JP6733424B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6733424B2
JP6733424B2 JP2016164413A JP2016164413A JP6733424B2 JP 6733424 B2 JP6733424 B2 JP 6733424B2 JP 2016164413 A JP2016164413 A JP 2016164413A JP 2016164413 A JP2016164413 A JP 2016164413A JP 6733424 B2 JP6733424 B2 JP 6733424B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
degree
supercooling degree
refrigerant supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164413A
Other languages
Japanese (ja)
Other versions
JP2018031527A (en
Inventor
貴 松崎
貴 松崎
冨岡 聡
聡 冨岡
下谷 亮
亮 下谷
松永 隆廣
隆廣 松永
康弘 岡
康弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016164413A priority Critical patent/JP6733424B2/en
Publication of JP2018031527A publication Critical patent/JP2018031527A/en
Application granted granted Critical
Publication of JP6733424B2 publication Critical patent/JP6733424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続された空気調和装置に関する。 The present invention relates to an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a refrigerant pipe.

従来、少なくとも1台の室外機に複数台の室内機が液管とガス管で接続された空気調和装置では、室外機や各室内機の設置状態によっては冷媒が流れにくい室内機が発生し、当該室内機で十分な空調能力が得られない場合がある。例えば、各室内機が高低差をもって設置され、かつ、室外機が各室内機より高い位置に設置される空気調和装置で暖房運転を行うときは、以下に記載する理由により低い位置に設置された室内機での冷媒流量が減少して十分な暖房能力が得られない恐れがある。 Conventionally, in an air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a liquid pipe and a gas pipe, an indoor unit in which a refrigerant is difficult to flow occurs depending on the installation state of the outdoor unit and each indoor unit, The indoor unit may not have sufficient air conditioning capacity. For example, when performing heating operation with an air conditioner in which each indoor unit is installed with a height difference and the outdoor unit is installed at a position higher than each indoor unit, it was installed in a lower position for the reasons described below. There is a risk that the refrigerant flow rate in the indoor unit will decrease and sufficient heating capacity will not be obtained.

上述した空気調和装置で暖房運転を行っているときは、各室内機の室内熱交換器で凝縮して液管に流出した液冷媒を、各室内機より高い位置に設置された室外機に向かい重力に逆らって流す必要がある。このため、低い位置に設置された室内機の室内膨張弁の下流側(室外機側)における液冷媒の圧力は、高い位置に設置された室内機の室内膨張弁の下流側における液冷媒の圧力よりも高くなる。 When performing the heating operation in the air conditioner described above, the liquid refrigerant condensed in the indoor heat exchanger of each indoor unit and flowing out to the liquid pipe is directed to the outdoor unit installed at a position higher than each indoor unit. It is necessary to flow against gravity. Therefore, the pressure of the liquid refrigerant on the downstream side (the outdoor unit side) of the indoor expansion valve of the indoor unit installed on the lower position is the pressure of the liquid refrigerant on the downstream side of the indoor expansion valve of the indoor unit installed on the higher position. Will be higher than.

従って、低い位置に設置された室内機の室内膨張弁の上流側(室内熱交換器側)の冷媒圧力と下流側の冷媒圧力の圧力差が、高い位置に設置された室内機の室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。室内膨張弁の上流側の冷媒圧力と下流側の冷媒圧力の圧力差が小さいほど室内膨張弁を流れる冷媒量が少なくなるので、高い位置に設置された室内機と比べて低い位置に設置された室内機では冷媒が流れにくくなって当該室内機における冷媒流量が減少して十分な暖房能力が得られない恐れがある。 Therefore, the pressure difference between the refrigerant pressure on the upstream side (indoor heat exchanger side) and the refrigerant pressure on the downstream side of the indoor expansion valve of the indoor unit installed at the low position is the indoor expansion valve of the indoor unit installed at the high position. Is smaller than the pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side. The smaller the pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side of the indoor expansion valve, the smaller the amount of refrigerant flowing through the indoor expansion valve, so it was installed in a lower position than the indoor unit installed in a higher position. There is a possibility that the refrigerant will not flow easily in the indoor unit and the flow rate of the refrigerant in the indoor unit will decrease, so that sufficient heating capacity cannot be obtained.

以上のような問題点に対して、特許文献1に記載のマルチ型空気調和機は、暖房運転開始から一定時間経過後に冷媒過冷却度が目標値に達していない室内機があれば、当該室内機で暖房能力が発揮できていないと判断する。そして、冷媒過冷却度が最も小さい室内機の目標冷媒過冷却度を所定値だけ大きくする一方、冷媒過冷却度が最も大きい室内機の目標冷媒過冷却度を所定値だけ小さくすることにより、暖房能力が発揮できていない室内機における冷媒流量を増加させて暖房能力が十分発揮できるようにする不暖房解消制御を行っている。 In order to solve the above problems, the multi-type air conditioner described in Patent Document 1 has an indoor unit in which the degree of refrigerant supercooling does not reach a target value after a certain time has elapsed from the start of heating operation, It is determined that the heating capacity of the machine is not being exerted. Then, while increasing the target refrigerant supercooling degree of the indoor unit having the smallest refrigerant supercooling degree by a predetermined value, the target refrigerant supercooling degree of the indoor unit having the largest refrigerant supercooling degree is reduced by a predetermined value, thereby heating. The non-heating elimination control is performed to increase the flow rate of the refrigerant in the indoor unit that is not capable of exerting its ability so that the heating ability can be fully exerted.

また、本出願人は、空気調和装置の暖房運転中に暖房能力が発揮できていない室内機が存在する場合に、各室内機における冷媒過冷却度のうちの最大値と最小値を用いて平均冷媒過冷却度を算出し、各室内機の冷媒過冷却度が求めた平均冷媒過冷却度となるように、各室内機の室内膨張弁の開度を調整する不暖房解消制御の一種である冷媒量バランス制御を実行する空気調和装置を先に提案している(特願2016−2698)。 Further, the present applicant, when there is an indoor unit that is not capable of exhibiting the heating capacity during the heating operation of the air conditioner, averages using the maximum value and the minimum value of the refrigerant subcooling degree in each indoor unit. It is a kind of non-heating elimination control that calculates the refrigerant supercooling degree and adjusts the opening degree of the indoor expansion valve of each indoor unit so that the refrigerant supercooling degree of each indoor unit becomes the obtained average refrigerant supercooling degree. An air conditioner that executes the refrigerant amount balance control has been previously proposed (Japanese Patent Application No. 2016-2698).

例えば、3台の室内機が高低差をもって設置される空気調和装置で暖房運転を行うとき、最も高い位置に設置されている室内機の冷媒過冷却度が6deg、最も低い位置に設置されている室内機の冷媒過冷却度が26deg、これらの間の高さに設置されている室内機の冷媒過冷却度が10degであるとする。この場合、最も低い位置に設置されている室内機では、冷媒過冷却度が他の室内機と比べて大きな値となっているが、これは当該室内機の室内熱交換器の冷媒出口側における液冷媒温度が室温になじんで低い温度となっているためであり、このことは室内熱交換器に液冷媒が滞留して当該室内機で暖房能力が発揮できていないことを示す。 For example, when performing heating operation in an air conditioner in which three indoor units are installed with a difference in height, the refrigerant supercooling degree of the indoor unit installed in the highest position is 6 deg and installed in the lowest position. It is assumed that the refrigerant supercooling degree of the indoor unit is 26 deg and the refrigerant supercooling degree of the indoor unit installed at a height between them is 10 deg. In this case, in the indoor unit installed at the lowest position, the refrigerant supercooling degree has a larger value than other indoor units, but this is on the refrigerant outlet side of the indoor heat exchanger of the indoor unit. This is because the temperature of the liquid refrigerant is low at the room temperature, which means that the liquid refrigerant stays in the indoor heat exchanger and the heating capacity cannot be exhibited in the indoor unit.

以上のような状態で暖房運転を行っている空気調和装置で本出願人が提案する冷媒量バランス制御を実行すると、全ての室内機における冷媒過冷却度が、平均冷媒過冷却度(=(6+26)/2=16deg)となるように、各室内機の室内膨張弁の開度を調整する。このため、最も低い位置に設置されている室内機に滞留している液冷媒が当該室内機から流出して冷媒が流れるようになり、当該室内機における冷媒過冷却度が冷媒量バランス制御を行う前の値である26degより小さくなる。そして、上記のような平均冷媒過冷却度を目標値とした各室内膨張弁の開度調整を定期的(例えば、30秒毎)に行うことによって、最も低い位置に設置されている室内機の冷媒流量が増加して(冷媒過冷却度が小さくなって)暖房能力が発揮されるようになる。 When the refrigerant amount balance control proposed by the present applicant is executed in the air conditioner that is performing the heating operation in the above-described state, the refrigerant supercooling degree in all the indoor units is the average refrigerant supercooling degree (=(6 The opening degree of the indoor expansion valve of each indoor unit is adjusted so that +26)/2=16 deg). Therefore, the liquid refrigerant staying in the indoor unit installed at the lowest position flows out from the indoor unit and the refrigerant flows, and the degree of refrigerant supercooling in the indoor unit performs the refrigerant amount balance control. It is smaller than the previous value of 26 deg. Then, by periodically (for example, every 30 seconds) adjusting the opening degree of each indoor expansion valve with the average refrigerant subcooling degree as a target value as described above, the indoor unit installed at the lowest position can be operated. The refrigerant flow rate increases (refrigerant supercooling degree decreases), and the heating capacity comes to be exhibited.

特開2011−158118号公報JP, 2011-158118, A

上述した冷媒量バランス制御を継続して行っていると、各室内機における冷媒過冷却度のうちの最大値と最小値の差(以降、過冷却度差と記載)が小さくなる、例えば、過冷却度差が1deg以内となることがある。そして、過冷却度差が小さい値で安定しているとき、例えば、過冷却度差が1deg以内である状態が3分間以上継続している場合は、平均冷媒過冷却度が大きく変動しない安定した状態となっている。 When the above-described refrigerant amount balance control is continuously performed, the difference between the maximum value and the minimum value (hereinafter, referred to as a supercooling degree difference) of the refrigerant subcooling degree in each indoor unit becomes small. The cooling degree difference may be within 1 deg. When the difference in the degree of supercooling is stable at a small value, for example, when the state where the difference in the degree of supercooling is within 1 deg continues for 3 minutes or more, the average degree of supercooling of the refrigerant does not fluctuate significantly. It is in a state.

上記のように平均冷媒過冷却度が安定しているときにその値が大きい(例えば、10deg)場合は、当該冷媒過冷却度となる冷媒循環量とするために圧縮機が高い回転数で駆動している。空気調和装置が、平均冷媒過冷却度がもっと小さい値、例えば4deg程度であっても各室内機で十分な暖房能力が発揮できるものである場合、上記のように大きい値で平均冷媒過冷却度が安定すれば、当該平均冷媒過冷却度とするために高い回転数で圧縮機を駆動しつづけることとなるので、空気調和装置の省エネ性が低下するという問題があった。 When the average refrigerant supercooling degree is stable and the value is large (for example, 10 deg) as described above, the compressor is driven at a high rotation speed to obtain the refrigerant circulation amount that provides the refrigerant supercooling degree. doing. When the air conditioner is capable of exhibiting sufficient heating capacity in each indoor unit even if the average refrigerant supercooling degree is a smaller value, for example, about 4 deg, the average refrigerant supercooling degree is a large value as described above. If the above condition becomes stable, the compressor will continue to be driven at a high rotation speed in order to achieve the average degree of supercooling of the refrigerant, and there is a problem that the energy saving performance of the air conditioner deteriorates.

本発明は以上述べた問題点を解決するものであって、暖房運転における冷媒量バランス制御実行時の省エネ性を向上できる空気調和装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide an air conditioner that can improve energy saving during execution of refrigerant amount balance control in heating operation.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機とこの圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、室内熱交換器と室内膨張弁と室内熱交換器が凝縮器として機能しているときに室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数台の室内機と、吐出圧力と各熱交出口温度を取り込み各室内膨張弁の開度を調整する制御手段を有する。この制御手段は、空気調和装置の暖房運転開始時に各室内機の室内膨張弁の開度を所定開度とした後に、各室内機の冷媒過冷却度を用いて平均冷媒過冷却度を算出し、各室内機の冷媒過冷却度が平均冷媒過冷却度となるように各室内膨張弁の開度を調整する冷媒量バランス制御を実行する。制御手段は、冷媒量バランス制御を実行しているときに、各室内機の冷媒過冷却度のうちの最大値と最小値の差である過冷却度差が所定の閾過冷却度差より小さい状態が所定の安定時間継続した場合に、冷媒量バランス制御から適正冷媒過冷却度制御に移行する。この適正冷媒過冷却度制御では、現在の各室内機の冷媒過冷却度の目標値である適正冷媒過冷却度から所定値を減じる。 In order to solve the above-mentioned problems, the air conditioner of the present invention has an indoor unit and an outdoor unit having a compressor and a discharge pressure detection means for detecting a discharge pressure which is a pressure of a refrigerant discharged from the compressor. A plurality of chambers having liquid side temperature detecting means for detecting the heat exchange outlet temperature, which is the temperature of the refrigerant flowing out from the indoor heat exchanger when the heat exchanger, the indoor expansion valve, and the indoor heat exchanger function as a condenser And a control means for taking in the discharge pressure and each heat exchange outlet temperature and adjusting the opening degree of each indoor expansion valve. This control means calculates the average degree of refrigerant supercooling by using the degree of refrigerant supercooling of each indoor unit after setting the degree of opening of the indoor expansion valve of each indoor unit at the start of heating operation of the air conditioner. The refrigerant amount balance control for adjusting the opening degree of each indoor expansion valve is executed so that the refrigerant supercooling degree of each indoor unit becomes the average refrigerant supercooling degree. The control means, when performing the refrigerant amount balance control, the subcooling degree difference which is the difference between the maximum value and the minimum value of the refrigerant subcooling degrees of the indoor units is smaller than the predetermined threshold subcooling degree difference. When the state continues for a predetermined stable time, the refrigerant amount balance control is shifted to the proper refrigerant supercooling degree control. In this proper refrigerant supercooling degree control, a predetermined value is subtracted from the proper refrigerant supercooling degree which is the current target value of the refrigerant supercooling degree of each indoor unit.

上記のように構成した本発明の空気調和装置によれば、暖房運転における冷媒量バランス制御実行時に、圧縮機回転数が過剰に高くなることを抑制することで省エネ性を向上できる。 According to the air conditioner of the present invention configured as described above, it is possible to improve energy efficiency by suppressing an excessive increase in the number of revolutions of the compressor when performing the refrigerant amount balance control in the heating operation.

本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit diagram, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室内機および室外機の設置状態を表す図面である。It is drawing showing the installation state of the indoor unit and the outdoor unit in embodiment of this invention. 本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。It is a flow chart explaining processing by an outdoor unit control means in an embodiment of the present invention. 本発明の実施形態におけるサブルーチンであり、適正冷媒過冷却度制御実行時の処理を説明するフローチャートである。6 is a flowchart illustrating a process that is a sub-routine in the embodiment of the present invention and is executed when the proper refrigerant subcooling degree control is executed.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、建物の屋上に設置される1台の室外機に、建物の各階に設置される3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, one outdoor unit installed on the roof of a building is connected in parallel with three indoor units installed on each floor of the building, and all indoor units can perform cooling operation or heating operation at the same time. An air conditioner will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.

図1(A)および図2に示すように、本実施形態における空気調和装置1は、3階建ての建物の屋上に設置される1台の室外機2と、建物の各階に設置され、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cとを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。 As shown in FIG. 1(A) and FIG. 2, the air conditioner 1 according to the present embodiment includes one outdoor unit 2 installed on the roof of a three-story building and the outdoor unit installed on each floor of the building. The machine 2 includes three indoor units 5a to 5c connected in parallel by a liquid pipe 8 and a gas pipe 9. Specifically, one end of the liquid pipe 8 is connected to the closing valve 25 of the outdoor unit 2 and the other end is branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c, respectively. Further, one end of the gas pipe 9 is connected to the shutoff valve 26 of the outdoor unit 2, and the other end is branched and connected to the respective gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. With the above, the refrigerant circuit 100 of the air conditioner 1 is configured.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、アキュムレータ28と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。 First, the outdoor unit 2 will be described. In the outdoor unit 2, the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the outdoor expansion valve 24, the closing valve 25 to which one end of the liquid pipe 8 is connected, and one end of the gas pipe 9 are connected. And a closing valve 26, an accumulator 28, and an outdoor fan 27. Each of these devices except the outdoor fan 27 is connected to each other by respective refrigerant pipes which will be described in detail below, and constitutes an outdoor unit refrigerant circuit 20 which is a part of the refrigerant circuit 100.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側に吸入管42で接続されている。 The compressor 21 is a variable capacity compressor capable of varying its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later by a discharge pipe 41, and the refrigerant suction side of the compressor 21 is connected to a refrigerant outflow side of the accumulator 28 by a suction pipe 42. Has been done.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口に冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側に冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26に室外機ガス管45で接続されている。 The four-way valve 22 is a valve for switching the flowing direction of the refrigerant, and has four ports a, b, c, d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet/outlet port of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 28 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by the outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of an outdoor fan 27 described later. As described above, one refrigerant inlet/outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and the other refrigerant inlet/outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 44.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。室外膨張弁24の開度は、空気調和装置1が冷房運転を行っている場合は全開とされる。また、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度を制御することで、吐出温度が性能上限値を超えないようにしている。 The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 is an electronic expansion valve, and the opening thereof is adjusted to adjust the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23. The opening degree of the outdoor expansion valve 24 is fully opened when the air conditioning apparatus 1 is performing the cooling operation. In addition, when the air conditioner 1 is performing the heating operation, by controlling the opening degree according to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33, which will be described later, the discharge temperature becomes the performance upper limit value. I try not to exceed it.

室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。 The outdoor fan 27 is made of a resin material and is arranged near the outdoor heat exchanger 23. The outdoor fan 27 takes in outside air from the suction port (not shown) into the inside of the outdoor unit 2 by being rotated by a fan motor (not shown), and the outside air that has exchanged heat with the refrigerant in the outdoor heat exchanger 23 is blown out from the outlet (not shown) to the outdoor unit 2 To the outside of.

アキュムレータ28は、上述したように、冷媒流入側が四方弁22のポートcに冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側に吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。 As described above, in the accumulator 28, the refrigerant inflow side is connected to the port c of the four-way valve 22 by the refrigerant pipe 46, and the refrigerant outflow side is connected to the refrigerant suction side of the compressor 21 by the suction pipe 42. The accumulator 28 separates the refrigerant flowing from the refrigerant pipe 46 into the accumulator 28 into a gas refrigerant and a liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段である吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 41 has a discharge pressure sensor 31, which is a discharge pressure detection unit that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor 21, and the discharge from the compressor 21. A discharge temperature sensor 33 for detecting the temperature of the refrigerant to be discharged is provided. In the vicinity of the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21, and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. Is provided.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。 Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, for detecting the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23. A heat exchange temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outdoor air flowing into the outdoor unit 2, that is, the outdoor air temperature is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。 Further, the outdoor unit 2 is provided with an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electric component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control unit 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。 The storage unit 220 is composed of a ROM and a RAM, and stores a control program of the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 27, and the like. The communication unit 230 is an interface that communicates with the indoor units 5a to 5c. The sensor input unit 240 takes in the detection results of various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度調整を行う。尚、図示は省略するが、CPU210はタイマー計測機能を備えている。 The CPU 210 takes in the detection result of each sensor of the outdoor unit 2 described above via the sensor input unit 240. Further, the CPU 210 takes in the control signal transmitted from the indoor units 5 a to 5 c via the communication unit 230. The CPU 210 controls the drive of the compressor 21 and the outdoor fan 27 based on the captured detection result and control signal. The CPU 210 also controls the switching of the four-way valve 22 based on the captured detection result and control signal. Further, the CPU 210 adjusts the opening degree of the outdoor expansion valve 24 based on the captured detection result and control signal. Although not shown, the CPU 210 has a timer measuring function.

次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。 Next, the three indoor units 5a to 5c will be described. The three indoor units 5a to 5c are branched from the indoor heat exchangers 51a to 51c, the indoor expansion valves 52a to 52c, and the liquid pipe connecting portions 53a to 53c to which the other ends of the branched liquid pipes 8 are connected. It is provided with gas pipe connecting portions 54a to 54c to which the other ends of the gas pipes 9 are connected, and indoor fans 55a to 55c. Each of these devices except the indoor fans 55a to 55c are connected to each other by respective refrigerant pipes described in detail below to form indoor unit refrigerant circuits 50a to 50c forming a part of the refrigerant circuit 100.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。 Since the configurations of the indoor units 5a to 5c are all the same, only the configuration of the indoor unit 5a will be described below, and description of the other indoor units 5b and 5c will be omitted. Further, in FIG. 1, the numbers assigned to the constituent devices of the indoor unit 5a are changed from a to b and c, respectively, and become the constituent devices of the indoor units 5b and 5c corresponding to the constituent devices of the outdoor unit 5a. ..

室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部53aに室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
尚、液管接続部53aやガス管接続部54aは、各冷媒配管が溶接やフレアナット等により接続されている。
The indoor heat exchanger 51a is for exchanging heat between the indoor air taken into the indoor unit 5a from a suction port (not shown) by the rotation of the refrigerant and an indoor fan 55a described later, and one refrigerant inlet/outlet is a liquid pipe connecting portion. 53a is connected by the indoor unit liquid pipe 71a, and the other refrigerant inlet/outlet is connected to the gas pipe connecting portion 54a by the indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.
The liquid pipe connecting portion 53a and the gas pipe connecting portion 54a are connected to each refrigerant pipe by welding, flare nuts, or the like.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合すなわち室内機5aが冷房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(ガス管接続部54a側)での冷媒過熱度が目標冷媒過熱度となるように調整される。ここで、目標冷媒過熱度とは、室内機5aで十分な冷房能力が発揮されるための冷媒過熱度である。また、室内膨張弁52aは、室内熱交換器51aが凝縮器として機能する場合すなわち室内機5aが暖房運転を行う場合は、その開度は、室内熱交換器51aの冷媒出口(液管接続部53a側)での冷媒過冷却度が目標冷媒過冷却度あるいは平均冷媒過冷却度となるように調整される。ここで、目標冷媒過冷却度とは、室内機5aで十分な暖房能力が発揮されるための冷媒過冷却度である。尚、平均冷媒過冷却度については後述する。 The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is an electronic expansion valve, and when the indoor heat exchanger 51a functions as an evaporator, that is, when the indoor unit 5a performs a cooling operation, its opening degree is the refrigerant outlet (gas) of the indoor heat exchanger 51a. The refrigerant superheat degree at the pipe connection portion 54a side) is adjusted to be the target refrigerant superheat degree. Here, the target refrigerant superheat degree is a refrigerant superheat degree for exhibiting sufficient cooling capacity in the indoor unit 5a. Further, the opening of the indoor expansion valve 52a is determined by the opening of the refrigerant in the indoor heat exchanger 51a when the indoor heat exchanger 51a functions as a condenser, that is, when the indoor unit 5a performs a heating operation. The degree of refrigerant supercooling on the 53a side) is adjusted to be the target degree of refrigerant supercooling or the average degree of refrigerant supercooling. Here, the target refrigerant supercooling degree is a refrigerant supercooling degree for the indoor unit 5a to exhibit a sufficient heating capacity. The average degree of refrigerant subcooling will be described later.

室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。 The indoor fan 55a is made of a resin material and is arranged near the indoor heat exchanger 51a. The indoor fan 55a takes in indoor air into the indoor unit 5a through a suction port (not shown) by rotating a fan motor (not shown), and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 51a is discharged from an outlet (not shown). Supply indoors.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度検出手段である液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出するガス側温度センサ62aが設けられている。室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ63aが備えられている。 In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a is a liquid side temperature detecting means for detecting the temperature of the refrigerant flowing into the indoor heat exchanger 51a or flowing out from the indoor heat exchanger 51a. A certain liquid side temperature sensor 61a is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51a. A suction temperature sensor 63a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the suction temperature, is provided near the suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aを備えている。 Further, the indoor unit 5a is provided with an indoor unit control means 500a. The indoor unit control means 500a is mounted on a control board stored in an electrical equipment box (not shown) of the indoor unit 5a, and as shown in FIG. 1B, a CPU 510a, a storage unit 520a, and a communication unit 530a. , A sensor input unit 540a.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。 The storage unit 520a includes a ROM and a RAM, and stores a control program of the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding the air conditioning operation by the user, and the like. The communication unit 530a is an interface that communicates with the outdoor unit 2 and the other indoor units 5b and 5c. The sensor input unit 540a takes in the detection results of the various sensors of the indoor unit 5a and outputs them to the CPU 510a.

CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ制御信号を、通信部530aを介して室外機2に送信するとともに、室外機2が検出した吐出圧力等の情報を含む制御信号を通信部530aを介して室外機2から受信する。CPU510aは、取り込んだ検出結果やリモコンおよび室外機2から送信された信号に基づいて、室内膨張弁52aの開度調整や、室内ファン55aの駆動制御を行う。
尚、以上説明した室外機制御手段200と室内機制御手段500a〜500cとで、本発明の制御手段が構成される。
The CPU 510a fetches the detection result of each sensor of the indoor unit 5a described above via the sensor input unit 540a. Further, the CPU 510a fetches a signal including operation information set by the user by operating a remote controller (not shown), timer operation setting, etc. via a remote controller light receiving unit (not shown). Further, the CPU 510a transmits a control signal including an operation start/stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the communication unit 530a, and the discharge pressure detected by the outdoor unit 2 A control signal including information such as the above is received from the outdoor unit 2 via the communication unit 530a. The CPU 510a adjusts the opening degree of the indoor expansion valve 52a and controls the drive of the indoor fan 55a based on the captured detection result and the signal transmitted from the remote controller and the outdoor unit 2.
The outdoor unit control means 200 and the indoor unit control means 500a to 500c described above constitute the control means of the present invention.

以上説明した空気調和装置1が、図2に示す建物600に設置されている。具体的には、室外機2が屋上(RF)に配置されており、室内機5aが3階(3F)、室内機5bが2階(2F)、室内機5cが1階(1F)に、それぞれ設置されている。そして、室外機2と室内機5a〜5cとは、上述した液管8とガス管9とで相互に接続されており、これら液管8とガス管9は、図示しない建物600の壁面内や天井裏に埋設されている。尚、図2では、最上階(3階)に設置されている室内機5aと最下階(1階)に設置されている室内機5cとの高低差をHで表している。 The air conditioner 1 described above is installed in the building 600 shown in FIG. Specifically, the outdoor unit 2 is arranged on the rooftop (RF), the indoor unit 5a is on the third floor (3F), the indoor unit 5b is on the second floor (2F), and the indoor unit 5c is on the first floor (1F). Each is installed. The outdoor unit 2 and the indoor units 5a to 5c are connected to each other by the liquid pipe 8 and the gas pipe 9 described above, and the liquid pipe 8 and the gas pipe 9 are inside the wall surface of the building 600 (not shown). It is buried under the ceiling. In FIG. 2, the height difference between the indoor unit 5a installed on the uppermost floor (third floor) and the indoor unit 5c installed on the lowermost floor (first floor) is represented by H.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、冷房/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は暖房運転時の冷媒の流れを示している。 Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 during the air conditioning operation of the air conditioner 1 according to the present embodiment will be described with reference to FIG. In the following description, a case where the indoor units 5a to 5c perform a heating operation will be described, and a detailed description will be omitted when a cooling/defrosting operation is performed. Moreover, the arrow in FIG. 1(A) has shown the flow of the refrigerant at the time of heating operation.

図1(A)に示すように、室内機5a〜5cが暖房運転を行う場合、室外機制御手段200のCPU210は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り換える。これにより、冷媒回路100は、室外熱交換器23が蒸発器として機能するとともに室内熱交換器51a〜51cが凝縮器として機能する暖房サイクルとなる。 As shown in FIG. 1(A), when the indoor units 5a to 5c perform the heating operation, the CPU 210 of the outdoor unit control means 200 shows the four-way valve 22 in a solid line, that is, the port a and the port of the four-way valve 22. Switching is performed so that d is in communication and port b and port c are in communication. Thus, the refrigerant circuit 100 becomes a heating cycle in which the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchangers 51a to 51c function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から室外機ガス管45、閉鎖弁26、ガス管9、ガス管接続部54a〜54cの順に流れて室内機5a〜5cに流入する。室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行って加熱された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。 The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, and from the four-way valve 22, the outdoor unit gas pipe 45, the closing valve 26, the gas pipe 9, and the gas pipe connecting portions 54a to 54c. Flow in that order and flow into the indoor units 5a to 5c. The refrigerant that has flowed into the indoor units 5a to 5c flows through the indoor unit gas pipes 72a to 72c, flows into the indoor heat exchangers 51a to 51c, and is taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. It exchanges heat with the indoor air and condenses. In this way, the indoor heat exchangers 51a to 51c function as condensers, and the indoor air heated by exchanging heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown out into the room from a blowout port (not shown). Thus, the room in which the indoor units 5a to 5c are installed is heated.

室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、室内機液管71a〜71c、液管接続部53a〜53cを流れて液管8に流入する。 The refrigerant flowing out from the indoor heat exchangers 51a to 51c flows through the indoor unit liquid pipes 71a to 71c, passes through the indoor expansion valves 52a to 52c, and is decompressed. The depressurized refrigerant flows through the indoor unit liquid pipes 71a to 71c and the liquid pipe connecting portions 53a to 53c and flows into the liquid pipe 8.

液管8を流れる冷媒は、閉鎖弁25を介して室外機2に流入する。室外機2に流入した冷媒は、室外機液管44を流れ、吐出温度センサ33で検出した圧縮機21の吐出温度に応じた開度とされた室外膨張弁24を通過するときにさらに減圧される。室外機液管44から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing through the liquid pipe 8 flows into the outdoor unit 2 via the closing valve 25. The refrigerant flowing into the outdoor unit 2 flows through the outdoor unit liquid pipe 44 and is further decompressed when passing through the outdoor expansion valve 24 having an opening degree corresponding to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33. It The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 44 exchanges heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 and evaporates. The refrigerant flowing out of the outdoor heat exchanger 23 flows in the order of the refrigerant pipe 43, the four-way valve 22, the refrigerant pipe 46, the accumulator 28, and the suction pipe 42, and is sucked into the compressor 21 and compressed again.

尚、室内機5a〜5cが冷房/除霜運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbが連通するよう、また、ポートcとポートdが連通するように切り換える。これにより、冷媒回路100が、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cが蒸発器として機能する冷房サイクルとなる。 In addition, when the indoor units 5a to 5c perform the cooling/defrosting operation, the CPU 210 causes the four-way valve 22 to be in a state indicated by a broken line, that is, so that the port a and the port b of the four-way valve 22 are in communication with each other. The port d is switched so as to communicate with each other. As a result, the refrigerant circuit 100 becomes a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchangers 51a to 51c function as evaporators.

次に、図1乃至図3を用いて、空気調和装置1における、本発明に関わる冷媒回路の動作やその作用、および、効果について説明する。 Next, with reference to FIG. 1 to FIG. 3, the operation of the refrigerant circuit according to the present invention in the air conditioner 1, its operation, and effects will be described.

図2を用いて先に説明したように、本実施形態の空気調和装置1では、室外機2が建物600の屋上に設置されるとともに室内機5a〜5cが各階に設置されている。つまり、室外機2が室内機5a〜5cより高い位置に設置されるとともに、室内機5aと室内機5cの設置場所にも高低差Hがある設置となっている。この場合に、空気調和装置1で暖房運転を行ったときは、以下のような問題がある。 As described above with reference to FIG. 2, in the air conditioner 1 of the present embodiment, the outdoor unit 2 is installed on the roof of the building 600 and the indoor units 5a to 5c are installed on each floor. That is, the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, and the installation place of the indoor unit 5a and the indoor unit 5c has a height difference H. In this case, when the heating operation is performed in the air conditioner 1, there are the following problems.

暖房運転では、圧縮機21から吐出されたガス冷媒は、吐出管41から四方弁22を介して室外機ガス管45を流れて室外機2から流出し、室内機5a〜5cの室内熱交換器51a〜51cに流入して凝縮する。このとき、室外機2が室内機5a〜5cより高い位置に設置されているために、室内熱交換器51a〜51cで凝縮し液管8に流出した液冷媒は、重力に逆らって室外機2に向かって液管8を流れることになる。 In the heating operation, the gas refrigerant discharged from the compressor 21 flows from the discharge pipe 41 through the four-way valve 22 through the outdoor unit gas pipe 45 to flow out of the outdoor unit 2 and the indoor heat exchangers of the indoor units 5a to 5c. It flows into 51a-51c and is condensed. At this time, since the outdoor unit 2 is installed at a position higher than the indoor units 5a to 5c, the liquid refrigerant condensed in the indoor heat exchangers 51a to 51c and flowing out to the liquid pipe 8 is against the gravity and the outdoor unit 2 It will flow through the liquid pipe 8 toward.

従って、1階に設置されている室内機5cの室内膨張弁52cの下流側(室外機2側)における液冷媒の圧力は、他の階に設置されている室内機5a、5bの室内膨張弁52a、52bの下流側における液冷媒の圧力よりも高くので、室内機5cの室内膨張弁52cの上流側(室内熱交換器51c側)の冷媒圧力と下流側の冷媒圧力の圧力差が、室内機5a、5bの室内膨張弁52a、52bの上流側の冷媒圧力と下流側の冷媒圧力の圧力差に比べて小さくなる。 Therefore, the pressure of the liquid refrigerant on the downstream side (the outdoor unit 2 side) of the indoor expansion valve 52c of the indoor unit 5c installed on the first floor is the indoor expansion valve of the indoor units 5a and 5b installed on the other floor. Since the pressure of the liquid refrigerant on the downstream side of 52a, 52b is higher than the pressure of the refrigerant pressure on the upstream side (indoor heat exchanger 51c side) of the indoor expansion valve 52c of the indoor unit 5c and the refrigerant pressure on the downstream side, It becomes smaller than the pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side of the indoor expansion valves 52a, 52b of the machines 5a, 5b.

上記のような冷媒回路100の状態では、室内膨張弁52a〜52cの上流側の冷媒圧力と下流側の冷媒圧力の圧力差が小さいほど、室内膨張弁52a〜52cを冷媒が流れにくくなる。従って、1階に設置された室内機5cは他の室内機5a、5bと比べて冷媒が流れにくく、これに伴って、室内機5cを流れる冷媒量は他の室内機5a、5bと比べて少なくなる。このことは、1階(一番低い位置)に設置された室内機5cと3階(一番高い位置)に設置された室内機5aとの高低差Hが大きくなる程顕著になり、高低差が大きくなると室内機5cから液管8に流出した液冷媒が室外機2に向かって流れなくなって液管8の下方に液冷媒が滞留する恐れがある。そして、液管8の下方に液冷媒が滞留すると、室内膨張弁5cを全開としても室内機5cに冷媒が流れずに室内機5cで暖房能力が発揮されない。 In the state of the refrigerant circuit 100 as described above, the smaller the pressure difference between the refrigerant pressure on the upstream side and the refrigerant pressure on the downstream side of the indoor expansion valves 52a to 52c, the more difficult the refrigerant flows through the indoor expansion valves 52a to 52c. Therefore, the refrigerant in the indoor unit 5c installed on the first floor is less likely to flow than the other indoor units 5a and 5b, and accordingly, the amount of the refrigerant flowing in the indoor unit 5c is smaller than that in the other indoor units 5a and 5b. Less. This becomes more remarkable as the height difference H between the indoor unit 5c installed on the first floor (lowermost position) and the indoor unit 5a installed on the third floor (highest position) becomes larger, and the height difference becomes higher. When becomes larger, the liquid refrigerant flowing out from the indoor unit 5c to the liquid pipe 8 may not flow toward the outdoor unit 2 and the liquid refrigerant may stay below the liquid pipe 8. Then, when the liquid refrigerant stays below the liquid pipe 8, even if the indoor expansion valve 5c is fully opened, the refrigerant does not flow into the indoor unit 5c and the heating capacity is not exhibited in the indoor unit 5c.

液冷媒が滞留して暖房能力が発揮されない室内機5cでは、室内熱交換器51cの冷媒出口側(室内膨張弁52c側)における冷媒過冷却度が非常に大きな値(例えば、26deg)となっている。これは、室内熱交換器51cの冷媒出口側に滞留する液冷媒の温度が、室内機5cが設置される部屋の温度になじんで低い温度となっているためである。 In the indoor unit 5c in which the liquid refrigerant stays and the heating capacity is not exhibited, the refrigerant supercooling degree on the refrigerant outlet side (indoor expansion valve 52c side) of the indoor heat exchanger 51c becomes a very large value (for example, 26 deg). There is. This is because the temperature of the liquid refrigerant that accumulates on the refrigerant outlet side of the indoor heat exchanger 51c is a low temperature that adapts to the temperature of the room in which the indoor unit 5c is installed.

以上説明した、空気調和装置1の暖房運転時に室内機5cで液冷媒は滞留していることによって暖房能力が発揮されていない場合は、室内機5cに滞留する液冷媒を室内機5cから流出させて室内機5cでの冷媒流量を増加させることで暖房能力が十分に発揮できるようにする冷媒量バランス制御を実行すればよい。具体的には、室内機5a〜5cの冷媒過冷却度のうち最大値(本実施形態では、上述した室内機5cの冷媒過冷却度、例えば26deg)と最小値(本実施形態では、最上階に設置される室内機5aの冷媒過冷却度、例えば6deg)の平均値である平均冷媒過冷却度(=(26+6)/2=16degを求める。そして、各室内機5a〜5cの冷媒過冷却度が求めた平均冷媒過冷却度となるように、室内機5a〜5cの室内膨張弁52a〜52cの開度を調整する。 As described above, when the liquid refrigerant stays in the indoor unit 5c during the heating operation of the air conditioner 1 and thus the heating capacity is not exerted, the liquid refrigerant staying in the indoor unit 5c is caused to flow out from the indoor unit 5c. It is only necessary to execute the refrigerant amount balance control that allows the heating capacity to be sufficiently exerted by increasing the refrigerant flow rate in the indoor unit 5c. Specifically, of the refrigerant supercooling degrees of the indoor units 5a to 5c, the maximum value (in the present embodiment, the refrigerant supercooling degree of the indoor unit 5c described above, for example, 26 deg) and the minimum value (in the present embodiment, the top floor). The average refrigerant supercooling degree (=(26+6)/2=16 deg), which is the average value of the refrigerant supercooling degree of the indoor unit 5a installed in the indoor unit 5a, is obtained. The degrees of opening of the indoor expansion valves 52a to 52c of the indoor units 5a to 5c are adjusted so that the degree becomes the calculated average refrigerant supercooling degree.

冷媒量バランス制御を行うと、平均冷媒過冷却度より冷媒過冷却度の小さい室内機5aおよび5b(例えば、10deg)では、各冷媒過冷却度を平均冷媒過冷却度まで大きくするために室内膨張弁52a、52bの開度が絞られるので、室内膨張弁52a、52bの下流側の冷媒圧力が低下する。 When the refrigerant amount balance control is performed, in the indoor units 5a and 5b (for example, 10 deg) whose refrigerant supercooling degree is smaller than the average refrigerant supercooling degree, indoor expansion is performed in order to increase each refrigerant supercooling degree to the average refrigerant supercooling degree. Since the openings of the valves 52a and 52b are throttled, the refrigerant pressure on the downstream side of the indoor expansion valves 52a and 52b decreases.

このとき、平均冷媒過冷却度より冷媒過冷却度の大きい室内機5cでは、室内膨張弁52a、52bの下流側の冷媒圧力が低下することによって室内膨張弁52cの下流側の冷媒圧力も低下するために、室内膨張弁52cの上流側と下流側の圧力差が大きくなる。これにより、冷媒量バランス制御において室内機5cの冷媒過冷却度を平均冷媒過冷却度まで小さくするために室内膨張弁52cの開度を大きくしているときに、その開度が全開となっても室内機5cの室内熱交換器51cに滞留する液冷媒が液管8に流出する。そして、このような各室内膨張弁の開度調整を定期的(例えば、30秒毎)に行うことで、室内機5cでの冷媒流量が増加して室内機5cで暖房能力が十分に発揮できるようになる。 At this time, in the indoor unit 5c having a higher degree of refrigerant supercooling than the average degree of refrigerant supercooling, the refrigerant pressure on the downstream side of the indoor expansion valves 52a and 52b decreases, so that the refrigerant pressure on the downstream side of the indoor expansion valve 52c also decreases. Therefore, the pressure difference between the upstream side and the downstream side of the indoor expansion valve 52c becomes large. Thus, in the refrigerant amount balance control, when the opening degree of the indoor expansion valve 52c is increased in order to reduce the refrigerant supercooling degree of the indoor unit 5c to the average refrigerant supercooling degree, the opening degree is fully opened. Also, the liquid refrigerant staying in the indoor heat exchanger 51c of the indoor unit 5c flows out to the liquid pipe 8. By periodically (for example, every 30 seconds) adjusting the opening degree of each indoor expansion valve, the refrigerant flow rate in the indoor unit 5c is increased and the heating capacity can be sufficiently exhibited in the indoor unit 5c. Like

ところで、上述した冷媒量バランス制御を継続して行っていると、各室内機5a〜5cにおける冷媒過冷却度のうちの最大値と最小値の差である過冷却度差が小さくなる、例えば、過冷却度差が1deg以内となることがある。そして、過冷却度差が小さい値で安定しているとき、例えば、過冷却度差が1deg以内である状態が3分間(以降、この時間を安定時間と記載)以上継続している場合は、平均冷媒過冷却度が大きく変動しない安定した状態となっている。 By the way, when the above-mentioned refrigerant amount balance control is continuously performed, the supercooling degree difference, which is the difference between the maximum value and the minimum value, of the refrigerant supercooling degrees in each of the indoor units 5a to 5c becomes small, for example, The degree of supercooling may be within 1 deg. Then, when the difference in supercooling degree is stable at a small value, for example, when the state in which the difference in supercooling degree is within 1 deg continues for 3 minutes (hereinafter, this time is referred to as stable time) or more, The average refrigerant supercooling degree is in a stable state in which it does not fluctuate significantly.

上記のように平均冷媒過冷却度が安定しているときにその値が大きい(例えば、10deg)場合は、当該冷媒過冷却度となる冷媒回路100における冷媒循環量とするために、圧縮機21が高い回転数で駆動している。空気調和装置1が、平均冷媒過冷却度がもっと小さい値、例えば4deg程度であっても各室内機5a〜5cで十分な暖房能力が発揮できるものである場合、大きい値で平均冷媒過冷却度が安定すれば、当該平均冷媒過冷却度とするために高い回転数で圧縮機21を駆動しつづけることとなり、空気調和装置1の省エネ性が低下するという問題があった。 When the average refrigerant supercooling degree is stable and the value thereof is large (for example, 10 deg) as described above, the compressor 21 is set in order to obtain the refrigerant circulation amount in the refrigerant circuit 100 having the refrigerant supercooling degree. Is driven at a high speed. When the air conditioner 1 is one that can exhibit sufficient heating capacity in each of the indoor units 5a to 5c even if the average refrigerant supercooling degree is a smaller value, for example, about 4 deg, the average refrigerant supercooling degree is a large value. Is stable, the compressor 21 is continuously driven at a high rotation speed to achieve the average degree of refrigerant supercooling, and there is a problem that the energy saving performance of the air conditioner 1 is reduced.

そこで、本発明の空気調和装置1では、暖房運転時に冷媒量バランス制御を実行する場合に、各室内機5a〜5cにおける過冷却度差が所定の閾過冷却度差以下である状態が所定の安定時間継続すれば、各室内機5a〜5cの冷媒過冷却度の目標値である適正冷媒過冷却度を所定の割合で低下させる適正冷媒過冷却度制御を実行する。 Therefore, in the air conditioner 1 of the present invention, when the refrigerant amount balance control is executed during the heating operation, it is predetermined that the subcooling degree difference between the indoor units 5a to 5c is equal to or less than the predetermined threshold supercooling degree difference. If the stable time is continued, the proper refrigerant supercooling degree control is executed to reduce the proper refrigerant supercooling degree, which is the target value of the refrigerant supercooling degree of each of the indoor units 5a to 5c, by a predetermined ratio.

尚、平均冷媒過冷却度は、前述した冷媒過冷却度の最大値と最小値の平均値以外に、全ての室内機の冷媒過冷却度の加算平均値や、冷媒過冷却度の大きい方から順に複数の値と小さい方から順に複数の値をそれぞれ選択してこれらの平均値とする等、少なくとも2つ以上の冷媒過冷却度を用いて求めたものであればよい。但し、各室内機における冷媒過冷却度を全て用いて算出した場合は、以下のような問題点がある。 Incidentally, the average refrigerant supercooling degree, in addition to the average value of the maximum value and the minimum value of the refrigerant supercooling degree described above, the addition average value of the refrigerant supercooling degree of all the indoor units, from the larger refrigerant supercooling degree A plurality of values and a plurality of values in order from the smallest value may be sequentially selected and used as an average value thereof, as long as it is obtained using at least two refrigerant subcooling degrees. However, when the calculation is performed using all the refrigerant subcooling degrees in each indoor unit, there are the following problems.

例えば、複数台の室内機のうち他と比べて冷媒過冷却度が極端に大きくて暖房能力が発揮されていない室内機が1台のみ存在する場合に、全ての室内機の冷媒過冷却度を用いて平均冷媒過冷却度を算出すると、暖房能力が発揮されていない室内機が複数台存在する場合の平均冷媒過冷却度より小さくなる。そして、この平均冷媒過冷却度を目標に各室内膨張弁の開度を調整すると、暖房能力が発揮されていない室内機以外の室内機の室内膨張弁の開度があまり絞られないため、暖房能力が発揮されていない室内機の室内膨張弁の下流側の冷媒圧力がさほど低下しない。このような状態で冷媒量バランス制御を続けても、暖房能力が発揮されていない室内機の冷媒流量が増加するまでに時間がかかり、暖房能力が発揮されるようになるまでの時間がかかる。 For example, in the case where there is only one indoor unit in which the refrigerant supercooling degree is extremely large and the heating capacity is not exhibited among the plurality of indoor units, the refrigerant supercooling degrees of all the indoor units are When the average refrigerant supercooling degree is calculated by using the average refrigerant supercooling degree, the average refrigerant supercooling degree becomes smaller than the average refrigerant supercooling degree when there are a plurality of indoor units that are not exhibiting the heating capacity. Then, if the opening degree of each indoor expansion valve is adjusted with the target of this average refrigerant supercooling degree, the opening degree of the indoor expansion valve of the indoor unit other than the indoor unit in which the heating capacity is not exerted cannot be narrowed so much. The refrigerant pressure on the downstream side of the indoor expansion valve of the indoor unit in which the capacity is not exhibited does not drop so much. Even if the refrigerant amount balance control is continued in such a state, it takes time until the refrigerant flow rate of the indoor unit in which the heating capacity is not exhibited increases, and it takes time until the heating ability is exhibited.

これに対し、本実施形態のように、全ての室内機における冷媒過冷却度のうちの最大値と最小値を用いて平均冷媒過冷却度を算出した方が、上述した複数台の室内機のうち他と比べて冷媒過冷却度が極端に大きいつまり暖房能力が発揮されていない室内機が少ない場合に、全ての冷媒過冷却度を用いて算出した平均冷媒過冷却度よりも大きい値となる。従って、暖房能力が発揮されていない室内機以外の室内機の室内膨張弁の開度がより絞られて暖房能力が発揮されていない室内機の室内膨張弁の下流側の冷媒圧力が低下するので、暖房能力が発揮されていない室内機における冷媒流量が早く増加して暖房能力が発揮されるようになるまでの時間が短縮される。 On the other hand, like the present embodiment, it is better to calculate the average degree of refrigerant supercooling using the maximum value and the minimum value of the degree of refrigerant supercooling in all the indoor units, of the plurality of indoor units described above. Among them, the refrigerant supercooling degree is extremely large, that is, when there are few indoor units that are not exhibiting the heating capacity, the value becomes larger than the average refrigerant supercooling degree calculated using all the refrigerant supercooling degrees. .. Therefore, since the opening degree of the indoor expansion valve of the indoor unit other than the indoor unit that is not exhibiting the heating capacity is further narrowed, the refrigerant pressure on the downstream side of the indoor expansion valve of the indoor unit that is not exhibiting the heating capacity is reduced. The time until the heating capacity is exhibited due to the rapid increase in the refrigerant flow rate in the indoor unit where the heating capacity is not exhibited is shortened.

次に、図3を用いて、本実施形態の空気調和装置1における暖房運転時の制御について説明するとともに、図4を用いて適正冷媒過冷却度制御について説明する。図3は、空気調和装置1が暖房運転を行う場合のメインルーチンであり、室外機制御手段200のCPU210が行う制御に関する処理の流れを示すものである。また、図4は、空気調和装置1が暖房運転を行う場合のサブルーチンであり、CPU210が行う適正冷媒過冷却度制御に関する処理の流れを示すものである。いずれの図においても、STはステップを表し、これに続く数字はステップ番号を表している。尚、図3や図4では本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御、といった、空気調和装置1に関わる一般的な処理については説明を省略している。また、以下の説明では、全ての室内機5a〜5cが暖房運転を行っている場合を例に挙げて説明する。 Next, control during heating operation in the air-conditioning apparatus 1 of the present embodiment will be described using FIG. 3, and appropriate refrigerant subcooling degree control will be described using FIG. 4. FIG. 3 is a main routine when the air conditioner 1 performs a heating operation, and shows a flow of processing relating to control performed by the CPU 210 of the outdoor unit control means 200. Further, FIG. 4 is a subroutine when the air conditioner 1 performs the heating operation, and shows a flow of processing relating to the proper refrigerant supercooling degree control performed by the CPU 210. In each figure, ST represents a step, and the number following it represents a step number. It should be noted that FIG. 3 and FIG. 4 mainly describe the processing relating to the present invention, and other processing, for example, control of the refrigerant circuit 100 corresponding to operating conditions such as set temperature and air volume instructed by the user, The description of the general processing relating to the air conditioning apparatus 1 such as the above is omitted. Moreover, in the following description, the case where all the indoor units 5a to 5c are performing the heating operation will be described as an example.

尚、以下の説明では、吐出圧力センサ31で検出した吐出圧力をPh、吐出圧力Phを用いて求める高圧飽和温度をThs、室内機5a〜5cの室内熱交換器51a〜51cから流出する冷媒温度であり液側温度センサ61a〜61cで検出する熱交出口温度をTo(室内機5a〜5cに対して個別に言及する必要がある場合は、Toa〜Tocと記載)、室内機5a〜5cの室内熱交換器51a〜51cの冷媒出口側における冷媒過冷却度をSC(室内機5a〜5cに対して個別に言及する必要がある場合は、SCa〜SCcと記載)、各室内機5a〜5cの冷媒過冷却度SCa〜SCcのうちの最大値と最小値をそれぞれSCmaxとSCmin、最大値SCmaxと最小値SCminを用いて求める平均冷媒過冷却度をSCv、最大値SCmaxから最小値SCminを減じて求める過冷却度差をΔSC、閾冷媒過冷却度差をSCt、適正冷媒過冷却度をSCg、安定時間をtpとする。 In the following description, the discharge pressure detected by the discharge pressure sensor 31 is Ph, the high-pressure saturation temperature obtained using the discharge pressure Ph is Ths, and the refrigerant temperature flowing out from the indoor heat exchangers 51a to 51c of the indoor units 5a to 5c. And the heat exchanger outlet temperatures detected by the liquid side temperature sensors 61a to 61c are To (when it is necessary to individually refer to the indoor units 5a to 5c, they are described as Toa to Toc) and the indoor units 5a to 5c. The degree of refrigerant supercooling on the refrigerant outlet side of the indoor heat exchangers 51a to 51c is SC (indicated as SCa to SCc when it is necessary to refer to the indoor units 5a to 5c individually), each indoor unit 5a to 5c. The maximum and minimum values of the refrigerant supercooling degrees SCa to SCc are SCmax and SCmin, the average refrigerant supercooling degree obtained using the maximum value SCmax and the minimum value SCmin is SCv, and the minimum value SCmin is subtracted from the maximum value SCmax. Let ΔSC be the difference in supercooling degree, SCt be the difference in threshold refrigerant supercooling, SCg be the proper refrigerant supercooling degree, and tp be the stable time.

まず、図3を用いて暖房運転時のメインルーチンにおける処理について説明する。CPU210は、フラグF(後述する適正冷媒過冷却度制御にて詳細に説明する)を0とし(ST1)、次に使用者の運転指示が暖房運転指示であるか否かを判断する(ST2)。暖房運転指示でなければ(ST2−No)、CPU210は、冷房運転もしくは除湿運転の開始処理である冷房/除湿運転開始処理を実行する(ST16)。ここで、冷房/除湿運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を冷房サイクルとすることであり、最初に冷房運転もしくは除湿運転を行うときに行われる処理である。そして、CPU210は、圧縮機21や室外ファン27を所定の回転数で起動するとともに、通信部230を介して室内機5a〜5cに対し室内ファン55a〜55cの駆動制御や室内膨張弁52a〜52cの開度調整を行うよう指示して冷房運転あるいは除湿運転の制御を開始し(ST17)、ST12に処理を進める。 First, the processing in the main routine during the heating operation will be described with reference to FIG. The CPU 210 sets a flag F (which will be described in detail in a proper refrigerant supercooling degree control described later) to 0 (ST1), and then determines whether or not the driving instruction of the user is the heating driving instruction (ST2). .. If it is not the heating operation instruction (ST2-No), the CPU 210 executes the cooling/dehumidifying operation start processing which is the start processing of the cooling operation or the dehumidifying operation (ST16). Here, the cooling/dehumidifying operation start processing means that the CPU 210 operates the four-way valve 22 to bring the refrigerant circuit 100 into the cooling cycle, and is processing performed when the cooling operation or dehumidifying operation is first performed. Then, the CPU 210 activates the compressor 21 and the outdoor fan 27 at a predetermined rotation speed, controls the drive of the indoor fans 55a to 55c to the indoor units 5a to 5c, and the indoor expansion valves 52a to 52c via the communication unit 230. To start the control of the cooling operation or the dehumidifying operation (ST17), and the process proceeds to ST12.

ST2において、暖房運転指示であれば(ST2−Yes)、CPU210は、暖房運転開始処理を実行する(ST3)。ここで、暖房運転開始処理とは、CPU210が四方弁22を操作して冷媒回路100を図1(A)に示す状態、つまり、冷媒回路100を暖房サイクルとすることであり、最初に暖房運転を行うときに行われる処理である。 In ST2, if it is the heating operation instruction (ST2-Yes), the CPU 210 executes the heating operation start process (ST3). Here, the heating operation start process means that the CPU 210 operates the four-way valve 22 to bring the refrigerant circuit 100 into the state shown in FIG. 1A, that is, the refrigerant circuit 100 is in the heating cycle, and the heating operation is first performed. This is the process performed when performing.

次に、CPU210は、暖房運転制御を開始する(ST4)。暖房運転制御の開始では、CPU210は、室内機5a〜5cからの要求能力に応じた回転数で圧縮機21や室外ファン27を起動する。また、CPU210は、吐出温度センサ33で検出した圧縮機21の吐出温度をセンサ入力部240を介して取り込み、取り込んだ吐出温度に応じて室外膨張弁24の開度を調整する。さらには、CPU210は、室内機5a〜5cに対し通信部230を介して暖房運転を開始する旨の運転開始信号を送信する。 Next, the CPU 210 starts heating operation control (ST4). At the start of the heating operation control, the CPU 210 activates the compressor 21 and the outdoor fan 27 at the rotation speed according to the required capacity from the indoor units 5a to 5c. Further, the CPU 210 takes in the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33 via the sensor input section 240, and adjusts the opening degree of the outdoor expansion valve 24 according to the taken-in discharge temperature. Further, the CPU 210 transmits an operation start signal to the effect that the heating operation is started to the indoor units 5a to 5c via the communication unit 230.

運転開始信号を通信部530a〜530cを介して受信した室内機5a〜5cの室内機制御手段500a〜500cのCPU510a〜510cは、使用者の風量指示に応じた回転数で室内ファン55a〜55cを起動するとともに、室内熱交換器51a〜51cの冷媒出口(液管接続部53a〜53c側)での冷媒過冷却度SCが通常暖房運転時の目標冷媒過冷却度(例えば、6deg)となるように室内膨張弁52a〜52cの開度を予め定められた所定開度とする。ここで、目標冷媒過冷却度は、予め試験等を行って求めて記憶部530a〜530cに記憶されている値であり、各室内機5a〜5cの最高冷媒過冷却度より小さい値である、すなわち、各室内機5a〜5cで暖房能力が十分に発揮されることが確認できている値である。 The CPUs 510a to 510c of the indoor unit control means 500a to 500c of the indoor units 5a to 5c, which have received the operation start signal via the communication units 530a to 530c, operate the indoor fans 55a to 55c at the rotational speeds corresponding to the air volume instruction of the user. While being started, the refrigerant supercooling degree SC at the refrigerant outlets (on the liquid pipe connecting portions 53a to 53c side) of the indoor heat exchangers 51a to 51c becomes the target refrigerant supercooling degree (for example, 6 deg) during normal heating operation. Further, the opening degrees of the indoor expansion valves 52a to 52c are set to predetermined predetermined opening degrees. Here, the target refrigerant supercooling degree is a value obtained by performing a test or the like in advance and stored in the storage units 530a to 530c, and is a value smaller than the maximum refrigerant supercooling degree of each of the indoor units 5a to 5c. That is, it is a value that has been confirmed that the heating capacity is sufficiently exhibited in each of the indoor units 5a to 5c.

次に、CPU210は、吐出圧力センサ31で検出した吐出圧力Phをセンサ入力部240を介して取り込むとともに、各室内機5a〜5cから熱交出口温度To(Toa〜Toc)を通信部230を介して取り込む(ST5)。尚、熱交出口温度Toは、CPU510a〜510cが液側温度センサ61a〜61cでの検出値をセンサ入力部540a〜540cを介して取り込み、通信部530a〜530cを介して室外機2に送信しているものである。また、上述した各検出値は、所定時間毎(例えば、30秒毎)に各CPUが取り込んで各記憶部に記憶している。 Next, the CPU 210 takes in the discharge pressure Ph detected by the discharge pressure sensor 31 via the sensor input section 240, and also outputs the heat exchange outlet temperature To (Toa to Toc) from each indoor unit 5a to 5c via the communication section 230. (ST5). As for the heat exchanger outlet temperature To, the CPUs 510a to 510c take in the detection values of the liquid side temperature sensors 61a to 61c via the sensor input units 540a to 540c and send them to the outdoor unit 2 via the communication units 530a to 530c. Is what Further, each detected value described above is fetched by each CPU every predetermined time (for example, every 30 seconds) and stored in each storage unit.

次に、CPU210は、ST4で取り込んだ吐出圧力Phを用いて高圧飽和温度Thsを求め(ST6)、求めた高圧飽和温度ThsとST4で取り込んだ熱交出口温度Toを用いて、室内機5a〜5cの冷媒過冷却度SC(SCa〜SCc)を求める(ST7)。 Next, the CPU 210 obtains the high pressure saturation temperature Ths using the discharge pressure Ph fetched in ST4 (ST6), and uses the obtained high pressure saturation temperature Ths and the heat exchange outlet temperature To fetched in ST4 to select the indoor unit 5a to the indoor unit 5a. The refrigerant supercooling degree SC (SCa to SCc) of 5c is obtained (ST7).

次に、CPU210は、ST6で求めた室内機5a〜5cの冷媒過冷却度SCa〜SCcのうち、最大値SCmaxと最小値SCminを選択し、選択した最大値SCmaxと最小値SCminを用いて平均冷媒過冷却度SCv(最大値SCmaxと最小値SCminの平均値)と過冷却度差ΔSC(=最大値SCmax−最小値SCmin)を算出する(ST8)。 Next, the CPU 210 selects the maximum value SCmax and the minimum value SCmin among the refrigerant supercooling degrees SCa to SCc of the indoor units 5a to 5c determined in ST6, and averages the selected maximum value SCmax and the minimum value SCmin. The refrigerant supercooling degree SCv (average value of the maximum value SCmax and the minimum value SCmin) and the supercooling degree difference ΔSC (=maximum value SCmax-minimum value SCmin) are calculated (ST8).

次に、CPU210は、ST7で求めた過冷却度差ΔSCが閾冷媒過冷却度差SCt以下であるか否かを判断する(ST9)。ここで、閾冷媒過冷却度差SCtは、予め定められて記憶部220に記憶されているものであり、例えば1degである。 Next, the CPU 210 determines whether the supercooling degree difference ΔSC obtained in ST7 is less than or equal to the threshold refrigerant supercooling degree difference SCt (ST9). Here, the threshold refrigerant subcooling degree difference SCt is predetermined and stored in the storage unit 220, and is, for example, 1 deg.

ST9において過冷却度差ΔSCが閾冷媒過冷却度差SCt以下でない場合は(ST9−No)、CPU210は、ST8で求めた平均冷媒過冷却度SCvとST6で求めた高圧飽和温度Thsを、通信部230を介して室内機5a〜5cに送信するとともに、フラグFを0とする(ST15)。通信部530a〜530cを介して平均冷媒過冷却度SCvあるいは閾冷媒過冷却度SCtと高圧飽和温度Thsを受信した室内機5a〜5cのCPU510a〜510cは、室外機2から受信した高圧飽和温度Thsから液側温度センサ61a〜61cで検出した熱交出口温度Toa〜Tocを減じて冷媒過冷却度SCa〜SCcを求め、求めた冷媒過冷却度SCa〜SCcが、室外機2から受信した平均冷媒過冷却度SCvあるいは閾冷媒過冷却度SCtとなるように、室内膨張弁52a〜52cの開度を調整する。
以上説明したST5〜ST9とST15の処理が、本発明の冷媒量バランス制御に関わる処理である。
When the subcooling degree difference ΔSC is not equal to or less than the threshold refrigerant subcooling degree difference SCt in ST9 (ST9-No), the CPU 210 communicates the average refrigerant subcooling degree SCv obtained in ST8 and the high pressure saturation temperature Ths obtained in ST6. The flag F is set to 0 while transmitting to the indoor units 5a to 5c via the unit 230 (ST15). The CPUs 510a to 510c of the indoor units 5a to 5c that have received the average refrigerant subcooling degree SCv or the threshold refrigerant subcooling degree SCt and the high pressure saturation temperature Ths via the communication units 530a to 530c are the high pressure saturation temperatures Ths received from the outdoor unit 2. The heat exchanger outlet temperatures Toa to Toc detected by the liquid side temperature sensors 61a to 61c are subtracted from the refrigerant supercooling degrees SCa to SCc, and the obtained refrigerant supercooling degrees SCa to SCc are the average refrigerant received from the outdoor unit 2. The openings of the indoor expansion valves 52a to 52c are adjusted so that the supercooling degree SCv or the threshold refrigerant supercooling degree SCt is achieved.
The processes of ST5 to ST9 and ST15 described above are processes related to the refrigerant amount balance control of the present invention.

ST9において過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である場合は(ST9−Yes)、CPU210は、過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である状態が安定時間tpの間継続したか否かを判断する(ST10)。ここで、安定時間tpは、予め定められて記憶部220に記憶されているものであり、例えば3分間である。前述したように、CPU210は各検出値を所定時間毎に取り込んでおり、各検出値を取り込む度に過冷却度差ΔSCも算出して閾冷媒過冷却度差SCtと比較している。従って、CPU210は、過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である状態が安定時間tpに対応する回数(例えば、安定時間が3分間で各検出値を30秒毎に取り込む場合は、180秒÷30秒=9回)連続すれば、過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である状態が安定時間tpの間継続したと判断できる。 When the subcooling degree difference ΔSC is less than or equal to the threshold refrigerant supercooling degree difference SCt in ST9 (ST9-Yes), the CPU 210 determines that the state in which the subcooling degree difference ΔSC is less than or equal to the threshold refrigerant supercooling degree difference SCt is the stable time tp. It is determined whether or not it has been continued for a period of time (ST10). Here, the stable time tp is predetermined and stored in the storage unit 220, and is, for example, 3 minutes. As described above, the CPU 210 captures each detection value at every predetermined time, and also calculates the supercooling degree difference ΔSC each time the detection value is captured, and compares it with the threshold refrigerant supercooling degree difference SCt. Therefore, the CPU 210 performs the number of times corresponding to the stabilization time tp when the supercooling degree difference ΔSC is equal to or less than the threshold refrigerant supercooling degree difference SCt (for example, when the detection values are fetched every 30 seconds in the stabilization time of 3 minutes). , 180 seconds÷30 seconds=9 times), it can be determined that the state in which the supercooling degree difference ΔSC is less than or equal to the threshold refrigerant supercooling degree difference SCt has continued for the stable time tp.

ST10において、過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である状態が安定時間tpの間継続しない場合は(ST10−No)、CPU210は、ST15に処理を進める。過冷却度差ΔSCが閾冷媒過冷却度差SCt以下である状態が安定時間tpの間継続した場合は(ST10−Yse)、CPU210は、後述する適正冷媒過冷却度制御に関わる処理を行い(ST11)、ST12に処理を進める。 In ST10, when the state in which the subcooling degree difference ΔSC is equal to or less than the threshold refrigerant subcooling degree difference SCt does not continue for the stable time tp (ST10-No), the CPU 210 advances the process to ST15. When the state in which the supercooling degree difference ΔSC is equal to or less than the threshold refrigerant supercooling degree difference SCt continues for the stable time tp (ST10-Yse), the CPU 210 performs a process related to the proper refrigerant supercooling degree control described later ( The process proceeds to ST11) and ST12.

ST11もしくはST15の処理を終えたCPU210は、使用者による運転モード切替指示があるか否かを判断する(ST12)。ここで、運転モード切替指示とは、現在の運転(ここでは暖房運転)から別の運転(冷房運転あるいは除湿運転)への切替を指示するものである。運転モード切替指示がある場合は(ST12−Yes)、CPU210は、ST2に処理を戻す。運転モード切替指示がない場合は(ST12−No)、CPU210は、使用者による運転停止指示があるか否かを判断する(ST13)。運転停止指示とは、全ての室内機5a〜5cが運転を停止することを指示すものである。 The CPU 210 that has completed the processing of ST11 or ST15 determines whether or not there is a driving mode switching instruction from the user (ST12). Here, the operation mode switching instruction is an instruction to switch from the current operation (here, heating operation) to another operation (cooling operation or dehumidifying operation). When there is the operation mode switching instruction (ST12-Yes), the CPU 210 returns the process to ST2. When there is no operation mode switching instruction (ST12-No), the CPU 210 determines whether or not there is an operation stop instruction by the user (ST13). The operation stop instruction is an instruction to stop the operation of all the indoor units 5a to 5c.

運転停止指示があれば(ST13−Yes)、CPU210は、運転停止処理を実行し(ST14)、処理を終了する。運転停止処理では、CPU210は、圧縮機21や室外ファン27を停止するとともに室外膨張弁24を全閉とする。また、CPU210は、室内機5a〜5cに対し通信部230を介して運転を停止する旨の運転停止信号を送信する。運転停止信号を通信部530a〜530cを介して受信した室内機5a〜5cのCPU510a〜510cは、室内ファン55a〜55cを停止するとともに室内膨張弁52a〜52cを全閉とする。 If there is an operation stop instruction (ST13-Yes), the CPU 210 executes the operation stop processing (ST14) and ends the processing. In the operation stop process, the CPU 210 stops the compressor 21 and the outdoor fan 27 and fully closes the outdoor expansion valve 24. Further, the CPU 210 transmits an operation stop signal for stopping the operation to the indoor units 5a to 5c via the communication unit 230. The CPUs 510a to 510c of the indoor units 5a to 5c that have received the operation stop signal via the communication units 530a to 530c stop the indoor fans 55a to 55c and fully close the indoor expansion valves 52a to 52c.

ST13において運転停止指示がなければ(ST13−No)、CPU210は、現在の運転が暖房運転であるか否かを判断する(ST18)。現在の運転が暖房運転であれば(ST18−Yes)、CPU210は、ST4に処理を戻す。現在の運転が暖房運転でなければ(ST18−No)、つまり、現在の運転が冷房運転もしくは除湿運転であれば、CPU210は、ST17に処理を戻す。 If there is no operation stop instruction in ST13 (ST13-No), the CPU 210 determines whether or not the current operation is the heating operation (ST18). If the current operation is the heating operation (ST18-Yes), the CPU 210 returns the process to ST4. If the current operation is not the heating operation (ST18-No), that is, if the current operation is the cooling operation or the dehumidifying operation, the CPU 210 returns the process to ST17.

次に、図4を用いて、空気調和装置1の暖房運転時のサブルーチンである適正冷媒過冷却度制御を行う際の処理の流れについて説明する。まず、CPU210は、記憶部220に記憶しているフラグFを読み出し、読み出したフラグFが0であるか否かを判断する(ST21)。ここで、フラグFは暖房運転時に適性冷媒過冷却度制御を初めて行うか否かを判断するためのものであり、フラグF=0であれば適性冷媒過冷却度制御を初めて行うことを示し、フラグFが0以外の数値であれば既に適性冷媒過冷却度制御を実行していることを示す。 Next, with reference to FIG. 4, a flow of processing when performing the proper refrigerant supercooling degree control which is a subroutine during the heating operation of the air conditioner 1 will be described. First, the CPU 210 reads the flag F stored in the storage unit 220 and determines whether the read flag F is 0 (ST21). Here, the flag F is for determining whether or not to perform the appropriate refrigerant supercooling degree control for the first time during the heating operation, and if the flag F=0, it indicates that the appropriate refrigerant supercooling degree control is performed for the first time. If the flag F is a numerical value other than 0, it indicates that the proper refrigerant supercooling degree control has already been executed.

ST21においてフラグF=0であれば(ST21−Yes)、つまり、初めて適性冷媒過冷却度制御を実行する場合は、図3に示すメインルーチンのST7で算出した平均冷媒過冷却度SCvから1degを減じて適正冷媒過冷却度SCgを算出し(ST22)、ST24に処理を進める。一方、ST21においてフラグF=0でなければ(ST21−No)、つまり、適性冷媒過冷却度制御を実行するのが初めてでない場合は、先にST22で算出した適正冷媒過冷却度SCgから1degを減じた値を新たな適正冷媒過冷却度SCgとし(ST23)、ST24に処理を進める。 If the flag F=0 in ST21 (ST21-Yes), that is, if the proper refrigerant supercooling degree control is executed for the first time, 1 deg is calculated from the average refrigerant supercooling degree SCv calculated in ST7 of the main routine shown in FIG. Then, the proper refrigerant supercooling degree SCg is calculated (ST22), and the process proceeds to ST24. On the other hand, if the flag F is not 0 in ST21 (ST21-No), that is, if it is not the first time to execute the proper refrigerant supercooling degree control, 1 deg is calculated from the proper refrigerant supercooling degree SCg calculated in ST22. The reduced value is set as a new proper refrigerant supercooling degree SCg (ST23), and the process proceeds to ST24.

ST22もしくはST23の処理を終えたCPU210は、ST22もしくはST23で算出した適正冷媒過冷却度SCgが下限冷媒過冷却度SCl以下であるか否か判断する(ST24)。ここで、下限冷媒過冷却度SClは、予め試験等を行って求められて記憶部220に記憶されているものであり、各室内機5a〜5cの室内熱交換器51a〜51cにおける熱交換効率をできる限り高くし、かつ、各室内熱交換器51a〜51cで冷媒を確実に液冷媒とできる値(例えば、4deg)とされる。尚、下限冷媒過冷却度SClを、各室内熱交換器51a〜51cで冷媒を確実に液冷媒とできる値とするのは、各室内熱交換器51a〜51cから流出する冷媒が気液二相状態となりこれに起因する冷媒音が発生して使用者に不快感を与えることを防止するためである。 The CPU 210 that has completed the processing of ST22 or ST23 determines whether or not the proper refrigerant supercooling degree SCg calculated in ST22 or ST23 is less than or equal to the lower limit refrigerant supercooling degree SCl (ST24). Here, the lower limit refrigerant supercooling degree SCl is obtained by performing a test or the like in advance and stored in the storage unit 220, and the heat exchange efficiency in the indoor heat exchangers 51a to 51c of the indoor units 5a to 5c. Is set as high as possible, and is set to a value (for example, 4 deg) that allows the indoor heat exchangers 51a to 51c to reliably use the refrigerant as a liquid refrigerant. In addition, the lower limit refrigerant supercooling degree SCl is set to a value at which the refrigerant can be reliably made into a liquid refrigerant in each of the indoor heat exchangers 51a to 51c, because the refrigerant flowing out from each of the indoor heat exchangers 51a to 51c is gas-liquid two-phase. This is to prevent the user from feeling uncomfortable due to the occurrence of a refrigerant noise caused by the state.

ST24において適正冷媒過冷却度SCgが下限冷媒過冷却度SCl以下であれば(ST24−Yes)、CPU210は、適正冷媒過冷却度SCgを下限冷媒過冷却度SClとし(ST25)、下限冷媒過冷却度SClと図3に示すメインルーチンのST5で求めた高圧飽和温度Thsを、通信部230を介して室内機5a〜5cに送信する(ST26)。通信部530a〜530cを介して下限冷媒過冷却度SClと高圧飽和温度Thsを受信した室内機5a〜5cのCPU510a〜510cは、室外機2から受信した高圧飽和温度Thsから液側温度センサ61a〜61cで検出した熱交出口温度Toa〜Tocを減じて冷媒過冷却度SCa〜SCcを求め、求めた冷媒過冷却度SCa〜SCcが、室外機2から受信した下限冷媒過冷却度SClとなるように、室内膨張弁52a〜52cの開度を調整する。 When the proper refrigerant supercooling degree SCg is equal to or lower than the lower limit refrigerant supercooling degree SCl in ST24 (ST24-Yes), the CPU 210 sets the proper refrigerant supercooling degree SCg as the lower limit refrigerant supercooling degree SCl (ST25), and the lower limit refrigerant supercooling. The temperature SCl and the high pressure saturation temperature Ths obtained in ST5 of the main routine shown in FIG. 3 are transmitted to the indoor units 5a to 5c via the communication section 230 (ST26). The CPUs 510a to 510c of the indoor units 5a to 5c, which have received the lower limit refrigerant supercooling degree SCl and the high-pressure saturation temperature Ths via the communication units 530a to 530c, detect the high-temperature saturation temperature Ths received from the outdoor unit 2 from the liquid-side temperature sensor 61a-. The heat exchanger outlet temperatures Toa to Toc detected in 61c are subtracted to obtain the refrigerant supercooling degrees SCa to SCc, and the obtained refrigerant supercooling degrees SCa to SCc become the lower limit refrigerant supercooling degree SCl received from the outdoor unit 2. Then, the openings of the indoor expansion valves 52a to 52c are adjusted.

一方、ST24において適正冷媒過冷却度SCgが下限冷媒過冷却度SCl以下でなければ(ST24−No)、CPU210は、ST22もしくはST23で算出した適正冷媒過冷却度SCgと図3に示すメインルーチンのST5で求めた高圧飽和温度Thsを、通信部230を介して室内機5a〜5cに送信する(ST27)。通信部530a〜530cを介して適正冷媒過冷却度SCgと高圧飽和温度Thsを受信した室内機5a〜5cのCPU510a〜510cは、室外機2から受信した高圧飽和温度Thsから液側温度センサ61a〜61cで検出した熱交出口温度Toa〜Tocを減じて冷媒過冷却度SCa〜SCcを求め、求めた冷媒過冷却度SCa〜SCcが、室外機2から受信した適正冷媒過冷却度SCgとなるように、室内膨張弁52a〜52cの開度を調整する。 On the other hand, if the proper refrigerant supercooling degree SCg is not less than or equal to the lower limit refrigerant supercooling degree SCl in ST24 (ST24-No), the CPU 210 causes the proper refrigerant supercooling degree SCg calculated in ST22 or ST23 and the main routine shown in FIG. The high pressure saturation temperature Ths obtained in ST5 is transmitted to the indoor units 5a to 5c via the communication unit 230 (ST27). The CPUs 510a to 510c of the indoor units 5a to 5c, which have received the proper refrigerant supercooling degree SCg and the high pressure saturation temperature Ths via the communication units 530a to 530c, respectively, from the high pressure saturation temperature Ths received from the outdoor unit 2, to the liquid side temperature sensor 61a to. The heat exchanger outlet temperatures Toa to Toc detected in 61c are subtracted to obtain the refrigerant supercooling degrees SCa to SCc, and the obtained refrigerant supercooling degrees SCa to SCc become the proper refrigerant supercooling degree SCg received from the outdoor unit 2. Then, the openings of the indoor expansion valves 52a to 52c are adjusted.

ST26もしくはST27の処理を終えたCPU210は、フラグFを1として(ST28)適正冷媒過冷却度制御を終了する。尚、この適正冷媒過冷却度制御は定期的(例えば、1分毎)に実行される。 The CPU 210 that has completed the processing of ST26 or ST27 sets the flag F to 1 (ST28) and ends the proper refrigerant supercooling degree control. It should be noted that this proper refrigerant supercooling degree control is executed periodically (for example, every minute).

以上説明したように、本発明の空気調和装置1では、冷媒量バランス制御を実行するときに、過冷却度差ΔSCが閾過冷却度差SCt以下である状態が安定時間tpの間継続した場合に、各室内機5a〜5cの目標となる適正冷媒過冷却度SCgを低下させる。これにより、冷媒量バランス制御の実行時に平均冷媒過冷却度SCvが高い値で安定している場合に、これより低い適正冷媒過冷却度SCgとなるように各室内機5a〜5cの室内膨張弁52a〜52cの開度を調整するので、高い冷媒過冷却度となるように制御をしている場合と比べて圧縮機21の回転数を下げることができ、空気調和装置1の省エネ性を向上させることができる。 As described above, in the air conditioner 1 of the present invention, when the refrigerant amount balance control is executed, the state where the supercooling degree difference ΔSC is equal to or less than the threshold supercooling degree difference SCt continues for the stable time tp. Then, the target proper refrigerant supercooling degree SCg of each of the indoor units 5a to 5c is reduced. Accordingly, when the average refrigerant subcooling degree SCv is stable at a high value during execution of the refrigerant amount balance control, the indoor expansion valves of the indoor units 5a to 5c are set so as to have a lower appropriate refrigerant supercooling degree SCg. Since the opening degrees of 52a to 52c are adjusted, the rotation speed of the compressor 21 can be reduced as compared with the case where control is performed so that the refrigerant has a high degree of subcooling, and the energy saving performance of the air conditioner 1 is improved. Can be made.

1 空気調和装置
2 室外機
5a〜5c 室内機
31 吐出圧力センサ
51a〜51c 室内熱交換器
52a〜52c 室内膨張弁
61a〜61c 液側温度センサ
100 冷媒回路
200 室外機制御手段
210 CPU
300 最高冷媒過冷却度テーブル
500a〜500c 室内機制御手段
510a〜510c CPU
Ph 吐出圧力
SC 冷媒過冷却度
SCmax 冷媒過冷却度の最大値
SCmin 冷媒過冷却度の最小値
ΔSC 過冷却度差
SCg 適正冷媒過冷却度
SCv 平均冷媒過冷却度
SCl 下限冷媒過冷却度
SCt 閾過冷却度差
Ths 高圧飽和温度
To 熱交出口温度
tp 安定時間
1 Air conditioner 2 Outdoor unit 5a-5c Indoor unit 31 Discharge pressure sensor 51a-51c Indoor heat exchanger 52a-52c Indoor expansion valve 61a-61c Liquid side temperature sensor 100 Refrigerant circuit 200 Outdoor unit control means 210 CPU
300 maximum refrigerant supercooling degree table 500a-500c indoor unit control means 510a-510c CPU
Ph Discharge pressure SC Refrigerant supercooling degree SCmax Maximum refrigerant supercooling degree SCmin Minimum refrigerant supercooling degree ΔSC Supercooling degree difference SCg Proper refrigerant supercooling degree SCv Average refrigerant supercooling degree SCl Lower limit refrigerant supercooling degree SCt Threshold overcooling Cooling degree difference Ths High-pressure saturation temperature To Heat exchanger outlet temperature tp Stabilization time

Claims (3)

圧縮機と、同圧縮機から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力検出手段を有する室外機と、
室内熱交換器と、室内膨張弁と、前記室内熱交換器が凝縮器として機能しているときに同室内熱交換器から流出する冷媒の温度である熱交出口温度を検出する液側温度検出手段を有する複数台の室内機と、
前記吐出圧力と前記各熱交出口温度を取り込み、前記各室内膨張弁の開度を調整する制御手段と、
を有する空気調和装置であって、
前記制御手段は、
前記空気調和装置の暖房運転開始時に前記各室内機の前記室内膨張弁の開度を所定開度とした後に、前記各室内機の冷媒過冷却度を用いて平均冷媒過冷却度を算出し、前記各室内機の冷媒過冷却度が前記平均冷媒過冷却度となるように前記各室内膨張弁の開度を調整する冷媒量バランス制御を実行し、
前記冷媒量バランス制御を実行しているときに、前記各室内機の冷媒過冷却度のうちの最大値と最小値の差である過冷却度差が所定の閾過冷却度差より小さい状態が所定の安定時間継続した場合に、前記冷媒量バランス制御から適正冷媒過冷却度制御に移行し、
前記適正冷媒過冷却度制御では、現在の前記各室内機の冷媒過冷却度の目標値である適正冷媒過冷却度から所定値を減じる、
ことを特徴とする空気調和装置。
A compressor, an outdoor unit having a discharge pressure detection means for detecting a discharge pressure which is the pressure of the refrigerant discharged from the compressor,
An indoor heat exchanger, an indoor expansion valve, and a liquid side temperature detection that detects a heat exchange outlet temperature that is a temperature of a refrigerant flowing out from the indoor heat exchanger when the indoor heat exchanger functions as a condenser. A plurality of indoor units having means,
Control means for taking in the discharge pressure and the respective heat exchange outlet temperatures, and adjusting the opening degree of each of the indoor expansion valves,
An air conditioner having:
The control means is
After the opening of the indoor expansion valve of each indoor unit at a predetermined opening at the time of starting the heating operation of the air conditioner, the average degree of refrigerant supercooling is calculated using the degree of refrigerant supercooling of each indoor unit, Performing a refrigerant amount balance control for adjusting the opening degree of each indoor expansion valve so that the refrigerant supercooling degree of each indoor unit becomes the average refrigerant supercooling degree,
When performing the refrigerant amount balance control, a state in which the subcooling degree difference, which is the difference between the maximum value and the minimum value of the refrigerant subcooling degrees of the indoor units, is smaller than a predetermined threshold subcooling degree difference, When continuing for a predetermined stable time, transition to the proper refrigerant supercooling degree control from the refrigerant amount balance control,
In the proper refrigerant supercooling degree control, subtract a predetermined value from the proper refrigerant supercooling degree which is a target value of the refrigerant supercooling degree of each of the present indoor units,
An air conditioner characterized by the above.
前記制御手段は、予め定められた下限冷媒過冷却度を記憶しており、
前記適正冷媒過冷却度が前記下限冷媒過冷却度となるまでは前記適正冷媒過冷却度制御を継続して実行して前記適正冷媒過冷却度から前記所定値を減じ続け、前記適正冷媒過冷却度が前記下限冷媒過冷却度より小さくなれば前記冷媒量バランス制御に移行する、
ことを特徴とする請求項1に記載の空気調和装置。
The control means stores a predetermined lower limit refrigerant supercooling degree,
Until the proper refrigerant supercooling degree reaches the lower limit refrigerant supercooling degree, the proper refrigerant supercooling degree control is continuously executed to continue subtracting the predetermined value from the proper refrigerant supercooling degree, and the proper refrigerant supercooling degree is maintained. If the degree becomes smaller than the lower limit refrigerant supercooling degree, it shifts to the refrigerant amount balance control,
The air conditioner according to claim 1, wherein:
前記過冷却度差が前記閾過冷却度差より大きくなった場合は、前記適正冷媒過冷却度制御を実行しない、
ことを特徴とする請求項1または請求項2に記載の空気調和装置。
If the subcooling degree difference becomes larger than the threshold subcooling degree difference, the appropriate refrigerant subcooling degree control is not executed,
The air conditioner according to claim 1 or 2, characterized in that.
JP2016164413A 2016-08-25 2016-08-25 Air conditioner Active JP6733424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164413A JP6733424B2 (en) 2016-08-25 2016-08-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164413A JP6733424B2 (en) 2016-08-25 2016-08-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2018031527A JP2018031527A (en) 2018-03-01
JP6733424B2 true JP6733424B2 (en) 2020-07-29

Family

ID=61304075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164413A Active JP6733424B2 (en) 2016-08-25 2016-08-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP6733424B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082756B2 (en) * 2018-03-22 2022-06-09 株式会社富士通ゼネラル Air conditioner
CN108613336A (en) * 2018-05-15 2018-10-02 青岛海尔空调电子有限公司 It is a kind of for controlling the method and apparatus of air conditioner, air conditioner, computer readable storage medium
CN109442699B (en) * 2018-11-06 2019-08-30 宁波奥克斯电气股份有限公司 The control method of machine valve in a kind of multi-online air-conditioning system
CN111023402B (en) * 2019-12-31 2021-08-06 宁波奥克斯电气股份有限公司 Self-adaptive adjusting method of air conditioning system and air conditioner

Also Published As

Publication number Publication date
JP2018031527A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6693312B2 (en) Air conditioner
JP6569536B2 (en) Air conditioner
JP5549773B1 (en) Air conditioner
JP6468300B2 (en) Air conditioner
US8020395B2 (en) Air conditioning apparatus
JP6870382B2 (en) Air conditioner
JP6733424B2 (en) Air conditioner
JP2015117854A (en) Air conditioning system
JP6834561B2 (en) Air conditioner
JP6716960B2 (en) Air conditioner
JP6834562B2 (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP6350338B2 (en) Air conditioner
JP2017142017A (en) Air conditioner
JP2018115805A (en) Air conditioner
JP6930127B2 (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus
JP6672860B2 (en) Air conditioner
JP6728749B2 (en) Air conditioner
JP6638446B2 (en) Air conditioner
JP6737053B2 (en) Air conditioner
JP6740830B2 (en) Air conditioner
JP6897069B2 (en) Air conditioner
JP7375490B2 (en) air conditioner
JP7408942B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R151 Written notification of patent or utility model registration

Ref document number: 6733424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151