JP6623083B2 - 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法 - Google Patents

固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法 Download PDF

Info

Publication number
JP6623083B2
JP6623083B2 JP2016037069A JP2016037069A JP6623083B2 JP 6623083 B2 JP6623083 B2 JP 6623083B2 JP 2016037069 A JP2016037069 A JP 2016037069A JP 2016037069 A JP2016037069 A JP 2016037069A JP 6623083 B2 JP6623083 B2 JP 6623083B2
Authority
JP
Japan
Prior art keywords
group
solid electrolyte
solid
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037069A
Other languages
English (en)
Other versions
JP2017157300A (ja
Inventor
雅臣 牧野
雅臣 牧野
宏顕 望月
宏顕 望月
稔彦 八幡
稔彦 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016037069A priority Critical patent/JP6623083B2/ja
Publication of JP2017157300A publication Critical patent/JP2017157300A/ja
Application granted granted Critical
Publication of JP6623083B2 publication Critical patent/JP6623083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Secondary Cells (AREA)

Description

本発明は、固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法に関する。
リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
このような全固体二次電池において、負極の活物質層、固体電解質層、及び正極の活物質層のいずれかの層を、無機固体電解質や活物質と特定の高分子化合物等のバインダー粒子(結着剤)とを含有する材料で形成することが、提案されている。例えば、特許文献1には、結着剤として架橋構造を有している炭化水素系高分子を含有する固体電池が記載されている。また、特許文献2には、固体電解質とフッ素系化合物(ポリフッ化ビニリデン(PVDF)等)からなる結着剤とを、フッ素系溶剤に分散させた固体電解質シート用組成物から得られる固体二次電池が記載されている。
特開2014−112485号公報 特開2010−146823号公報
近年、全固体二次電池の開発が急速に進行しており、全固体二次電池に求められる性能も高くなっている。特に、全固体二次電池が適用される製品の種類が増えるのに伴い、過酷な条件下での使用に耐えうる全固体二次電池の開発が望まれている。しかし、上記特許文献1および2に記載の全固体二次電池では、過酷な条件下で使用するには改善が必要である。
本発明は、全固体二次電池において、高温(例えば60℃)で一定期間使用される場合にも、および高電位(例えば4.3V)で使用される場合にも良好なサイクル特性を実現できる固体電解質組成物を提供することを課題とする。また、本発明は、上記固体電解質組成物を用いた、全固体二次電池用シート及び全固体二次電池を提供することを課題とする。さらに、本発明は、上記全固体二次電池用シート及び全固体二次電池それぞれの製造方法を提供することを課題とする。
本発明者らは、特定の無機固体電解質と、特定の含フッ素化合物とを用いることにより、充放電に伴う界面抵抗の上昇を抑制することができること、高温で稼働する際の全固体二次電池のサイクル特性を向上できること、および、高電位で稼働する際の全固体二次電池サイクル特性を向上できること、を見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
すなわち、上記の課題は以下の手段により解決された。
(1)周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質と、下記一般式(B1)〜(B3)のいずれかで表される含フッ素化合物とを含有する固体電解質組成物。
Figure 0006623083
上記一般式(B1)中、RB1aおよびRB1bは、各々独立にアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB1aおよび/またはRB1bはフッ素原子を有する。
n+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、nは1〜3の整数であり、nB1=nである。
上記一般式(B2)中、RB2はアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB2はフッ素原子を有する。
m+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、mは1または2であり、nB2はnB2×m=2を満たす数である。
上記一般式(B3)中、RB3はアルキル基、アリール基またはハロゲノ基を示し、RB4は水素原子、アルキル基またはアリール基を示す。ただし、RB3はフッ素原子を有する。
(2)含フッ素化合物が上記一般式(B3)で表される(1)に記載の固体電解質組成物。
)含フッ素化合物が下記一般式(B12)〜(B32)のいずれかで表される(1)に記載の固体電解質組成物。
Figure 0006623083
上記式中、RB12、RB42、nB12、nB22、Mn+、Mm+、nおよびmは、それぞれ、一般式(B1)〜(B3)におけるRB1b、RB4、nB1、nB2、Mn+、Mm+、nおよびmと同義である。RB32は水素原子、アルキル基、アリール基またはハロゲノ基を示す。
)電極活物質を含有する(1)〜(3)のいずれか1つに記載の固体電解質組成物。
)電極活物質が正極活物質である()に記載の固体電解質組成物。
) (1)〜()のいずれか1つに記載の固体電解質組成物の層を基材上または金属箔上に有する全固体二次電池用シート。
)正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が(1)〜(5)のいずれか1つに記載の固体電解質組成物からなる層である全固体二次電池。
) (1)〜()のいずれか1つに記載の固体電解質組成物を基材上または金属箔上に配置し、これを製膜する全固体二次電池用シートの製造方法。
) ()に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、メタアクリロイル及び/又はアクリロイルを意味する。
本明細書において、特定の符号で表示された置換基および連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
本発明の固体電解質組成物は、全固体二次電池の固体電解質層や活物質層の材料として用いたときに、高温で一定期間使用される場合にも、および高電位(例えば4.3V)で使用される場合にも良好なサイクル特性を実現できるという優れた効果を奏する。また、本発明の全固体二次電池用シート及び全固体二次電池は、上記の優れた効果を奏する固体電解質組成物を利用し、優れた性能を発揮する。
また、本発明の製造方法によれば、本発明の全固体二次電池用シート及び全固体二次電池それぞれを好適に製造することができる。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
本発明の固体電解質組成物は、特定の無機固体電解質と、特定の含フッ素化合物とを含む。以下、その好ましい実施形態について説明するが、まず、本発明の固体電解質組成物を用いた全固体二次電池について説明する。
[全固体二次電池]
本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、後述する本発明の固体電解質組成物で形成されること、すなわち、本発明の固体電解質組成物を被覆して形成される層であることが好ましい。中でも、負極活物質層および/または正極活物質層が本発明の固体電解質組成物で形成されることがより好ましく、正極活物質層が本発明の固体電解質組成物で形成されることがさらに好ましい。
固体電解質組成物で形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと同じである。
以下に、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4および正極集電体5を、この順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
本発明においては、上記特定の含フッ素化合物を無機固体電解質と組み合わせて用いることで、全固体二次電池は、高温稼働および高電位稼働においても優れた充放電特性を示す。
その作用、メカニズムは定かではなく推定ではあるが、次のように、考えられる。すなわち、上記特定の含フッ素化合物が、反応活性が高い電極部位(特に正極表面)および/または固体電解質表面で選択的に反応することで、充放電に伴う無機固体電解質の分解等の副反応を抑制し、界面抵抗の上昇が抑えられているものと推定される。特に、60℃といった高温稼働および4.3Vといった高電位稼働においても、無機固体電解質の分解等の副反応を、効果的に抑制することができると考えられる。
本発明の全固体二次電池は、電気反応に伴う無機固体電解質の分解等の副反応を抑制し、界面抵抗の上昇を抑制し得る、上記特定の含フッ素化合物と無機固体電解質とを含有する層(本発明の固体電解質組成物からなる層)を有する全固体二次電池である。ここで、後述する初期化が施され、上記界面抵抗の上昇が抑制された全固体二次電池をも包含する
意味である。
正極活物質層4、固体電解質層3および負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10〜1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
本発明において、正極活物質層及び負極活物質層のいずれか、又は、両方を合わせて、単に、活物質層又は電極活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は、両方を合わせて、単に、活物質又は電極活物質と称することがある。
〔集電体(金属箔)〕
正極集電体5及び負極集電体1は、電子伝導体が好ましい。
本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
集電体の厚みは、特に限定されないが、1〜500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質組成物]
本発明の固体電解質組成物は、上記の通りであり、以下に具体的に説明する。
(無機固体電解質)
本発明の固体電解質組成物は、無機固体電解質を含有する。
無機固体電解質の固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導度材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質およびリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオン及びアニオンに解離又は遊離していない。この点で、電解液やポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属元素のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導度を有することが好ましい。
上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導度を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
例えば下記式(1)で示される組成を満たすリチウムイオン伝導度無機固体電解質が挙げられ、好ましい。
a1b1c1d1e1 (1)
式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。
Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。中でも、B、Sn、Si、Al又はGeが好ましく、Sn、Al又はGeがより好ましい。
Aは、I、Br、Cl又はFを示し、I又はBrが好ましく、Iが特に好ましい。
L、M及びAは、それぞれ、上記元素の1種又は2種以上とすることができる。
a1〜e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1〜12:0〜1:1:2〜12:0〜5を満たす。a1はさらに、1〜9が好ましく、1.5〜4がより好ましい。b1は0〜0.5が好ましい。d1はさらに、3〜7が好ましく、3.25〜4.5がより好ましい。e1はさらに、0〜3が好ましく、0〜1がより好ましい。
式(1)において、L、M、P、S及びAの組成比は、好ましくはb1、e1が0であり、より好ましくはb1=0、e1=0で且つa1、c1及びd1の比がa1:c1:d1=1〜9:1:3〜7であり、さらに好ましくはb1=0、e1=0で且つa1:c1:d1=1.5〜4:1:3.25〜4.5である。各元素の組成比は、後述するように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi−P−S系ガラス、又はLi、P及びSを含有するLi−P−S系ガラスセラミックスを用いることができる。
硫化物系無機固体電解質は、[1]硫化リチウム(LiS)と硫化リン(例えば五硫化二燐(P))、[2]硫化リチウムと単体燐及び単体硫黄の少なくとも一方、又は[3]硫化リチウムと硫化リン(例えば五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方、の反応により製造することができる。
Li−P−S系ガラス及びLi−P−S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35〜85:15、より好ましくは68:32〜77:23である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度をより高めることができる。具体的には、リチウムイオン伝導度を好ましくは1×10−4S/cm以上、より好ましくは1×10−3S/cm以上とすることができる。上限は特にないが、1×10−1S/cm以下であることが実際的である。
硫化物系無機固体電解質の具体的な化合物例としては、例えば、LiSと、第13族〜第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。より具体的には、LiS−P、LiS−LiI−P、LiS−LiI−LiO−P、LiS−LiBr−P、LiS−LiO−P、LiS−LiPO−P、LiS−P−P、LiS−P−SiS、LiS−P−SnS、LiS−P−Al、LiS−GeS、LiS−GeS−ZnS、LiS−Ga、LiS−GeS−Ga、LiS−GeS−P、LiS−GeS−Sb、LiS−GeS−Al、LiS−SiS、LiS−Al、LiS−SiS−Al、LiS−SiS−P、LiS−SiS−P−LiI、LiS−SiS−LiI、LiS−SiS−LiSiO、LiS−SiS−LiPOおよびLi10GeP12などが挙げられる。その中でも、LiS−P、LiS−GeS−Ga、LiS−SiS−P、LiS−SiS−LiSiO、LiS−SiS−LiPO4、LiS−LiI−LiO−P、LiS−LiO−P、LiS−LiPO−Pおよび/またはLiS−GeS−P、Li10GeP12からなる結晶質、非晶質若しくは結晶質と非晶質混合の原料組成物が、高いリチウムイオン伝導度を有するので好ましい。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法及び溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
中でも、LiS−P、LGPS(Li10GeP12)およびLiS−P−SiS等が好ましい。
(ii)酸化物系無機固体電解質
酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属元素のイオン伝導度を有し、かつ、電子絶縁性を有するものが好ましい。
酸化物系無機固体電解質は、イオン伝導度として、1×10−6S/cm以上であることが好ましく、5×10−6S/cm以上であることがより好ましく、1×10−5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10−1S/cm以下であることが実際的である。
具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3−2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO−LiSO; LiO−B−P; LiO−SiO; LiBaLaTa12; LiPO(4−3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2−xhSiyh3−yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
さらに、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
その中でも、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb及びnb上記の通りである。)、LLZ、LiBO、LiBO−LiSOおよびLixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md及びndは上記の通りである。)が好ましく、LLZ、LLT、LAGP(Li1.5Al0.5Ge1.5(PO)およびLATP([Li1.4TiSi0.42.612]−AlPO)がより好ましい。
無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析−動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
無機固体電解質の固体電解質組成物中における含有量は、界面抵抗の低減及び電池特性維持効果(サイクル特性の向上)の両立を考慮したとき、固形分100質量%において、5質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
また、固体電解質組成物中の無機固体電解質の含有量は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。上限としては、80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。
ただし、正極活物質又は負極活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、正極活物質又は負極活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
なお、本明細書において固形分とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(含フッ素化合物)
本発明の固体電解質組成物は、下記一般式(B1)〜(B3)のいずれかで表される含フッ素化合物を含有する。
Figure 0006623083
上記一般式(B1)中、RB1aおよびRB1bは、各々独立にアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB1aおよび/またはRB1bはフッ素原子を有する。
n+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、nは1〜3の整数であり、nB1=nである。
上記一般式(B2)中、RB2はアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB2はフッ素原子を有する。
m+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、mは1または2であり、nB2はnB2×m=2を満たす数である。
上記一般式(B3)中、RB3はアルキル基、アリール基またはハロゲノ基を示し、RB4は水素原子、アルキル基またはアリール基を示す。ただし、RB3はフッ素原子を有する。
本発明に用いられる含フッ素化合物は、化合物中に少なくとも1つのフッ素原子を有する。本発明に用いられる含フッ素化合物中のフッ素原子の数は、1〜6個が好ましく、1〜3個がより好ましい。
B1a、RB1bおよびRB2〜RB4における各置換基としては、後述の置換基Zにおける対応する置換基の記載を好ましく適用することができる。RB1a、RB1bおよびRB2〜RB4における各置換基のより好ましい炭素数等を以下に示す。
なかでも、アルキル基としては、炭素数1〜16が好ましく、炭素数1〜12がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、1〜3が最も好ましい。具体的には、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、t−ブチルおよびn−オクチルが挙げられる。
アリール基としては、炭素数6〜18が好ましく、炭素数6〜14がより好ましく、炭素数6〜12が特に好ましい。具体的には、例えば、フェニル、トリルおよびナフチルが挙げられる。
アルコキシ基としては、炭素数1〜16が好ましく、炭素数1〜12がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、1〜3が最も好ましい。
具体的には、例えば、メトキシ、エトキシ、プロポキシ、ブトキシおよびイソプロポキシが挙げられる。
アリールオキシ基としては、炭素数6〜18が好ましく、炭素数6〜14がより好ましく、炭素数6〜12が特に好ましい。具体的には、例えば、フェノキシ、トリルオキシおよびナフトキシが挙げられる。
ハロゲノ基は、フルオロ、クロロ、ブロモおよびヨードが挙げられ、フルオロが好ましい。
ここで、フッ素原子を有するRB2およびRB3ならびにフッ素原子を有するRB1aおよび/またはRB1aとしては、フルオロ基で置換された上述のアルキル基、アリール基、アルコキシ基およびアリールオキシ基ならびにフルオロ基が好ましく挙げられる。
フルオロ基で置換されたアルキル基としては、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2−フルオロエチル、2,2−ジフルオロエチル、1,2−ジフルオロエチルおよび2,2,2−トリフルオロエチルが挙げられ、好ましい。
フルオロ基で置換されたアリール基としては、例えば、2−フルオロフェニル、4−フルオロフェニル、2,4−ジフルオロフェニルおよび1−フルオロ−2−ナフチルが挙げられ、好ましい。
フルオロ基で置換されたアルコキシ基としては、例えば、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、2−フルオロエトキシ、2,2−ジフルオロエトキシ、1,2−ジフルオロエトキシおよび2,2,2−トリフルオロエトキシが挙げられ、好ましい。
フルオロ基で置換されたアリールオキシ基としては、例えば、2−フルオロフェノキシ、4−フルオロフェノキシ、2,4−ジフルオロフェノキシおよび1−フルオロ−2−ナフトキシが挙げられ、好ましい。
フッ素原子を有するRB1aおよび/またはRB1bとしては、フルオロ基で置換されたアルコキシ基およびアリールオキシ基ならびにフルオロ基がより好ましく、フルオロ基がさらに好ましい。
本発明においては、少なくともRB1aがフッ素原子を有することが好ましい。
B1aおよびRB1bが共にフッ素原子を有することがより好ましい一態様であり、具体的には、RB1aおよびRB1bが共にフルオロ基であることが好ましい。
B1aだけがフッ素原子を有することも、別のより好ましい態様として挙げられる。
具体的には、RB1aがフルオロ基で置換されたアルコキシ基もしくはアリールオキシ基またはフルオロ基であって、RB1bがフッ素原子を有さないアルコキシ基またはアリールオキシ基であることが好ましい。
フッ素原子を有するRB2としては、フルオロ基で置換されたアルコキシ基およびアリールオキシ基ならびにフルオロ基がより好ましく、フルオロ基がさらに好ましい。
フッ素原子を有するRB3としては、フルオロ基で置換されたアルキル基がより好ましい。
B4としては、アルキル基およびアリール基が好ましく、アルキル基がより好ましい。
n+およびMm+におけるアルカリ金属イオン、アルカリ土類金属イオンおよび周期律表第13族に属する金属元素のイオンとしては、Li、Na、K、Mg2+、Ca2+およびAl3+が好ましく、LiおよびMg2+がより好ましく、Liがさらに好ましい。
B1およびnB2は、それぞれ一般式(B1)または(B2)で表される化合物の電荷が0となるように選択される。
B1およびnは、1または2が好ましく、1がより好ましい。
mおよびnB2としては、mが1でnB2が2であることが好ましい。
上記一般式(B1)〜(B3)のいずれかで表される含フッ素化合物は、下記一般式(B12)〜(B32)のいずれかで表されることが好ましい。
Figure 0006623083
上記式中、RB12、RB42、nB12、nB22、Mn+、Mm+、nおよびmは、それぞれ、上記一般式(B1)〜(B3)におけるRB1b、RB4、nB1、nB2、Mn+、Mm+、nおよびmと同義である。RB32は水素原子、アルキル基、アリール基またはハロゲノ基を示す。
B32におけるハロゲノ基は、上記一般式(B3)のRB3におけるハロゲノ基の好ましい記載が適用される。
B32におけるアルキル基としては、炭素数1〜15が好ましく、炭素数1〜12がより好ましく、炭素数1〜7がさらに好ましく、炭素数1〜5が特に好ましく、1または2が最も好ましい。具体的には、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、t−ブチルおよびn−オクチルが挙げられる。
アリール基としては、炭素数6〜18が好ましく、炭素数6〜14がより好ましく、炭素数6〜12が特に好ましい。具体的には、例えば、フェニル、トリルおよびナフチルが挙げられる。
ここで、フッ素原子を有するRB32としては、フルオロ基で置換された上述のアルキル基およびアリール基ならびにフルオロ基が好ましく挙げられる。
フルオロ基で置換されたアルキル基としては、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2−フルオロエチル、2,2−ジフルオロエチル、1,2−ジフルオロエチルおよび2,2,2−トリフルオロエチルが挙げられ、好ましい。
フルオロ基で置換されたアリール基としては、例えば、2−フルオロフェニル、4−フルオロフェニル、2,4−ジフルオロフェニルおよび1−フルオロ−2−ナフチルが挙げられ、好ましい。
フッ素原子を有するRB32としては、フルオロ基が好ましい。
B32はフッ素原子を有していなくてもよい。ただし、少なくとも1つのRB32がフッ素原子を有することが好ましく、RB32が共にフッ素原子を有することがより好ましい。
具体的には、RB32は水素原子、フルオロ基で置換されたアルキル基およびフルオロ基から選択されることが好ましく、水素原子およびフルオロ基から選択されることがより好ましく、フルオロ基であることがさらに好ましい。
本発明に用いられる特定の含フッ素化合物は、全固体二次電池において、以下のメカニズムにより副反応を抑制すると推定される。
すなわち、特定の含フッ素化合物は、近傍に存在する活物質および/または無機固体電解質における反応活性点と選択的に反応するものと考えられる。より具体的には、特定の含フッ素化合物から生じるフッ素を含有する被膜を特に活物質表層に形成することで副反応する箇所を減らすものと推定される。
本発明に用いられる含フッ素化合物は、上記一般式(B1)で表される含フッ素化合物が好ましく、上記一般式(B12)で表される含フッ素化合物がより好ましい。
以下に、本発明に用いられる含フッ素化合物の具体例を挙げるが、本発明はこれらに限定して解釈されるものではない。
Figure 0006623083
本明細書において置換または無置換を明記していない置換基(連結基についても同様)については、その基に適宜の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Zが挙げられる。
置換基Zとしては、下記のものが挙げられる。
アルキル基(好ましくは炭素原子数1〜20のアルキル基、例えばメチル、エチル、イソプロピル、t−ブチル、ペンチル、ヘプチル、1−エチルペンチル、ベンジル、2−エトキシエチル、1−カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2〜20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2〜20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3〜20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4−メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6〜26のアリール基、例えば、フェニル、1−ナフチル、4−メトキシフェニル、2−クロロフェニル、3−メチルフェニル等)、アラルキル基(好ましくは炭素数7〜23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2〜20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2−ピリジル、4−ピリジル、2−イミダゾリル、2−ベンゾイミダゾリル、2−チアゾリル、2−オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1〜20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6〜26のアリールオキシ基、例えば、フェノキシ、1−ナフチルオキシ、3−メチルフェノキシ、4−メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2〜20のアルコキシカルボニル基、例えば、エトキシカルボニル、2−エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6〜26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1−ナフチルオキシカルボニル、3−メチルフェノキシカルボニル、4−メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0〜20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N−エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0〜20のスルファモイル基、例えば、N,N−ジメチルスルファモイル、N−フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1〜20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7〜23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1〜20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7〜23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1〜20のカルバモイル基、例えば、N,N−ジメチルカルバモイル、N−フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1〜20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1〜20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6〜26のアリールスルファニル基、例えば、フェニルスルファニル、1−ナフチルスルファニル、3−メチルフェニルスルファニル、4−メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1〜20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6〜22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1〜20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6〜42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1〜20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6〜42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0〜20のホスホリル基、例えば、−OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0〜20のホスホニル基、例えば、−P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0〜20のホスフィニル基、例えば、−P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
また、これらの置換基Zで挙げた各基は、上記の置換基Zがさらに置換していてもよい。
化合物ないし置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
本発明に用いられる含フッ素化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、後述する他の機能性添加剤と併用してもよい。
なお、上記含フッ素化合物は、東京化成工業およびキシダ化学等から市販品を購入して使用したり、ジフルオロリン酸に水酸化リチウムを反応させる方法、酢酸メチルにナトリウムハイドライド及びフッ化ナトリウムを反応させる方法等の常法により合成することができる。
本発明に用いられる含フッ素化合物の固体電解質組成物中における含有量は、充放電による無機固体電解質の分解等の副反応を生じる反応活性点と反応し、副反応を効果的に抑制できる観点から、固形分100質量%において、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることが特に好ましい。また、含有量が多すぎると、リチウムイオンの移動を阻害する抵抗成分が増え、電池性能が低化する恐れがあるため、上記含有量の上限としては、同様の観点から、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
なお、本発明の固体電解質組成物が後述の活物質を含有する場合には、本発明に用いられる含フッ素化合物で被覆した活物質を用いることも好ましい。
この場合、本発明に用いられる含フッ素化合物の固体電解質組成物中における含有量は、活性点をより効果的に被覆するため、固形分100質量%において、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が特に好ましい。また、上記含有量の上限としては、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。
本発明に用いられる含フッ素化合物を含有する固体電解質組成物を用いて形成される全固体二次電池は、後述のように、高温稼働および高電位稼働での優れた充放電特性を示す。
(バインダー)
本発明の固体電解質組成物は、バインダーを含有することも好ましい。
本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
本発明に用いることができるバインダーは、通常、電池材料の正極または負極用結着剤として用いられるバインダーが好ましく、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンの共重合物(PVdF−HFP)などが挙げられる
炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンなどが挙げられる。
アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸イソプロピル、ポリ(メタ)アクリル酸イソブチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ヘキシル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸ドデシル、ポリ(メタ)アクリル酸ステアリル、ポリ(メタ)アクリル酸2−ヒドロキシエチル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ベンジル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸ジメチルアミノプロピル、およびこれら樹脂を構成するモノマーの共重合体などが挙げられる。
またそのほかのビニル系モノマーとの共重合体も好適に用いられる。例えばポリ(メタ)アクリル酸メチルーポリスチレン共重合体、ポリ(メタ)アクリル酸メチルーアクリロニトリル共重合体およびポリ(メタ)アクリル酸ブチルーアクリロニトリル−スチレン共重合体などが挙げられる。
上記ラジカル重合系ポリマー以外にも重縮合系ポリマーも用いることができる。重縮合系ポリマーとはたとえば、ウレタン樹脂、ウレア樹脂、アミド樹脂、イミド樹脂、ポリエステル樹脂、などを好適に用いることができる。
重縮合系ポリマーはハードセグメント部位とソフトセグメント部位を有することが好ましい。ハードセグメント部位は分子間水素結合を形成しうる部位を示し、ソフトセグメント部位は一般的にガラス転移温度(Tg)が室温(25±5℃)以下で分子量が400以上の柔軟な部位を示す。
これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
バインダーのガラス転移温度は、上限は50℃以下が好ましく、0℃以下がさらに好ましく、−20℃以下が最も好ましい。下限は−100℃以上が好ましく、−70℃以上がさらに好ましく、−50℃以上が特に好ましい。
ガラス転移温度(Tg)は、乾燥試料を用いて、示差走査熱量計「X−DSC7000」(商品名、SII・ナノテクノロジー(株)社製)を用いて下記の条件で測定する。測定は同一の試料で2回実施し、2回目の測定結果を採用する。
測定室内の雰囲気:窒素(50mL/min)
昇温速度:5℃/min
測定開始温度:−100℃
測定終了温度:200℃
試料パン:アルミニウム製パン
測定試料の質量:5mg
Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度の小数点以下を四捨五入することでTgを算定する。
本発明に用いられるバインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましく、Tgは100℃以下が好ましい。
また、本発明に用いられるバインダーを構成するポリマーは、晶析させて乾燥させてもよい、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒=スズ、チタン、ビスマス)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
ポリマーの重合反応に用いる溶媒は、特に限定されない。なお、無機固体電解質および活物質と反応しないこと、さらにそれらを分解しない溶媒を用いることが望ましい。例えば、炭化水素系溶媒(トルエン、ヘプタン、キシレン)、エステル系溶媒(酢酸エチル、プロピレングリコールモノメチルエーテルアセテート)、エーテル系溶媒(テトラヒドロフラン、ジオキサン、1,2−ジエトキシエタン)、ケトン系溶媒(アセトン、メチルエチルケトン、シクロヘキサノン)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル)およびハロゲン系溶媒(ジクロロメタン、クロロホルム)などを用いることができる。
本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、50,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
本発明において、ポリマーの分子量は、特に断らない限り、質量平均分子量を意味する。
バインダーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、10質量%以下がさらに好ましい。
本発明では、バインダーの質量に対する、無機固体電解質と必要により含有させる電極活物質の合計質量(総量)の質量比[(無機固体電解質の質量+電極活物質の質量)/バインダーの質量]は、1,000〜1の範囲が好ましい。この比率はさらに500〜2がより好ましく、100〜10がさらに好ましい。
本発明に用いられるバインダーは粒子形状を保持している、ポリマー粒子であることも好ましい。本発明では、ポリ(メタ)アクリル酸メチル(PMMA)、ポリ(メタクリル酸メチル-メタクリル酸)共重合体(PMMA−PMA)またはポリ(メタクリル酸メチル-メタクリル酸リン酸エチル)共重合体(PMMA−PHM)が好ましく用いられる。
ここで、「ポリマー粒子」とは、後述の分散媒体に添加しても完全に溶解せず、粒子状のまま分散媒体に分散し、0.01μm超の平均粒子径を示すものを指す。
ポリマー粒子は固形を保持していれば、形状は限定されない。ポリマー粒子は単一分散であっても多分散であってもよい。ポリマー粒子は真球状であっても扁平形状であってもよく、さらに無定形であってもよい。ポリマー粒子の表面は平滑であっても凹凸形状を形成していてもよい。ポリマー粒子はコアシェル構造を取ってもよく、コア(内核)とシェル(外殻)が同様の材料で構成されていても、異なる材質で構成されていてもよい。また中空であっても良く、中空率についても限定されない。
ポリマー粒子は、界面活性剤、乳化剤または分散剤の存在下で重合する方法、分子量が増大するにしたがって結晶状に析出させる方法、によって合成することができる。
また、既存のポリマーを機械的に破砕する方法またはポリマー液を再沈殿によって微粒子状にする方法を用いてもよい。
ポリマー粒子の平均粒子径は、0.01μm〜100μmが好ましく、0.05μm〜50μmがより好ましく、0.1μm〜20μmがさらに好ましく、0.2μm〜10μmが特に好ましい。
本発明に用いられるポリマー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
ポリマー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、ヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析−動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
なお、本発明に用いられるバインダーは市販品を用いることができる。また、常法により調製することもできる。
(分散媒体)
本発明の固体電解質組成物は、分散媒体を含有することが好ましい。
分散媒体は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒体の具体例としては下記のものが挙げられる。
アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール、2−ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6−ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2−メチル−2,4−ペンタンジオール、1,3−ブタンジオール、1,4−ブタンジオールが挙げられる。
エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル等)、環状エーテル(テトラヒドロフラン、ジオキサン(1,2−、1,3−及び1,4−の各異性体を含む)等)が挙げられる。
アミド化合物溶媒としては、例えば、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカンなどが挙げられる。
ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、イソブチロニトリルなどが挙げられる。
エステル化合物溶媒としては、例えば、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸ブチル、ペンタン酸ブチルなどが挙げられる。
非水系分散媒体としては、上記芳香族化合物溶媒、脂肪族化合物溶媒等が挙げられる。
本発明においては、中でも、アミノ化合物溶媒、エーテル化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒が好ましく、エーテル化合物溶媒、芳香族化合物溶媒及び脂肪族化合物溶媒がさらに好ましい。本発明においては、硫化物系無機固体電解質を用いて、さらに上記の特定の有機溶媒を選定することが好ましい。この組み合わせを選定することにより、硫化物系無機固体電解質に対して活性な官能基が含まれないため硫化物系無機固体電解質を安定に取り扱え、好ましい。
分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。
上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
本発明において、固体電解質組成物中の、分散媒体の含有量は、固体電解質組成物の粘度と乾燥負荷とのバランスを考慮して適宜に設定することができる。一般的には、固体電解質組成物中、20〜99質量%が好ましく、25〜80質量%がより好ましく、30〜70質量部が特に好ましい。
(活物質)
本発明の固体電解質組成物には、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。活物質としては、以下に説明するが、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極層用組成物(正極層用組成物、負極層用組成物)ということがある。
−正極活物質−
本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、硫黄などのLiと複合化できる元素などでもよい。
中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0〜30mol%が好ましい。Li/Maのモル比が0.3〜2.2になるように混合して合成されたものが、より好ましい。
遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
(MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、NCA又はNMCがより好ましい。
正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1〜50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて測定することができる。
上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10〜95質量%が好ましく、30〜90質量%がより好ましく、50〜85質量がさらに好ましく、70〜80質量%が特に好ましい。
−負極活物質−
本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、SiおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62−22066号公報、特開平2−6856号公報および/または同3−45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5−90844号公報記載の天然黒鉛と人造黒鉛の混合物および特開平6−4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°〜40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族〜15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
本発明においては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。なお、本発明において、上記炭素質材料は1種単独でも2種以上を組み合わせて用いてもよい。
負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1〜60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵および放出できる炭素材料、リチウム、リチウム合金ならびにリチウムと合金可能な金属が好適に挙げられる。
本発明においては、Si系の負極を適用することが好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位重量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10〜80質量%であることが好ましく、20〜80質量%がより好ましく、30〜80質量%であることがより好ましく、40〜75質量%であることがさらに好ましい。
(導電助剤)
本発明の固体電解質組成物は、活物質の電子導電性を向上させる等のために用いられる導電助剤を適宜必要に応じて含有してもよい。導電助剤としては、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛および人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラックおよびファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維およびカーボンナノチューブなどの炭素繊維類ならびにグラフェンおよびフラーレンなどの炭素質材料であってもよいし、銅およびニッケルなどの金属粉または金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレンおよびポリフェニレン誘導体などの導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
本発明の固体電解質組成物が導電助剤を含む場合、固体電解質組成物中の導電助剤の含有量は、0〜10質量%が好ましい。
(リチウム塩)
本発明の固体電解質組成物は、リチウム塩(支持電解質)を含有することも好ましい。
リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、上記バインダー粒子で説明したリチウム塩が挙げられる。
このリチウム塩は、上記バインダー粒子(バインダー粒子を形成する上記ポリマー)に内包されていない(固体電解質層組成物中に例えば単独で存在している)点で、バインダー粒子に内包されているリチウム塩とは異なる。
リチウム塩の含有量は、固体電解質100質量部に対して、0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(分散剤)
本発明の固体電解質組成物は、分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。
分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。例えば、分子量200以上3000未満の低分子又はオリゴマーからなり、官能基群(I)で示される官能基と、炭素数8以上のアルキル基又は炭素数10以上のアリール基を同一分子内に含有するものが好ましい。
官能基群(I):酸性基、塩基性窒素原子を有する基、(メタ)アクリロイル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、スルファニル基及びヒドロキシ基(酸性基、塩基性窒素原子を有する基、アルコキシシリル基、シアノ基、スルファニル基及びヒドロキシ基が好ましく、カルボキシ基、スルホン酸基、シアノ基、アミノ基、ヒドロキシ基がより好ましい。)
本発明の全固体二次電池において、分散剤を含む層がある場合、層中の分散剤の含有量は、0.2〜10質量%が好ましい。
(固体電解質組成物の調製)
本発明の固体電解質組成物は、無機固体電解質および特定の含フッ素化合物と、必要により分散媒体等の他の成分とを、混合又は添加することにより、製造できる。例えば、各種の混合機を用いて上記成分を混合することにより、製造できる。混合条件としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。
固体電解質組成物の製造方法において、活物質を含有する場合には、無機固体電解質、特定の含フッ素化合物と、必要により分散媒体を混合した後に添加および混合することが好ましい。別の態様としては、活物質(好ましくは正極活物質)、特定の含フッ素化合物および分散媒体を10〜50℃の条件で1〜10時間混合(攪拌)した後、分散媒体を留去し、真空乾燥させることで活物質に、特定の含フッ素化合物を被覆させる工程を含むことも好ましい。この工程を含む製造方法においては、特定の含フッ素化合物で被覆された活物質および無機固体電解質と、必要により他の成分とを、混合又は添加することにより、固体電解質組成物を製造できる。
[全固体二次電池用シート]
本発明の全固体二次電池用シートは、全固体二次電池に用いられるシートであればよく、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
本発明の全固体二次電池用シートは、基材上に固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質層を有するものは後述する全固体二次電池用電極シートに分類する。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
本発明に用いられる全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
基材としては、固体電解質層を支持できるものであれば特に限定されず、上記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
全固体二次電池用シートの固体電解質層の構成および層厚は、本発明の全固体二次電池において説明した固体電解質層の構成および層厚と同じである。
このシートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。すなわち、本発明の全固体二次電池用シートは、本発明の固体電解質組成物を被覆して形成される層を基材上または金属箔上に有する。本発明の全固体二次電池用シートは、全固体二次電池を形成した際に、電気反応に伴う無機固体電解質の分解等の副反応を抑制し、界面抵抗の上昇を抑制する作用を奏する。
ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
本発明の全固体二次電池用電極シート(単に「本発明の電極シート」ともいう。)は、本発明の全固体二次電池の活物質層を形成するための、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
電極シートを構成する各層の構成および層厚は、本発明の全固体二次電池において説明した各層の構成および層厚と同じである。
電極シートは、本発明の、活物質を含有する固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。
[全固体二次電池及び全固体二次電池用電極シートの製造]
全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。なお、正極活物質層、固体電解質層および負極活物質層のいずれかの層が、本発明の固体電解質組成物を用いて形成されていればよい。以下詳述する。
本発明の全固体二次電池は、本発明の固体電解質組成物を、集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
例えば、正極集電体である金属箔上に、正極用材料(正極層用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極層用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性と、非加圧でも良好なイオン伝導度を得ることができる。
塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50〜1500MPaの範囲であることが好ましい。
また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30〜300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点−20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
プレス面は平滑であっても粗面化されていてもよい。
(初期化)
上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
〔全固体二次電池の用途〕
本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオおよびバックアップ電源が挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラおよび医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。さらに、各種軍需用または宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
中でも、高容量かつ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
全固体二次電池とは、正極、負極および電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi−P−S系ガラス、LLTおよびLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質および/または無機固体電解質粒子のバインダー粒子として高分子化合物を適用することができる。
無機固体電解質とは、上述した、ポリエチレンオキサイド等の高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi−P−S系ガラス、LLTおよびLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホニルイミド)が挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。また、特に固体電解質組成物というときには、基本的に固体電解質層等を形成するための材料となる組成物(典型的にはペースト状)を指し、上記組成物を硬化して形成した電解質層等はこれに含まれないものとする。
以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
[実施例1]
<硫化物系無機固体電解質の合成>
−Li−P−S系ガラスの合成−
硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231−235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872−873の非特許文献を参考にして、Li−P−S系ガラスを合成した。
具体的には、アルゴン雰囲気下(露点−70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiSおよびPの混合比は、モル比でLiS:P=75:25とした。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP−7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物固体電解質(Li−P−S系ガラス)6.20gを得た。
(実施例1)
<各組成物の調製>
(1)酸化物固体電解質組成物(SO−1)の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、酸化物系無機固体電解質LLT(豊島製作所製)9.1g、バインダーとしてPVdF−HFP(ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体(アルケマ(株)社製)0.8gを加え、分散媒体として、エチルメチルケトン20gを投入した。更に添加剤として例示化合物(P1−1)0.1gを添加した。その後、フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合を続け、酸化物固体電解質組成物(SO−1)を調製した。
添加剤を下記表1に記載の構成に変えた以外は酸化物固体電解質組成物(SO−1)と同様にして、下記表1に記載の酸化物固体電解質組成物を調製した。また、添加剤を含有しない酸化物固体電解質組成物(eO−1)を調製した。
Figure 0006623083
(2)硫化物固体電解質組成物(SS−1)の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成した硫化物系無機固体電解質Li−P−S系ガラス9.3g、バインダーとしてPVdF−HFP(ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体(アルケマ(株)社製)0.7gを加え、分散媒体としてヘプタン15.0g、更に添加剤として例示化合物(P1−1)0.1gを投入した。その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続け、硫化物固体電解質組成物(SS−1)を調製した。
添加剤および分散媒体を下記表2に記載の構成に変えた以外は硫化物固体電解質組成物(SS−1)と同様にして、下記表2に記載の硫化物固体電解質組成物を調製した。また、添加剤を含有しない硫化物固体電解質組成物(eS−1)および(eS−2)を調製した。
Figure 0006623083
(3)正極用組成物(SOA−1)の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、酸化物系無機固体電解質LLT(豊島製作所製)1.9g、バインダーとしてPVdF−HFP(ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体(アルケマ(株)社製)0.15gを加え、分散媒体としてエチルメチルケトン20gを投入した。更に添加剤として例示化合物(P1−1)0.1gを添加した。その後、フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合を続けた後、活物質としてNMC(日本化学工業(株)製)7.9gを容器に投入し、更に遊星ボールミルを用いて、温度25℃、回転数200rpmで20分間攪拌を続け、正極用組成物(SOA−1)を調製した。
添加剤および正極活物質を下記表3に記載の構成に変えた以外は正極用組成物(SOA−1)と同様にして、下記表3に記載の正極用組成物を調製した。また、添加剤を含有しない正極用組成物(eOA−1)〜(eOA−3)を調製した。
Figure 0006623083
(4)正極用組成物(SSA−1)の調製
ジルコニア製45mL容器(フリッチェ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi−P−S系ガラス1.9g、添加剤として例示化合物(P1−1)0.001g、バインダーとしてPVdF−HFP 0.15gを加え、分散媒体としてトルエン20gを投入した。その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた後、活物質としてNMC(日本化学工業(株)製)7.9gを容器に投入し、更に遊星ボールミルを用いて、温度25℃、回転数200rpmで15分間攪拌を続け、正極用組成物(SSA−1)を調製した。
添加剤、正極活物質および分散媒体を下記表4に記載の構成に変えた以外は正極用組成物(SSA−1)と同様にして、下記表4に記載の正極用組成物を調製した。また、添加剤を含有しない正極用組成物(eSA−1)〜(eSA−3)を調製した。
Figure 0006623083
(5)正極用組成物(SSA’−1)の調製
300mL三口フラスコに、正極活物質としてNMC(日本化学工業(株)製)10g、添加剤として例示化合物(P1−1)0.06g、分散媒体としてテトラヒドロフラン90mlを投入し、2時間攪拌を行った。その後、分散媒体を留去し、真空乾燥を行うことで、例示化合物で修飾された正極活物質を得た。
正極用組成物(SSA−1)の調製において、正極活物質NMCに代えてこの修飾された正極活物質を用いた以外は、正極用組成物(SSA−1)と同様にして、正極用組成物(SSA’−1)を調製した。
例示化合物(P1−1)の代わりに(P2−1)または(P3−2)を用いた以外は正極用組成物(SSA’−1)と同様にして、正極用組成物(SSA’−2)および(SSA’−3)を調製した。
(6)負極用組成物(SSB−1)の調製
ジルコニア製45mL容器(フリッチェ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi−P−S系ガラス3.9g、バインダーとしてPVdF−HFP 0.2g、添加剤として例示化合物(P1−1)0.1gを加え、分散媒体としてヘプタン20gを投入した。その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた後、活物質として黒鉛 5.9gを容器に投入し、更に遊星ボールミルを用いて、温度25℃、回転数200rpmで15分間攪拌を続け、負極用組成物(SSB−1)を調製した。
添加剤、負極活物質および分散媒体を下記表5に記載の構成に変えた以外は負極用組成物(SSB−1)と同様にして、下記表5に記載の負極用組成物を調製した。また、添加剤を含有しない負極用組成物(eSB−1)および(eSB−2)を調製した。
Figure 0006623083
<表1〜5の注釈>
P1−1〜4、8、9および12、P2−1〜5ならびにP3−1〜3および9:上記含フッ素化合物の例示化合物
LLT:Li0.33La0.55TiO(豊島製作所製)
Li−P−S:上記で合成した硫化物系無機固体電解質Li−P−S系ガラス
NMC:LiNi1/3Co1/3Mn1/3 ニッケルマンガンコバルト酸リチウム
LCO:LiCoO コバルト酸リチウム
NCA:LiNi0.85Co0.10Al0.05 ニッケルコバルトアルミニウムリチウム
PVdF−HFP(ポリフッ化ビニリデンヘキサフルオロプロピレン共重合体(アルケマ(株)社製、商品名「KYNAR FLEX 2500−20」)
「−」:成分を含有していないことを示す。
<シートの作製>
−全固体二次電池用正極シートの作製−
上記で調製した正極用組成物を厚み20μmのアルミ箔(集電体)上に、アプリケーター(商品名 SA−201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、正極用組成物を乾燥した。その後、ヒートプレス機を用いて、120℃加熱しながら加圧し(150MPa、1分)、正極活物質層/アルミ箔の積層構造を有する厚み110μmの全固体二次電池用正極シートを作製した。
−全固体二次電池シートの作製−
上記で作製した全固体二次電池用正極シート上に、上記で調製した固体電解質組成物を、アプリケーター(商品名 SA−201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに100℃で1時間加熱し、厚み50μmの固体電解質層を形成した。その後、上記で調製した負極用組成物をさらに塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、厚み100μmの負極活物質層を形成した。負極活物質層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、120℃加熱しながら加圧し(500MPa、1分)、図1に示す層構造を有する全固体二次電池シートを作製した。
上記で作製した全固体二次電池シートを直径14.5mmの円板状に切り出した。直径14.5mmの円板状に切り出した全固体二次電池シートを、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れた。このようにして図2の構造を有するコイン電池を作製した。
ここで、試験No.1−1〜1−29および2−1〜2−13が本発明の全固体二次電池用電極シートおよび全固体二次電池であり、試験No.c1−1〜c1−5およびc2−1〜c2−4が比較の全固体二次電池用電極シートおよび全固体二次電池である。
<電池特性試験>
上記作製した全固体二次電池(以下、単に「電池」とも称する。について、下記電池特性試験を行った。
−試験例1. 4.3Vサイクル試験 −
上記で作製した電池を用い、30℃で充電電流値0.35mA、放電電流値0.7mAで4.2V〜3.0Vの充放電を4回繰り返した。
その後、サイクル試験として、30℃環境下、充電および放電電流値0.7mAの条件で4.3V〜3.0Vの充放電を繰り返す試験を実施した。
このサイクル試験において、1サイクル目の放電容量を100%としたときの、放電容量が80%となるサイクル数を評価した。下記表6および7には、サイクル数を記載した。
この試験により、4.3V(高電位)で電池を稼動した際の固体電解質副反応に起因する電池劣化を観察することができる。
−試験例2. 60℃−4.2Vサイクル試験 −
上記で作製した電池を用い、30℃で充電電流値0.35mA、放電電流値0.7mAで4.2V〜3.0Vの充放電を4回繰り返した。この電池を用い、充電電流値0.35mA、放電電流値7mAで充放電を行い、放電容量を測定した。
その後、サイクル試験として60℃環境下、充電および放電電流値0.7mAの条件で、4.2V〜2.5Vの充放電を50回繰り返す試験を実施した。その後、充電電流値0.35mA、放電電流値7mAで充放電を行い、サイクル試験後の放電容量を測定した。
以下の計算式により、60℃サイクル試験前後での放電時容量維持率を評価した。下記表6および7には、放電容量維持率(%)を単位「%」を省略して記載した。
放電容量維持率(%)=50サイクル終了後の2C電流値における放電容量
/サイクル試験前の2C電流値における放電容量×100
この試験により、60℃(高温)で電池を稼働した際の固体電解質副反応に起因する電池劣化を観察することができる。
−試験例3. 4.2Vサイクル試験 −
上記で作製した電池を用い、30℃で充電電流値0.35mA、放電電流値0.7mAで4.2V〜3.0Vの充放電を4回繰り返した。この電池を用い、充電電流値0.35mA、放電電流値7mAで充放電を行い、放電容量を測定した。
その後、サイクル試験として30℃環境下、充電および放電電流値0.7mAの条件で4.2V〜2.5Vの充放電を50回繰り返す試験を実施した。その後、充電電流値0.35mA、放電電流値7mAで充放電を行い、サイクル試験後の放電容量を測定した。
以下の計算式により、サイクル試験後での放電時容量維持率を評価した。下記表6および7には、放電容量維持率(%)を単位「%」を省略して記載した。
放電容量維持率(%)=50サイクル終了後の2C電流値における放電容量
/サイクル試験前の2C電流値における放電容量×100
この試験により、4.2V、30℃で電池を稼動した際の抵抗増加程度を比較することが可能である。
Figure 0006623083
Figure 0006623083
表6および7の結果から、本発明に用いられる特定の含フッ素化合物と無機固体電解質とを含む本発明の固体電解質組成物を用いて、全固体二次電池における正極活物質層、固体電解質層および負極活物質層のいずれかの層を形成した全固体二次電池は、4.2Vで電池を稼働させた際の抵抗上昇が抑制され、かつ、高電位(4.3V)稼働および高温(60℃)稼働のいずれにおいても優れたサイクル特性を示した。このように、本発明の固体電解質組成物は、高電位稼働および高温稼働においても電池劣化の少ない全固体二次電池を製造できた。
これに対して、全固体二次電池におけるいずれの層も、本発明に用いられる特定の含フッ素化合物を含有していない、No.c1−1〜c1−5およびc2−1〜c2−4の全固体二次電池は、4.2V、30℃での電池稼働にける抵抗上昇の抑制ならびに高電位稼働および高温稼働におけるサイクル特性のいずれも十分ではなかった。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 全固体二次電池シート
13 電池特性試験用セル(コイン電池)

Claims (9)

  1. 周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質と、下記一般式(B1)〜(B3)のいずれかで表される含フッ素化合物とを含有する固体電解質組成物。
    Figure 0006623083
    上記一般式(B1)中、RB1aおよびRB1bは、各々独立にアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB1aおよび/またはRB1bはフッ素原子を有する。
    n+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、nは1〜3の整数であり、nB1=nである。
    上記一般式(B2)中、RB2はアルキル基、アリール基、アルコキシ基、アリールオキシ基またはハロゲノ基を示す。ただし、RB2はフッ素原子を有する。
    m+はアルカリ金属イオン、アルカリ土類金属イオンまたは周期律表第13族に属する金属元素のイオンを示し、mは1または2であり、nB2はnB2×m=2を満たす数である。
    上記一般式(B3)中、RB3はアルキル基、アリール基またはハロゲノ基を示し、RB4は水素原子、アルキル基またはアリール基を示す。ただし、RB3はフッ素原子を有する。
  2. 前記含フッ素化合物が前記一般式(B3)で表される請求項1に記載の固体電解質組成物。
  3. 前記含フッ素化合物が下記一般式(B12)〜(B32)のいずれかで表される請求項1に記載の固体電解質組成物。
    Figure 0006623083
    上記式中、RB12、RB42、nB12、nB22、Mn+、Mm+、nおよびmは、それぞれ、前記一般式(B1)〜(B3)におけるRB1b、RB4、nB1、nB2、Mn+、Mm+、nおよびmと同義である。RB32は水素原子、アルキル基、アリール基またはハロゲノ基を示す。
  4. 電極活物質を含有する請求項1〜3のいずれか1項に記載の固体電解質組成物。
  5. 前記電極活物質が正極活物質である請求項に記載の固体電解質組成物。
  6. 請求項1〜のいずれか1項に記載の固体電解質組成物の層を基材上または金属箔上に有する全固体二次電池用シート。
  7. 正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
    前記正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が請求項1〜5のいずれか1項に記載の固体電解質組成物からなる層である全固体二次電池。
  8. 請求項1〜のいずれか1項に記載の固体電解質組成物を基材上または金属箔上に配置し、これを製膜する全固体二次電池用シートの製造方法。
  9. 請求項に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
JP2016037069A 2016-02-29 2016-02-29 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法 Active JP6623083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037069A JP6623083B2 (ja) 2016-02-29 2016-02-29 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037069A JP6623083B2 (ja) 2016-02-29 2016-02-29 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法

Publications (2)

Publication Number Publication Date
JP2017157300A JP2017157300A (ja) 2017-09-07
JP6623083B2 true JP6623083B2 (ja) 2019-12-18

Family

ID=59809930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037069A Active JP6623083B2 (ja) 2016-02-29 2016-02-29 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法

Country Status (1)

Country Link
JP (1) JP6623083B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220058572A (ko) 2019-09-02 2022-05-09 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 플루오로중합체를 포함하는 하이브리드 복합 전해질
TW202130027A (zh) * 2019-12-18 2021-08-01 日商大金工業股份有限公司 固體二次電池用漿料、用於固體二次電池之層之形成方法及固體二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867161B2 (ja) * 2004-11-26 2012-02-01 株式会社Gsユアサ 非水電解質二次電池
JP5277686B2 (ja) * 2007-03-29 2013-08-28 三菱化学株式会社 リチウム二次電池及びそれに使用されるリチウム二次電池用正極
JP5552974B2 (ja) * 2010-09-03 2014-07-16 トヨタ自動車株式会社 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池
JP5601157B2 (ja) * 2010-11-01 2014-10-08 トヨタ自動車株式会社 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法
US9130246B2 (en) * 2012-01-11 2015-09-08 Samsung Sdi Co., Ltd. Rechargeable lithium battery having lithium difluorophosphate and a sultone-based compound
JP6378749B2 (ja) * 2013-04-05 2018-08-22 ソルヴェイ(ソシエテ アノニム) 電解質組成物およびそれを含むナトリウムイオン電池
JP2015191778A (ja) * 2014-03-28 2015-11-02 古河電気工業株式会社 全固体二次電池

Also Published As

Publication number Publication date
JP2017157300A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
KR102126144B1 (ko) 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
JP6607937B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
US11114689B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery
WO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
JP6615313B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US20190207253A1 (en) Electrode layer material, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP6621443B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2018168505A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
WO2017199821A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JPWO2017204028A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7165747B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JP6572063B2 (ja) 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法
JP6709065B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JPWO2020196041A1 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7008080B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP7455871B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6587555B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
JP6982682B2 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP6670641B2 (ja) 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6623083B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
JP6709134B2 (ja) ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
JP2018037229A (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7245847B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6623083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250