JP6637618B2 - Vertical electromagnetic brake system for controlling molten steel flow in continuous casting mold - Google Patents

Vertical electromagnetic brake system for controlling molten steel flow in continuous casting mold Download PDF

Info

Publication number
JP6637618B2
JP6637618B2 JP2018553130A JP2018553130A JP6637618B2 JP 6637618 B2 JP6637618 B2 JP 6637618B2 JP 2018553130 A JP2018553130 A JP 2018553130A JP 2018553130 A JP2018553130 A JP 2018553130A JP 6637618 B2 JP6637618 B2 JP 6637618B2
Authority
JP
Japan
Prior art keywords
magnetic pole
vertical
molten steel
horizontal
horizontal magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018553130A
Other languages
Japanese (ja)
Other versions
JP2019510641A (en
Inventor
王恩剛
李壮
許琳
李菲
▲トウ▼安元
張興武
張林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Publication of JP2019510641A publication Critical patent/JP2019510641A/en
Application granted granted Critical
Publication of JP6637618B2 publication Critical patent/JP6637618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は、連続鋳造の技術分野に属し、特に連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置に関する。 The present invention relates to the technical field of continuous casting, and more particularly to a vertical electromagnetic brake device for controlling molten steel flow in a continuous casting mold.

連続鋳造の過程では、溶鋼は浸漬式ノズルから一定の角度でモールド内に入り、浸漬式ノズルから流出した溶鋼は一定の流速でモールドの側面領域に衝突することで、上還流及び下還流を形成する。 In the process of continuous casting, molten steel enters the mold at a certain angle from the immersion nozzle, and the molten steel flowing out of the immersion nozzle strikes the side area of the mold at a constant flow rate, forming upper reflux and lower reflux. I do.

上還流溶鋼は、モールド内の溶鋼表面に衝突して液面の揺れを引き起こし、特に、モールド側面のメニスカス面の近くの液面の揺れを激化し、パウダーの巻き込みを招きやすくなる場合がある。 The upper reflux molten steel collides with the molten steel surface in the mold to cause the liquid surface to oscillate. In particular, the liquid surface near the meniscus surface on the mold side may become more turbulent, which may easily cause powder entrainment.

下還流溶鋼は、侵入深さが大きいので、溶鋼における不純物、気泡等の異種物質をモールド内の比較的深い位置まで連れることがある。また、異種物質が浮きにくく、溶鋼の初期凝固シェル先端に捕獲される可能性があるため、連続鋳造の粗材表面又は表面下の欠陥を招く場合がある。 Since the lower reflux molten steel has a large penetration depth, foreign substances such as impurities and bubbles in the molten steel may be brought to a relatively deep position in the mold. In addition, since foreign substances are difficult to float and may be trapped at the tip of the initially solidified shell of molten steel, a defect may be caused on the surface of a rough material or a subsurface in continuous casting.

また、浸漬式ノズルから流出した溶鋼は、モールド内の初期凝固シェルに衝突するため、初期凝固シェルが薄くなったり、不均一になったりすることで、溶鋼漏れが発生しやすい。 Further, since the molten steel flowing out of the immersion nozzle collides with the initial solidified shell in the mold, the molten steel leaks easily due to the thinned or non-uniform initial solidified shell.

上記問題を解決するために、通常、モールドの幅広面の水平方向に加装電磁ブレーキを取り付け、電磁ブレーキによりモールド内に定常磁場を形成し、モールド内を流れている溶鋼が定常磁場を通過するときに溶鋼流れの方向と反対の電磁力を受けることにより、モールド内の溶鋼流れの制御目的を達成する。 In order to solve the above problem, usually, an additional electromagnetic brake is installed in the horizontal direction of the wide surface of the mold, a steady magnetic field is formed in the mold by the electromagnetic brake, and the molten steel flowing in the mold passes through the steady magnetic field. Sometimes the object of controlling the flow of molten steel in the mold is achieved by receiving an electromagnetic force opposite to the direction of the flow of molten steel.

現在、定常磁場を形成するための電磁ブレーキは、主に領域型電磁ブレーキ装置、一段式電磁ブレーキ装置及び二段式電磁ブレーキ装置を含む。 At present, electromagnetic brakes for generating a steady magnetic field mainly include a region-type electromagnetic brake device, a single-stage electromagnetic brake device, and a two-stage electromagnetic brake device.

領域型電磁ブレーキ装置では、モールドノズル側孔での流れ領域に作用する定常磁場を発生することができ、浸漬式ノズルから流出する溶鋼の流れを制御する作用を奏する。しかし、発生する定常磁場の作用領域に制限があり、モールド全体の溶鋼の流れを効果に制御することができないため、溝等の欠陥が発生することがある。 In the area type electromagnetic brake device, a steady magnetic field acting on the flow area at the mold nozzle side hole can be generated, and the action of controlling the flow of the molten steel flowing out of the immersion type nozzle is exerted. However, the working region of the generated steady magnetic field is limited, and the flow of molten steel in the entire mold cannot be effectively controlled, so that a defect such as a groove may occur.

一段式電磁ブレーキ装置(例えば、出願番号:98810685.Xの中国特許出願)では、浸漬式ノズルの下に配置され、且つモールドの幅広面全体を覆う一対の水平磁極により定常磁場を発生することにより、モールドの幅広面全体に対する下還流溶鋼の衝突深さを制御できる。しかし、モールド内の上還流溶鋼の溶鋼表面に対する揺れ及びパウダーの巻き込みを効果的に制御することができない。 In a single-stage electromagnetic brake device (eg, a Chinese patent application with the application number: 98810685.X), a stationary magnetic field is generated by a pair of horizontal magnetic poles disposed below an immersion nozzle and covering the entire wide surface of the mold. Further, it is possible to control the collision depth of the lower reflux molten steel against the entire wide surface of the mold. However, it is not possible to effectively control the swinging of the upper reflux molten steel in the mold and the powder entrainment with respect to the molten steel surface.

二段式電磁ブレーキ装置(例えば、出願番号:98801009.7の中国特許出願)では、モールド溶鋼表面領域に配置される一対の水平磁極及び浸漬式ノズルの下に位置する一対の水平磁極により定常磁場を発生することにより、モールド溶鋼表面の揺れ及び溶鋼の衝突深さを制御する作用を奏する。しかし、モールド側面のメニスカス面の溶鋼表面の揺れを効果的に制御するために、モールド溶鋼表面領域の一対の水平磁極に十分に大きな磁場強度を加える必要がある。そうすると、モールドの大部分の領域の溶鋼表面の流速が遅くなりすぎ、溶鋼と保護溶融パウダーとの熱交換を大幅に低下させ、保護溶融パウダーの溶解及び不純物の吸着に不利である。 In a two-stage electromagnetic brake device (for example, a Chinese patent application with the application number: 98801009.7), a stationary magnetic field is generated by a pair of horizontal magnetic poles arranged in a mold molten steel surface area and a pair of horizontal magnetic poles positioned below a submerged nozzle. By doing so, it has the effect of controlling the shaking of the molten steel surface of the mold and the collision depth of the molten steel. However, in order to effectively control the fluctuation of the molten steel surface on the meniscus surface of the mold side surface, it is necessary to apply a sufficiently large magnetic field strength to the pair of horizontal magnetic poles in the mold molten steel surface region. In that case, the flow velocity of the molten steel surface in most regions of the mold becomes too low, greatly reducing the heat exchange between the molten steel and the protective molten powder, which is disadvantageous for melting the protective molten powder and adsorbing impurities.

また、一段式電磁ブレーキ装置及び二段式電磁ブレーキ装置では、両方とも、水平磁極の高さ方向での位置は、調整不可であり、連続鋳造の過程において、ノズル浸漬深さ、ノズルでの流れ角度、液面高さ及び引き伸ばし速度等のプロセスパラメータが変化すると、水平磁極とプロセスパラメータとのマッチング関係も変化するため、合理的で最適なマッチング関係を常時維持できず、電磁ブレーキの冶金効果を大きく影響し、さらに、不純物、気泡等の異種物質の浮きが抑制される。 In both the one-stage electromagnetic brake device and the two-stage electromagnetic brake device, the position of the horizontal magnetic pole in the height direction cannot be adjusted. When the process parameters such as angle, liquid level, and stretching speed change, the matching relationship between the horizontal magnetic pole and the process parameters also changes, so that a reasonable and optimal matching relationship cannot always be maintained, and the metallurgical effect of the electromagnetic brake is reduced. This has a great effect, and furthermore, floating of foreign substances such as impurities and bubbles is suppressed.

中国特許200810011104.7にも電磁ブレーキ装置を開示している。該電磁ブレーキ装置は、モールドの両側面の近くにモールドの高さ方向に沿って2対の縦型磁極が配置され、縦型磁極がモールド側面の近くの溶鋼表面領域及びノズルでの流れ衝突領域を覆い、定常磁場を発生し、2対の縦型磁極が発生する定常磁場によりモールドのメニスカス面の近くの溶鋼表面の揺れ及びノズルでの流れ衝突点領域の流れを制御し、該電磁ブレーキ装置のモールド側面の近い領域に対するブレーキ効果は、連続鋳造のプロセスパラメータの変化による影響が小さい。しかし、該電磁ブレーキ装置は、モールド側面に半分に取り巻かれた2つの継鉄、磁極及び励磁コイルから構成される。縦型磁極は、モールドの幅広面方向での幅に制限があり、モールドの幅が比較的大きい場合に、モールドの中心領域での定常磁場強度が比較的弱く、モールドの中心領域での下還流溶鋼の衝突深さを効果的に制御できないため、不純物、気泡等の異種物質の浮きに不利である。 Chinese patent 200810011104.7 also discloses an electromagnetic brake device. In the electromagnetic brake device, two pairs of vertical magnetic poles are arranged along the height direction of the mold near both side surfaces of the mold, and the vertical magnetic poles are arranged in a molten steel surface region near the mold side surface and a flow collision region with a nozzle. The electromagnetic brake device controls the shaking of the molten steel surface near the meniscus surface of the mold and the flow in the flow collision point region at the nozzle by the steady magnetic field generated by the two pairs of vertical magnetic poles. The effect of the brake on the area near the mold side surface is less affected by changes in the process parameters of continuous casting. However, the electromagnetic brake device is composed of two yoke, a magnetic pole and an exciting coil which are halved around the mold side. The vertical magnetic pole has a limited width in the direction of the wide surface of the mold, and when the width of the mold is relatively large, the steady magnetic field intensity in the center region of the mold is relatively weak, and the lower return flow in the center region of the mold. Since the collision depth of molten steel cannot be effectively controlled, it is disadvantageous for floating foreign substances such as impurities and bubbles.

上記問題を解決するために、本発明は、連続鋳造モールド内の溶鋼の流れを制御する新規な縦型電磁ブレーキ装置を提供する。該縦型電磁ブレーキ装置は、ノズルから流出した溶鋼のモールド側面に対する衝突及びメニスカス面での溶鋼表面の流れを抑制すると共に、モールドの中心領域での溶鋼の流れを制御でき、モールドの中心領域での溶鋼表面の流速が遅くなること、及び溶鋼の流れによる衝突深さが深くなりすぎることを回避し、溶鋼表面の揺れ及びパウダーの巻き込みを抑制し、不純物、気泡等の異種物質の浮きを促進できる。さらに、プロセスパラメータの変化が電磁ブレーキの冶金効果に与える影響が小さい。 In order to solve the above problems, the present invention provides a novel vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold. The vertical electromagnetic brake device can suppress the collision of the molten steel flowing out of the nozzle against the mold side surface and the flow of the molten steel surface on the meniscus surface, and can control the flow of the molten steel in the central region of the mold. Avoids slowing the flow velocity on the molten steel surface and preventing the collision depth due to the flow of molten steel from becoming too deep, suppresses the shaking of the molten steel surface and powder entrapment, and promotes the floating of foreign substances such as impurities and bubbles. it can. Further, the influence of the change in the process parameter on the metallurgical effect of the electromagnetic brake is small.

上記目的を実現するためには、本発明は、以下の技術案を採用する。連続鋳造モールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置であって、水平磁極、励磁コイル、縦型磁極及び継鉄を含み、上記水平磁極は一対設けられ、縦型磁極は二対設けられ、一対の上記水平磁極は浸漬式ノズルの下に位置し、且つモールドの幅広面に沿って配置され、二対の上記縦型磁極はそれぞれモールドの両側面領域の近くに配置され、二対の縦型磁極は一対の水平磁極と交差しており、上記励磁コイル及び継鉄は、共に水平磁極に取り付けられ、励磁コイルにより電流を加えて水平磁極と縦型磁極との間に定常磁場を発生させ、モールド内を流れている溶鋼は定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置。 In order to achieve the above object, the present invention employs the following technical solutions. A vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold, comprising a horizontal magnetic pole, an exciting coil, a vertical magnetic pole and a yoke, wherein the horizontal magnetic pole is provided in a pair, and the vertical magnetic pole is provided in two pairs. A pair of said horizontal magnetic poles are located below the immersion nozzle and are arranged along the wide surface of the mold; two pairs of said vertical magnetic poles are respectively arranged near both side regions of the mold; The vertical magnetic pole intersects a pair of horizontal magnetic poles, and the excitation coil and the yoke are both attached to the horizontal magnetic pole, and a current is applied by the excitation coil to generate a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole. A vertical electromagnetic brake device that generates and receives molten steel flowing in the mold when passing a steady magnetic field, and receives an electromagnetic force opposite to the flow direction of the molten steel, and controls the flow of the molten steel in the mold by the electromagnetic force.

連続鋳造モールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置であって、水平磁極、励磁コイル、縦型磁極及び継鉄を含み、上記水平磁極及び縦型磁極は共に二対設けられ、一対の上記水平磁極は浸漬式ノズルの下に位置し、且つモールドの幅広面に沿って配置され、下部水平磁極と記し、もう一対の上記水平磁極はモールド内の溶鋼表面の近くに位置し、且つモールドの幅広面に沿って配置され、上部水平磁極と記し、二対の上記縦型磁極はそれぞれモールドの両側面領域の近くに配置され、二対の縦型磁極は二対水平磁極と交差しており、上記励磁コイル及び継鉄は共に水平磁極に取り付けられ、励磁コイルにより電流を加えて水平磁極と縦型磁極との間に定常磁場を発生させ、モールド内を流れている溶鋼は定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置。 A vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold, including a horizontal magnetic pole, an exciting coil, a vertical magnetic pole and a yoke, wherein the horizontal magnetic pole and the vertical magnetic pole are both provided in two pairs, The horizontal pole is located below the immersion nozzle and is located along the wide surface of the mold, designated as the lower horizontal pole, and another pair of the horizontal poles is located near the molten steel surface in the mold, and Located along the wide surface of the mold, denoted as the upper horizontal pole, two pairs of the vertical poles are respectively located near the sides of the mold, and two pairs of vertical poles intersect with the two horizontal poles. The exciting coil and the yoke are both attached to a horizontal magnetic pole, and a current is applied by the exciting coil to generate a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole. When you pass Receiving the electromagnetic force opposite to the molten steel flowing direction, the vertical electromagnetic brake device for controlling the flow of molten steel in the mold by electromagnetic force.

二対の上記縦型磁極と一対の水平磁極との交差箇所での接続方式は以下の通りである。
(1)縦型磁極は水平磁極に垂直に嵌合される。
(2)縦型磁極はそれぞれ水平磁極の上面及び下面において水平磁極に垂直に接続される。
(3)縦型磁極は水平磁極の上面のみにおいて水平磁極に垂直に接続される。
(4)縦型磁極は水平磁極の下面のみにおいて水平磁極に垂直に接続される。
The connection method at the intersection of the two pairs of vertical magnetic poles and the pair of horizontal magnetic poles is as follows.
(1) The vertical magnetic pole is fitted vertically to the horizontal magnetic pole.
(2) The vertical magnetic poles are vertically connected to the horizontal magnetic poles on the upper and lower surfaces of the horizontal magnetic poles, respectively.
(3) The vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the upper surface of the horizontal magnetic pole.
(4) The vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the lower surface of the horizontal magnetic pole.

二対の上記縦型磁極と二対の水平磁極との交差箇所での接続方式は以下の通りである。
(1)縦型磁極はそれぞれ上部水平磁極及び下部水平磁極に垂直に嵌合される。
(2)縦型磁極は下部水平磁極のみに垂直に嵌合される。
(3)縦型磁極は上部水平磁極のみに垂直に嵌合される。
(4)縦型磁極は上部水平磁極に垂直に嵌合され、且つ縦型磁極は下部水平磁極の下面において水平磁極に垂直に接続される。
(5)縦型磁極はそれぞれ下部水平磁極の上面及び下面において水平磁極に垂直に接続される。
(6)縦型磁極は下部水平磁極の上面のみにおいて水平磁極に垂直に接続される。
(7)縦型磁極は上部水平磁極の下面のみにおいて水平磁極に垂直に接続され、且つ縦型磁極は下部水平磁極の下面において水平磁極に垂直に接続される。
(8)縦型磁極は上部水平磁極の下面のみにおいて水平磁極に垂直に接続される。
The connection method at the intersection of the two pairs of vertical magnetic poles and the two pairs of horizontal magnetic poles is as follows.
(1) The vertical magnetic poles are vertically fitted to the upper horizontal magnetic pole and the lower horizontal magnetic pole, respectively.
(2) The vertical magnetic pole is fitted vertically only to the lower horizontal magnetic pole.
(3) The vertical magnetic pole is fitted vertically only to the upper horizontal magnetic pole.
(4) The vertical magnetic pole is vertically fitted to the upper horizontal magnetic pole, and the vertical magnetic pole is vertically connected to the horizontal magnetic pole on the lower surface of the lower horizontal magnetic pole.
(5) The vertical magnetic poles are vertically connected to the horizontal magnetic poles on the upper and lower surfaces of the lower horizontal magnetic pole, respectively.
(6) The vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the upper surface of the lower horizontal magnetic pole.
(7) The vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the lower surface of the upper horizontal magnetic pole, and the vertical magnetic pole is vertically connected to the horizontal magnetic pole on the lower surface of the lower horizontal magnetic pole.
(8) The vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the lower surface of the upper horizontal magnetic pole.

上記縦型磁極の高さは、モールド内の溶鋼表面の上方100mmから下へ1000mmまでの領域を覆うように設置される。 The height of the vertical magnetic pole is set so as to cover a region from 100 mm above the molten steel surface in the mold to 1000 mm below the surface.

上記縦型磁極の幅範囲は50mm〜400mmである 。 The width range of the vertical magnetic pole is 50 mm to 400 mm.

上記水平磁極と縦型磁極との間の定常磁場の磁気誘導は0.01T〜3Tである。 The magnetic induction of the steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole is 0.01T to 3T.

モールド幅の調整変化及び溶鋼流れの制御の必要に応じて、モールドの幅方向において、上記縦型磁極と水平磁極との接続位置は自由に選択する。 The connection position between the vertical magnetic pole and the horizontal magnetic pole in the width direction of the mold can be freely selected according to the need for adjusting the mold width and controlling the flow of molten steel.

本発明の縦型磁極は、多種の接続方式で水平磁極に接続することができ、励磁コイルを設ける必要がなく、水平磁極での励磁コイルのみにより水平磁極と縦型磁極との間に定常磁場を発生させる。 The vertical magnetic pole of the present invention can be connected to the horizontal magnetic pole by various connection methods, and there is no need to provide an exciting coil, and only the exciting coil at the horizontal magnetic pole causes a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole. Generate.

本発明は、二対の縦型磁極と一対の水平磁極又は二対の水平磁極との交差により定常磁場を発生させ、モールドの高さ方向に沿って、二対の縦型磁極によりモールドの両側面の近くの溶鋼表面及び初期凝固シェルの先端領域を覆うことができ、モールド側面の近くの、溶鋼表面からノズルでの流れの衝突領域及び水平磁極下方の溶鋼の流れ領域までを制御できることにより、ノズルから流出した溶鋼がモールド側面に衝突する前に磁場の抑制を受けてモールド側面に対する衝突及び溶鋼表面の揺れを減軽し、モールド側面のメニスカス面領域の溶鋼揺れ及びパウダーの巻き込みを制御し、初期凝固シェルの不純物及び気泡に対する捕獲を減少し、粗材の連続鋳造の品質を高めることができる。 The present invention provides a stationary magnetic field generated by the intersection of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles or two pairs of horizontal magnetic poles, and along the height direction of the mold, two pairs of vertical magnetic poles on both sides of the mold. By covering the molten steel surface near the surface and the tip region of the early solidification shell, and being able to control the molten steel surface from the molten steel surface near the mold side to the collision area of the flow at the nozzle and the molten steel flow area below the horizontal magnetic pole, Before the molten steel flowing out of the nozzle collides with the mold side surface, the magnetic field is suppressed to reduce the collision with the mold side surface and the sway of the molten steel surface, control the swaying of the molten steel in the meniscus surface region of the mold side surface and the entrainment of the powder, The capture of impurities and bubbles in the initially solidified shell can be reduced and the quality of the continuous casting of the coarse material can be improved.

本発明の縦型磁極の高さは、モールド内の溶鋼表面の上方100mmから下へ1000mmまでの領域を覆うように設置される。つまり、モールド側面の近くの溶鋼表面の上方から浸漬式ノズルの下方の一定の深さまでの領域を覆うことができる。このようにして、連続鋳造の過程において、ノズル浸漬深さ、ノズルでの流れ角度、液面高さ及び引き伸ばし速度等のプロセスパラメータが変化したとしても、モールド側面の近くの溶鋼流れは、縦型磁極が覆う領域内に常時あるため、モールド側面の近くの溶鋼表面の揺れ及び溶鋼の衝突深さを効果的に制御することができ、そのブレーキ効果は、プロセスパラメータの変化による影響が小さくなる。 The height of the vertical magnetic pole of the present invention is set so as to cover an area from 100 mm above the molten steel surface in the mold to 1000 mm below. That is, it is possible to cover a region from above the molten steel surface near the mold side surface to a certain depth below the immersion nozzle. Thus, in the process of continuous casting, even if process parameters such as the nozzle immersion depth, the flow angle at the nozzle, the liquid level, and the stretching speed change, the molten steel flow near the mold side surface is vertical. Since it is always in the area covered by the magnetic poles, the sway of the molten steel surface near the mold side surface and the collision depth of the molten steel can be effectively controlled, and the braking effect thereof is less affected by changes in process parameters.

本発明では、二対の縦型磁極と一対の水平磁極との交差により定常磁場を発生する場合に、モールドの幅広面に配置される水平磁極によりモールドの中心領域での溶鋼が下に流れることを制御し、溶鋼の衝突深さを減少することにより、不純物及び気泡の浮きを促進する目的を達成する。 In the present invention, when a stationary magnetic field is generated by the intersection of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles, the molten steel in the central region of the mold flows downward due to the horizontal magnetic poles arranged on the wide surface of the mold. The purpose of the present invention is to reduce the collision depth of molten steel and thereby to promote the floating of impurities and bubbles.

発明采では、二対の縦型磁極と二対の水平磁極との交差により定常磁場を発生する場合に、縦型磁極は、モールドの溶鋼表面の近くにある一対の水平磁極と合わせて使用できる。縦型磁極と水平磁極との接続方式を確定した後、縦型磁極の磁場強度を増加することにより、モールド側面のメニスカス面での流れを制御し、メニスカス面での溶鋼表面の揺れ及びパウダーの巻き込みを防止できる。また、相対的に上部水平磁極の磁場強度を減少させるか又は上部水平磁極に電流を加えることなく、モールド内の中心領域での溶鋼表面の揺れを適当に制御することにより、溶鋼表面に一定の流速及び熱交換の能力を保持することができ、保護溶融パウダーの溶解及び不純物の吸着に有利であり、良好な電磁ブレーキ効果を得ることができる。 According to the invention, the vertical magnetic pole can be used in combination with a pair of horizontal magnetic poles near the molten steel surface of the mold when a stationary magnetic field is generated by the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles. . After determining the connection method between the vertical magnetic pole and the horizontal magnetic pole, the flow on the meniscus surface of the mold side is controlled by increasing the magnetic field strength of the vertical magnetic pole, and the fluctuation of the molten steel surface on the meniscus surface and the powder Entanglement can be prevented. Also, by appropriately controlling the swing of the molten steel surface in the central region in the mold without relatively reducing the magnetic field strength of the upper horizontal magnetic pole or applying current to the upper horizontal magnetic pole, a constant The flow rate and heat exchange ability can be maintained, which is advantageous for dissolving the protective molten powder and adsorbing impurities, and can obtain a good electromagnetic braking effect.

図1は、本発明の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置(一対の水平磁極が設けられた)の構造模式図である。FIG. 1 is a schematic structural view of a vertical electromagnetic brake device (provided with a pair of horizontal magnetic poles) for controlling the flow of molten steel in a continuous casting mold according to the present invention. 図2は、図1の縦型電磁ブレーキ装置のモールド内の溶鋼流れ及び磁極配置の模式図である。FIG. 2 is a schematic view of a flow of molten steel and a magnetic pole arrangement in a mold of the vertical electromagnetic brake device of FIG. 図3(a)は、図1の縦型電磁ブレーキ装置の二対の縦型磁極と一対の水平磁極との交差箇所での接続方式の模式図(縦型磁極が水平磁極に垂直に嵌合される)である。Fig. 3 (a) is a schematic diagram of a connection method at a crossing point of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 1 (the vertical magnetic poles are vertically fitted to the horizontal magnetic poles). Is). 図3(b)は、図1の縦型電磁ブレーキ装置の二対の縦型磁極と一対の水平磁極との交差箇所での接続方式の模式図(縦型磁極がそれぞれ水平磁極の上面及び下面において水平磁極に垂直に接続される)である。FIG. 3 (b) is a schematic diagram of a connection system at the intersection of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles of the vertical electromagnetic brake device of FIG. 1 (the vertical magnetic poles are the upper and lower surfaces of the horizontal magnetic pole, respectively). Is connected vertically to the horizontal magnetic pole). 図3(c)は、図1の縦型電磁ブレーキ装置の二対の縦型磁極と一対の水平磁極との交差箇所での接続方式の模式図(縦型磁極が水平磁極の上面のみにおいて水平磁極に垂直に接続される)である。FIG. 3 (c) is a schematic diagram of a connection method at the intersection of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles of the vertical electromagnetic brake device of FIG. 1 (the vertical magnetic poles are horizontal only on the upper surface of the horizontal magnetic poles). Perpendicular to the magnetic poles). 図3(d)は、図1の縦型電磁ブレーキ装置の二対の縦型磁極と一対の水平磁極との交差箇所での接続方式の模式図(縦型磁極が水平磁極の下面のみにおいて水平磁極に垂直に接続される)である。FIG. 3 (d) is a schematic diagram of a connection method at the intersection of two pairs of vertical magnetic poles and a pair of horizontal magnetic poles of the vertical electromagnetic brake device of FIG. 1 (the vertical magnetic poles are horizontal only at the lower surface of the horizontal magnetic poles). Perpendicular to the magnetic poles). 図4は、本発明の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置(二対の水平磁極が設けられる)の構造模式図である。FIG. 4 is a schematic structural view of a vertical electromagnetic brake device (provided with two pairs of horizontal magnetic poles) for controlling the flow of molten steel in a continuous casting mold according to the present invention. 図5(a)は、図4の縦型電磁ブレーキ装置のモールド内の溶鋼流れと磁極の配置の模式図(モールドの幅広面方向)である。FIG. 5 (a) is a schematic view (in the wide surface direction of the mold) of the flow of molten steel and the arrangement of magnetic poles in the mold of the vertical electromagnetic brake device of FIG. 図5(b)は、図4の縦型電磁ブレーキ装置のモールド内の溶鋼流れと磁極の配置の模式図(モールドの幅狭面方向)である。FIG. 5 (b) is a schematic view (in the narrow surface direction of the mold) of the flow of molten steel and the arrangement of magnetic poles in the mold of the vertical electromagnetic brake device of FIG. 図6(a)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極がそれぞれ上部水平磁極及び下部水平磁極に垂直に嵌合される )である。Fig. 6 (a) is a schematic view of a connection method at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (the vertical magnetic poles are upper horizontal magnetic poles and lower horizontal magnetic poles, respectively). It is fitted perpendicularly to the magnetic pole. 図6(b)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が下部水平磁極のみに垂直に嵌合される )である。Fig. 6 (b) is a schematic diagram of the connection method at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (vertical magnetic poles are vertically connected only to the lower horizontal magnetic poles). Are fitted). 図6(c)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が上部水平磁極のみに垂直に嵌合される )である。Fig. 6 (c) is a schematic diagram of the connection method at the intersection of the two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (the vertical magnetic poles are perpendicular to only the upper horizontal magnetic poles). Are fitted). 図6(d)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が上部水平磁極に垂直に嵌合され、縦型磁極が下部水平磁極の下面において水平磁極に垂直に接続される)である。Fig. 6 (d) is a schematic diagram of a connection method at an intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (the vertical magnetic poles are fitted vertically to the upper horizontal magnetic poles). And the vertical magnetic pole is vertically connected to the horizontal magnetic pole on the lower surface of the lower horizontal magnetic pole). 図6(e)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極がそれぞれ下部水平磁極の上面及び下面において水平磁極に垂直に接続される)である。FIG. 6 (e) is a schematic diagram of a connection system at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of FIG. Vertically connected to the horizontal magnetic pole on the lower surface). 図6(f)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が下部水平磁極の上面のみにおいて水平磁極に垂直に接続される)である。Fig. 6 (f) is a schematic diagram of the connection method at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (where the vertical magnetic poles are only on the upper surface of the lower horizontal magnetic poles). Vertically connected to the horizontal magnetic pole). 図6(g)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が上部水平磁極の下面において水平磁極に垂直に接続され、縦型磁極が下部水平磁極の下面において水平磁極に垂直に接続される)である。Fig. 6 (g) is a schematic diagram of a connection method at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (the vertical magnetic poles are horizontal at the lower surface of the upper horizontal magnetic pole). The vertical magnetic pole is vertically connected to the horizontal magnetic pole at the lower surface of the lower horizontal magnetic pole. 図6(h)は、図4の縦型電磁ブレーキ装置の二対の縦型磁極と二対水平磁極との交差箇所での接続方式の模式図(縦型磁極が上部水平磁極の下面のみにおいて水平磁極に垂直に接続される)である。Fig. 6 (h) is a schematic diagram of a connection method at the intersection of two pairs of vertical magnetic poles and two pairs of horizontal magnetic poles of the vertical electromagnetic brake device of Fig. 4 (where the vertical magnetic poles are only on the lower surface of the upper horizontal magnetic pole). Vertically connected to the horizontal magnetic pole). 図7は、モールド側面の中心断面の縦型磁極中心の高さ方向に沿う磁場分布図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 7 is a magnetic field distribution diagram (using the vertical electromagnetic brake device of FIG. 1) along the height direction of the center of the vertical magnetic pole at the center cross section of the side surface of the mold. 図8(a)は、電磁ブレーキがない場合の、モールド側面の近くの溶融金属の液面揺れの状況図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 8 (a) is a diagram showing the state of the liquid surface sway of the molten metal near the side surface of the mold without the electromagnetic brake (using the vertical electromagnetic brake device of FIG. 1). 図8(b)は、電磁ブレーキがある場合の、モールド側面の近くの溶融金属の液面揺れの状況図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 8 (b) is a diagram showing the state of the liquid level fluctuation of the molten metal near the side surface of the mold when the electromagnetic brake is provided (using the vertical electromagnetic brake device of FIG. 1). 図9は、850Aの電流を加える時のモールド内の溶鋼内部の磁場分布図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 9 is a magnetic field distribution diagram inside the molten steel in the mold when a current of 850 A is applied (using the vertical electromagnetic brake device of FIG. 1). 図10(a)は、電磁ブレーキがない場合の、モールド側面の中心断面の溶鋼の流れ場分布図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 10 (a) is a flow field distribution diagram of molten steel in the center cross section of the mold side surface when the electromagnetic brake is not provided (the vertical electromagnetic brake device of FIG. 1 is employed). 図10(b)は、電磁ブレーキがある場合の、モールド側面の中心断面の溶鋼の流れ場分布図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 10 (b) is a flow field distribution diagram of molten steel in the center cross section of the mold side surface when the electromagnetic brake is provided (using the vertical electromagnetic brake device of FIG. 1). 図11は、電磁ブレーキがある/ない場合の、モールド側面の中心断面の溶鋼表面の流速分布図(図1の縦型電磁ブレーキ装置を採用する)である。FIG. 11 is a flow velocity distribution diagram (using the vertical electromagnetic brake device of FIG. 1) of the molten steel surface at the center cross section of the mold side surface with / without the electromagnetic brake.

1-水平磁極,2-励磁コイル,3-縦型磁極,4-浸漬式ノズル,5-継鉄,6-溶鋼表面,7-モールド,8-凝固シェル 1-horizontal pole, 2-excitation coil, 3-vertical pole, 4-immersion nozzle, 5-yoke, 6-molten steel surface, 7-mold, 8-solidified shell

以下、図面及び実施例を接続して本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments.

図1、2に示すように、連続鋳造のモールド内の溶鋼流れを制御する縦型電磁ブレーキ装置は、水平磁極1、励磁コイル2、縦型磁極3及び継鉄5を含み、上記水平磁極1が一対設けられ、縦型磁極3が二対設けられる。一対の上記水平磁極1は浸漬式ノズル4の下に位置し、且つモールド7の幅広面に沿って配置され、二対の上記縦型磁極3はそれぞれモールド7の両側面領域の近くに配置され、二対の縦型磁極3は一対の水平磁極1と交差する。上記励磁コイル2及び継鉄5は共に水平磁極1に取り付けられ、励磁コイル2により電流を加えて水平磁極1と縦型磁極3との間に定常磁場を発生させ、モールド7内を流れている溶鋼は、定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド7内の溶鋼流れを制御する。 As shown in FIGS. 1 and 2, the vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold includes a horizontal magnetic pole 1, an exciting coil 2, a vertical magnetic pole 3, and a yoke 5, and the horizontal magnetic pole 1 Are provided, and two pairs of vertical magnetic poles 3 are provided. The pair of horizontal magnetic poles 1 are located below the immersion nozzle 4 and are arranged along the wide surface of the mold 7, and the two pairs of the vertical magnetic poles 3 are arranged near both side areas of the mold 7, respectively. , Two pairs of vertical magnetic poles 3 intersect with a pair of horizontal magnetic poles 1. The exciting coil 2 and the yoke 5 are both attached to the horizontal magnetic pole 1, apply a current by the exciting coil 2 to generate a steady magnetic field between the horizontal magnetic pole 1 and the vertical magnetic pole 3, and flow through the mold 7. The molten steel receives an electromagnetic force opposite to the flow direction of the molten steel when passing through the steady magnetic field, and controls the flow of the molten steel in the mold 7 by the electromagnetic force.

図4、5(a)、5(b)に示すように、連続鋳造のモールド内の溶鋼流れを制御する縦型電磁ブレーキ装置は、水平磁極1、励磁コイル2、縦型磁極3及び継鉄5を含む。上記水平磁極1及び縦型磁極3は共に二対が設けられる。一対の上記水平磁極1は浸漬式ノズル4の下に位置し且つモールド7の幅広面に沿って配置され、下部水平磁極1と呼ばれる。もう一対の上記水平磁極1はモールド7内の溶鋼表面6の近くに位置し且つモールド7の幅広面に沿って配置され、上部水平磁極1と呼ばれる。二対の上記縦型磁極3は、それぞれモールド7の両側面領域の近くに位置し、二対の縦型磁極3は二対の水平磁極1と交差する。上記励磁コイル2及び継鉄5は共に水平磁極1に取り付けられ、励磁コイル2により電流を加えて水平磁極1と縦型磁極3との間に定常磁場を発生させ、モールド7内を流れている溶鋼は、定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド7内の溶鋼流れを制御する。 As shown in FIGS. 4, 5 (a) and 5 (b), a vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold includes a horizontal magnetic pole 1, an exciting coil 2, a vertical magnetic pole 3, and a yoke. Including 5. The horizontal magnetic pole 1 and the vertical magnetic pole 3 are both provided in two pairs. The pair of horizontal magnetic poles 1 is located below the immersion nozzle 4 and is arranged along the wide surface of the mold 7 and is called a lower horizontal magnetic pole 1. Another pair of the horizontal magnetic poles 1 is located near the molten steel surface 6 in the mold 7 and is arranged along the wide surface of the mold 7 and is called an upper horizontal magnetic pole 1. The two pairs of the vertical magnetic poles 3 are located near both side surfaces of the mold 7, respectively, and the two pairs of the vertical magnetic poles 3 intersect with the two pairs of the horizontal magnetic poles 1. The exciting coil 2 and the yoke 5 are both attached to the horizontal magnetic pole 1, apply a current by the exciting coil 2 to generate a steady magnetic field between the horizontal magnetic pole 1 and the vertical magnetic pole 3, and flow through the mold 7. The molten steel receives an electromagnetic force opposite to the flow direction of the molten steel when passing through the steady magnetic field, and controls the flow of the molten steel in the mold 7 by the electromagnetic force.

図3(a)〜3(d)に示すように、二対の上記縦型磁極3と一対の水平磁極1との交差箇所での接続方式は以下の通りである。
(1)縦型磁極3は水平磁極1に垂直に嵌合される。
(2)縦型磁極3はそれぞれ水平磁極1の上面及び下面において水平磁極1に垂直に接続される。
(3)縦型磁極3は水平磁極1の上面のみにおいて水平磁極1に垂直に接続される。
(4)縦型磁極3は水平磁極1の下面のみにおいて水平磁極1に垂直に接続される。
As shown in FIGS. 3 (a) to 3 (d), the connection method at the intersection of the two pairs of vertical magnetic poles 3 and the pair of horizontal magnetic poles 1 is as follows.
(1) The vertical magnetic pole 3 is vertically fitted to the horizontal magnetic pole 1.
(2) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 on the upper surface and the lower surface of the horizontal magnetic pole 1, respectively.
(3) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 only on the upper surface of the horizontal magnetic pole 1.
(4) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 only on the lower surface of the horizontal magnetic pole 1.

図6(a)〜6(h)に示すように、二対の上記縦型磁極3と二対の水平磁極1との交差箇所での接続方式は以下の通りである。
(1)縦型磁極3はそれぞれ上部水平磁極1及び下部水平磁極1に垂直に嵌合される。
(2)縦型磁極3は下部水平磁極1のみに垂直に嵌合される。
(3)縦型磁極3は上部水平磁極1のみに垂直に嵌合される。
(4)縦型磁極3は上部水平磁極1に垂直に嵌合され、且つ縦型磁極3は下部水平磁極1の下面において水平磁極1に垂直に接続される。
(5)縦型磁極3はそれぞれ下部水平磁極1の上面及び下面において水平磁極1に垂直に接続される。
(6)縦型磁極3は下部水平磁極1の上面のみにおいて水平磁極1に垂直に接続される。
(7)縦型磁極3は上部水平磁極1の下面のみにおいて水平磁極1に垂直に接続され、且つ縦型磁極3は下部水平磁極1の下面において水平磁極1に垂直に接続される。
(8)縦型磁極3は上部水平磁極1の下面のみにおいて水平磁極1に垂直に接続される。
As shown in FIGS. 6 (a) to 6 (h), the connection method at the intersection of the two pairs of vertical magnetic poles 3 and the two pairs of horizontal magnetic poles 1 is as follows.
(1) The vertical magnetic poles 3 are vertically fitted to the upper horizontal magnetic pole 1 and the lower horizontal magnetic pole 1, respectively.
(2) The vertical magnetic pole 3 is fitted vertically to the lower horizontal magnetic pole 1 only.
(3) The vertical magnetic pole 3 is fitted vertically to the upper horizontal magnetic pole 1 only.
(4) The vertical magnetic pole 3 is vertically fitted to the upper horizontal magnetic pole 1, and the vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 on the lower surface of the lower horizontal magnetic pole 1.
(5) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 on the upper surface and the lower surface of the lower horizontal magnetic pole 1, respectively.
(6) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 only on the upper surface of the lower horizontal magnetic pole 1.
(7) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 only on the lower surface of the upper horizontal magnetic pole 1, and the vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 on the lower surface of the lower horizontal magnetic pole 1.
(8) The vertical magnetic pole 3 is vertically connected to the horizontal magnetic pole 1 only on the lower surface of the upper horizontal magnetic pole 1.

上記縦型磁極3の高さは、モールド7内の溶鋼表面6の上方100mmから下へ1000mmまでの領域を覆うように設置される。 The height of the vertical magnetic pole 3 is set so as to cover a region from 100 mm above the molten steel surface 6 in the mold 7 to 1000 mm below.

上記縦型磁極3の幅範囲は50mm〜400mmである。 The width range of the vertical magnetic pole 3 is 50 mm to 400 mm.

上記水平磁極1と縦型磁極3との間の定常磁場の磁気誘導は0.01T〜3Tである。 The magnetic induction of the steady magnetic field between the horizontal magnetic pole 1 and the vertical magnetic pole 3 is 0.01T to 3T.

モールド7幅の調整変化及び溶鋼流れの制御の必要に応じて、モールド7の幅方向において、上記縦型磁極3と水平磁極1との接続位置は自由に選択する。 The connection position of the vertical magnetic pole 3 and the horizontal magnetic pole 1 in the width direction of the mold 7 is freely selected according to the need for adjusting the width of the mold 7 and controlling the flow of molten steel.

実施例1
本実施例において、図1の縦型電磁ブレーキ装置を採用し、縦型磁極3と水平磁極1は、図3(a)の接続方式を採用する。縦型磁極3の高さは、モールド7側面の、溶鋼表面6の領域から浸漬式ノズル4から流出した溶鋼の衝突点までの領域及び水平磁極1の下方領域を覆うように設置される。モールド7の断面サイズは300mm×50mmであり、縦型磁極3の高さは240mmである。
Example 1
In the present embodiment, the vertical electromagnetic brake device shown in FIG. 1 is adopted, and the vertical magnetic pole 3 and the horizontal magnetic pole 1 adopt the connection method shown in FIG. The height of the vertical magnetic pole 3 is set so as to cover the region from the region of the molten steel surface 6 on the side surface of the mold 7 to the collision point of the molten steel flowing out of the immersion nozzle 4 and the region below the horizontal magnetic pole 1. The cross-sectional size of the mold 7 is 300 mm × 50 mm, and the height of the vertical magnetic pole 3 is 240 mm.

水平磁極1の励磁コイル2にそれぞれ700A及び1050Aの電流を加え、モールド側面の中心断面の縦型磁極中心の高さ方向に沿う磁場分布図を図7に示す。 FIG. 7 shows a magnetic field distribution diagram along the height direction of the center of the vertical magnetic pole in the center cross section of the mold side surface when currents of 700 A and 1050 A are applied to the exciting coil 2 of the horizontal magnetic pole 1, respectively.

図7に示すように、電流強度の増加に伴い、磁気誘導は増加し、水平磁極1が覆う領域の中心に最大となり、加えた電流が700Aから1050Aに増加する時に、水平磁極1の中心の最大磁気誘導は0.46Tから0.52Tに増加する一方、縦型磁極3の上端及び下端、即ち、モールド7の溶鋼表面6の近く及び水平磁極1の下方において、磁気誘導は0.21T〜0.25Tである。従って、縦型磁極3は、励磁コイル2を設けない場合に、縦型磁極3と水平磁極1との接続により、水平磁極1の励磁コイル2を利用するだけで縦型磁極2が覆う領域内で強い磁場を発生でき、モールド7内の溶鋼流れを制御する目的を達成できる。 As shown in FIG. 7, as the current intensity increases, the magnetic induction increases, becomes maximum at the center of the area covered by the horizontal magnetic pole 1, and when the applied current increases from 700A to 1050A, the center of the horizontal magnetic pole 1 is increased. While the maximum magnetic induction increases from 0.46T to 0.52T, the magnetic induction is between 0.21T and 0.25T at the top and bottom of the vertical pole 3, i.e. near the molten steel surface 6 of the mold 7 and below the horizontal pole 1. is there. Therefore, when the excitation coil 2 is not provided, the vertical magnetic pole 3 is connected to the vertical magnetic pole 3 and the horizontal magnetic pole 1 so that the vertical magnetic pole 3 is covered only by using the excitation coil 2 of the horizontal magnetic pole 1. Thus, a strong magnetic field can be generated, and the purpose of controlling the flow of molten steel in the mold 7 can be achieved.

実施例2
本実施例において、図1の縦型電磁ブレーキ装置を採用する。モールド7内の液面揺れをより直観的に観察するために、テスト対象は低融点合金SnPbBiの溶融金属を使用する。縦型磁極3及び水平磁極1は図3(b)の接続方式を採用する。縦型磁極3の高さは、モールド7側面の、溶鋼表面6の領域から浸漬式ノズル4から流出した溶鋼の衝突点までの領域及び水平磁極1の下方領域を覆うように設置される。モールド7の厚さは100mmであり、モールド7の半幅は600mmであり、縦型磁極3の高さは440mmであり、浸漬式ノズル4の側孔の傾斜角は-15°であり、浸漬式ノズル4の浸漬深さは100mmであり、その引き伸ばし速度は1.27m/minである。
Example 2
In this embodiment, the vertical electromagnetic brake device shown in FIG. 1 is employed. In order to more intuitively observe the liquid level fluctuation in the mold 7, a test object uses a molten metal of a low melting point alloy SnPbBi. The vertical magnetic pole 3 and the horizontal magnetic pole 1 adopt the connection method shown in FIG. The height of the vertical magnetic pole 3 is set so as to cover the region from the region of the molten steel surface 6 on the side surface of the mold 7 to the collision point of the molten steel flowing out of the immersion nozzle 4 and the region below the horizontal magnetic pole 1. The thickness of the mold 7 is 100 mm, the half width of the mold 7 is 600 mm, the height of the vertical magnetic pole 3 is 440 mm, the inclination angle of the side hole of the immersion type nozzle 4 is -15 °, the immersion type The immersion depth of the nozzle 4 is 100 mm, and the stretching speed is 1.27 m / min.

水平磁極1の励磁コイル2に電流を加えることにより、一対の縦型磁極3の間にあるモールド7内に0.28T程度の磁場を発生させる。電磁ブレーキがある/ない場合の、モールド側面の近くの溶融金属の液面揺れの状況図を図8(a)、図8(b)に示す。 By applying a current to the exciting coil 2 of the horizontal magnetic pole 1, a magnetic field of about 0.28T is generated in the mold 7 between the pair of vertical magnetic poles 3. FIGS. 8 (a) and 8 (b) show the situation of the liquid level fluctuation of the molten metal near the mold side surface with / without the electromagnetic brake.

図8(a)から分かるように、磁場を加えない場合、即ち電磁ブレーキがない場合に、溶融金属の上還流速度が大きく、溶融金属表面が強烈な衝突及び揺れを受け、溶融金属表面の揺れ領域の幅が断面全体の約2/3に達する。図8(b)から分かるように、磁気誘導が0.28T程度に達する時に、溶融金属表面が安定し、且つ揺れが顕著に減少し、溶融金属表面の揺れ領域の幅が断面全体の1/3まで減少する。従って、本発明の縦型電磁ブレーキ装置は、モールド側面の近くの液面揺れを効果的に制御でき、パウダーの巻き込みの防止に有利である。 As can be seen from FIG. 8 (a), when no magnetic field is applied, that is, when there is no electromagnetic brake, the molten metal has a high reflux velocity, and the molten metal surface is subjected to strong collision and shaking, and the molten metal surface sways. The width of the region reaches about 2/3 of the entire cross section. As can be seen from FIG. 8 (b), when the magnetic induction reaches about 0.28T, the molten metal surface is stabilized, and the fluctuation is significantly reduced, and the width of the fluctuation area of the molten metal surface is 1/3 of the entire cross section. To decrease. Therefore, the vertical electromagnetic brake device of the present invention can effectively control the liquid level sway near the side surface of the mold, and is advantageous in preventing the powder from being entangled.

実施例3 Example 3

本実施例において、図1の縦型電磁ブレーキ装置を採用し、縦型磁極3及び水平磁極1は図3(c)の接続方式を採用し、水平磁極1の下方の縦型磁極3の高さは0mmである。縦型磁極3の高さは、モールド7側面の、溶鋼表面6の領域から浸漬式ノズル4から流出した溶鋼の衝突点までの領域及び水平磁極1の上方領域を覆うように設置される。モールド7の断面サイズは1400mm×230mmであり、浸漬式ノズル4の側孔の傾斜角は-15°であり、浸漬式ノズル4の侵入深さは170mmであり、引き伸ばし速度は1.6m/minである。 In the present embodiment, the vertical electromagnetic brake device of FIG. 1 is adopted, the vertical magnetic pole 3 and the horizontal magnetic pole 1 adopt the connection method of FIG. 3C, and the height of the vertical magnetic pole 3 below the horizontal magnetic pole 1 is increased. The height is 0mm. The height of the vertical magnetic pole 3 is set so as to cover the region from the region of the molten steel surface 6 on the side surface of the mold 7 to the collision point of the molten steel flowing out of the immersion nozzle 4 and the region above the horizontal magnetic pole 1. The cross-sectional size of the mold 7 is 1400 mm × 230 mm, the angle of inclination of the side hole of the immersion nozzle 4 is -15 °, the penetration depth of the immersion nozzle 4 is 170 mm, and the stretching speed is 1.6 m / min. is there.

水平磁極1の励磁コイル2に850Aの電流を加え、モールド7内の溶鋼内部の磁場分布図を図9に示す。電磁ブレーキがある/ない場合の、モールド側面の中心断面の溶鋼の流れ場分布図を図10(a)、図10(b)に示す。電磁ブレーキがある/ない場合の、モールド側面の中心断面の溶鋼表面の流速分布図を図11所示に示す。 A current of 850 A is applied to the exciting coil 2 of the horizontal magnetic pole 1, and the magnetic field distribution inside the molten steel in the mold 7 is shown in FIG. FIGS. 10 (a) and 10 (b) show flow field distribution diagrams of molten steel in the center section of the mold side surface with and without the electromagnetic brake. FIG. 11 shows a velocity distribution diagram of the molten steel surface at the center cross section of the mold side surface with and without the electromagnetic brake.

図9から分かるように、溶鋼における磁気誘導は、主に水平磁極1及び縦型磁極3が覆う領域に集中し、励磁コイル2が設けられた水平磁極1が覆う領域の磁気誘導が最大であり、最大値は0.356Tであり、且つ縦型磁極3が覆う領域の磁気誘導は0.2T〜0.3T程度である。従って、縦型磁極3は、励磁コイル2を設けない場合に、縦型磁極3と水平磁極1との接続により、水平磁極1の励磁コイル2を利用するだけで縦型磁極2が覆う領域内で強い磁場を発生でき、モールド7内のお溶鋼流れを制御する目的を達成できる。 As can be seen from FIG. 9, the magnetic induction in the molten steel is mainly concentrated in the area covered by the horizontal magnetic pole 1 and the vertical magnetic pole 3, and the magnetic induction in the area covered by the horizontal magnetic pole 1 provided with the excitation coil 2 is the largest. The maximum value is 0.356T, and the magnetic induction in the area covered by the vertical magnetic pole 3 is about 0.2T to 0.3T. Therefore, when the excitation coil 2 is not provided, the vertical magnetic pole 3 is connected to the vertical magnetic pole 3 and the horizontal magnetic pole 1 so that the vertical magnetic pole 3 is covered only by using the excitation coil 2 of the horizontal magnetic pole 1. Thus, a strong magnetic field can be generated, and the purpose of controlling the flow of molten steel in the mold 7 can be achieved.

図11から分かるように、電磁ブレーキの条件下で、モールド7内の溶鋼表面の最大流速は0.5m/sから0.38m/s程度に低減する。図10(b)から分かるように、水平磁極1の下方のモールド7の幅広面全体の溶鋼流れにはプラグフローが形成され、それによって下還流溶鋼の衝突深さが顕著に減少し、且つ、電磁ブレーキがない場合に形成した下還流渦心が消失し(図10(a)には、下還流渦心がはっきり見える)、不純物及び気泡の浮きに有利である。従って、本発明の縦型電磁ブレーキ装置は、モールド側面の溶鋼表面の揺れ及び溶鋼表面の流速を効果的に制御できると共に、モールド7の中心領域での溶鋼が下に流れることを制御できる。 As can be seen from FIG. 11, under the condition of the electromagnetic brake, the maximum flow velocity on the surface of the molten steel in the mold 7 is reduced from 0.5 m / s to about 0.38 m / s. As can be seen from FIG. 10 (b), a plug flow is formed in the molten steel flow over the wide surface of the mold 7 below the horizontal magnetic pole 1, whereby the collision depth of the lower reflux molten steel is significantly reduced, and The lower return vortex formed without the electromagnetic brake disappears (the lower return vortex is clearly visible in FIG. 10A), which is advantageous for floating impurities and bubbles. Therefore, the vertical electromagnetic brake device of the present invention can effectively control the fluctuation of the molten steel surface on the side surface of the mold and the flow velocity of the molten steel surface, and can also control the flow of the molten steel in the central region of the mold 7 downward.

上記実施例は本発明の保護範囲を制限するものではない。本発明の範囲内での均等な実施又は変更は、全て本発明の特許請求の範囲に含まれる。 The above embodiments do not limit the protection scope of the present invention. All equivalent implementations or modifications within the scope of the present invention are included in the claims of the present invention.

Claims (8)

連続鋳造モールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置であって、水平磁極、励磁コイル、縦型磁極及び継鉄を含み、前記水平磁極は一対設けられ、縦型磁極は二対設けられ、一対の前記水平磁極は浸漬式ノズルの下に位置し、且つモールドの幅広面に沿って配置され、二対の前記縦型磁極はそれぞれモールドの両側面領域に配置され、二対の縦型磁極は一対の水平磁極と交差しており、前記励磁コイル及び継鉄は、共に水平磁極に取り付けられ、励磁コイルにより電流を加えて水平磁極と縦型磁極との間に定常磁場を発生させ、モールド内を流れている溶鋼は定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド内の溶鋼の流れを制御する連続鋳造モールド内の溶鋼の流れを制御することを特徴とする縦型電磁ブレーキ装置。 A vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold, comprising a horizontal magnetic pole, an exciting coil, a vertical magnetic pole, and a yoke, wherein the horizontal magnetic pole is provided in a pair, and the vertical magnetic pole is provided in two pairs. A pair of said horizontal magnetic poles are located below the immersion nozzle and are arranged along the wide surface of the mold, and two pairs of said vertical magnetic poles are respectively arranged on both side regions of the mold, and two pairs of vertical magnetic poles are provided. The type magnetic pole intersects with a pair of horizontal magnetic poles, and the exciting coil and the yoke are both attached to the horizontal magnetic pole, and a current is applied by the exciting coil to generate a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole. The molten steel flowing in the mold receives the electromagnetic force opposite to the flow direction of the molten steel when passing through the steady magnetic field, and controls the flow of the molten steel in the mold by the electromagnetic force. Specially Vertical electromagnetic brake device according to. 連続鋳造モールド内の溶鋼の流れを制御する縦型電磁ブレーキ装置であって、水平磁極、励磁コイル、縦型磁極及び継鉄を含み、前記水平磁極及び縦型磁極は共に二対設けられ、一対の前記水平磁極は浸漬式ノズルの下に位置し、且つモールドの幅広面に沿って配置され、下部水平磁極と記し、もう一対の前記水平磁極は縦型磁極の上部に位置し、且つモールドの幅広面に沿って配置され、上部水平磁極と記し、二対の前記縦型磁極はそれぞれモールドの両側面領域に配置され、二対の縦型磁極は二対水平磁極と交差しており、前記励磁コイル及び継鉄は共に水平磁極に取り付けられ、励磁コイルにより電流を加えて水平磁極と縦型磁極との間に定常磁場を発生させ、モールド内を流れている溶鋼は定常磁場を通過するときに溶鋼の流れ方向と反対の電磁力を受け、電磁力によりモールド内の溶鋼の流れを制御する連続鋳造モールド内の溶鋼の流れを制御することを特徴とする縦型電磁ブレーキ装置。 A vertical electromagnetic brake device for controlling the flow of molten steel in a continuous casting mold, comprising a horizontal magnetic pole, an exciting coil, a vertical magnetic pole and a yoke, wherein the horizontal magnetic pole and the vertical magnetic pole are both provided in two pairs, The horizontal pole is located below the immersion nozzle and is located along the wide surface of the mold, designated as the lower horizontal pole, and the other pair of horizontal poles is located above the vertical pole , and Arranged along the wide surface, referred to as an upper horizontal magnetic pole, two pairs of the vertical magnetic poles are respectively disposed in both side regions of the mold, and two pairs of the vertical magnetic poles intersect with the two horizontal magnetic poles, The exciting coil and the yoke are both attached to the horizontal magnetic pole, and a current is applied by the exciting coil to generate a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole.The molten steel flowing in the mold passes through the steady magnetic field. Flow direction of molten steel Receiving the electromagnetic force opposite, vertical electromagnetic brake apparatus characterized by controlling the flow of molten steel in a continuous casting mold to control the flow of molten steel in the mold by electromagnetic force. 二対の前記縦型磁極と一対の水平磁極との交差箇所での接続方式は、
(1)縦型磁極は水平磁極に垂直に嵌合されること、
(2)縦型磁極はそれぞれ水平磁極の上面及び下面において水平磁極に垂直に接続されること、
(3)縦型磁極は水平磁極の上面のみにおいて水平磁極に垂直に接続されること、又は
(4)縦型磁極は水平磁極の下面のみにおいて水平磁極に垂直に接続されることであることを特徴とする請求項1に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。
The connection method at the intersection of the two pairs of vertical magnetic poles and the pair of horizontal magnetic poles is as follows:
(1) The vertical magnetic pole is vertically fitted to the horizontal magnetic pole,
(2) The vertical magnetic poles are vertically connected to the horizontal magnetic poles on the upper and lower surfaces of the horizontal magnetic poles, respectively.
(3) that the vertical magnetic pole is vertically connected to the horizontal magnetic pole only at the upper surface of the horizontal magnetic pole, or (4) that the vertical magnetic pole is vertically connected to the horizontal magnetic pole only at the lower surface of the horizontal magnetic pole. The vertical electromagnetic brake device for controlling a flow of molten steel in a continuous casting mold according to claim 1.
二対の前記縦型磁極と二対の水平磁極との交差箇所での接続方式は、
(1)縦型磁極はそれぞれ上部水平磁極及び下部水平磁極に垂直に嵌合されること、
(2)縦型磁極は下部水平磁極のみに垂直に嵌合されること、
(3)縦型磁極は上部水平磁極のみに垂直に嵌合されること、
(4)縦型磁極は上部水平磁極に垂直に嵌合され、且つ縦型磁極は下部水平磁極の下面において水平磁極に垂直に接続されること、
(5)縦型磁極はそれぞれ下部水平磁極の上面及び下面において水平磁極に垂直に接続されること、
(6)縦型磁極は下部水平磁極の上面のみにおいて水平磁極に垂直に接続されること、
(7)縦型磁極は上部水平磁極の下面のみにおいて水平磁極に垂直に接続され、且つ縦型磁極は下部水平磁極の下面において水平磁極に垂直に接続されること、又は
(8)縦型磁極は上部水平磁極の下面のみにおいて水平磁極に垂直に接続されることであることを特徴とする請求項2に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。
The connection method at the intersection of the two pairs of vertical magnetic poles and the two pairs of horizontal magnetic poles is as follows:
(1) The vertical magnetic poles are vertically fitted to the upper horizontal magnetic pole and the lower horizontal magnetic pole, respectively.
(2) The vertical magnetic pole is vertically fitted only to the lower horizontal magnetic pole,
(3) The vertical magnetic pole is vertically fitted only to the upper horizontal magnetic pole,
(4) the vertical magnetic pole is vertically fitted to the upper horizontal magnetic pole, and the vertical magnetic pole is vertically connected to the horizontal magnetic pole on the lower surface of the lower horizontal magnetic pole;
(5) The vertical magnetic poles are vertically connected to the horizontal magnetic poles on the upper and lower surfaces of the lower horizontal magnetic pole, respectively.
(6) the vertical poles are vertically connected to the horizontal pole only on the upper surface of the lower horizontal pole;
(7) the vertical magnetic pole is vertically connected to the horizontal magnetic pole only on the lower surface of the upper horizontal magnetic pole, and the vertical magnetic pole is vertically connected to the horizontal magnetic pole on the lower surface of the lower horizontal magnetic pole; or (8) the vertical magnetic pole The vertical electromagnetic brake device for controlling a flow of molten steel in a continuous casting mold according to claim 2, wherein the vertical direction is connected to the horizontal magnetic pole only at the lower surface of the upper horizontal magnetic pole.
前記縦型磁極の高さは、モールド内の溶鋼表面の上方100mmから下へ1000mmまでの領域を覆うように設置されることを特徴とする請求項3又は4に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。 The molten steel in the continuous casting mold according to claim 3 or 4, wherein the height of the vertical magnetic pole is set so as to cover a region from 100 mm above the molten steel surface to 1000 mm below the surface of the molten steel in the mold. A vertical electromagnetic brake device that controls the flow. 前記縦型磁極の幅範囲は50mm〜400mmであることを特徴とする請求項3又は4に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。 The vertical electromagnetic brake device for controlling a flow of molten steel in a continuous casting mold according to claim 3 or 4, wherein a width range of the vertical magnetic pole is 50 mm to 400 mm. 前記水平磁極と縦型磁極との間の定常磁場の磁気誘導は0.01T〜3Tであることを特徴とする請求項3又は4に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。 The vertical electromagnetic device for controlling the flow of molten steel in a continuous casting mold according to claim 3 or 4, wherein the magnetic induction of a steady magnetic field between the horizontal magnetic pole and the vertical magnetic pole is 0.01T to 3T. Brake device. モールド幅の調整変化及び溶鋼流れの制御の必要に応じて、モールドの幅方向において、前記縦型磁極と水平磁極との接続位置は自由に選択することを特徴とする請求項3又は4に記載の連続鋳造モールド内の溶鋼流れを制御する縦型電磁ブレーキ装置。 The connection position between the vertical magnetic pole and the horizontal magnetic pole in the width direction of the mold is freely selected according to the need for adjustment change of the mold width and control of molten steel flow, according to claim 3 or 4, wherein Vertical electromagnetic brake device that controls the flow of molten steel in a continuous casting mold.
JP2018553130A 2016-07-22 2017-06-05 Vertical electromagnetic brake system for controlling molten steel flow in continuous casting mold Active JP6637618B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610580291.5A CN106041009B (en) 2016-07-22 2016-07-22 The vertical electro-magnetic braking device of molten steel flow in a kind of control continuous cast mold
CN201610580291.5 2016-07-22
PCT/CN2017/087116 WO2018014663A1 (en) 2016-07-22 2017-06-05 Vertical electromagnetic braking device for controlling flow of molten steel in continuous casting crystallizer

Publications (2)

Publication Number Publication Date
JP2019510641A JP2019510641A (en) 2019-04-18
JP6637618B2 true JP6637618B2 (en) 2020-01-29

Family

ID=57418232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018553130A Active JP6637618B2 (en) 2016-07-22 2017-06-05 Vertical electromagnetic brake system for controlling molten steel flow in continuous casting mold

Country Status (4)

Country Link
EP (1) EP3441158B1 (en)
JP (1) JP6637618B2 (en)
CN (1) CN106041009B (en)
WO (1) WO2018014663A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041009B (en) * 2016-07-22 2017-10-31 东北大学 The vertical electro-magnetic braking device of molten steel flow in a kind of control continuous cast mold
CN109604551B (en) * 2019-01-14 2020-08-25 辽宁石油化工大学 Independent adjustable combined electromagnetic braking device and method for controlling molten steel flow
CN114734005B (en) * 2022-03-22 2024-01-26 安徽工业大学 Electromagnetic braking device and method for controlling molten steel flow in tundish
CN114833332A (en) * 2022-04-14 2022-08-02 一重集团大连工程技术有限公司 Ladle nozzle flow adjusting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726096B2 (en) * 1989-04-27 1998-03-11 川崎製鉄株式会社 Continuous casting method of steel using static magnetic field
JP3236422B2 (en) * 1992-10-16 2001-12-10 川崎製鉄株式会社 Continuous casting method of steel using magnetic field
SE503562C2 (en) * 1995-02-22 1996-07-08 Asea Brown Boveri Methods and apparatus for string casting
DE19625932A1 (en) * 1996-06-28 1998-01-08 Schloemann Siemag Ag Electromagnetic brake for a continuous casting mold
CN1234756A (en) * 1997-05-29 1999-11-10 川崎制铁株式会社 Electromagnetic braking device for continuous casting mold and method of continuous casting by using same
SE523157C2 (en) * 1997-09-03 2004-03-30 Abb Ab Method and apparatus for controlling the metal flow during extrusion by electromagnetic fields
JP2001232450A (en) * 2000-02-22 2001-08-28 Kawasaki Steel Corp Method for manufacturing continuous cast slab
FR2845626B1 (en) * 2002-10-14 2005-12-16 Rotelec Sa PROCESS FOR CONTROLLING METAL MOVEMENTS IN A BRAMES CONTINUOUS CASTING LINGOTIERE
CN101259523B (en) * 2008-04-18 2011-01-19 东北大学 Electro-magnetic braking device for controlling molten metal flow in continuous cast crystallizer
CN102436900A (en) * 2011-12-02 2012-05-02 孙祖桐 Magnet differential type electric permanent magnet device
GB201305822D0 (en) * 2013-03-28 2013-05-15 Pavlov Evgeny Improvements in and relating to apparatus and methods
CN203621423U (en) * 2013-12-25 2014-06-04 北京科技大学 Electromagnetism braking device for centralizing magnetic area in continuous casting crystallizer
CN106041009B (en) * 2016-07-22 2017-10-31 东北大学 The vertical electro-magnetic braking device of molten steel flow in a kind of control continuous cast mold

Also Published As

Publication number Publication date
EP3441158B1 (en) 2020-04-22
EP3441158A4 (en) 2019-05-01
WO2018014663A1 (en) 2018-01-25
CN106041009A (en) 2016-10-26
CN106041009B (en) 2017-10-31
JP2019510641A (en) 2019-04-18
EP3441158A1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6637618B2 (en) Vertical electromagnetic brake system for controlling molten steel flow in continuous casting mold
JP4401777B2 (en) Apparatus and method for continuous casting
KR101168195B1 (en) Method of continuous casting of steel
JP2002522227A (en) Continuous casting method and apparatus therefor
KR101485209B1 (en) Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
BR112018004704B1 (en) CONTINUOUS SHEET CASTING METHODS USING A SHEET CONTINUOUS CASTING MACHINE
KR101302526B1 (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JP2006281218A (en) Method for continuously casting steel
JP2611594B2 (en) Method of manufacturing slab for steel slab
JP2008055431A (en) Method of continuous casting for steel
JP6331810B2 (en) Metal continuous casting method
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
KR102218885B1 (en) Continuous casting slag entrapment preventing plug rod
CN2504014Y (en) Electromagnetic brake of continuous cast molten pool liquid wave
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JP5510061B2 (en) Continuous casting method
JP5035115B2 (en) Steel continuous casting method
JP2773154B2 (en) Steel continuous casting method
JP2733991B2 (en) Steel continuous casting method
JP2000326054A (en) Method and apparatus for continuously casting steel
JP2005305536A (en) Continuous-casting method for molten metal
JP2016073990A (en) Continuous casting method
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2002103009A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6637618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250