JP6609379B2 - イオン分析装置 - Google Patents

イオン分析装置 Download PDF

Info

Publication number
JP6609379B2
JP6609379B2 JP2018534257A JP2018534257A JP6609379B2 JP 6609379 B2 JP6609379 B2 JP 6609379B2 JP 2018534257 A JP2018534257 A JP 2018534257A JP 2018534257 A JP2018534257 A JP 2018534257A JP 6609379 B2 JP6609379 B2 JP 6609379B2
Authority
JP
Japan
Prior art keywords
ion
droplet
amount
control unit
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534257A
Other languages
English (en)
Other versions
JPWO2018034005A1 (ja
Inventor
和茂 西村
益之 杉山
英樹 長谷川
雄一郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2018034005A1 publication Critical patent/JPWO2018034005A1/ja
Application granted granted Critical
Publication of JP6609379B2 publication Critical patent/JP6609379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/044Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for preventing droplets from entering the analyzer; Desolvation of droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/065Ion guides having stacked electrodes, e.g. ring stack, plate stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、イオン分析装置に関する。
質量分析装置などのイオン分析装置は、血液や尿等の生体試料中の成分分析に利用される。典型的な例では、生体試料は前処理工程、液体クロマトグラフ(Liquid Chromatograph、LC)による分離工程、質量分析工程の順で分析される。前処理工程では生体試料中の除タンパクや測定対象物質の濃縮等を行う。LCによる分離工程では、測定対象物質をカラムとの相互作用の差を利用して他の物質から分離する。LCには水やメタノールなどの有機溶媒が使用され、測定対象物質の分離に適した溶媒組成を選択する。溶媒組成、溶媒の流量、カラムの種類、カラムの温度等の条件に応じて測定対象物質が固有の保持時間でLCを通過し、質量分析装置に導入される。質量分析工程では、大気圧下で測定対象物質をイオン化し、測定対象物質イオンを真空中に導入し、質量電荷比m/zによって分離して検出する。測定された保持時間や質量電荷比m/zで測定対象物質を分類し、測定された信号強度で測定対象物質を定量する。
イオン分析装置のイオン源で使用される液体サンプルのイオン化法には、スプレーで液体を微粒化し噴霧する方法が使用される。エレクトロスプレーイオン化法(Electrospray ionization、ESI)では液体サンプルを細管に通し、細管の出口に高電圧を印加する。高電圧で液体サンプルが帯電し、細管出口に面した液体サンプルが電気的反発によって霧状に微粒化され、帯電液滴が生成される。ESIでは液体サンプルと同軸にネブライザガスと加熱ガスを流す。ネブライザガスによって液体サンプルが安定に噴霧する。噴霧した帯電液滴の溶媒は揮発して液滴内の測定対象物質がイオン化する。加熱ガスは溶媒の気化を促進する。気化効率は液体サンプルの溶媒の組成や流量に依存し、水の組成が大きい条件や流量が大きい条件では気化効率が低下し、帯電液滴の量に比べてイオン強度が低くなる。また、血液や尿等のサンプルのマトリックス由来の成分によって溶媒の気化効率が低下し、イオン強度が低くなる。気化効率が低く帯電液滴が多い場合には加熱ガスの温度や流量を上げることで気化を促進する。一方、過剰に加熱すると液体サンプルが沸騰してイオン強度が安定しないので、溶媒組成や流量に対して適切な加熱ガスの条件を選択する必要がある。
ESI以外のイオン化法には、大気圧化学イオン化法(Atmospheric pressure chemical ionization、APCI)や大気圧光イオン化法(Atmospheric pressure photoionization、APPI)等が使用される。APCIでは、ネブライザガスで液体サンプルを微粒化し、加熱ガスで溶媒を揮発させた後、コロナ放電によってサンプルをイオン化する。同様にAPPIでは液体サンプルを噴霧した後、光を照射してイオン化する。ESIと同様にAPCIやAPPIでも溶媒組成や流量に対して適切な加熱ガスの条件を選択する必要がある。一方、ESIと違ってAPCIやAPPIでは細管の出口に高電圧を印加しないため、液滴が電気的に中性となる。
特許文献1には、イオンの出口と気流の出口を有するイオンガイドが記載されている。イオンガイドは大気圧下のイオン源から高真空下の質量分析部までイオンを輸送するイオン輸送機構で、数十〜数千Paの圧力下で電場によってイオンを輸送する。イオン源で生成したイオンは、イオン源とイオンガイドの圧力差によって周囲の気体と共に真空部入口を通ってイオンガイドに入射する。イオンを含む気流は断熱膨張して超音速まで加速され、イオンガイド内を直進する。特許文献1では中心軸が異なる2つのイオンガイドを接続し、質量が小さいイオンを電場で誘導して気流と分離し、中心軸がイオンの入射軸と異なるイオンガイドからイオンを排出して質量分析部に輸送する。帯電液滴は質量が大きいため気流と分離されず、気流と共にイオンと別の排出口から排出される。液滴が電気的に中性の場合も電場の影響を受けないため、気流と共にイオンと別の排出口から排出される。
特許文献2には、イオンの排出口を入射軸から外して帯電液滴とイオンを分離するイオンガイドが記載されている。質量が大きい液滴は気流と共に直進し、質量が小さいイオンのみが電場によってイオンガイドの排出口に輸送され、質量分析部に輸送される。
特許第5552671号公報 特表2015−521784号公報
通常LC分離には10分程度の時間がかかる。また、サンプルの検出時間が数秒と短いため、溶媒組成や流量等のLCの条件を探索する時に、条件に適した加熱ガスの温度や流量を調整するのに何回かサンプルを測定する必要がある。そのため、加熱ガスの流量などの装置条件の調整に時間がかかる。また、従来技術ではLCの溶媒組成の変化やサンプルのマトリックスの影響によって液滴の量が増えた時に適切なイオン源の条件を設定できず、液滴中の夾雑物で装置が汚染する場合がある。
イオン源で噴霧された液滴には測定対象物質以外の夾雑物が含まれており、気化されなかった液滴が装置の真空内に導入されると夾雑物が堆積して真空部を汚染する。特に、イオン源に近い真空部の入口が汚染されやすい。汚染された部分にイオンが衝突すると帯電し、真空部に導入されるイオンや帯電液滴を反発して感度が低下する。汚染による感度低下を確認するため、質量分析計では定期的(1回/日程度)にキャリブレータサンプルを測定する。キャリブレータサンプルの感度が閾値を下回ると、イオン源や真空部を分解、洗浄して汚染を除去する。汚染除去後、キャリブレータサンプルを測定し、感度の復旧を確認する。
このようにイオン源で生成する帯電液滴又は液滴はイオン化効率や汚染等の装置の状態を示す重要な指標である。しかし、キャリブレータサンプルを測定する方法では感度確認が毎日の測定開始前の1回のみで、生体試料サンプルの測定中に汚染により感度低下が起きると測定対象物質を精度よく検出できない。また、生体試料サンプルの測定中に所定の感度を下回ったことを警告できないので、感度低下後に測定したサンプルについては再測定が必要になり、サンプルや測定時間が無駄になる。キャリブレータサンプルの測定頻度を増やすと、測定時間やランニングコストが増加する。
特許文献1,2に記載された装置は、測定対象物質に適したLCの分離条件を模索する時に、装置条件の調整に時間がかかる。また、測定対象物質イオンの強度が低く液滴が多い時に装置条件を調整できず、液滴中の夾雑物によって装置が汚染され、感度低下を招く危惧がある。質量分析計が汚染すると汚染部位が帯電し、測定対象物質イオン及び帯電液滴を反発して両者の強度が低下する。
課題を解決する手段
本発明のイオン分析装置は、液体サンプル中の測定対象物質をイオン化するイオン源と、イオン源で発生されたイオンと液滴とが導入され、イオンの排出口と液滴の排出口とが異なるイオンガイドと、イオンの排出口から排出されたイオンを分析するイオン分析部と、液滴の排出口の軸上に配置され、液滴の量を測定する液滴測定部と、液滴測定部で測定した液滴の量と閾値を比較する解析制御部と、を有する。
本発明によると、装置条件の調整時間の短縮や汚染の低減を図ることができる。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
イオン分析装置の構成例を示す模式図。 イオンガイドの例を示す斜視模式図。 イオンガイドの径方向(YZ平面)断面模式図。 イオンガイドの例を示す斜視模式図。 イオンガイドの径方向(YZ平面)断面模式図。 装置のパラメータを制御する制御シークエンスの例を示す図。 イオン分析装置の構成例を示す模式図。 装置のパラメータを制御する制御シークエンスの例を示す図。 装置のパラメータを制御する制御シークエンスの例を示す図。 LCを使用した場合の制御シークエンスの例を示す図。
以下、図面を参照して本発明の実施の形態を説明する。
[実施例1]
本実施例では、イオン源で生成する帯電液滴をモニタすることによって装置の汚染を低減し、汚染に伴う感度の低下をユーザに警告する構成について説明する。図1は、本実施例のイオン分析装置の構成例を示す模式図である。図1に示したイオン分析装置は、サンプル前処理装置102、液体クロマトグラフ装置(LC)103、及び質量分析計を有する。また、イオン源としてESIスプレー104を備える。
尿や血液などの液体サンプル101は、サンプル前処理装置102でたんぱく質の除去、測定対象物質の分離精製や濃縮等が行われる。処理後のサンプルはLC103に導入される。測定対象物質はLCの移動相と固定相との相互作用の差によって分離され、物質固有の保持時間でLCを通過する。LCを通過した測定対象物質は、大気圧下に設置したESIスプレー104でイオン化される。
ESIスプレー104の先端の拡大断面を破線内に模式的に示した。ESIスプレー104では、液体サンプル、ネブライザガス、加熱ガスの3つの流体を同軸状に流す。中央の液体サンプルの流路105には1〜10kV程度の電圧を印加し、液体を帯電させる。流路105の先端で帯電した液体が静電反発し、微粒化されて帯電液滴109を生成する。液体サンプルの流路105の外側の流路106にはネブライザガスを流す。ネブライザガスは帯電液滴の微粒化を補助し、ESIスプレーの噴霧を安定させる。ネブライザガスの流路106の外側には流路108が設置されており、流路108の周囲に取り付けたヒータ141によって流路108内のガスを加熱する。この加熱ガスは、流量を流量制御部143で調整され、温度を温度制御部142で調整される。加熱ガスは帯電液滴109の溶媒を揮発させ、測定対象物質イオン110を生成する。加熱ガスが液体サンプルの流路105を加熱すると液体サンプルが突沸してイオン強度が変動するため、加熱ガスの流路108と液体サンプルの流路105、ネブライザガスの流路106の間には空間107が設けられ、断熱されている。
帯電液滴109には測定対象物質以外の夾雑物が含まれており、イオン源や質量分析計の真空内を汚染したり、検出器のノイズを増やしたりして装置の感度を低下させる。特に、イオン源に近い質量分析計のイオン導入口113や中間圧力室114が汚染されやすい。汚染された部分に帯電液滴109やイオン110が衝突すると帯電し、帯電液滴109やイオン110を反発して、下流に導入される帯電液滴109やイオン110の量が低下する。帯電液滴109の溶媒を揮発させて感度低下を防ぐため、加熱ガスの温度は高い方が良い。一方で、加熱によって測定対象物質が熱分解する、或は熱が液体サンプルの流路105に伝わって液体サンプルが沸騰しイオン強度が安定しないなどの制約条件がある。
イオン源で生成した測定対象物質イオン110、及び脱溶媒されず残留した帯電液滴109はカウンタプレート電極130に印加した電場と、イオン源と第一差動排気室116の圧力差によってイオン導入口113に吸引される。イオン導入口113では、ガス供給制御部111からイオン源室に向けて、すなわちイオン導入口113から外部に向けてカウンタガス112を流す。カウンタガス112は粒径が大きく気流の影響を受けやすい帯電液滴109をイオン源室に押し出して帯電液滴109の真空内への進入を低減する。
イオン導入口113を通過したイオン110と帯電液滴109は中間圧力室114に導入される。中間圧力室114はイオン導入口113と第一差動排気室116の間に設けられた空間で、圧力は1000から数万Paである。イオン導入口113と細孔115の中心軸をずらすことで帯電液滴109を中間圧力室114の壁面に衝突させ、第一差動排気室116への帯電液滴の侵入を低減する。
第一差動排気室116は真空ポンプ120によって圧力が100〜数千Paに維持されている。第一差動排気室116にはイオンガイド117が設置され、イオンガイド117で帯電液滴109を除去し、イオン110を下流のイオン分析室124に誘導する。第一差動排気室116に入射した気流はイオン源室との圧力差により断熱膨張し、超音速に加速されてマッハディスクを形成する。帯電液滴109とイオン110は気流と共に超音速に加速され、イオンガイド117内を直進する。
図2及び図3は、イオンガイドの構成例を示す模式図である。図2はイオンガイド全体を示す斜視模式図、図3は図2中に(i)、(ii)、(iii)で示した位置の径方向(YZ平面)断面模式図である。
イオンと帯電液滴が導入される側のロッド電極の組21をロッド電極セット1、イオンが排出される側のロッド電極の組22をロッド電極セット2と定義する。この例では、ロッド電極セット1は、4本のロッド電極21a,21b,21c,21dによって構成され、ロッド電極セット2は4本のロッド電極22a,22b,22c,22dによって構成される。ロッド電極21d,22c,21a,22bは、ロッド電極21d,22cの組、及びロッド電極21a,22bの組で一つの円柱や角柱を近似するように半円柱などの形状をとる。ロッド電極セット1の中心軸とロッド電極セット2の中心軸は互いに平行であるが、Z軸方向に一定距離だけずれている。また、ロッド電極セット1とロッド電極セット2は長手方向の一部領域で重なり合い、当該重なり合った領域において図3に示すようにロッド電極セット1とロッド電極セット2のロッド電極同士が組み合わされて単一の多重極イオンガイドを形成している。
図3中の符号“+”、“−”は、イオンガイド電源からロッド電極に印加されるRF電圧の位相を示す。同じ符号が付されたロッド電極には同位相、同振幅、同周波数のRF電圧が印加される。同じロッド電極セットでは対向するロッド電極が同位相、隣接するロッド電極が逆位相となるようにRF電圧が印加される。また、また異なるロッド電極セットで隣接するロッド電極21d,22c及びロッド電極21a,22bには同位相、同振幅、同周波数のRF電圧を印加する。また、ロッド電極セットにはRF電圧に加えてDCのオフセット電圧が印加される。同じロッド電極セットに含まれるロッド電極には同じオフセットDC電圧が印加される。オフセットDC電圧は測定する試料のイオンをロッド電極セット1からロッド電極セット2の方向に動かす電界が形成されるよう印加する。
図2に示すように、イオンガイドは領域1〜3の3つの領域に分けられる。各領域でロッド電極の組21,22の径方向(YZ平面)における位置関係が異なり、結果として形成される擬ポテンシャルも異なる。擬ポテンシャルは、イオンの運動が追随できない速度で変動する電界が印加された場合にイオンに時間平均として作用する力を与えるポテンシャルである。
領域1ではロッド電極セット1の四本のロッド電極がほぼ正方形の頂点付近の位置に配置され、四重極イオンガイドが形成される。ロッド電極セット1の四本のロッド電極に印加されるRF電圧により径方向(YZ平面)の擬ポテンシャル井戸が形成される。領域1ではロッド電極セット1とロッド電極セット2の間には擬ポテンシャル障壁が存在するため、イオンはロッド電極セット間を移動することはできない。
領域2では、ロッド電極セット1とロッド電極セット2が重なり合っている。また、領域1及び領域3の位置からロッド電極21a,22bの組とロッド電極21d,22cの組の間隔が広がり、図3のように、ロッド電極21a,22bの組、ロッド電極21b、ロッド電極21c、ロッド電極21d,22cの組、ロッド電極22d、及びロッド電極22aがほぼ正六角形の頂点の位置に配置された六重極イオンガイドが形成される。ロッド電極21d,22cの組、ロッド電極21a,22bの組にはそれぞれ同位相、同振幅、同周波数のRF電圧が印加されるため、擬ポテンシャルを考える際にはロッド電極21a,22bの組、及びロッド電極21d,22cの組を、それぞれひとつの極とみなすことができる。
ロッド電極セット1、ロッド電極セット2が組み合わさり六重極を形成することで、ロッドに囲まれた領域の中心付近に極小点をもつ単一の擬ポテンシャル井戸が形成される。ロッド電極セット1とロッド電極セット2の間には擬ポテンシャル障壁が存在せず、イオンが自由に行き来することができる。一方、ロッド電極セット1とロッド電極セット2に印加したオフセットDC電圧の差により、径方向(YZ平面)にDCポテンシャルが形成される。このDCポテンシャルにより質量が小さいイオンをZ方向(ロッド電極セット1からロッド電極セット2の方向)に動かす力が働く。一方、質量の大きい帯電液滴109は電場の影響を受けにくく、気流と共に直進する。そのため、イオン110と帯電液滴109が分離され、分離された帯電液滴109はイオンガイド117の帯電液滴排出口121を通過し、イオンガイドを抜ける。
領域3では領域2の位置から、ロッド電極21a,22bの組とロッド電極21d,22cの組の間隔が狭まり、ロッド電極セット2の四本のロッド電極がほぼ正方形の頂点付近の位置に配置される。領域1と同様に、ロッド電極セット2の4本のロッド電極により擬ポテンシャル井戸が形成され、領域3におけるロッド電極セット2の中心軸にイオンを集束させる。集束されたイオン110はイオンガイド117のイオン排出口122から排出され、細孔123を通ってイオン分析室124に導入される。
なお、本例のイオンガイドから領域1に相当する部分を除去し、細孔115を通過したイオン及び帯電液滴を含む気流を、領域2のロッド電極セット1のロッド電極21a,21b,21c,21dで囲まれた範囲に、イオンガイドの領域2の中心軸と平行に入射させるようにしてもよい。
図4及び図5は、イオンガイドの他の例を示す構成図である。図4はイオンガイド全体を示す斜視模式図、図5は図4中に(i)、(ii)、(iii)で示した位置の径方向(YZ平面)断面図である。
イオンと帯電液滴が導入される側のロッド電極の組21をロッド電極セット1、イオンが排出される側のロッド電極の組22をロッド電極セット2とする。図2及び図3で説明したイオンガイドと同様に、ロッド電極セット1の中心軸とロッド電極セット2の中心軸は互いに平行であるが、Z軸方向に一定距離だけずれている。また、ロッド電極セット1とロッド電極セット2は長手方向の一部領域で重なり合い、当該重なり合った領域において図5に示すようにロッド電極セット1とロッド電極セット2のロッド電極同士が組み合わされて単一の多重極イオンガイドを形成している。同じロッド電極セットに含まれるロッド電極には同じオフセットDC電圧を印加する。図5中の符号“+”、“−”はRF電圧の位相を示し、同じ符号が記入されたロッド電極には同位相、同振幅、同周波数のRF電圧を印加する。
領域1ではロッド電極セット1の4本のロッド電極21a,21b,21c,21dにより四重極イオンガイドが形成される。領域2では領域1の位置からロッド電極セット1のロッド電極21a,21dとロッド電極セット2のロッド電極22b,22cの間隔が広がり、図5のように各ロッド電極がほぼ正八角形の頂点の位置にくる。ロッド電極セット1とロッド電極セット2が組み合わさり八重極を形成することで、ロッドに囲まれた領域の中心付近に極小点をもつ単一の擬ポテンシャル井戸が形成される。ロッド電極セット1とロッド電極セット2の間には擬ポテンシャル障壁が存在せず、イオンが自由に行き来することができる。オフセットDC電圧を、測定する試料のイオンをロッド電極セット1からロッド電極セット2の方向に動かす電界が形成されるよう印加すると、領域2でイオンを帯電液滴から分離してロッド電極セット1側からロッド電極セット2側に移動させることができる。一方、質量の大きい帯電液滴109は電場の影響を受けにくく、気流と共に直進する。そのため、イオン110と帯電液滴109が分離され、分離された帯電液滴109はイオンガイド117の帯電液滴排出口121を通過し、イオンガイドを抜ける。
ロッド電極セット2側に移動に移動したイオンは領域3に導入される。領域3ではロッド電極セット2の4本のロッド電極22a,22b,22c,22dにより四重極イオンガイドが形成され、イオンは四重極イオンガイドの中心軸上に集束する。集束されたイオン110はイオンガイド117のイオン排出口122から排出され、細孔123を通ってイオン分析室124に導入される。
ここでは八重極を例に説明したが、10、12、16、20重極など八重極以上の多重極でもよい。なお、イオンガイドから領域1に相当する部分を除去し、細孔115を通過したイオン及び帯電液滴を含む気流を、領域2のロッド電極セット1のロッド電極21a,21b,21c,21dで囲まれた範囲に、イオンガイドの領域2の中心軸と平行に入射させるようにしてもよい。図1に模式的に示したイオンガイド117は、この領域1が除去された態様を図示している。
四重極によって形成される擬ポテンシャル井戸は、極小点付近でのポテンシャルの傾きが高次の多重極やリングスタック型のイオンガイドより大きいため、イオンを軸上に集束させる効果が高い。イオンを集束する効果が高いほど、イオンがイオンガイドの後段の細孔123を透過する効率が高くなり、高感度な測定が可能になる。
図1に戻って、イオンガイド117の帯電液滴排出口121を通過した帯電液滴109は、電流計119に接続した電極118に衝突する。帯電液滴排出口121の軸上に配置された電極118とそれに接続された電流計119は液滴測定部を構成し、電極118に衝突した帯電液滴109の電流値を測定することで、帯電液滴109の量をモニタする。測定された電流値は解析制御部131に送信され、解析制御部131は電流値に応じて温度制御部142、流量制御部143、ガス供給制御部111を作動させてイオン源の温度すなわちヒータ141の温度、ESIスプレー104に流す加熱ガスの流量、カウンタガス112の流量を変える。解析制御部131はまた、表示部144にユーザメンテナンスの必要性を示す警告を表示したり、サンプルの測定を中止したり、次のサンプルの測定を保留する等の処理を行う。
イオン導入口113や中間圧力室114が汚染されると汚染部分が帯電して帯電液滴109とイオン110の強度が共に低下する。そのため、帯電液滴109の測定によって装置の感度低下をモニタできる。本実施例では、サンプル測定中に測定対象物質イオンの強度と並行して帯電液滴の量を測定するので、サンプル測定中に感度低下をモニタできる。そのため、感度が低下した状態でサンプルの測定を続けて再測定が必要になる頻度が減少し、消耗品や測定時間のロスを低減することができる。また、キャリブレータサンプルの測定頻度を減らすことができ、ランニングコストを低減することができる。
本実施例で使用するイオンガイド117は、上述した多重極ロッド電極を用いた構成とするとイオン透過効率が高いので好ましいが、帯電液滴排出口121とイオン排出口122を有していれば他の形状のものでも構わない。例えば、特許文献1に記載されているようなスタックリング構造のイオンガイドも使用可能である。
イオン分析室124の圧力は真空ポンプ125によって0.1Pa以下に維持されている。イオン分析室124にはイオン分析部126を構成する質量分析部や検出器等を設置し、イオン110を質量電荷比m/zで分離して検出する。質量分析の方法には、四重極フィルタ質量分析計(Quadrupole filter mass analyzer)、三連四重極フィルタ質量分析計(Triple quadrupole filter mass analyzer)、イオントラップ質量分析計(Ion trap mass analyzer)、飛行時間型質量分析計(Time of flight mass analyzer)、フーリエ変換質量分析計(Fourier transform mass analyzer)等がある。上記以外の質量分析計を用いてもよい。また、質量分析計の代わりにイオン移動度分析計(Ion mobility spectrometer)や微分移動度分析計(Differential mobility spectrometer)等を使用しても良い。他のイオンを検出する測定計を使用しても良い。
図6は、測定された帯電液滴の量によって装置のパラメータを制御する制御シークエンスの例を示す図である。帯電液滴の電流値によって加熱ガスの流量と警告表示の制御を行う例である。閾値Aは帯電液滴の電流の上限値、閾値Bは電流の下限値、閾値CはESIスプレーに流す加熱ガスの流量の下限値である。
初期状態では帯電液滴の電流値は上限値Aと下限値Bの間にあり、適正範囲内である。LCの溶媒組成の変化やサンプル由来の夾雑物の影響によって帯電液滴の成分が変化し、帯電液滴が揮発しにくくなると電流計119で測定される電流値が増加する。時間t1で電流値が上限値Aを超えた。帯電液滴はサンプル由来の夾雑物を含んでおり、イオン導入口113や中間圧力室114を汚染する。汚染防止のため、帯電液滴の電流値が上限値Aを超えると、解析制御部131は流量制御部143に指示し、ESIスプレーに流す加熱ガスの流量を増やして帯電液滴を減らし、電流値を下げる。時間t2で電流値が上限値Aを下回ると、解析制御部131は流量制御部143に指示して加熱ガスの流量を増やすのを止める。
また、帯電液滴の成分が変わって揮発しやすくなった場合、又は汚染によって装置の感度が低下した場合、帯電液滴の量が減少して電流値が下がる。時間t3で電流値が下限値Bを下回ると、解析制御部131は流量制御部143に指示して加熱ガスの流量を下げる。加熱ガスの流量を下げて電流値が上昇した場合、電流値の低下の原因は帯電液滴の成分が変わって揮発しやすくなったためだと判断する。時間t4で電流値が下限値Bを超えると、解析制御部131は加熱ガスの流量を下げることを止める。
同様に、時間t5で電流値が下限値Bを下回ると、解析制御部131は加熱ガスの流量を下げる。時間t6で加熱ガスの流量が下限値Cに到達しても電流値が下限値Bを下回ったままなので、解析制御部131は電流値の低下が汚染に起因すると判定し、表示部144に警告を表示してユーザにメンテナンスの必要性を報知する。なお、ここでは液滴測定部で測定された帯電液滴の量が低下することだけを指標として装置の汚染を判定したが、帯電液滴の量とイオン分析部126で検出されるイオン強度を併用して装置の汚染を判定するようにしてもよい。装置が汚染されると帯電液滴の量と共にイオン分析部で検出される測定対象物質のイオン強度も低下する。
図6では装置のパラメータとして加熱ガスの流量を制御したが、他にカウンタガスの流量、加熱ガスの温度等を制御しても同様の効果が得られる。カウンタガスの流量を上げると帯電液滴109をイオン導入口113と反対側に押し返すため、イオン導入口113に入る帯電液滴の量が低下して装置の汚染を低減できる。また、加熱ガスの温度を上げると帯電液滴109の揮発が促進され、帯電液滴が減少する。
[実施例2]
本実施例では電流測定以外による液滴の測定方法を示す。図7は、光散乱で帯電液滴109を測定するイオン分析装置の構成例を示す模式図である。本実施例のイオン分析装置において実施例1と異なるのは液滴測定部の構成であり、その他の構成は実施例1と同様である。ここでは主として実施例1と異なる点について説明する。
イオンガイド117の液滴排出口121の軸上に液滴測定部として光源301と光検出器302が配置されている。光源301及び光検出器302は、液滴排出口121から排出される帯電液滴109が直接衝突しない位置に配置される。光源301から出射した光を液滴排出口121から排出される帯電液滴109に照射し、帯電液滴109によって散乱された散乱光を光電子増倍管等の光検出器302で検出する。光検出器302は帯電液滴109の量に比例した出力信号を解析制御部131に送信する。
光散乱で液滴を測定する場合、帯電していない液滴も検出できる。イオン源で用いるイオン化法にAPCIやAPPIを使用する場合、液体サンプルの流路105に高電圧を印加しないため、噴霧した液滴は電気的に中性になる。このようなイオン化法を使用した場合でも光散乱で液滴の量を測定し、図6のような制御を行うことで装置の汚染を低減できる。また、サンプル測定中に汚染による感度低下をモニタし、ユーザにメンテナンスの必要性を示すことができる。図6において、帯電液滴の電流値の代わりに液滴の量を表す散乱光量を採用することによって同様の制御が可能である。
[実施例3]
本実施例では、帯電液滴の電流値やイオン強度に基づいて装置のパラメータを調整する例を示す。イオン分析装置としては図1に示した装置を用いた。本実施例では解析制御部131に電流計119の信号と共にイオン分析室124に設置されたイオン分析部126から測定対象物質イオンの強度を表す信号も入力され、解析制御部131は検出された液滴の量と測定対象物質イオンの強度を参照して装置のパラメータを調整する。
図8は、装置のパラメータを制御する制御シークエンスの例を示す図である。図8は、帯電液滴の電流値と測定対象物質イオンの強度、及び加熱ガスの流量の制御を示している。時間t1までは帯電液滴の電流値が閾値Aを超えており装置が汚染されやすい。また、イオン強度が小さく、感度が低い。時間t1で解析制御部131が流量制御部143に指示して加熱ガスの流量を上げると、帯電液滴が揮発して電流値が低下する。一方、揮発の促進によってイオン化効率が向上してイオン強度が増加する。時間t2でイオン強度が最大になるが、帯電液滴の電流値は未だ閾値Aを超えている。流量制御部143が更に加熱ガスの流量を上げると帯電液滴の電流値が低下し、熱分解によりイオン強度が低下する。装置の汚染を防ぐため、解析制御部131は流量制御部143に指示して帯電液滴の電流値が閾値A以下になる時間t3まで加熱ガスの流量を上げ、その後流量を維持する。図8の制御では装置のパラメータを制御する例として加熱ガスの流量制御を示したが、加熱ガスの温度を制御してもよい。
図9は、装置のパラメータを制御する制御シークエンスの別の例を示す図である。ここでは、帯電液滴の電流値が閾値以下に低下した後にイオン強度が最大値に到達する場合の制御シークエンスを示す。時間t1までは帯電液滴の電流値が閾値Aを超えており装置が汚染されやすい。また、イオン強度が低く感度が低い状態である。時間t1で解析制御部131が流量制御部143に指示して加熱ガスの流量を上げると、帯電液滴が揮発して電流値が低下する。また、イオン化効率が上がって測定対象物質のイオン強度が増加する。時間t2で帯電液滴の電流値が閾値Aを下回り、装置の汚染が低減される。一方、イオン強度は増加傾向にあり、加熱ガスの流量をさらに上げればより感度が増加する可能性がある。そのため、加熱ガスの流量を上げ続け、時間t3までイオン強度が増加する。さらに加熱ガスの流量を上げるとサンプルの熱分解によりイオン強度が低下する。感度が最大となる条件に加熱ガスの流量を調整するため、解析制御部131は流量制御部143に指示して時間t3の時の加熱ガスの流量Dと同じ値まで流量を下げる。
図8と図9に示した制御シークエンスによって汚染が少なく感度が高い条件を調整することができ、ユーザのパラメータの調整時間を短縮することができる。なお、イオン分析装置として実施例2に示した装置を用いる場合には、図8あるいは図9に示した帯電液滴の電流値を液滴の量を表す散乱光量に置き換えることで同様の制御が可能である。
[実施例4]
LCを使用したイオン分析装置の制御シークエンスの例について説明する。イオン分析装置としては図1に示した装置を用いた。
LCでは分離条件を決めるために溶媒組成を変えて測定対象物質イオン110を測定する。帯電液滴109の溶媒の揮発効率は溶媒組成によって異なるので、溶媒組成に応じてイオン源の温度や加熱ガスの流量などの装置のパラメータを調整して十分な感度が得られる条件を探す必要がある。一般的に、LCの分離時間は約10分で、測定対象物質が検出される時間は数秒である。LCを使用した場合は測定対象物質が検出されている時間が短いため、通常、複数回サンプルを測定して加熱ガスの流量や温度等の装置の条件を調整する必要がある。サンプルの測定毎に分離時間がかかるため、LCを用いると条件調整に時間がかかるという難点がある。本実施例では測定対象物質が検出される前に帯電液滴の電流値で装置のパラメータを調整し、短時間で装置の条件を調整する制御シークエンスを説明する。
図10は、LCを使用した場合の制御シークエンスの例を示す図である。時間t3までは測定対象物質がLC内に保持され、測定対象物質イオン110が検出されない。しかし、LCの溶媒は連続的に流れており、帯電液滴109や測定対象物質以外のイオンが生成されている。図10に示した実施例の場合、当初は加熱ガスの流量が小さく、帯電液滴の電流値が高い。時間t1で解析制御部131の指示により流量制御部143が加熱ガスの流量を増すと、溶媒が揮発して帯電液滴の電流値が低下する。ESIでは、帯電液滴を十分に揮発させた方が生成するイオン量が増えて感度が向上する。
図10に示すように十分な感度を得るのに必要な帯電液滴の電流値の閾値Eを予め設定しておき、解析制御部131は、帯電液滴の電流値が閾値Eまで低下した時間t2で装置のパラメータ調整、すなわち加熱ガスの流量の調整を完了する。この制御シークエンスによって測定対象物質イオンが検出される前に溶媒組成に適した装置条件に調整でき、ユーザが装置のパラメータを調整する時間を省略できる。また、溶媒組成によらず測定対象物質を高感度に測定することができる。本実施例は、ESI以外にも液体サンプルを噴霧して供給するイオン源であれば有効である。例えば、ESIの代わりにAPCI,APPI等を使用してもよい。イオン源として液滴が帯電しないAPCI,APPIを用いた場合には、実施例2で説明したように光散乱等によって液滴の量を測定すればよい。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101 液体サンプル
102 サンプル前処理装置
103 液体クロマトグラフ装置
104 ESIスプレー
109 帯電液滴
110 測定対象物質イオン
111 ガス供給制御部
112 カウンタガス
117 イオンガイド
118 電極
119 電流計
121 帯電液滴排出口
122 イオン排出口
124 イオン分析室
126 イオン分析部
130 カウンタプレート電極
131 解析制御部
141 ヒータ
142 温度制御部
143 流量制御部
144 表示部
301 光源
302 光検出器

Claims (13)

  1. 液体サンプル中の測定対象物質をイオン化するイオン源と、
    前記イオン源で発生されたイオンと液滴とが導入され、前記イオンの排出口と前記液滴の排出口とが異なるイオンガイドと、
    前記イオンの排出口から排出されたイオンを分析するイオン分析部と、
    前記液滴の排出口の軸上に配置され、前記液滴の量を測定する液滴測定部と、
    前記液滴測定部で測定した液滴の量と閾値を比較する解析制御部と、
    を有するイオン分析装置。
  2. 前記イオン分析部が質量分析計、イオン移動度分析計又は微分移動度分析計である、請求項1記載のイオン分析装置。
  3. 前記イオン源はエレクトロスプレーイオン化法、大気圧化学イオン化法又は大気圧光イオン化法を用いたイオン源である、請求項1記載のイオン分析装置。
  4. 前記液滴は帯電液滴であり、前記液滴測定部は電流計を備える、請求項1記載のイオン分析装置。
  5. 前記液滴測定部は光源と光検出器を備え、前記光源から前記液滴に光照射し前記液滴による散乱光を前記光検出器で検出する、請求項1記載のイオン分析装置。
  6. 前記解析制御部は、前記液滴の量が閾値以下である場合に警告を出す、又はサンプルの測定を停止する、又は次のサンプルの測定を保留する処理を行う、請求項1記載のイオン分析装置。
  7. サンプル測定中に、測定対象物質のイオン強度と前記液滴の量を測定する、請求項1記載のイオン分析装置。
  8. 液体サンプル中の測定対象物質をイオン化するイオン源と、
    前記イオン源で発生されたイオンと液滴とが導入され、前記イオンの排出口と前記液滴の排出口とが異なるイオンガイドと、
    前記イオンの排出口から排出されたイオンを分析するイオン分析部と、
    前記液滴の排出口の軸上に配置され、液滴の量を測定する液滴測定部と、
    前記液滴測定部からの信号が入力される解析制御部と、を有し、
    前記解析制御部は、前記液滴測定部で測定された液滴の量に基づいて装置のパラメータを調整する、イオン分析装置。
  9. 前記装置のパラメータには、前記イオンガイドへのイオン導入口から外部に向けて流すカウンタガスの流量、前記イオン源の温度、及び前記イオン源に流す加熱ガスの流量が含まれる、請求項8記載のイオン分析装置。
  10. 液体クロマトグラフ装置を有し、
    前記解析制御部は、測定対象物質が検出されない保持時間において前記液滴測定部で測定された液滴の量に基づいて前記装置のパラメータを調整する、請求項8記載のイオン分析装置。
  11. 液体サンプル中の測定対象物質をイオン化するイオン源と、
    前記イオン源で発生されたイオンと液滴とが導入され、前記イオンの排出口と前記液滴の排出口とが異なるイオンガイドと、
    前記イオンの排出口から排出されたイオンを分析するイオン分析部と、
    前記液滴の排出口の軸上に配置され、液滴の量を測定する液滴測定部と、
    前記イオン分析部による測定対象物質イオンの強度と前記液滴測定部による前記液滴の量を表す信号が入力される解析制御部と、を有し、
    前記解析制御部は前記測定対象物質イオンの強度と前記液滴の量に基づいて装置のパラメータを調整する、イオン分析装置。
  12. 液体クロマトグラフ装置を有する、請求項11記載のイオン分析装置。
  13. 前記解析制御部は、前記液滴の量が閾値以下となる条件のもとで前記測定対象物質のイオン強度が最大となるように前記装置のパラメータを調整する、請求項11記載のイオン分析装置。
JP2018534257A 2016-08-19 2016-08-19 イオン分析装置 Active JP6609379B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074264 WO2018034005A1 (ja) 2016-08-19 2016-08-19 イオン分析装置

Publications (2)

Publication Number Publication Date
JPWO2018034005A1 JPWO2018034005A1 (ja) 2019-04-25
JP6609379B2 true JP6609379B2 (ja) 2019-11-20

Family

ID=61197187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534257A Active JP6609379B2 (ja) 2016-08-19 2016-08-19 イオン分析装置

Country Status (6)

Country Link
US (1) US10551346B2 (ja)
JP (1) JP6609379B2 (ja)
CN (1) CN109564190B (ja)
DE (1) DE112016007051B4 (ja)
GB (1) GB2566891B (ja)
WO (1) WO2018034005A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042433B2 (ja) * 2018-03-16 2022-03-28 パナソニックIpマネジメント株式会社 電磁界シミュレータ及び電磁界シミュレータの動作方法
JP7186471B2 (ja) * 2019-07-31 2022-12-09 国立研究開発法人産業技術総合研究所 スプレーイオン化装置、分析装置および表面塗布装置
US20220359178A1 (en) * 2019-08-30 2022-11-10 Dh Technologies Development Pte. Ltd. Method for Mass Spectrometry
CN115335692A (zh) * 2020-05-20 2022-11-11 株式会社岛津制作所 离子分析装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028467B2 (ja) 1978-10-13 1985-07-04 松下電送株式会社 原稿検出装置
AU2002213699A1 (en) * 2000-10-23 2002-05-06 Simon Fraser University Method and apparatus for producing a discrete particle
JP4184960B2 (ja) * 2002-02-01 2008-11-19 株式会社日立ハイテクノロジーズ エレクトロスプレイイオン化質量分析装置とそのシステム及びその方法
GB0718468D0 (en) * 2007-09-21 2007-10-31 Micromass Ltd Mass spectrometer
JP2013007639A (ja) * 2011-06-24 2013-01-10 Hitachi High-Technologies Corp 液体クロマトグラフ質量分析装置
CN103515183B (zh) 2012-06-20 2017-06-23 株式会社岛津制作所 离子导引装置和离子导引方法
CN103675082A (zh) * 2012-09-13 2014-03-26 中国科学院大连化学物理研究所 一种提高离子迁移谱检测灵敏度的进样装置
EP3101680B1 (en) * 2014-01-27 2019-04-24 Hitachi High-Technologies Corporation Liquid chromatography-mass spectrometry device
GB201409604D0 (en) * 2014-05-30 2014-07-16 Shimadzu Corp Improvements in or relating to mass spectrometry
CN105719935B (zh) * 2014-12-05 2018-03-27 中国科学院大连化学物理研究所 一种采用电喷雾离子源的离子迁移管及应用
CN105588872B (zh) * 2016-03-02 2018-09-07 中国科学技术大学 一种用于复杂基质中有效成分的快速在线大气压光电离质谱装置

Also Published As

Publication number Publication date
US20190178841A1 (en) 2019-06-13
GB2566891A (en) 2019-03-27
DE112016007051B4 (de) 2024-02-29
GB2566891B (en) 2021-09-01
GB201901185D0 (en) 2019-03-20
US10551346B2 (en) 2020-02-04
JPWO2018034005A1 (ja) 2019-04-25
CN109564190A (zh) 2019-04-02
CN109564190B (zh) 2021-02-26
DE112016007051T5 (de) 2019-03-21
WO2018034005A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6609379B2 (ja) イオン分析装置
JP6421823B2 (ja) イオン移動度分析装置
US20100243883A1 (en) Method and apparatus to produce steady beams of mobility selected ions via time-dependent electric fields
US10546740B2 (en) Mass spectrometry device and ion detection device
EP3249679B1 (en) Mass spectrometer and ion mobility analysis device
JP7402654B2 (ja) 単一粒子誘導結合プラズマ質量分析(sp-icp-ms)を用いたナノ粒子の自動検出
CN110870042B (zh) 多极离子导向器
WO2012176534A1 (ja) 液体クロマトグラフ質量分析装置
US9921195B2 (en) Liquid chromatography-mass spectrometry device
CA2914000A1 (en) Interface for an atmospheric pressure ion source in a mass spectrometer
JP6028874B2 (ja) ガス状試料の分析装置
CN109716482B (zh) 用于控制离子污染的方法及***
US9165751B1 (en) Sample atomization with reduced clogging for analytical instruments
US7939798B2 (en) Tandem ionizer ion source for mass spectrometer and method of use
US20150108347A1 (en) Method and apparatus to desolvate ions at high pressure and to improve transmission and contamination in the coupling of mass spectrometers and mobility spectrometers with ionizers
JP2009259465A (ja) イオンフィルタ、質量分析システムおよびイオン移動度分光計
JP2011113832A (ja) 質量分析装置
JP2017533429A (ja) 連続ビーム移動度ベースの分光計におけるクロストーク排除のための方法およびシステム
US8502162B2 (en) Atmospheric pressure ionization apparatus and method
US12002672B2 (en) Apparatus and methods for reduced neutral contamination in a mass spectrometer
JP2012094252A (ja) 質量分析装置
JP2000227417A (ja) 質量分析方法及び装置
CA3188562A1 (en) Apparatus and methods for detecting molecules at atmospheric pressure
CN114026671A (zh) 质量分析装置
JP2005063770A (ja) 質量分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6609379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350