating units changes, the opening degree of each expansion valve is set to an opening degree that can appropriately distribute the refrigerant circulation amount required by each indoor unit. It can be stabilized quickly.

本発明の実施形態である空気調和装置の説明図であり、(A)が冷媒回路図、(B)が室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioner which is embodiment of this invention, (A) is a refrigerant circuit diagram, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。It is a flow chart explaining processing in an outdoor unit control means in an embodiment of the present invention. 本発明の実施形態における、室外機制御手段での処理であって、増加時制御を説明するフローチャートである。It is a process in the outdoor unit control means in embodiment of this invention, Comprising: It is a flowchart explaining increase control. 本発明の実施形態における、室外機制御手段での処理であって、減少時制御を説明するフローチャートである。It is a process in the outdoor unit control means in embodiment of this invention, and is a flowchart explaining control at the time of reduction. (A)は、増加時制御による各室外膨張弁の開度流量の変化を示す表であり、(B)は、減少時制御による各室外膨張弁の開度流量の変化を示す表である。(A) is a table showing a change in the opening flow rate of each outdoor expansion valve by the control at the time of increase, and (B) is a table showing a change of the opening flow rate of each outdoor expansion valve by the control at the time of decrease.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行えるマルチ型の空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, a description will be given of an example of a multi-type air conditioner in which three indoor units are connected in parallel to one outdoor unit and a cooling operation or a heating operation can be performed simultaneously in all the indoor units. It should be noted that the present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で並列に接続された4台の室内機5a〜5dとを備えている。   As shown in FIG. 1A, the air conditioner 1 according to the present embodiment includes one outdoor unit 2 and a first liquid pipe 8 a, a second liquid pipe 8 b, a third liquid pipe 8 c, A fourth liquid pipe 8d and four indoor units 5a to 5d connected in parallel by a gas pipe 9 are provided.

上記各構成要素は次のように接続されている。第1液管8aの一端が室外機2の第1液側閉鎖弁28aに、他端が室内機5aの閉鎖弁53aにそれぞれ接続されている。また、第2液管8bの一端が室外機2の第2液側閉鎖弁28bに、他端が室内機5bの閉鎖弁53bにそれぞれ接続されている。また、第3液管8cの一端が室外機2の第3液側閉鎖弁28cに、他端が室内機5cの閉鎖弁53cにそれぞれ接続されている。また、第4液管8dの一端が室外機2の第4液側閉鎖弁28dに、他端が室内機5dの閉鎖弁53dにそれぞれ接続されている。また、ガス管9は一端が室外機2のガス側閉鎖弁29に、他端が分岐して室内機5a〜5dの各閉鎖弁54a〜54dにそれぞれ接続されている。このように、室外機2と室内機5a〜5dとが第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で接続されて、空気調和装置1の冷媒回路10が構成されている。   The above components are connected as follows. One end of the first liquid pipe 8a is connected to the first liquid side closing valve 28a of the outdoor unit 2, and the other end is connected to the closing valve 53a of the indoor unit 5a. Further, one end of the second liquid pipe 8b is connected to the second liquid-side closing valve 28b of the outdoor unit 2, and the other end is connected to the closing valve 53b of the indoor unit 5b. Further, one end of the third liquid pipe 8c is connected to the third liquid side closing valve 28c of the outdoor unit 2, and the other end is connected to the closing valve 53c of the indoor unit 5c. In addition, one end of the fourth liquid pipe 8d is connected to the fourth liquid side closing valve 28d of the outdoor unit 2, and the other end is connected to the closing valve 53d of the indoor unit 5d. The gas pipe 9 has one end connected to the gas-side shut-off valve 29 of the outdoor unit 2 and the other end branched and connected to each of the shut-off valves 54a to 54d of the indoor units 5a to 5d. In this way, the outdoor unit 2 and the indoor units 5a to 5d are connected by the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, the fourth liquid pipe 8d, and the gas pipe 9, and The refrigerant circuit 10 of the harmony device 1 is configured.

まず、図1(A)を用いて、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第1室外膨張弁24aと、第2室外膨張弁24bと、第3室外膨張弁24cと、第4室外膨張弁24dと、室外ファン27と、一端に第1液管8aが接続された第1閉鎖弁28aと、一端に第2液管8bが接続された第2閉鎖弁28bと、一端に第3液管8cが接続された第3閉鎖弁28cと、一端に第4液管8dが接続された第4閉鎖弁28dと、一端にガス管が接続されたガス側閉鎖弁29と、室外機制御手段200とを備えている。そして、室外ファン27および室外機制御手段200を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described with reference to FIG. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a first outdoor expansion valve 24a, a second outdoor expansion valve 24b, a third outdoor expansion valve 24c, and a fourth outdoor expansion. A valve 24d, an outdoor fan 27, a first closing valve 28a having one end connected to the first liquid pipe 8a, a second closing valve 28b having one end connected to the second liquid pipe 8b, and a third liquid A third closing valve 28c to which the pipe 8c is connected, a fourth closing valve 28d to which one end is connected to the fourth liquid pipe 8d, a gas-side closing valve 29 which is connected to one end of the gas pipe, and outdoor unit control means 200. These devices except the outdoor fan 27 and the outdoor unit control means 200 are mutually connected by respective refrigerant pipes described in detail below, and constitute an outdoor unit refrigerant circuit 20 which forms a part of the refrigerant circuit 10. .

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、後述する四方弁22のポートcと吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that is capable of varying the operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later via a discharge pipe 41. The refrigerant suction side of the compressor 21 is connected to a port c of a four-way valve 22 described later via a suction pipe 42.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートdは、ガス側閉鎖弁29と室外機ガス管44で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and has four ports a, b, c, and d. The port a is connected to a refrigerant discharge side of the compressor 21 by a discharge pipe 41. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 via a refrigerant pipe 43. The port c is connected to the refrigerant suction side of the compressor 21 via a suction pipe 42. The port d is connected to the gas-side shut-off valve 29 by the outdoor unit gas pipe 44.

室外熱交換器23は、後述する室外ファン27の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は上述したように冷媒配管43で四方弁22のポートbに接続され、他方の冷媒出入口には室外機液管45の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。   The outdoor heat exchanger 23 exchanges heat between refrigerant and outside air taken into the interior of the outdoor unit 2 from a suction port (not shown) by rotation of an outdoor fan 27 described later. One refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 via the refrigerant pipe 43 as described above, and one end of the outdoor unit liquid pipe 45 is connected to the other refrigerant inlet / outlet. The outdoor heat exchanger 23 functions as a condenser when the refrigerant circuit 10 is in a cooling cycle, and functions as an evaporator when the refrigerant circuit 10 is in a heating cycle.

室外機液管45の他端には、第1液分管46aの一端と第2液分管46bの一端と第3液分管46cと第4液分管46dの一端が各々接続されている。また、第1液分管46aの他端は第1液側閉鎖弁28aと接続され、第2液分管46bの他端は第2液側閉鎖弁28bと接続され、第3液分管46cの他端は第3液側閉鎖弁28cと接続され、第4液分管46dの他端は第4液側閉鎖弁28dと接続されている。   The other end of the outdoor unit liquid pipe 45 is connected to one end of a first liquid dividing pipe 46a, one end of a second liquid dividing pipe 46b, and one end of a third liquid dividing pipe 46c and a fourth liquid dividing pipe 46d. The other end of the first liquid dividing pipe 46a is connected to the first liquid-side closing valve 28a, the other end of the second liquid dividing pipe 46b is connected to the second liquid-side closing valve 28b, and the other end of the third liquid dividing pipe 46c. Is connected to the third liquid side closing valve 28c, and the other end of the fourth liquid dividing pipe 46d is connected to the fourth liquid side closing valve 28d.

第1液分管46aには、第1室外膨張弁24aが設けられている。また、第2液分管46bには、第2室外膨張弁24bが設けられている。また、第3液分管46cには、第3室外膨張弁24cが設けられている。さらには、第4液分管46dには、第4室外膨張弁24dが設けられている。   The first liquid distribution pipe 46a is provided with a first outdoor expansion valve 24a. Further, a second outdoor expansion valve 24b is provided in the second liquid dividing pipe 46b. Further, a third outdoor expansion valve 24c is provided in the third liquid distribution pipe 46c. Further, a fourth outdoor expansion valve 24d is provided in the fourth liquid dividing pipe 46d.

第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、第4室外膨張弁24dは、各々電子膨張弁である。第1室外膨張弁24aの開度を調節することで、後述する室内機5aの室内熱交換器51aを流れる冷媒量を調節する。第2室外膨張弁24bの開度を調節することで、後述する室内機5bの室内熱交換器51bを流れる冷媒量を調節する。第3室外膨張弁24cの開度を調節することで、後述する室内機5cの室内熱交換器51cを流れる冷媒量を調節する。第4室外膨張弁24dの開度を調節することで、後述する室内機5dの室内熱交換器51dを流れる冷媒量を調節する。   Each of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d is an electronic expansion valve. By adjusting the opening of the first outdoor expansion valve 24a, the amount of refrigerant flowing through the indoor heat exchanger 51a of the indoor unit 5a, which will be described later, is adjusted. By adjusting the opening of the second outdoor expansion valve 24b, the amount of refrigerant flowing through the indoor heat exchanger 51b of the indoor unit 5b, which will be described later, is adjusted. By adjusting the opening degree of the third outdoor expansion valve 24c, the amount of refrigerant flowing through the indoor heat exchanger 51c of the indoor unit 5c described later is adjusted. By adjusting the opening of the fourth outdoor expansion valve 24d, the amount of refrigerant flowing through the indoor heat exchanger 51d of the indoor unit 5d described later is adjusted.

室外ファン27は、樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 27 is formed of a resin material, and is disposed near the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take in outside air from the suction port (not shown) into the interior of the outdoor unit 2, and the outside air, which has exchanged heat with the refrigerant in the outdoor heat exchanger 23, is blown from an outlet (not shown) to the outdoor unit. 2 to the outside.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ33とが設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ34とが設けられている。室外熱交換器23には、室外熱交換器23の温度を検出する室外熱交温度センサ35が設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pipe 41 has a high-pressure sensor 31 for detecting a discharge pressure, which is a pressure of the refrigerant discharged from the compressor 21, and a temperature of the refrigerant discharged from the compressor 21. A discharge temperature sensor 33 for detecting a discharge temperature is provided. The suction pipe 42 includes a low pressure sensor 32 that detects a suction pressure that is a pressure of the refrigerant sucked into the compressor 21, a suction temperature sensor 34 that detects a suction temperature that is a temperature of the refrigerant sucked into the compressor 21, and Is provided. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 35 that detects the temperature of the outdoor heat exchanger 23.

第1液分管46aにおける、第1室外膨張弁24aと第1液側閉鎖弁28aとの間には、この間の第1液分管46aを流れる冷媒の温度を検出する第1液温度センサ38aが設けられている。第2液分管46bにおける、第2室外膨張弁24bと第2液側閉鎖弁28bとの間には、この間の第2液分管46bを流れる冷媒の温度を検出する第2液温度センサ38bが設けられている。第3室外膨張弁24cと第3液側閉鎖弁28cとの間には、この間の第3液分管46cを流れる冷媒の温度を検出する第3液温度センサ38cが設けられている。第4室外膨張弁24dと第4液側閉鎖弁28dとの間には、この間の第4液分管46dを流れる冷媒の温度を検出する第4液温度センサ38dが設けられている。そして、室外機2の図示しない吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ100が備えられている。   A first liquid temperature sensor 38a is provided between the first outdoor expansion valve 24a and the first liquid side closing valve 28a in the first liquid dividing pipe 46a to detect the temperature of the refrigerant flowing through the first liquid dividing pipe 46a therebetween. Have been. A second liquid temperature sensor 38b is provided between the second outdoor expansion valve 24b and the second liquid side closing valve 28b in the second liquid dividing pipe 46b to detect the temperature of the refrigerant flowing through the second liquid dividing pipe 46b therebetween. Have been. Between the third outdoor expansion valve 24c and the third liquid side closing valve 28c, there is provided a third liquid temperature sensor 38c for detecting the temperature of the refrigerant flowing through the third liquid dividing pipe 46c therebetween. Between the fourth outdoor expansion valve 24d and the fourth liquid side closing valve 28d, a fourth liquid temperature sensor 38d for detecting the temperature of the refrigerant flowing through the fourth liquid dividing pipe 46d therebetween is provided. An outdoor air temperature sensor 100 for detecting the temperature of the outdoor air flowing into the outdoor unit 2, that is, the outdoor air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230とを備えている。   The outdoor unit 2 includes an outdoor unit control unit 200. The outdoor unit control means 200 is mounted on a control board stored in an electric component box (not shown) of the outdoor unit 2, and as shown in FIG. 1B, a CPU 210, a storage unit 220, and a communication unit 230. It has.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態、後述する各種テーブル等を記憶する。通信部230は、室内機5a〜5dとの通信を行うインターフェイスである。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 27, various tables to be described later, and the like. Remember. The communication unit 230 is an interface that performs communication with the indoor units 5a to 5d.

CPU210は、各種センサでの検出値を取り込むとともに、室内機5a〜5dから送信される運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号が通信部230を介して入力される。CPU210は、これら取り込んだ各種検出値や入力された各種情報に基づいて、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24cおよび第4室外膨張弁24dの開度制御や、圧縮機21や室外ファン27の駆動制御、四方弁22の切り換え制御を行う。   The CPU 210 captures the detection values of the various sensors, and transmits an operation information signal including operation start / stop signals and operation information (set temperature, indoor temperature, etc.) transmitted from the indoor units 5a to 5d via the communication unit 230. Is entered. The CPU 210 controls the opening degrees of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d based on the various detected values and the various input information. In addition, drive control of the compressor 21 and the outdoor fan 27 and switching control of the four-way valve 22 are performed.

次に、4台の室内機5a〜5dについて説明する。4台の室内機5a〜5dは、室内熱交換器51a〜51dと、第1液管8aと第2液管8bと第3液管8cと第4液管8dがそれぞれ接続された液側閉鎖弁53a〜53dおよび分岐したガス管9の他端がそれぞれ接続されたガス側閉鎖弁54a〜54dと、室内ファン55a〜55dと、室内機制御手段500a〜500dとを備えている。そして、室内ファン55a〜55dおよび室内機制御手段500a〜500dを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50a〜50dを構成している。   Next, the four indoor units 5a to 5d will be described. The four indoor units 5a to 5d have liquid-side closures in which the indoor heat exchangers 51a to 51d, the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, and the fourth liquid pipe 8d are connected, respectively. There are provided gas-side closing valves 54a to 54d to which valves 53a to 53d and the other end of the branched gas pipe 9 are respectively connected, indoor fans 55a to 55d, and indoor unit control means 500a to 500d. These devices except the indoor fans 55a to 55d and the indoor unit control means 500a to 500d are connected to each other by respective refrigerant pipes described in detail below, and the indoor unit refrigerant circuits 50a to 50a to form a part of the refrigerant circuit 10. 50d.

尚、室内機5a〜5dの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5c、5dについては説明を省略する。また、図1(A)では、室内機5aの構成装置に付与した番号の末尾をaからb、cおよびdにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5c、5dの構成装置となる。   Since the configurations of the indoor units 5a to 5d are all the same, in the following description, only the configuration of the indoor unit 5a will be described, and the description of the other indoor units 5b, 5c, and 5d will be omitted. In FIG. 1 (A), the numbers assigned to the constituent units of the indoor unit 5a are changed from a to b, c, and d, respectively, to indicate that the indoor units 5b, 5c corresponding to the constituent units of the outdoor unit 5a. , 5d.

室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により室内機5aに備えられた図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液側閉鎖弁53aに室内機液管71aで接続され、他方の冷媒出入口がガス側閉鎖弁54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。   The indoor heat exchanger 51a exchanges heat between indoor air taken into the indoor unit 5a from a suction port (not shown) provided in the indoor unit 5a by rotation of a refrigerant and an indoor fan 55a described later. The refrigerant port is connected to the liquid side closing valve 53a by an indoor unit liquid pipe 71a, and the other refrigerant port is connected to the gas side closing valve 54a by an indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.

室内ファン55aは、室内熱交換器51aの近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を室内機5aに備えられた図示しない吹出口から室内へ供給する。   The indoor fan 55a is a cross-flow fan formed of a resin material disposed in the vicinity of the indoor heat exchanger 51a, and is rotated by a fan motor (not shown) so that the indoor fan 55a enters the indoor unit 5a from the suction port (not shown). The air is taken in, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 51a is supplied into the room from an outlet (not shown) provided in the indoor unit 5a.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内熱交換器51aには、室内熱交換器51aの温度を検出する室内熱交温度センサ61aが設けられている。また、室内機ガス管72aには第1ガス温度センサ63aが設けられている。さらに、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ62aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. The indoor heat exchanger 51a is provided with an indoor heat exchange temperature sensor 61a that detects the temperature of the indoor heat exchanger 51a. The indoor unit gas pipe 72a is provided with a first gas temperature sensor 63a. Further, an indoor temperature sensor 62a that detects the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature, is provided near the suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが備えられている。制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aとを備えている。   The indoor unit 5a includes an indoor unit control unit 500a. The control unit 500a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 5a, and includes a CPU 510a, a storage unit 520a, and a communication unit 530a, as shown in FIG. ing.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。   The storage unit 520a is configured by a ROM or a RAM, and stores a control program for the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by a user, and the like. The communication unit 530a is an interface that communicates with the outdoor unit 2 and the other indoor units 5b and 5c.

CPU510aは、各種センサでの検出値を取り込むとともに、使用者が図示しないリモコンを操作して設定した運転条件やタイマー運転設定等を含んだ信号が図示しないリモコン受光部を介して入力される。CPU510aは、これら取り込んだ各種検出値や入力された各種情報に基づいて室内ファン55aの駆動制御を行う。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号を、通信部530aを介して室外機2に送信する。   The CPU 510a captures detection values from various sensors, and receives a signal including operating conditions and timer operation settings set by a user operating a remote controller (not shown) via a remote controller light receiving unit (not shown). The CPU 510a controls the driving of the indoor fan 55a based on these various detected values and the various input information. Further, the CPU 510a transmits an operation information signal including an operation start / stop signal and operation information (set temperature, indoor temperature, and the like) to the outdoor unit 2 via the communication unit 530a.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5dが暖房運転を行う場合について説明し、冷房運転/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、暖房運転時の冷媒の流れを示している。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air-conditioning apparatus 1 according to the present embodiment will be described with reference to FIG. In the following description, a case where the indoor units 5a to 5d perform the heating operation will be described, and a detailed description will be omitted when performing the cooling operation / the defrosting operation. The arrows in FIG. 1A indicate the flow of the refrigerant during the heating operation.

図1(A)に示すように、室内機5a〜5dが暖房運転を行う場合、つまり、冷媒回路10が暖房サイクルとなる場合は、室外機2では、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換えられる。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a〜51dが凝縮器として機能する。   As shown in FIG. 1A, when the indoor units 5 a to 5 d perform a heating operation, that is, when the refrigerant circuit 10 is in a heating cycle, in the outdoor unit 2, the four-way valve 22 is in a state indicated by a solid line, that is, The switching is performed such that the port a and the port d of the four-way valve 22 communicate with each other, and the port b and the port c communicate with each other. Thus, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchangers 51a to 51d function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41から四方弁22を介して室外機ガス管44に流入し、室外機ガス管44からガス側閉鎖弁29を介してガス管9に流入する。ガス管9に流入した冷媒は分岐して、ガス側閉鎖弁54a〜54dを介して室内機5a〜5dに流入する。   The high-pressure refrigerant discharged from the compressor 21 flows into the outdoor unit gas pipe 44 from the discharge pipe 41 via the four-way valve 22, and flows into the gas pipe 9 from the outdoor unit gas pipe 44 via the gas-side closing valve 29. I do. The refrigerant flowing into the gas pipe 9 branches and flows into the indoor units 5a to 5d via the gas-side shut-off valves 54a to 54d.

室内機5a〜5dに流入した冷媒は、室内機ガス管72a〜72dを流れて室内熱交換器51a〜51dに流入する。室内熱交換器51a〜51dに流入した冷媒は、室内ファン55a〜55dの回転により図示しない吸込口から室内機5a〜5dの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51dが凝縮器として機能し、室内熱交換器51a〜51dで冷媒と熱交換を行って暖められた室内空気が図示しない吹出口から室内機5a〜5dが設置されている部屋に吹き出されることによって、各部屋の暖房が行われる。   The refrigerant flowing into the indoor units 5a to 5d flows through the indoor unit gas pipes 72a to 72d and flows into the indoor heat exchangers 51a to 51d. The refrigerant flowing into the indoor heat exchangers 51a to 51d exchanges heat with the indoor air taken into the indoor units 5a to 5d from the suction ports (not shown) by the rotation of the indoor fans 55a to 55d and condenses. As described above, the indoor heat exchangers 51a to 51d function as condensers, and the indoor air that has been heated by exchanging heat with the refrigerant in the indoor heat exchangers 51a to 51d is heated by the indoor units 5a to 5d from the outlet (not shown). Each room is heated by being blown out to the installed room.

室内熱交換器51a〜51dから流出した冷媒は室内機液管71a〜71dを流れ、液側閉鎖弁53a〜53dを介して第1液管8a、第2液管8b、第3液管8c、および第4液管8dに流入する。第1液管8a、第2液管8b、第3液管8c、および第4液管8dから第1液側閉鎖弁28a、第2液側閉鎖弁28b、第3液側閉鎖弁28c、および第4液側閉鎖弁28dを介して室外機2に流入した冷媒は、第1液分管46a、第2液分管46b、第3液分管46c、および第4液分管46dを流れて第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dを通過して減圧された後、室外機液管45に流入する。尚、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、第4室外膨張弁24dの開度制御については後述する。   The refrigerant flowing out of the indoor heat exchangers 51a to 51d flows through the indoor unit liquid pipes 71a to 71d, and flows through the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c via the liquid side closing valves 53a to 53d. And flows into the fourth liquid pipe 8d. From the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, and the fourth liquid pipe 8d, a first liquid-side closing valve 28a, a second liquid-side closing valve 28b, a third liquid-side closing valve 28c, and The refrigerant flowing into the outdoor unit 2 via the fourth liquid side closing valve 28d flows through the first liquid dividing pipe 46a, the second liquid dividing pipe 46b, the third liquid dividing pipe 46c, and the fourth liquid dividing pipe 46d, and the first outdoor expansion. The pressure is reduced after passing through the valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d, and then flows into the outdoor unit liquid pipe 45. The opening control of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d will be described later.

室外機液管45から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43を流れて四方弁22に流入し四方弁22から吸入管42へと流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 45 exchanges heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 and evaporates. The refrigerant flowing out of the outdoor heat exchanger 23 flows through the refrigerant pipe 43, flows into the four-way valve 22, flows from the four-way valve 22 to the suction pipe 42, is drawn into the compressor 21, and is compressed again.

尚、室内機5a〜5dが冷房運転あるいは除霜運転を行う場合、つまり、冷媒回路10が冷房サイクルとなる場合は、室外機2では、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り換えられる。これにより、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器51a〜51dが蒸発器として機能する。   When the indoor units 5a to 5d perform the cooling operation or the defrosting operation, that is, when the refrigerant circuit 10 is in the cooling cycle, in the outdoor unit 2, the four-way valve 22 is in a state shown by a broken line, that is, the four-way valve 22 Are switched so that the ports a and b communicate with each other and the ports c and d communicate with each other. Thereby, the outdoor heat exchanger 23 functions as a condenser, and the indoor heat exchangers 51a to 51d function as evaporators.

次に、図1〜図5を用いて、本実施形態の空気調和装置1が暖房運転を行っているときの、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度制御について詳細に説明する。   Next, with reference to FIGS. 1 to 5, the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, and the third outdoor expansion valve 24c when the air-conditioning apparatus 1 of the present embodiment is performing the heating operation. And the opening degree control of the fourth outdoor expansion valve 24d will be described in detail.

尚、以下の説明では、高圧センサ31で検出する圧縮機21の吐出圧力をPd、吐出圧力Pdを用いて算出する室内熱交換器51a〜51dでの凝縮温度をTc、室外熱交温度センサ35で検出する室外熱交換器23での蒸発温度をTe、吐出温度センサ33で検出する圧縮機21の吐出温度をTd、目標吐出温度をTdtg、吐出温度Tdと目標吐出温度Tdtgとの差(Td−Tdtg)である吐出温度差をΔTdとする。尚、目標吐出温度Tdtgは、冷媒回路の安定時に圧縮機21に吸入される冷媒の状態が適正となる温度であり、本実施形態では、凝縮温度Tcと蒸発温度Teとを用いて算出する。   In the following description, the discharge pressure of the compressor 21 detected by the high-pressure sensor 31 is Pd, the condensation temperature in the indoor heat exchangers 51a to 51d calculated using the discharge pressure Pd is Tc, and the outdoor heat exchange temperature sensor 35 , The discharge temperature of the compressor 21 detected by the discharge temperature sensor 33 is Td, the target discharge temperature is Tdtg, and the difference between the discharge temperature Td and the target discharge temperature Tdtg (Td −Tdtg) is defined as ΔTd. Note that the target discharge temperature Tdtg is a temperature at which the state of the refrigerant sucked into the compressor 21 when the refrigerant circuit is stable is appropriate. In the present embodiment, the target discharge temperature Tdtg is calculated using the condensation temperature Tc and the evaporation temperature Te.

また、第1液温度センサ38a、第2液温度センサ38b、第3液温度センサ38c、第4液温度センサ38dで検出する熱交出口温度をそれぞれTl1、Tl2、Tl3、Tl4とし、凝縮温度Tcと熱交出口温度Tl1、Tl2、Tl3、Tl4それぞれとの温度差(Tc−Tl1、Tc−Tl2、Tc−Tl3、Tc−Tl4)をそれぞれ過冷却度SC1、SC2、SC3、SC4とする。また、過冷却度SC1、SC2、SC3、SC4のうち最も大きな値のものを過冷却度の最大値SCmax、最も小さな値のものを過冷却度の最小値SCmin、最大値SCmaxと最小値SCminの差をΔSCとする。   The heat exchange outlet temperatures detected by the first liquid temperature sensor 38a, the second liquid temperature sensor 38b, the third liquid temperature sensor 38c, and the fourth liquid temperature sensor 38d are Tl1, Tl2, Tl3, and Tl4, respectively, and the condensation temperature Tc The temperature differences (Tc-Tl1, Tc-Tl2, Tc-Tl3, Tc-Tl4) between the heat exchange outlet temperatures Tl1, Tl2, Tl3, and Tl4 are referred to as supercooling degrees SC1, SC2, SC3, and SC4, respectively. The largest value of the supercooling degrees SC1, SC2, SC3, and SC4 is the maximum value SCmax of the supercooling degree, and the smallest value is the minimum value SCmin of the supercooling degree, and the maximum value SCmax and the minimum value SCmin. Let the difference be ΔSC.

空気調和装置1が暖房運転を行っているとき、吐出温度Tdが目標吐出温度Tdtg(目標値)となるように吐出温度差ΔTdに基づいて第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度調節を行う(吐出温度調節ステップ)。   When the air-conditioning apparatus 1 is performing the heating operation, the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the second outdoor expansion valve 24b based on the discharge temperature difference ΔTd such that the discharge temperature Td becomes the target discharge temperature Tdtg (target value). The opening degrees of the third outdoor expansion valve 24c and the fourth outdoor expansion valve 24d are adjusted (discharge temperature adjusting step).

また、上記の吐出温度調節ステップと並行して、暖房運転時は、過冷却度SC1、SC2、SC3、SC4の値が所定の目標値となるように第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度調節を個別に行う(過冷却度調節ステップ)。なお、過冷却度調節ステップは、各室内熱交換器51a〜51dの負荷に応じた循環量の冷媒を流すように第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度調節を個別に行う制御であり、冷房運転を行っているときは、過熱度SH1、SH2、SH3、SH4の値が所定の目標値となるように第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度調節を個別に行う(過熱度調節ステップ)。   In parallel with the above-described discharge temperature adjustment step, during the heating operation, the first outdoor expansion valve 24a and the second outdoor expansion valve 24a are set so that the values of the supercooling degrees SC1, SC2, SC3, and SC4 become the predetermined target values. The openings of the valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d are individually adjusted (supercooling degree adjusting step). The subcooling degree adjusting step includes the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, and the third outdoor expansion valve 24c such that a circulating amount of refrigerant corresponding to the load of each of the indoor heat exchangers 51a to 51d flows. , And the control for individually adjusting the opening degree of the fourth outdoor expansion valve 24d. When the cooling operation is being performed, the control is performed such that the values of the superheat degrees SH1, SH2, SH3, and SH4 become the predetermined target values. The opening degrees of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d are individually adjusted (superheat degree adjustment step).

上記の過冷却度調節ステップおよび過熱度調節ステップは、室内機毎に異なる空調負荷に対して適切な冷媒循環量を各室内機へ分配する目的で行われる。このとき、ユーザが1台の室内機5に対して運転開始若しくは運転停止を指示する操作を行うと、運転する室内機(サーモオン状態の室内機)容量の変化によって、各室内機に流れる冷媒循環量が急激に変化する。そのため、各室内機5が必要とする冷媒循環量と実際に流入した冷媒循環量とが大きく離れてしまい、圧縮機21への液バックや吐出温度Tdの過昇という問題が生じる場合がある。この問題の解決策として、運転台数が変化した際に予め室外膨張弁24の開度を調整する方法がある。例えば、変化した台数に応じたパルスを各室外膨張弁24に加減算する方法や、外気温又は室温に対応した開度となるように各膨張弁24を制御する方法がある。しかし、これらの方法はいずれも運転台数変化前に各室外膨張弁24が適正開度(各室内機5で必要としている冷媒循環量を適切に分配できる開度)となっていても、運転台数が変化すると再度適正開度となるまで室外膨張弁24を制御する必要があり、各室外膨張弁24の開度が安定するまでに時間を要していた。   The supercooling degree adjusting step and the superheating degree adjusting step are performed for the purpose of distributing an appropriate amount of circulating refrigerant to each indoor unit with respect to an air conditioning load different for each indoor unit. At this time, when the user performs an operation of instructing one indoor unit 5 to start or stop the operation, the refrigerant circulating through each indoor unit is changed due to a change in the operating indoor unit (the indoor unit in the thermo-on state). The amount changes rapidly. For this reason, the amount of circulating refrigerant required by each indoor unit 5 and the amount of circulating refrigerant that has actually flowed in are greatly separated from each other, which may cause problems such as liquid back to the compressor 21 and an excessive rise in the discharge temperature Td. As a solution to this problem, there is a method of adjusting the opening degree of the outdoor expansion valve 24 in advance when the number of operating units changes. For example, there is a method of adding or subtracting a pulse corresponding to the changed number to or from each outdoor expansion valve 24, and a method of controlling each expansion valve 24 so that the opening degree corresponds to the outside air temperature or the room temperature. However, in each of these methods, even if each outdoor expansion valve 24 has an appropriate opening degree (an opening degree capable of appropriately distributing the refrigerant circulation amount required in each indoor unit 5) before the change in the number of operating units, Is changed, it is necessary to control the outdoor expansion valve 24 again until the opening degree becomes appropriate, and it takes time for the opening degree of each outdoor expansion valve 24 to stabilize.

したがって、室内機5の運転台数が変化しても各室外膨張弁24が適正開度に近い状態となっているようにすることが好ましい。   Therefore, it is preferable that each outdoor expansion valve 24 be in a state close to the appropriate opening even if the number of operating indoor units 5 changes.

そこで、本発明では、サーモオン状態の室内機の台数(運転台数)が変化したとき、変化前からサーモオン状態だった室内機5の各室外膨張弁24の開度流量の比率を維持し、且つ、全ての室内機5の開度流量の合計値は運転台数の変化前と変わらないように各室外膨張弁を開度制御している。これによって、各室内機5で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができる。   Therefore, in the present invention, when the number of indoor units in the thermo-on state (operating number) changes, the ratio of the opening degree flow rates of the outdoor expansion valves 24 of the indoor units 5 in the thermo-on state before the change is maintained, and The opening control of each outdoor expansion valve is performed so that the total value of the opening flow rates of all the indoor units 5 does not change from before the change in the number of operating units. This makes it possible to quickly stabilize the opening degree at which the amount of circulating refrigerant required by each indoor unit 5 can be appropriately distributed.

以下、図2〜5を用いて本発明に関わる処理について詳細に説明する。尚、図2〜4に示すフローチャートでは、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、図2〜5では、本発明に関わる処理を中心に説明しており、空気調和装置1が冷房運転や除霜運転を行うときの処理や、使用者の指示した設定温度や風量などの運転条件に対応した冷媒回路10の制御、等といった一般的な処理については説明を省略する。   Hereinafter, the processing according to the present invention will be described in detail with reference to FIGS. In the flowcharts shown in FIGS. 2 to 4, ST represents a processing step, and a number following this represents a step number. FIGS. 2 to 5 mainly describe processes related to the present invention, such as processes when the air-conditioning apparatus 1 performs a cooling operation or a defrosting operation, and a setting temperature or air volume specified by a user. Description of general processing such as control of the refrigerant circuit 10 corresponding to the operating conditions will be omitted.

図2のフローチャートによる処理は、ユーザがいずれかの室内機5に対して運転開始若しくは運転停止を指示する操作を行い、サーモオン状態の室内機5の台数が変化したら開始する。CPU210は、各室外膨張弁24の現在の開度を検出し、これに基づいて各室外膨張弁24の開度流量Faa〜Fadおよびその合計値Fsumを算出する(ST1)。ここで、開度流量Faは、膨張弁の入口側と出口側とが所定の圧力差の場合において、その開度で室外膨張弁24を通過する冷媒循環量を示す。開度流量Faは、試験等により求めた室外膨張弁24の開度との相関関係が予め記憶部220に記憶されており、これを基に算出される。   The process according to the flowchart of FIG. 2 is started when the user performs an operation of instructing one of the indoor units 5 to start or stop the operation, and the number of the indoor units 5 in the thermo-on state changes. The CPU 210 detects the current opening degree of each outdoor expansion valve 24, and calculates the opening degree flow rates Faa to Fad of each outdoor expansion valve 24 and the total value Fsum thereof based on this (ST1). Here, the opening flow rate Fa indicates the amount of refrigerant circulating through the outdoor expansion valve 24 at the opening when the inlet and outlet sides of the expansion valve have a predetermined pressure difference. The opening degree flow rate Fa has a correlation with the opening degree of the outdoor expansion valve 24 obtained by a test or the like stored in the storage unit 220 in advance, and is calculated based on this.

ST1の処理を終えたCPU210は、現在の圧縮機21の回転数Nを検出して記憶部220にN1として記憶する(ST2)。   After finishing the processing in ST1, the CPU 210 detects the current rotational speed N of the compressor 21 and stores it as N1 in the storage unit 220 (ST2).

その後、CPU210は、サーモオン状態の室内機5の台数が増加したか否かを判定する(ST3)。台数が増加していた場合(ST3−YES)、CPU210はST4に処理を進め、図3の増加時制御へ移行する。増加時制御へ移行するとき、圧縮機21の回転数は増加する。台数が増加していない、つまり、減少していた場合(ST3−NO)、CPU210はST5に処理を進め、図4の減少時制御へ移行する。減少時制御へ移行するとき、圧縮機21の回転数は減少する。   Thereafter, CPU 210 determines whether or not the number of indoor units 5 in the thermo-on state has increased (ST3). If the number has increased (ST3-YES), the CPU 210 advances the process to ST4, and shifts to the increase control of FIG. When shifting to the increase control, the rotation speed of the compressor 21 increases. If the number has not increased, that is, has decreased (ST3-NO), the CPU 210 advances the process to ST5, and shifts to the decrease control of FIG. When shifting to the control at the time of decrease, the rotation speed of the compressor 21 decreases.

(1)増加時制御
ST4の増加時制御について図3と図5(A)を用いて説明する。図3は増加時制御における制御フローを示しており、図5(A)は増加時制御による各室外膨張弁の開度流量Faの変化を示す表である。なお、図5に記載されている数値は概念的なものを示している。図3の増加時制御では、CPU210は、台数変化時点で既に運転停止(サーモオフ状態)であって、台数変化後においても運転停止である室内機5に対応する室外膨張弁24の台数変化後開度流量Fbとして、台数変化前の開度流量Faをそのまま割り当てる(STB1)。図5(A)において、台数変化時点で既に運転停止(サーモオフ状態)であって、台数変化後においても運転停止となる室内機である室内機5dの台数変化前開度流量Fad=1を室内機5dの台数変化後開度流量Fbdにそのまま割り当てる。
(1) Increase Control The increase control of ST4 will be described with reference to FIG. 3 and FIG. FIG. 3 shows a control flow in the control at the time of increase, and FIG. 5A is a table showing a change in the opening flow rate Fa of each outdoor expansion valve by the control at the time of increase. The numerical values shown in FIG. 5 are conceptual ones. In the control at the time of increase in FIG. 3, the CPU 210 opens after the number of outdoor expansion valves 24 corresponding to the indoor unit 5 that has already stopped operation (thermo-off state) at the time of the number change and has stopped operation even after the number change. The opening degree flow rate Fa before the number change is directly assigned as the degree flow rate Fb (STB1). In FIG. 5A, the operation flow is already stopped (the thermo-off state) at the time of the change in the number of units, and the opening flow rate Fad = 1 before the change in the number of the indoor units 5 d, which is the indoor unit that is stopped even after the change in the number of units, It is directly allocated to the opening flow rate Fbd after the number change of 5d.

次に、CPU210は、台数変化時点で既に運転停止(サーモオフ状態)であって、台数変化後においても運転停止である室内機5に対応する室外膨張弁24の開度流量Faの合計値である停止機合計値Foffを算出するとともに、運転機合計値Fon(=Fsum−Foff)を算出する(STB2)。   Next, the CPU 210 is the total value of the opening degree flow rate Fa of the outdoor expansion valve 24 corresponding to the indoor unit 5 that has already stopped operation (thermo-off state) at the time of the change in the number of vehicles and has stopped operation after the change in the number of vehicles. A total stopped machine value Foff is calculated, and a total operated machine value Fon (= Fsum-Foff) is calculated (STB2).

次に、CPU210は、サーモオン状態に移行した室内機5の能力比率QRを算出する(STB3)。能力比率QRは、全てのサーモオン状態の室内機5の能力の合計値に占める当該室内機5の能力の比率であり、ここで、室内機5の能力とは簡易的には各室内機5の定格能力を使用する。これによって、当該室内機5が必要としている冷媒循環量を推定できる。なお、室内温度センサ62で検出された室内温度や室内ファン55の回転数等を考慮することで精度を向上させることができる。図5(A)において、運転を開始した室内機5cの能力は10である。また、サーモオン状態の室内機は室内機5a、5bおよび5cであり、各室内機の能力の合計値は25である。したがって、室内機5cの能力比率QR=2/5となる。   Next, the CPU 210 calculates the capacity ratio QR of the indoor unit 5 that has shifted to the thermo-on state (STB3). The capacity ratio QR is a ratio of the capacity of the indoor unit 5 to the total value of the capacity of all the indoor units 5 in the thermo-on state. Here, the capacity of the indoor unit 5 is simply the capacity of each indoor unit 5. Use the rated capacity. Thereby, the refrigerant circulation amount required by the indoor unit 5 can be estimated. Note that the accuracy can be improved by taking into consideration the indoor temperature detected by the indoor temperature sensor 62, the number of revolutions of the indoor fan 55, and the like. In FIG. 5A, the capacity of the indoor unit 5c that has started operation is 10. The indoor units in the thermo-on state are the indoor units 5a, 5b, and 5c, and the total value of the capabilities of the indoor units is 25. Therefore, the capacity ratio QR of the indoor unit 5c is 2/5.

また、CPU210は、台数変化時にサーモオン状態に移行した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを算出する。サーモオン状態に移行した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbは、運転機合計値Fonに当該室内機5の能力比率QRを乗算して算出される。図5(A)において、変化前開度流量Faの合計値Fsum=21であり、停止機の合計値Foff=1であるため、運転機の合計値Fon=20となる。また、サーモオン状態に移行した室内機5cの能力比率QRc=2/5であるため、室内機5cの変化後開度流量Fbc=20*2/5=8が割り当てられる。   Further, the CPU 210 calculates the post-change opening flow rate Fb of the outdoor expansion valve 24 corresponding to the indoor unit 5 that has shifted to the thermo-on state when the number changes. The post-change opening flow rate Fb of the number of outdoor expansion valves 24 corresponding to the indoor unit 5 shifted to the thermo-on state is calculated by multiplying the operating unit total value Fon by the capacity ratio QR of the indoor unit 5. In FIG. 5A, since the total value Fsum of the pre-change opening flow rate Fa is 21 and the total value Foff of the stop device is 1, the total value Fon of the operating device is 20. Further, since the capacity ratio QRc of the indoor unit 5c shifted to the thermo-on state is 2/5, the post-change opening flow rate Fbc = 20 * 2/5 = 8 of the indoor unit 5c is assigned.

さらに、CPU210は、運転機合計値Fonからサーモオン状態に移行した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを減じた値Fon’を算出し、記憶部220に記憶させる。図5(A)において、運転機の合計値Fon=20であり、サーモオン状態に移行した室内機5cの変化後開度流量Fbc=8であるため、Fon’=12となる。   Further, the CPU 210 calculates a value Fon ′, which is obtained by subtracting the post-change opening flow rate Fb of the number of the outdoor expansion valves 24 corresponding to the indoor unit 5 shifted to the thermo-on state from the operating machine total value Fon, and stores the value in the storage unit 220. . In FIG. 5A, since the total value Fon of the operating units is 20 and the post-change opening flow rate Fbc of the indoor unit 5c that has shifted to the thermo-on state is Fbc = 8, Fon '= 12.

STB3の処理を終えたCPU210は、台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24各々の開度流量比率FRを算出する(STB4)。台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24の開度流量比率FRは、当該台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24の開度流量Faが、台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24の開度流量Faの合計値に占める比率である。図5(A)において、台数変化時に既にサーモオン状態だった室内機は室内機5aと5bである。室内機5aに対応する室外膨張弁の開度流量Faa=12であり、室内機5bに対応する室外膨張弁の開度流量Fab=6である。したがって、室内機5aに対応する室外膨張弁24aの開度流量比率FRa=12/(12+6)=2/3となり、室内機5bに対応する室外膨張弁24bの開度流量比率FRb=6/(12+6)=1/3となる。   After finishing the process of STB3, the CPU 210 calculates the opening flow rate ratio FR of each of the outdoor expansion valves 24 corresponding to the indoor units 5 that were already in the thermo-on state at the time of the change in the number of units (STB4). The opening flow rate FR of the outdoor expansion valve 24 corresponding to the indoor unit 5 already in the thermo-on state at the time of the change in the number is the opening flow rate Fa of the outdoor expansion valve 24 corresponding to the indoor unit 5 already in the thermo-on state at the time of the change in the number. Is the ratio of the open flow rate Fa of the outdoor expansion valve 24 corresponding to the indoor unit 5 already in the thermo-on state at the time of the change in the total number to the total value. In FIG. 5A, the indoor units already in the thermo-on state at the time of the change in the number are the indoor units 5a and 5b. The opening flow rate Faa of the outdoor expansion valve corresponding to the indoor unit 5a is Faa = 12, and the opening flow rate Fab of the outdoor expansion valve corresponding to the indoor unit 5b is Fab = 6. Therefore, the opening flow rate ratio FRa of the outdoor expansion valve 24a corresponding to the indoor unit 5a is 12 / (12 + 6) = 2/3, and the opening flow rate ratio FRb = 6 / (of the outdoor expansion valve 24b corresponding to the indoor unit 5b. 12 + 6) = 1/3.

また、CPU210は、台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24各々の台数変化後開度流量Fbを算出する。台数変化時に既にサーモオン状態だった室内機5に対応する室外膨張弁24の台数変化後開度流量Fbは、STB3で算出したFon’に当該室内機5の開度流量比率FRを乗算して算出される。図5(A)において、Fon’=12であり、室内機5aの開度流量比率FRa=2/3であり、室内機5bの開度流量比率FRb=1/3である。したがって、室内機5aに対応する室外膨張弁24aの台数変化後開度流量Fba=12*2/3=8となり、室内機5bに対応する室外膨張弁24bの台数変化後開度流量Fbb=12*1/3=4となる。   Further, the CPU 210 calculates the post-change opening flow rate Fb of each of the outdoor expansion valves 24 corresponding to the indoor units 5 already in the thermo-on state at the time of the change in the number. The post-change opening flow rate Fb of the outdoor expansion valve 24 corresponding to the indoor unit 5 already in the thermo-on state at the time of the change in the number is calculated by multiplying the Fon 'calculated in STB3 by the opening flow rate ratio FR of the indoor unit 5 concerned. Is done. In FIG. 5A, Fon '= 12, the opening flow rate ratio FRa of the indoor unit 5a is 2/3, and the opening flow rate ratio FRb of the indoor unit 5b is 1/3. Therefore, the post-change opening flow rate Fba = 12 * 2/3 = 8 of the number of outdoor expansion valves 24a corresponding to the indoor unit 5a, and the post-change opening flow rate Fbb = 12 of the outdoor expansion valves 24b corresponding to the indoor unit 5b. * 1/3 = 4.

STB4の処理が終わるまでに、全ての室内機5に対応する室外膨張弁24の台数変化後開度流量Fbが算出される。台数変化後開度流量Fbの合計値と台数変化前開度流量Faの合計値を比較すると同じ値となり、運転台数が変化しても各室内機5で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができる。図5(A)において、台数変化後開度流量Fbの合計値と台数変化前開度流量Faの合計値は21で同じ値となっている。   By the end of the process of STB4, the post-change opening flow rate Fb of the number of outdoor expansion valves 24 corresponding to all the indoor units 5 is calculated. Comparing the total value of the post-change opening flow rate Fb with the total value of the pre-change opening flow rate Fa results in the same value, so that even if the number of operating units changes, the refrigerant circulation amount required by each indoor unit 5 can be appropriately distributed. The opening can be stabilized quickly. In FIG. 5A, the total value of the post-unit-change opening flow rate Fb and the total value of the pre-unit-change opening flow amount Fa are 21 and are the same value.

STB4の処理を終えたCPU210は、算出した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを室外膨張弁24の開度に変換し、当該開度となるように各室外膨張弁24の開度制御を行う(STB5)。なお、開度流量Faと室外膨張弁24の開度との相関関係は予め記憶部220に記憶されている。   After finishing the process of STB4, the CPU 210 converts the calculated opening flow rate Fb of the number of the outdoor expansion valves 24 corresponding to the indoor unit 5 into the opening degree of the outdoor expansion valve 24, and adjusts each outdoor unit to the opening degree. The opening degree of the expansion valve 24 is controlled (STB5). The correlation between the opening degree flow rate Fa and the opening degree of the outdoor expansion valve 24 is stored in the storage unit 220 in advance.

STB5の処理を終えたCPU210は、圧縮機21の回転数Nが所定回転数Ntgに到達したか否かを判定する(STB6)。所定回転数Ntgは、全ての室内機5から要求された能力を発揮するための目標となる回転数である。圧縮機21の回転数Nが所定回転数Ntgに到達していた場合(STB6−YES)、増加時制御を終了する。圧縮機21の回転数Nが所定回転数Ntgに到達していない場合(STB6−NO)、圧縮機21の回転数Nが図2のST2の時点で検出した圧縮機21の回転数N1から10%増加したか否かを判定する(STB7)。回転数N1から10%増加していなかった場合(STB7−NO)、STB6へ処理を戻す。   After finishing the process of STB5, the CPU 210 determines whether or not the rotation speed N of the compressor 21 has reached a predetermined rotation speed Ntg (STB6). The predetermined rotation speed Ntg is a rotation speed that is a target for exhibiting the performance requested by all the indoor units 5. If the rotation speed N of the compressor 21 has reached the predetermined rotation speed Ntg (STB6-YES), the increase control is ended. If the rotation speed N of the compressor 21 has not reached the predetermined rotation speed Ntg (STB6-NO), the rotation speed N of the compressor 21 is reduced from the rotation speed N1 of the compressor 21 detected at ST2 in FIG. % Is determined (STB7). If the rotation speed has not increased by 10% from N1 (STB7-NO), the process returns to STB6.

圧縮機21の回転数Nが図2のST2の時点で検出した圧縮機21の回転数N1から10%増加していた場合(STB7−YES)、室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを圧縮機21の回転数Nに合わせて10%増加させ、増加させた台数変化後開度流量Fbを室外膨張弁24の開度に変換し、当該開度となるように各室外膨張弁24の開度制御を行う(STB8)。
その後、回転数N1を更新してSTB6へ処理を戻し、圧縮機21の回転数Nが所定回転数Ntgとなるまでこの処理を繰り返す。
When the rotation speed N of the compressor 21 has increased by 10% from the rotation speed N1 of the compressor 21 detected at the time of ST2 in FIG. 2 (STB7-YES), the number of the outdoor expansion valves 24 corresponding to the indoor units 5 The post-change opening flow rate Fb is increased by 10% in accordance with the rotation speed N of the compressor 21, and the increased post-change opening flow rate Fb is converted into the opening degree of the outdoor expansion valve 24 so as to be the opening degree. Next, the opening degree of each outdoor expansion valve 24 is controlled (STB8).
Thereafter, the rotation speed N1 is updated and the process returns to STB6, and this process is repeated until the rotation speed N of the compressor 21 reaches the predetermined rotation speed Ntg.

(2)減少時制御
ST5の減少時制御について図4と図5(B)を用いて説明する。図4は減少時制御における制御フローを示しており、図5(B)は減少時制御による各室外膨張弁の開度流量Faの変化を示す表である。図4の減少時制御では、CPU210は、台数変化時点で既に運転停止(サーモオフ状態)であって、台数変化後においても運転停止である室内機5に対応する室外膨張弁24の台数変化後開度流量Fbとして、台数変化前の開度流量Faをそのまま割り当てる(STC1)。図5(B)において、台数変化時点で既に運転停止(サーモオフ状態)であって、台数変化後においても運転停止となる室内機である室内機5dの台数変化前開度流量Fad=1を室内機5dの台数変化後開度流量Fbdにそのまま割り当てる。また、CPU210は、台数変化時に運転停止した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbに所定値αを割り当てる。所定値αは、運転停止中の室内機の初期開度に相当する開度流量であって、冷房運転時においては0であり、暖房運転時においては室内熱交換器に冷媒が溜らない程度の微小な開度流量である。図5(B)において、所定値α=1であり、台数変化時に運転停止した室内機5cに対応する室外膨張弁24cの台数変化後開度流量Fbc=1を割り当てる。
(2) Control at the time of decrease The control at the time of decrease in ST5 will be described with reference to FIGS. 4 and 5B. FIG. 4 shows a control flow in the control at the time of decrease, and FIG. 5B is a table showing a change in the opening flow rate Fa of each outdoor expansion valve by the control at the time of decrease. In the control at the time of decrease in FIG. 4, the CPU 210 opens after the number of outdoor expansion valves 24 corresponding to the indoor unit 5 that has already stopped operation (thermo-off state) at the time of the number change and has stopped operation after the number change. The opening degree flow rate Fa before the number change is directly assigned as the degree flow rate Fb (STC1). In FIG. 5 (B), the operation flow is already stopped (thermo-off state) at the time of the change in the number of units, and the opening flow rate Fad = 1 before the change in the number of the indoor units 5d, which is the indoor unit that is stopped even after the change in the number of units, It is directly allocated to the opening flow rate Fbd after the number change of 5d. Further, the CPU 210 assigns a predetermined value α to the post-change opening flow rate Fb of the number of the outdoor expansion valves 24 corresponding to the indoor units 5 whose operation has been stopped at the time of changing the number. The predetermined value α is an opening flow rate corresponding to the initial opening degree of the indoor unit during the operation stop, and is 0 during the cooling operation, and is such that the refrigerant does not accumulate in the indoor heat exchanger during the heating operation. This is a minute opening flow rate. In FIG. 5B, the predetermined value α = 1, and the post-change opening flow rate Fbc = 1 of the outdoor expansion valve 24c corresponding to the indoor unit 5c whose operation has been stopped at the time of changing the number is assigned.

次に、CPU210は、台数変化後に運転停止(サーモオフ状態)となる室内機5に対応する室外膨張弁24の変化後開度流量Fbの合計値である停止機合計値Foffを算出するとともに、運転機合計値Fon(=Fsum−Foff)を算出する(STC2)。図5(B)において、台数変化後に運転停止(サーモオフ状態)となる室内機5は室内機5cと室内機5dである。室内機5cに対応する室外膨張弁24cの開度流量Fbcと室内機5dに対応する室外膨張弁24dの開度流量Fbdはともに1である。したがって、停止機合計値Foff=1+1=2である。また、図5(B)において、各室外膨張弁24の開度流量Faa〜dの合計値Fsum=20である。したがって、運転機合計値Fon=20−2=18となる。   Next, the CPU 210 calculates the stop unit total value Foff, which is the total value of the post-change opening flow rate Fb of the outdoor expansion valve 24 corresponding to the indoor unit 5 whose operation is stopped (thermo-off state) after the change in the number of units. A total machine value Fon (= Fsum-Foff) is calculated (STC2). In FIG. 5 (B), the indoor units 5 whose operation is stopped (thermo-off state) after the change in the number of units are the indoor unit 5c and the indoor unit 5d. The opening flow rate Fbc of the outdoor expansion valve 24c corresponding to the indoor unit 5c and the opening flow rate Fbd of the outdoor expansion valve 24d corresponding to the indoor unit 5d are both 1. Therefore, the total stop machine value Foff = 1 + 1 = 2. In FIG. 5B, the sum Fsum = 20 of the opening flow rates Faa to d of the outdoor expansion valves 24 is 20. Therefore, the driving machine total value Fon = 20-2 = 18.

STC2の処理を終えたCPU210は、台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24各々の開度流量比率FRを算出する(STC3)。台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24の開度流量比率FRは、当該台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24の開度流量Faが、台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24の開度流量Faの合計値に占める比率である。図5(B)において、台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機は室内機5aと5bである。室内機5aに対応する室外膨張弁の開度流量Faa=8であり、室内機5bに対応する室外膨張弁の開度流量Fab=4である。したがって、室内機5aに対応する室外膨張弁24aの開度流量比率FRa=8/(8+4)=2/3となり、室内機5bに対応する室外膨張弁24bの開度流量比率FRb=4/(8+4)=1/3となる。   The CPU 210 that has completed the processing of STC2 calculates the opening flow rate ratio FR of each of the outdoor expansion valves 24 corresponding to the indoor units 5 that are already in the thermo-on state at the time of the change in the number and continue to operate even after the change in the number (STC3). . The opening degree flow rate FR of the outdoor expansion valve 24 corresponding to the indoor unit 5 that is already in the thermo-on state when the number of units changes and continues to operate even after the number of units changes is already in the thermo-on state when the number of units changes, and The opening degree flow rate Fa of the outdoor expansion valve 24 corresponding to the indoor unit 5 that continues to operate is already in the thermo-on state when the number of units changes, and the outdoor expansion valve 24 corresponding to the indoor unit 5 that continues operation after the number of units changes. Is a ratio of the opening degree flow rate Fa to the total value. In FIG. 5B, the indoor units that are already in the thermo-on state when the number of units changes and continue to operate even after the number of units change are the indoor units 5a and 5b. The opening flow rate Faa of the outdoor expansion valve corresponding to the indoor unit 5a is 8, and the opening flow rate Fab of the outdoor expansion valve corresponding to the indoor unit 5b is 4. Therefore, the opening flow rate ratio FRa = 8 / (8 + 4) = 2/3 of the outdoor expansion valve 24a corresponding to the indoor unit 5a, and the opening flow rate ratio FRb = 4 / (of the outdoor expansion valve 24b corresponding to the indoor unit 5b. 8 + 4) = 1/3.

また、CPU210は、台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24各々の台数変化後開度流量Fbを算出する。台数変化時に既にサーモオン状態であって、台数変化後も運転を継続する室内機5に対応する室外膨張弁24の台数変化後開度流量Fbは、STC2で算出したFonに当該室内機5の開度流量比率FRを乗算して算出される。図5(B)において、Fon=18であり、室内機5aの開度流量比率FRa=2/3であり、室内機5bの開度流量比率FRb=1/3である。したがって、室内機5aに対応する室外膨張弁24aの台数変化後開度流量Fba=18*2/3=12となり、室内機5bに対応する室外膨張弁24bの台数変化後開度流量Fbb=18*1/3=6となる。   Further, the CPU 210 calculates the post-unit-change opening flow rate Fb of each of the outdoor expansion valves 24 corresponding to the indoor units 5 that are already in the thermo-on state when the number of units changes and continue to operate even after the unit number changes. The post-change opening flow rate Fb of the outdoor expansion valve 24 corresponding to the indoor unit 5 which is already in the thermo-on state at the time of the change in the number of units and continues to operate even after the change in the number of units, is set to Fon calculated in STC2. It is calculated by multiplying the flow rate ratio FR. In FIG. 5B, Fon = 18, the opening flow rate ratio FRa of the indoor unit 5a is 2/3, and the opening flow rate ratio FRb of the indoor unit 5b is 1/3. Therefore, the post-change opening flow rate Fba = 18 * 2/3 = 12 of the number of outdoor expansion valves 24a corresponding to the indoor unit 5a, and the post-change opening flow rate Fbb = 18 of the outdoor expansion valves 24b corresponding to the indoor unit 5b. * 1/3 = 6.

STB3の処理が終わるまでに、全ての室内機5に対応する室外膨張弁24の台数変化後開度流量Fbが算出される。台数変化後開度流量Fbの合計値と台数変化前開度流量の合計値を比較すると同じ値となり、運転台数が変化しても各室内機5で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができる。図5(B)において、台数変化後開度流量Fbの合計値と台数変化前開度流量の合計値は20で同じ値となっている。   By the end of the process of STB3, the post-change opening flow rate Fb of the number of outdoor expansion valves 24 corresponding to all the indoor units 5 is calculated. Comparing the total value of the opening flow rate Fb after the number change and the total value of the opening flow rate before the number change result in the same value, so that even if the number of operating units changes, the refrigerant circulation amount required by each indoor unit 5 can be appropriately distributed. Can be stabilized quickly every time. In FIG. 5B, the total value of the post-unit-change opening flow rate Fb and the total value of the pre-unit-change opening flow amount Fb are the same value of 20.

STC3の処理を終えたCPU210は、算出した室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを室外膨張弁24の開度に変換し、当該開度となるように各室外膨張弁24の開度制御を行う(STC4)。なお、開度流量Faと室外膨張弁24の開度との相関関係は予め記憶部220に記憶されている。   The CPU 210 that has completed the processing of the STC 3 converts the calculated opening flow rate Fb of the number of the outdoor expansion valves 24 corresponding to the indoor unit 5 into the opening degree of the outdoor expansion valve 24, and sets each outdoor unit so as to have the opening degree. The opening degree of the expansion valve 24 is controlled (STC4). The correlation between the opening degree flow rate Fa and the opening degree of the outdoor expansion valve 24 is stored in the storage unit 220 in advance.

STC4の処理を終えたCPU210は、圧縮機21の回転数Nが所定回転数Ntgに到達したか否かを判定する(STC5)。所定回転数Ntgは、全ての室内機5から要求された能力を発揮するための目標となる回転数である。圧縮機21の回転数Nが所定回転数Ntgに到達していた場合(STC5−YES)、減少時制御を終了する。圧縮機21の回転数Nが所定回転数Ntgに到達していない場合(STC5−NO)、圧縮機21の回転数Nが図2のST2の時点で検出した圧縮機21の回転数N1から10%減少したか否かを判定する(STC6)。回転数N1から10%減少していなかった場合(STC6−NO)、STC5へ処理を戻す。   After finishing the processing of STC4, CPU 210 determines whether or not rotation speed N of compressor 21 has reached predetermined rotation speed Ntg (STC5). The predetermined rotation speed Ntg is a rotation speed that is a target for exhibiting the performance requested by all the indoor units 5. When the rotation speed N of the compressor 21 has reached the predetermined rotation speed Ntg (STC5-YES), the control at the time of decrease is ended. When the rotation speed N of the compressor 21 has not reached the predetermined rotation speed Ntg (STC5-NO), the rotation speed N of the compressor 21 is reduced by 10 from the rotation speed N1 of the compressor 21 detected at ST2 in FIG. % Is determined (STC6). If the rotational speed has not decreased by 10% from N1 (STC6-NO), the process returns to STC5.

圧縮機21の回転数Nが図2のST2の時点で検出した圧縮機21の回転数N1から10%減少していた場合(STC6−YES)、室内機5に対応する室外膨張弁24の台数変化後開度流量Fbを圧縮機21の回転数Nに合わせて10%減少させ、減少させた台数変化後開度流量Fbを室外膨張弁24の開度に変換し、当該開度となるように各室外膨張弁24の開度制御を行う(STC7)。
その後、回転数N1を更新してSTC5へ処理を戻し、圧縮機21の回転数Nが所定回転数Ntgとなるまでこの処理を繰り返す。
When the rotation speed N of the compressor 21 has decreased by 10% from the rotation speed N1 of the compressor 21 detected at the time of ST2 in FIG. 2 (STC6-YES), the number of the outdoor expansion valves 24 corresponding to the indoor units 5 The post-change opening flow rate Fb is reduced by 10% in accordance with the rotational speed N of the compressor 21, and the reduced post-change opening flow rate Fb is converted into the opening degree of the outdoor expansion valve 24 so that the opening degree is obtained. Next, the opening degree of each outdoor expansion valve 24 is controlled (STC7).
Thereafter, the rotation speed N1 is updated and the process returns to STC5, and this process is repeated until the rotation speed N of the compressor 21 reaches the predetermined rotation speed Ntg.

なお、室内機5の運転台数が変化する際に圧力変動が生じる。そのため、この圧力変動を考慮して変化後の膨張弁開度を設定してもよい。つまり、本実施例において、変化後開度流量Fbを割り当てる際に、変化後開度流量Fbに室内機能力に応じた補正値を加えることでより適正な開度を設定することができる。   Note that when the number of operating indoor units 5 changes, pressure fluctuations occur. Therefore, the changed expansion valve opening may be set in consideration of the pressure fluctuation. That is, in this embodiment, when assigning the post-change opening flow rate Fb, a more appropriate opening degree can be set by adding a correction value according to the indoor functional power to the post-change opening flow rate Fb.

以上説明した実施形態によれば、運転台数が変化しても各室内機5で必要としている冷媒循環量を適切に分配できる開度に早く安定させることができる。   According to the embodiment described above, it is possible to quickly stabilize the opening degree at which the amount of circulating refrigerant required by each indoor unit 5 can be appropriately distributed even if the number of operating units changes.

1 空気調和装置
2 室外機
5a〜5c 室内機
8a〜8c第1〜第3液管
23 室外熱交換器
24a 第1室外膨張弁
24b 第2室外膨張弁
24c 第3室外膨張弁
31 高圧センサ
32 低圧センサ
33 吐出温度センサ
34 吸入温度センサ
35 室外熱交温度センサ

DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 5a-5c Indoor unit 8a-8c 1st-3rd liquid pipe 23 Outdoor heat exchanger 24a 1st outdoor expansion valve 24b 2nd outdoor expansion valve 24c 3rd outdoor expansion valve 31 High pressure sensor 32 Low pressure Sensor 33 Discharge temperature sensor 34 Intake temperature sensor 35 Outdoor heat exchange temperature sensor

Claims (3)

一台の室外機に対して、室内熱交換器を有する室内機を複数台接続し、当該各室内機を個別に運転可能とした空気調和装置において、
サーモオン状態の前記室内機の台数が変化したとき、
前記室内機の運転台数変化前の前記各室内機に対応する膨張弁の開度からそれぞれの開度流量を算出し、
サーモオン状態の前記室内機の台数が変化する直前の前記開度流量の合計値を維持するように前記各膨張弁を開度制御することを特徴とする空気調和装置。
In one air conditioner, in an air conditioner in which a plurality of indoor units having an indoor heat exchanger are connected and each of the indoor units can be individually operated,
When the number of the indoor units in the thermo-on state changes,
Calculate the respective opening degree flow rates from the opening degrees of the expansion valves corresponding to the respective indoor units before the change in the number of operating indoor units,
An air conditioner, wherein each of the expansion valves is controlled in opening so as to maintain a total value of the opening flow rates immediately before the number of the indoor units in the thermo-on state changes.
前記室内機の運転台数変化時に新たにサーモオン状態に移行した前記室内機に対応する前記膨張弁は、当該新たにサーモオン状態に移行した前記室内機の能力が前記マルチタイプ空気調和機全体の能力に占める比率と前記開度流量の合計値に基づいて定められる開度となるように制御されることを特徴とする請求項1に記載の空気調和装置。   The expansion valve corresponding to the indoor unit that has newly transitioned to the thermo-on state when the number of operating indoor units changes, the capacity of the indoor unit that has newly transitioned to the thermo-on state corresponds to the capacity of the entire multi-type air conditioner. The air conditioner according to claim 1, wherein the air conditioner is controlled so as to have an opening determined based on a ratio of the occupation ratio and a total value of the opening flow rates. 前記室内機の運転台数変化後、前記室外機に備えられる圧縮機の回転数の変化率に応じて前記各開度流量を算出し、算出した前記各開度流量となるように前記各膨張弁の開度を制御することを特徴とする請求項1又は2に記載の空気調和装置。   After the change in the number of operating indoor units, the respective opening flow rates are calculated in accordance with the rate of change in the number of revolutions of the compressor provided in the outdoor unit, and the respective expansion valves are set to the calculated opening flow rates. The air conditioner according to claim 1 or 2, wherein the opening degree of the air conditioner is controlled.
JP2016015137A 2016-01-29 2016-01-29 Air conditioner Active JP6638426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015137A JP6638426B2 (en) 2016-01-29 2016-01-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015137A JP6638426B2 (en) 2016-01-29 2016-01-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017133777A JP2017133777A (en) 2017-08-03
JP6638426B2 true JP6638426B2 (en) 2020-01-29

Family

ID=59503664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015137A Active JP6638426B2 (en) 2016-01-29 2016-01-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP6638426B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168130A (en) * 2018-03-22 2019-10-03 株式会社富士通ゼネラル Air conditioner
JP2021050848A (en) * 2019-09-24 2021-04-01 株式会社富士通ゼネラル Air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754933B2 (en) * 1991-03-27 1998-05-20 松下電器産業株式会社 Multi-room air conditioner
JP4071388B2 (en) * 1999-03-17 2008-04-02 三菱電機株式会社 Control method and control apparatus for multi-type refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2017133777A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6693312B2 (en) Air conditioner
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
JP2017122557A (en) Air conditioner
JP2016061456A (en) Air conditioning device
JP6379769B2 (en) Air conditioner
JP6716960B2 (en) Air conditioner
JP6123289B2 (en) Air conditioning system
US20200158370A1 (en) Control systems and methods for heat pump systems
JP2018132217A (en) Air conditioning equipment
JP6733424B2 (en) Air conditioner
JP2022535197A (en) Air conditioner and its control method
JP6638426B2 (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP6672619B2 (en) Air conditioning system
JP5787102B2 (en) Separable air conditioner
JP2017142017A (en) Air conditioner
JP2016156596A (en) Air conditioner
JP5537906B2 (en) Air conditioner
JP2015222157A (en) Air conditioning device
KR20190081837A (en) air-conditioning system
JP2018132218A (en) Air conditioning device
JP6897069B2 (en) Air conditioner
JP2022070159A (en) Air conditioning system
JP6728749B2 (en) Air conditioner
JP2018017479A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151