JP6596816B2 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP6596816B2
JP6596816B2 JP2014245490A JP2014245490A JP6596816B2 JP 6596816 B2 JP6596816 B2 JP 6596816B2 JP 2014245490 A JP2014245490 A JP 2014245490A JP 2014245490 A JP2014245490 A JP 2014245490A JP 6596816 B2 JP6596816 B2 JP 6596816B2
Authority
JP
Japan
Prior art keywords
battery
deterioration degree
notification
regenerative
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014245490A
Other languages
Japanese (ja)
Other versions
JP2016111773A (en
Inventor
英貴 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014245490A priority Critical patent/JP6596816B2/en
Publication of JP2016111773A publication Critical patent/JP2016111773A/en
Application granted granted Critical
Publication of JP6596816B2 publication Critical patent/JP6596816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

本発明は、モータの回生を制御するモータ制御装置に関する。   The present invention relates to a motor control device that controls regeneration of a motor.

従来、バッテリに蓄電された電力を用いてモータを駆動して走行する電動車では、バッテリが所定の状態になった場合に、本来の回生制動性能を制限する回生抑制が行われている。このような回生抑制は、たとえばバッテリの充電率(SOC:State of Charge)の上昇やバッテリ劣化度の上昇などが生じている場合に実施される。
より詳細には、バッテリの充電率が大きい場合には、回生発電により発生した回生電流をバッテリに供給すると過充電状態になる可能性があるため回生抑制が行われる。
また、バッテリ劣化度が上昇した場合には、バッテリ抵抗が増大し、バッテリに供給される回生電流量が大きくなるとバッテリ電圧が上昇しやすくなる。このようなバッテリ電圧の上昇はバッテリの劣化を促進するため回生抑制が行われる。
2. Description of the Related Art Conventionally, in an electric vehicle that travels by driving a motor using electric power stored in a battery, regenerative suppression is performed to limit the original regenerative braking performance when the battery is in a predetermined state. Such regeneration suppression is performed, for example, when an increase in the state of charge (SOC) of the battery or an increase in the degree of battery deterioration occurs.
More specifically, when the charging rate of the battery is large, regenerative suppression is performed because a regenerative current generated by regenerative power generation may be overcharged when it is supplied to the battery.
Further, when the degree of battery deterioration increases, the battery resistance increases, and the battery voltage tends to increase as the amount of regenerative current supplied to the battery increases. Such a rise in battery voltage promotes deterioration of the battery, so that regeneration is suppressed.

たとえば、下記特許文献1には、負荷との間で電力を授受可能に構成されたリチウムイオン電池の制御装置であって、リチウムイオン電池の容量劣化に応じて、上限電圧を高くする技術が開示されている。   For example, the following Patent Document 1 discloses a lithium-ion battery control device configured to be able to exchange power with a load, and a technique for increasing the upper limit voltage according to the capacity deterioration of the lithium-ion battery is disclosed. Has been.

特開2012−85452号公報JP 2012-85452 A

回生抑制時には通常時と比較して回生ブレーキ(回生制動)が利きづらくなり、運転フィーリンクが通常時と大きく変化する。上述した従来技術では、回生抑制が行われる可能性がある場合でも、その旨を運転者に報知していないため、運転者は実際に回生ブレーキを利用するまで回生抑制が行われていることを知ることができない。よって、回生抑制に伴い運転者に違和感を与える可能性があるという課題がある。   When regeneration is suppressed, regenerative braking (regenerative braking) is less effective than normal, and the driving fee link changes greatly from normal. In the above-described conventional technology, even if there is a possibility that regeneration is likely to be performed, the driver does not notify that effect, so that the driver is performing regeneration suppression until he actually uses the regenerative brake. I can't know. Therefore, there exists a subject that a driver | operator may be given an uncomfortable feeling with regeneration suppression.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、モータの回生抑制を事前に報知することができるモータ制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to provide a motor control device capable of informing in advance of motor regeneration suppression.

上述した問題を解決し、目的を達成するため、請求項1の発明にかかるモータ制御装置は、バッテリから供給される駆動電力により電動車の駆動輪を駆動するとともに所定の回生走行条件が成立した際には回生発電により回生電流を発生し前記駆動輪に回生制動力を与えるモータを制御するモータ制御装置であって、前記電動車の走行状態に基づいて前記回生発電により発生する回生電流量を推定する回生電流量推定手段と、前記バッテリのバッテリ劣化度を検知する劣化度検知手段と、前記バッテリの充電率を検知する充電率検知手段と、前記回生電流量推定手段によって推定された推定回生電流量と、前記バッテリ劣化度と、前記充電率とに基づいて、前記モータで発生する前記回生電流量を制御する回生制御手段と、前記回生電流量を前記推定回生電流量よりも少なくする回生抑制が前記回生制御手段によって行われる可能性がある場合に、前記回生抑制が行われる可能性がある旨を報知する報知手段と、を備え、前記回生制御手段は、前記バッテリ劣化度が前記充電率に基づいて決定される閾値劣化度以上か否かを判定し、前記バッテリ劣化度が前記閾値劣化度以上、かつ前記推定回生電流量が前記バッテリに供給可能な上限電流を上回った場合に前記回生抑制を行い、前記報知手段は、前記バッテリ劣化度が前記充電率に基づいて決定される第1の報知劣化度以上となった場合に前記回生抑制が行われる可能性がある旨を報知し、前記第1の報知劣化度は、前記閾値劣化度より小さく設定される、ことを特徴とする。
請求項2の発明にかかるモータ制御装置は、前記閾値劣化度は、前記充電率が高いほど低い値に設定される、ことを特徴とする。
請求項3の発明にかかるモータ制御装置は、前記回生制御手段は、前記バッテリ劣化度と前記充電率とに基づいて前記閾値劣化度を決定するための閾値劣化度マップを有し、前記閾値劣化度マップに基づいて前記回生抑制を行うか否かを判断する、ことを特徴とする。
請求項4の発明にかかるモータ制御装置は、前記報知手段は、前記バッテリ劣化度が、前記充電率に基づいて決定される第2の報知劣化度以上となった場合にも報知を行い、前記バッテリ劣化度が前記第1の報知劣化度以上となった場合と、前記第2の報知劣化度以上となった場合とで報知内容を変更し、前記第2の報知劣化度は、前記閾値劣化度より大きい値に設定される、ことを特徴とする。
In order to solve the above-described problems and achieve the object, the motor control device according to the first aspect of the present invention drives the driving wheels of the electric vehicle with the driving power supplied from the battery and satisfies a predetermined regenerative traveling condition. In this case, the motor control device controls a motor that generates a regenerative current by regenerative power generation and applies a regenerative braking force to the driving wheel, and the amount of regenerative current generated by the regenerative power generation based on a running state of the electric vehicle. Regenerative current amount estimating means for estimating, deterioration degree detecting means for detecting the battery deterioration degree of the battery, charge rate detecting means for detecting the charge rate of the battery, and estimated regeneration estimated by the regenerative current amount estimating means. Regenerative control means for controlling the amount of regenerative current generated by the motor based on the amount of current, the battery deterioration level, and the charging rate, and the amount of regenerative current The regenerative control, comprising: a notifying means for notifying that the regenerative suppression may be performed when there is a possibility that the regenerative suppression that is less than the estimated regenerative current amount is performed by the regenerative control means. The means determines whether or not the battery deterioration degree is equal to or higher than a threshold deterioration degree determined based on the charging rate, the battery deterioration degree is equal to or higher than the threshold deterioration degree , and the estimated regenerative current amount is supplied to the battery. The regeneration suppression is performed when a possible upper limit current is exceeded , and the notification unit suppresses the regeneration when the battery deterioration level is equal to or higher than a first notification deterioration level determined based on the charging rate. It is notified that there is a possibility of being performed, and the first notification deterioration degree is set to be smaller than the threshold deterioration degree.
The motor control device according to a second aspect of the invention is characterized in that the threshold deterioration degree is set to a lower value as the charging rate is higher.
The motor control device according to a third aspect of the invention is characterized in that the regeneration control means has a threshold deterioration degree map for determining the threshold deterioration degree based on the battery deterioration degree and the charging rate, and the threshold deterioration. It is determined whether to perform the regeneration suppression based on a degree map.
In the motor control device according to a fourth aspect of the invention, the notification means also notifies when the battery deterioration level is equal to or higher than a second notification deterioration level determined based on the charging rate, The notification content is changed between a case where the battery deterioration level is equal to or higher than the first notification deterioration level and a case where the battery deterioration level is equal to or higher than the second notification deterioration level. It is set to a value larger than the degree.

発明によれば、回生発電によって生じる回生電流量を、通常時の回生発電量である推定回生電流量よりも少なくする回生抑制が行われる可能性がある場合に、回生抑制が行われる可能性がある旨を報知する。よって、実際に回生抑制が行われる前に回生ブレーキがかかりにくい場合があることを運転者に認知させることができ、回生抑制に伴う違和感を軽減させることができる。
発明によれば、バッテリ劣化度が閾値劣化度以下の場合に回生抑制を行う。一般に、バッテリ劣化度が高まるとバッテリ抵抗値が高まり、高電流を流すと劣化につながる可能性がある。このため、バッテリ劣化時に回生抑制を行うことによって、バッテリのさらなる劣化を防止することができる。
発明によれば、バッテリの充電率が高いほど閾値劣化度を低くしているので、バッテリの充電率が高く過充電が懸念される状況で回生抑制に移行しやすくすることができる。
発明によれば、閾値劣化度マップを用いて閾値劣化度を特定し、回生抑制を行うか否かを判断するので、数式等を用いて閾値劣化度を算出する場合と比較してモータ制御装置の処理負荷を軽減することができる。
発明によれば、バッテリ劣化度が、閾値劣化度以下に設定された報知劣化度以上になった場合に回生抑制が行われる可能性を報知するので、実際に回生抑制が行われ得る状態になる前に運転者に報知を行うことができ、報知の実効性をより向上させることができる。
発明によれば、報知劣化度を複数設定し、それぞれの報知劣化度以上となった場合に報知の内容を変更するので、回生抑制の度合いに連動した報知を行うことができ、報知の有効性を向上させることができる。
According to the present invention, when there is a possibility that regenerative suppression that reduces the amount of regenerative current generated by regenerative power generation to be less than the estimated regenerative current amount that is the normal amount of regenerative power generation may be performed. Notify that there is. Therefore, the driver can be made aware that there is a case where the regenerative brake is not easily applied before the regeneration suppression is actually performed, and the uncomfortable feeling associated with the regeneration suppression can be reduced.
According to the present invention, regeneration suppression is performed when the battery deterioration level is equal to or less than the threshold deterioration level. In general, when the degree of battery deterioration increases, the battery resistance value increases, and when a high current is passed, there is a possibility that deterioration will occur. For this reason, further deterioration of the battery can be prevented by suppressing regeneration when the battery is deteriorated.
According to the present invention, since the threshold deterioration degree is lowered as the battery charge rate is higher, it is possible to easily shift to regeneration suppression in a situation where the battery charge rate is high and overcharge is a concern.
According to the present invention, the threshold deterioration degree is specified using the threshold deterioration degree map, and it is determined whether or not regeneration suppression is performed. Therefore, the motor control is performed as compared with the case where the threshold deterioration degree is calculated using mathematical formulas or the like. The processing load on the apparatus can be reduced.
According to the present invention, since the possibility of regeneration suppression being notified when the battery deterioration level is equal to or higher than the notification deterioration level set to be equal to or less than the threshold deterioration level, a state in which the regeneration suppression can be actually performed is notified. The driver can be notified before becoming better, and the effectiveness of the notification can be further improved.
According to the present invention, since a plurality of notification deterioration levels are set and the content of the notification is changed when the notification deterioration level is exceeded, notifications linked to the degree of regenerative suppression can be performed, and the notification is effective. Can be improved.

実施の形態にかかるモータ制御装置10の構成を示す説明図である。It is explanatory drawing which shows the structure of the motor control apparatus 10 concerning embodiment. 回生制御手段128が保持する閾値劣化度マップの一例である。It is an example of the threshold deterioration degree map which the regeneration control means 128 holds. 回生抑制時における回生電流量を模式的に示す説明図である。It is explanatory drawing which shows typically the amount of regenerative current at the time of regeneration suppression. 報知劣化度XAと閾値劣化度XLとの関係を示すマップである。It is a map which shows the relationship between alerting | reporting degradation degree XA and threshold value degradation degree XL. モータ制御装置10の処理を示すフローチャートである。4 is a flowchart showing processing of the motor control device 10.

以下に添付図面を参照して、本発明にかかるモータ制御装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a motor control device according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、実施の形態にかかるモータ制御装置10の構成を示す説明図である。
本実施の形態では、モータ制御装置10は電気自動車やハイブリット自動車等、モータ30を搭載し、動力の少なくとも一部として電力を用いる電動車に搭載されているものとする。
実施の形態にかかるモータ制御装置10は、バッテリ20から供給される駆動電力により電動車の駆動輪を駆動するとともに所定の回生走行条件が成立した際には回生発電により回生電流を発生し駆動輪に回生制動力を与えるモータ30を制御する。
(Embodiment 1)
FIG. 1 is an explanatory diagram illustrating a configuration of a motor control device 10 according to the embodiment.
In the present embodiment, it is assumed that the motor control device 10 is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle that includes the motor 30 and uses electric power as at least a part of power.
The motor control device 10 according to the embodiment drives the drive wheels of the electric vehicle with the drive power supplied from the battery 20, and generates a regenerative current by regenerative power generation when a predetermined regenerative running condition is satisfied. The motor 30 for applying the regenerative braking force to is controlled.

バッテリ20は、複数の電池セルを直列に接続した高電圧組電池であり、図示しない充電口から外部電源の供給を受けて充電される他、モータ30が回生発電を行った際に発生する回生電流によっても充電される。
バッテリ20に蓄電された電力は、電力線Lを介してモータ30に供給される。なお、バッテリ20は、モータ30の他、他の負荷装置(たとえば電動車の空調装置など)に対しても電力供給を行っていてもよい。
また、図示は省略しているが、バッテリ20とモータ30との間には直流電流と交流電流とを変換するインバータが設けられている。
The battery 20 is a high-voltage assembled battery in which a plurality of battery cells are connected in series. The battery 20 is charged by receiving external power from a charging port (not shown), and regenerative power generated when the motor 30 performs regenerative power generation. It is also charged by current.
The electric power stored in the battery 20 is supplied to the motor 30 via the power line L. The battery 20 may supply power to other load devices (for example, an air conditioner for an electric vehicle) in addition to the motor 30.
Although not shown, an inverter that converts direct current and alternating current is provided between the battery 20 and the motor 30.

バッテリ20には温度センサ112、電圧センサ114、電流センサ116が接続される。
温度センサ112は、バッテリ20のバッテリ温度を測定する。温度センサ112は、たとえばバッテリ20を構成する各電池セルの温度であるセル温度や、所定の単位個数の電池セルで構成されるセルユニットの温度などを測定する。また、温度センサ112は、バッテリ20内の1つまたは複数の代表点における温度を測定してもよい。
電圧センサ114は、バッテリ20のバッテリ電圧Vを測定する。電圧センサ114は、たとえばバッテリ20を構成する各電池セルの電圧であるセル電圧を測定する。
電流センサ116は、バッテリ20からモータ30に供給される電流およびモータ30からバッテリ20に供給される回生電流を測定する。
A temperature sensor 112, a voltage sensor 114, and a current sensor 116 are connected to the battery 20.
The temperature sensor 112 measures the battery temperature of the battery 20. The temperature sensor 112 measures, for example, the cell temperature that is the temperature of each battery cell that constitutes the battery 20, the temperature of a cell unit that includes a predetermined number of battery cells, and the like. The temperature sensor 112 may measure the temperature at one or more representative points in the battery 20.
The voltage sensor 114 measures the battery voltage V of the battery 20. The voltage sensor 114 measures a cell voltage that is a voltage of each battery cell constituting the battery 20, for example.
The current sensor 116 measures a current supplied from the battery 20 to the motor 30 and a regenerative current supplied from the motor 30 to the battery 20.

モータ制御装置10は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される処理部によって構成されている。
モータ制御装置10は、たとえばモータ30の制御を行うMCU(Motor Contrоl Unit)や電動車全体の制御を行うECUなどである。また、 モータ制御装置10は、MCU単体またはECU単体ではなく、これらが連携して後述する処理を実現するものであってもよい。
The motor control device 10 includes a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an EEPROM that holds various data in a rewritable manner, an interface unit that interfaces with peripheral circuits, and the like. It is comprised by the process part comprised by these.
The motor control device 10 is, for example, an MCU (Motor Control Unit) that controls the motor 30 or an ECU that controls the entire electric vehicle. In addition, the motor control device 10 may be a unit that realizes the processing described later in cooperation with each other, instead of the MCU alone or the ECU alone.

モータ制御装置10は、回生電流量推定手段120、劣化度検知手段122、充電率検知手段124、回生制御手段128、報知手段130によって構成される。
回生電流量推定手段120は、電動車の走行状態に基づいて回生発電により発生する回生電流量を推定する。なお、回生電流量推定手段120で推定した回生電流量を推定回生電流量IEとする。
電動車の走行状態とは、電動車の走行速度、重量、走行する道路の傾斜等である。
また、電動車に回生制動力の大きさを運転者が任意に設定できる機構が設けられている場合には、当該機構における設定によっても回生発電量は変化する。
回生電流量推定手段120は、これらの情報に基づいて、各推定時において所定の回生走行条件が成立した際にモータ30で発生する回生電流量を推定する。
なお、所定の回生走行条件とは、例えば所定速度以上で走行している際にアクセルペダル24の踏み込みが解除された場合やブレーキペダル22が踏まれた場合など、主に減速動作や加速解除動作が行われた場合を指す。
The motor control device 10 includes a regenerative current amount estimating means 120, a deterioration degree detecting means 122, a charging rate detecting means 124, a regeneration control means 128, and a notifying means 130.
Regenerative current amount estimation means 120 estimates the amount of regenerative current generated by regenerative power generation based on the traveling state of the electric vehicle. The regenerative current amount estimated by the regenerative current amount estimating means 120 is set as the estimated regenerative current amount IE.
The traveling state of the electric vehicle includes the traveling speed, weight, and slope of the road on which the electric vehicle travels.
In addition, when the electric vehicle is provided with a mechanism that allows the driver to arbitrarily set the magnitude of the regenerative braking force, the amount of regenerative power generation also changes depending on the setting in the mechanism.
Based on these pieces of information, the regenerative current amount estimating means 120 estimates the regenerative current amount generated in the motor 30 when a predetermined regenerative travel condition is satisfied at each estimation time.
The predetermined regenerative travel condition mainly refers to a deceleration operation or an acceleration release operation, for example, when the accelerator pedal 24 is released or the brake pedal 22 is pressed while traveling at a predetermined speed or higher. Refers to the case where

劣化度検知手段122は、バッテリ20のバッテリ劣化度Xを検知する。
劣化度検知手段122は、たとえば電圧センサ114で測定されたバッテリ電圧Vと電流センサ116で測定された電流とに基づいてバッテリ20の内部抵抗および開放電圧を求め、これらの値を元にバッテリ20の現在の最大出力を算出する。そして、算出した現在の最大出力とバッテリ20の初期状態(バッテリ劣化度0時)の最大出力とを比較してバッテリ劣化度Xを算出する。
バッテリ20の劣化は、使用開始からの年月に比例する経年劣化と、使用頻度に比例する使用劣化が知られており、劣化度検知手段122は、これらの劣化を総合してバッテリ20のバッテリ劣化度Xを検知する。
The deterioration degree detection unit 122 detects the battery deterioration degree X of the battery 20.
The deterioration degree detection means 122 obtains the internal resistance and open circuit voltage of the battery 20 based on the battery voltage V measured by the voltage sensor 114 and the current measured by the current sensor 116, for example, and based on these values, the battery 20 Calculate the current maximum output of. Then, the battery deterioration degree X is calculated by comparing the calculated current maximum output with the maximum output of the battery 20 in the initial state (when the battery deterioration degree is 0).
The deterioration of the battery 20 is known to be an aging deterioration proportional to the year since the start of use and a use deterioration proportional to the frequency of use. The deterioration degree detection means 122 combines these deteriorations to determine the battery of the battery 20. Deterioration degree X is detected.

充電率検知手段124は、バッテリ20の充電率S(SOC)を検知する。
充電率検知手段124は、たとえばバッテリ20の充電率とバッテリ電圧との関係を示すSOCマップを記憶し、電圧センサ114で測定されたバッテリ電圧に対応する充電率の値をSOCマップから読み出して充電率Sとする。なお、電圧センサ114でセル電圧を測定している場合、充電率検知手段124は、各セル電圧の平均値をバッテリ電圧とする。セル電圧からのバッテリ電圧Vの算出は、電圧センサ114で行ってもよい。この場合、充電率検知手段124は、電圧センサ114で算出されたバッテリ電圧Vの値を取得して、バッテリ20の充電率Sを算出する。
The charging rate detection unit 124 detects the charging rate S (SOC) of the battery 20.
The charge rate detection means 124 stores, for example, an SOC map indicating the relationship between the charge rate of the battery 20 and the battery voltage, and reads the charge rate value corresponding to the battery voltage measured by the voltage sensor 114 from the SOC map for charging. Let S be the rate. When the cell voltage is measured by the voltage sensor 114, the charging rate detection unit 124 sets the average value of each cell voltage as the battery voltage. Calculation of the battery voltage V from the cell voltage may be performed by the voltage sensor 114. In this case, the charging rate detection unit 124 acquires the value of the battery voltage V calculated by the voltage sensor 114 and calculates the charging rate S of the battery 20.

回生制御手段128は、推定回生電流量IEと、バッテリ劣化度Xと、充電率Sとに基づいて、モータ30で発生する回生電流量を制御する。
具体的には、回生制御手段128は、バッテリ劣化度Xが充電率Sに基づいて決定される閾値劣化度XL以上か否かを判定し、バッテリ劣化度Xが閾値劣化度XL以上の場合は回生抑制を行う。
なお、回生抑制とは、モータ30の回生電流量を推定回生電流量IEよりも少なくするものである。
また、回生制御手段128は、バッテリ劣化度Xが閾値劣化度XL未満の場合は回生抑制を行わない。この場合、回生電流量≒推定回生電流量IEとなる。このように回生抑制を行わない状態を、以下「通常回生」という。
なお、回生電流量が推定回生電流量IEに完全に一致しないのは、各種条件により実際の回生電流量が推定回生電流量IEとならない可能性があるためである。
The regenerative control means 128 controls the regenerative current amount generated by the motor 30 based on the estimated regenerative current amount IE, the battery deterioration degree X, and the charging rate S.
Specifically, the regeneration control unit 128 determines whether or not the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL determined based on the charging rate S. If the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL, Regenerative suppression is performed.
Note that the regeneration suppression is to make the regenerative current amount of the motor 30 smaller than the estimated regenerative current amount IE.
Further, the regeneration control unit 128 does not suppress regeneration when the battery deterioration degree X is less than the threshold deterioration degree XL. In this case, regenerative current amount≈estimated regenerative current amount IE. Such a state where regeneration suppression is not performed is hereinafter referred to as “normal regeneration”.
The reason why the regenerative current amount does not completely match the estimated regenerative current amount IE is that the actual regenerative current amount may not become the estimated regenerative current amount IE due to various conditions.

ここで、従来から、バッテリ20の充電率Sが高い時には、過充電によるバッテリ20の劣化を防止するために回生抑制を行うことが知られている。
また、バッテリ劣化度Xが高い場合もバッテリ20のさらなる劣化を防ぐために回生抑制を行うことが知られている。これは、バッテリ劣化度Xが進んでいる時にはバッテリ20内の抵抗値が上昇し、回生電流量が大きくなるとバッテリ電圧が上昇しやすくなるためである。
このため、回生制御手段128は、充電率Sに基づいて決定される閾値劣化度XLとバッテリ劣化度Xとを比較し、バッテリ劣化度Xが閾値劣化度XL以上の場合には回生抑制を行い、バッテリ20のさらなる劣化を防いでいる。
Here, conventionally, when the charging rate S of the battery 20 is high, it is known to suppress regeneration in order to prevent deterioration of the battery 20 due to overcharging.
Also, it is known that regeneration suppression is performed to prevent further deterioration of the battery 20 even when the battery deterioration degree X is high. This is because the resistance value in the battery 20 rises when the battery degradation level X is advanced, and the battery voltage tends to rise as the amount of regenerative current increases.
Therefore, the regeneration control unit 128 compares the threshold deterioration degree XL determined based on the charging rate S and the battery deterioration degree X, and performs regeneration suppression when the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL. Further deterioration of the battery 20 is prevented.

図2は、回生制御手段128が保持する閾値劣化度マップMPの一例である。
回生制御手段128は、バッテリ劣化度Xと充電率Sとに基づいて閾値劣化度XLを決定するための閾値劣化度マップMPを有し、閾値劣化度マップMPに基づいて回生抑制を行うか否かを判断する。
図2において、縦軸はバッテリ劣化度X、横軸は充電率S(SOC)である。縦軸のバッテリ劣化度Xは縦軸上方ほど小さく(0%に近く)、縦軸下方ほど大きく(100%に近く)なっている。すなわち、バッテリ劣化度が低いとはバッテリ20が新品状態に近いことを示し、バッテリ劣化度が高いとはバッテリ20の劣化が進んだ状態を示している。
FIG. 2 is an example of the threshold deterioration degree map MP held by the regeneration control unit 128.
The regeneration control means 128 has a threshold deterioration degree map MP for determining the threshold deterioration degree XL based on the battery deterioration degree X and the charging rate S, and whether or not to perform regeneration suppression based on the threshold deterioration degree map MP. Determine whether.
In FIG. 2, the vertical axis represents the battery deterioration degree X, and the horizontal axis represents the charging rate S (SOC). The battery degradation level X on the vertical axis is smaller (closer to 0%) on the upper side of the vertical axis and larger (closer to 100%) on the lower side of the vertical axis. That is, a low battery deterioration level indicates that the battery 20 is close to a new state, and a high battery deterioration level indicates a state in which the battery 20 has deteriorated.

図2に示すように、閾値劣化度XLは、充電率Sが高いほど低い値に設定される。
すなわち、充電率Sが高く、回生発電によって過充電状態となる可能性が高い場合には、回生抑制が開始される閾値劣化度XLが低くなり、回生抑制がより行われやすくなる。
また、図2のグラフの右端は、充電率Sが100%に近い高SOC抑制エリアとなっており、この領域ではバッテリ劣化度Xに関わらず回生抑制が行われる。
図2の例では、閾値劣化度XLのラインが、高SOC抑制エリアの下限充電率よりも低い充電率に設定されているが、これに限らず、高SOC抑制エリアの下限充電率に閾値劣化度XLのラインを一致させてもよい。
As shown in FIG. 2, the threshold deterioration degree XL is set to a lower value as the charging rate S is higher.
That is, when the charging rate S is high and the possibility of being in an overcharged state due to regenerative power generation is high, the threshold deterioration degree XL at which regeneration suppression is started decreases, and regeneration suppression is more easily performed.
Further, the right end of the graph of FIG. 2 is a high SOC suppression area where the charging rate S is close to 100%. In this region, regeneration suppression is performed regardless of the battery deterioration degree X.
In the example of FIG. 2, the line of the threshold deterioration degree XL is set to a charging rate lower than the lower limit charging rate of the high SOC suppression area. Lines of degree XL may be matched.

回生制御手段128は、充電率Sに基づいて閾値劣化度マップMP上の閾値劣化度XLを特定し、バッテリ劣化度Xが閾値劣化度XL以上か否かを判定する。バッテリ劣化度Xが閾値劣化度XL以上の場合は、閾値劣化度マップMPの回生抑制エリアに対応し、モータ30での回生電流量<推定回生電流量IEとする回生抑制を行う。
また、バッテリ劣化度Xが閾値劣化度XL未満の場合は、閾値劣化度マップMPの通常回生エリアに対応し、モータ30での回生電流量≒推定回生電流量IEとなる通常回生を行う。
すなわち、回生制御手段128は、図2に示す閾値劣化度マップMP上にバッテリ20の充電率Sおよびバッテリ劣化度Xが交差する点をプロットし、当該プロット点が通常回生エリアにあるか回生抑制エリアにあるかによって、回生抑制を行うか否かを判定する。
なお、図2を充電率Sの閾値充電率のグラフとして読み替え、バッテリ劣化度Xに基づいて閾値充電率SLを特定し、バッテリ20の充電率Sが閾値充電率SL以上か否かを判定してもよいことは無論である。この場合、バッテリ20の充電率Sが閾値充電率SL以上の場合に回生抑制を行い、閾値充電率SL未満の場合に通常回生を行う。
The regeneration control unit 128 specifies the threshold deterioration degree XL on the threshold deterioration degree map MP based on the charging rate S, and determines whether or not the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL. When the battery deterioration degree X is equal to or greater than the threshold deterioration degree XL, the regeneration suppression is performed such that the regeneration current amount in the motor 30 is smaller than the estimated regenerative current amount IE, corresponding to the regeneration suppression area of the threshold deterioration degree map MP.
When the battery deterioration degree X is less than the threshold deterioration degree XL, normal regeneration corresponding to the normal regeneration area of the threshold deterioration degree map MP is performed so that the amount of regenerative current in the motor 30 is equal to the estimated regenerative current amount IE.
That is, the regeneration control means 128 plots a point where the charging rate S of the battery 20 and the battery deterioration degree X intersect on the threshold deterioration degree map MP shown in FIG. 2 and suppresses whether the plotted point is in the normal regeneration area. It is determined whether or not to suppress regeneration depending on whether the area is present.
2 is read as a graph of the threshold charge rate of the charge rate S, the threshold charge rate SL is specified based on the battery deterioration degree X, and it is determined whether or not the charge rate S of the battery 20 is equal to or higher than the threshold charge rate SL. Of course, you can do it. In this case, regeneration suppression is performed when the charging rate S of the battery 20 is equal to or greater than the threshold charging rate SL, and normal regeneration is performed when the charging rate S is less than the threshold charging rate SL.

図3は、回生抑制時における回生電流量を模式的に示す説明図である。
図3において、縦軸はバッテリ20に供給可能な上限電流Iであり、横軸はバッテリ劣化度Xまたは充電率Sを示す。
グラフ左側に示すように、バッテリ劣化度Xが閾値劣化度XL未満である(または充電率Sが閾値充電率SL未満である)場合には、上限電流Iは一定値(通常時上限電流In)となっている。この上限電流Iは、通常の走行状態においてモータ30で発生し得る回生電流の上限値以上に設定される。
一方、グラフ右側に示すように、バッテリ劣化度Xが閾値劣化度XL以上となる(または充電率Sが閾値充電率SL以上となる)場合には、上限電流Iが通常時上限電流Inよりも小さくなる。より詳細には、バッテリ劣化度Xが上がるほど、または充電率Sが大きくなるほど上限電流Iが小さくなる。
モータ30で発生する回生電流が上限電流I以下である場合(推定回生電流量IE≦上限電流I)には、回生電流をそのままバッテリ20に供給することが可能であるが、モータ30で発生する回生電流が上限電流Iよりも大きい場合(推定回生電流量IE>上限電流I)には、回生電流をそのままバッテリ20に供給することはできない。この場合、回生電流を上限電流I以下に抑制する回生抑制が行われる。
上述のように、上限電流Iは、バッテリ劣化度Xが上がるほど、または充電率Sが大きくなるほど小さくなる。よって、バッテリ劣化度Xが上がるほど、または充電率Sが大きくなるほど、回生抑制の度合いが大きくなる。
FIG. 3 is an explanatory diagram schematically showing the amount of regenerative current when regeneration is suppressed.
In FIG. 3, the vertical axis represents the upper limit current I that can be supplied to the battery 20, and the horizontal axis represents the battery deterioration degree X or the charging rate S.
As shown on the left side of the graph, when the battery deterioration degree X is less than the threshold deterioration degree XL (or the charging rate S is less than the threshold charging rate SL), the upper limit current I is a constant value (normal upper limit current In). It has become. The upper limit current I is set to be equal to or higher than the upper limit value of the regenerative current that can be generated by the motor 30 in the normal running state.
On the other hand, as shown on the right side of the graph, when the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL (or the charging rate S is equal to or higher than the threshold charging rate SL), the upper limit current I is higher than the normal upper limit current In. Get smaller. More specifically, the upper limit current I decreases as the battery degradation level X increases or the charging rate S increases.
When the regenerative current generated in the motor 30 is less than or equal to the upper limit current I (estimated regenerative current amount IE ≦ upper limit current I), the regenerative current can be supplied to the battery 20 as it is, but is generated in the motor 30. When the regenerative current is larger than the upper limit current I (estimated regenerative current amount IE> upper limit current I), the regenerative current cannot be supplied to the battery 20 as it is. In this case, regeneration suppression that suppresses the regenerative current below the upper limit current I is performed.
As described above, the upper limit current I decreases as the battery deterioration degree X increases or the charging rate S increases. Therefore, the degree of regeneration suppression increases as the battery deterioration degree X increases or the charging rate S increases.

図1の説明に戻り、報知手段130は、回生抑制が行われる可能性がある場合に、回生抑制が行われる可能性がある旨を報知する。
報知手段130は、具体的には、たとえばディスプレイ26やスピーカ28、インスツルメントパネル内の警告灯(図示なし)等のインターフェースを制御する出力制御部である。報知手段130は、回生抑制が行われる可能性がある場合には、ディスプレイ26上に回生抑制が行われる可能性がある旨のメッセージやアイコン等を表示させたり、スピーカ28から上記メッセージを音声回生させたり、警告灯を点灯させたりする。
このように、回生抑制が行われる可能性があり、回生ブレーキが利かない可能性があることを事前に運転者に報知することによって、回生抑制によって運転者の意図する減速ができない場合でも、運転者が落ち着いて運転できる可能性が高くなる。
Returning to the description of FIG. 1, the notification unit 130 notifies that there is a possibility that regeneration suppression is performed when there is a possibility that regeneration suppression is performed.
Specifically, the notification unit 130 is an output control unit that controls interfaces such as a display 26, a speaker 28, and a warning light (not shown) in the instrument panel. When there is a possibility that regenerative suppression is performed, the notification unit 130 displays a message, an icon, or the like indicating that there is a possibility that regenerative suppression is performed on the display 26, or the voice regeneration of the message from the speaker 28. Or turn on a warning light.
In this way, even if the driver is not able to decelerate due to regeneration suppression by notifying the driver in advance that there is a possibility that regeneration suppression may be performed and that regenerative braking may not work. The possibility that the person can drive calmly increases.

ここで、報知手段130は、バッテリ劣化度Xが所定の報知劣化度XA以上となった場合に回生抑制が行われる可能性がある旨を報知する。報知劣化度XAは、例えば閾値劣化度XL以下に設定する。
上述のように、実際に回生抑制が行われるのは、バッテリ劣化度Xが閾値劣化度XL以上、かつ推定回生電流量IEが上限電流Iを上回った場合である。よって、バッテリ劣化度Xが閾値劣化度XL以上の場合には実際に回生抑制が生じ得る状態となるが、バッテリ劣化度Xが閾値劣化度XL未満の場合には回生抑制が生じ得る状態とはなっていない。
一方で、バッテリ劣化度Xが閾値劣化度XL未満であっても、閾値劣化度XLに近い劣化度である場合には、近い将来回生抑制が生じる可能性がある。
よって、バッテリ劣化度Xが、閾値劣化度XLより小さい報知劣化度XA以上となった際に早めに報知を行うことによって、報知の実効性を向上させることができる。
なお、報知劣化度XA=閾値劣化度XLである場合には、実際に回生抑制が生じ得る状態となってからの報知となる。この場合でも、実際に回生抑制が生じる前に(回生走行条件が成立する前に)報知を行うことによって、運転者の違和感を軽減することができる。
また、図3に示すように、上限電流Iはバッテリ劣化度Xが閾値劣化度XL以上となった直後には通常時上限電流Inに近い値であり、回生抑制の度合いは小さい。よって、報知劣化度XAを閾値劣化度XLより大きく、かつ閾値劣化度XL近傍の劣化度としてもよい。
Here, the notification unit 130 notifies that there is a possibility that regeneration suppression may be performed when the battery deterioration level X is equal to or higher than the predetermined notification deterioration level XA. The notification deterioration degree XA is set to, for example, a threshold deterioration degree XL or less.
As described above, the regeneration suppression is actually performed when the battery deterioration degree X is equal to or greater than the threshold deterioration degree XL and the estimated regenerative current amount IE exceeds the upper limit current I. Therefore, when the battery deterioration degree X is equal to or greater than the threshold deterioration degree XL, a state in which regeneration suppression can actually occur is brought about, but when the battery deterioration degree X is less than the threshold deterioration degree XL, a state in which regeneration suppression can occur. is not.
On the other hand, even if the battery deterioration degree X is less than the threshold deterioration degree XL, if the deterioration degree is close to the threshold deterioration degree XL, regeneration suppression in the near future may occur.
Therefore, when the battery deterioration degree X becomes equal to or greater than the notification deterioration degree XA smaller than the threshold deterioration degree XL, the notification effectiveness can be improved by performing the notification early.
Note that, when the notification deterioration degree XA = the threshold deterioration degree XL, the notification is made after a state in which regeneration suppression can actually occur. Even in this case, it is possible to reduce the driver's uncomfortable feeling by performing the notification before the regeneration is actually suppressed (before the regeneration traveling condition is established).
Further, as shown in FIG. 3, the upper limit current I is a value close to the normal upper limit current In immediately after the battery deterioration degree X becomes equal to or greater than the threshold deterioration degree XL, and the degree of regeneration suppression is small. Therefore, the notification deterioration degree XA may be larger than the threshold deterioration degree XL and may be a deterioration degree near the threshold deterioration degree XL.

また、報知劣化度XAを、閾値劣化度XL以下に設定される第1の報知劣化度XA1と、閾値劣化度XLより大きい値に設定される第2の報知劣化度XA2と、の2種類設定してもよい。
この場合、報知手段130は、バッテリ劣化度Xが第1の報知劣化度XA1以上となった場合と、第2の報知劣化度XA2以上となった場合とで報知内容を変更する。
より詳細には、図3に示すように、上限電流Iはバッテリ劣化度Xが大きいほど小さくなり、回生抑制の度合いが大きくなる。よって、バッテリ劣化度Xが第1の報知劣化度XA1以上となった場合と比較して、第2の報知劣化度XA2以上となった場合の方が、より報知の度合いを強くする。
報知の度合いを強くするには、たとえばディスプレイ26におけるメッセージやアイコンの表示の大きさを大きくする、表示色を原色等の視認しやすい色に変更する、メッセージの内容をより強く注意を促す内容にする、スピーカ28における出力音を大きくする、出力する音を不協和音とする、等の方法が挙げられる。
Further, the notification degradation degree XA is set in two types: a first notification degradation degree XA1 that is set to be equal to or less than the threshold degradation degree XL, and a second notification degradation degree XA2 that is set to a value larger than the threshold degradation degree XL. May be.
In this case, the notification unit 130 changes the notification content between when the battery deterioration level X is equal to or higher than the first notification deterioration level XA1 and when the battery deterioration level X is equal to or higher than the second notification deterioration level XA2.
More specifically, as shown in FIG. 3, the upper limit current I decreases as the battery deterioration degree X increases, and the degree of regeneration suppression increases. Therefore, the degree of notification is further strengthened when the battery deterioration degree X is equal to or higher than the first notification deterioration degree XA1 than when the battery deterioration degree X is equal to or higher than the second notification deterioration degree XA2.
In order to increase the degree of notification, for example, the display size of a message or icon on the display 26 is increased, the display color is changed to a color that is easy to visually recognize, such as a primary color, or the content of the message is strongly urged to be alerted. The output sound from the speaker 28 is increased, the output sound is a dissonance, and the like.

図4は、報知劣化度XAと閾値劣化度XLとの関係を示すマップであり、図2の閾値劣化度マップMPに報知劣化度XA(XA1,XA2)を加えたものである。
図4に示すように、第1の報知劣化度XAは閾値劣化度XL以下(図4では第1の報知劣化度XA<閾値劣化度XL)に設定されており、第1の報知劣化度XA1以上となった場合にはバッテリ劣化度Xが通常回生エリアにある時にも回生抑制の可能性が運転者に報知される。
また、第2の報知劣化度XAは閾値劣化度XLより大きい値に設定されており、実際に回生抑制が生じ得る状態、かつ高SOC抑制エリアに近く、回生抑制の度合いが大きい状態である。よって、バッテリ劣化度Xが第2の報知劣化度XA2以上となった場合には、第1の報知劣化度XA1以上となった場合と比較して、報知の度合いをより強くし、運転者により強く注意を促すようにする。
これにより、回生抑制が生じる可能性を運転者に確実に報知することができ、報知の実効性を向上させることができる。
なお、報知劣化度XAは2つに限らず、3つ以上の複数設定してもよいことは無論である。
FIG. 4 is a map showing the relationship between the notification deterioration degree XA and the threshold deterioration degree XL, and is obtained by adding the notification deterioration degree XA (XA1, XA2) to the threshold deterioration degree map MP of FIG.
As shown in FIG. 4, the first notification deterioration degree XA is set to be equal to or lower than the threshold deterioration degree XL (in FIG. 4, first notification deterioration degree XA <threshold deterioration degree XL), and the first notification deterioration degree XA1. If this is the case, the driver is notified of the possibility of suppressing regeneration even when the battery deterioration level X is in the normal regeneration area.
Further, the second notification deterioration degree XA is set to a value larger than the threshold deterioration degree XL, and is in a state where the regeneration suppression can actually occur and is close to the high SOC suppression area and the degree of regeneration suppression is large. Therefore, when the battery deterioration degree X is equal to or higher than the second notification deterioration degree XA2, the degree of notification is made stronger than the case where the battery deterioration degree XA1 is equal to or higher than the first notification deterioration degree XA1. Strongly call attention.
Accordingly, it is possible to reliably notify the driver of the possibility of regenerative suppression and improve the effectiveness of notification.
Of course, the notification degradation degree XA is not limited to two, and may be set to a plurality of three or more.

図5は、モータ制御装置10の処理を示すフローチャートである。
まず、モータ制御装置10は、充電率検知手段124によってバッテリ20の充電率Sを検知する(ステップS500)。
つぎに、回生制御手段128は、閾値劣化度マップ(図2、図4)から充電率Sに対応する閾値劣化度XLおよび報知劣化度XAを読み出す(ステップS502)。なお、複数の報知劣化度XAが設定されている場合には、複数の報知劣化度XAをそれぞれ読み出す。
つづいて、劣化度検知手段122は、バッテリ劣化度Xを検知する(ステップS504)。
報知手段130は、バッテリ劣化度Xが報知劣化度XA以上か否かを判断し(ステップS506)、報知劣化度XA以上の場合には(ステップS506:Yes)、回生抑制が行われる可能性がある旨を報知する(ステップS508)。なお、報知劣化度XAが複数設定されている場合には、いずれの報知劣化度XA以上であるかによって報知の内容(報知の度合い)を変更する。
また、バッテリ劣化度Xが報知劣化度XA以上でない場合には(ステップS506:No)、そのままステップS510に移行する。
FIG. 5 is a flowchart showing processing of the motor control device 10.
First, the motor control device 10 detects the charging rate S of the battery 20 by the charging rate detection means 124 (step S500).
Next, the regeneration control means 128 reads the threshold deterioration degree XL and the notification deterioration degree XA corresponding to the charging rate S from the threshold deterioration degree map (FIGS. 2 and 4) (step S502). If a plurality of notification deterioration levels XA are set, the plurality of notification deterioration levels XA are read out.
Subsequently, the deterioration degree detection means 122 detects the battery deterioration degree X (step S504).
The notification unit 130 determines whether or not the battery deterioration level X is equal to or higher than the notification deterioration level XA (step S506), and when it is equal to or higher than the notification deterioration level XA (step S506: Yes), there is a possibility that regeneration suppression is performed. A notification is made (step S508). When a plurality of notification degradation levels XA are set, the content of notification (degree of notification) is changed depending on which notification degradation level XA or higher.
If the battery deterioration degree X is not equal to or greater than the notification deterioration degree XA (step S506: No), the process proceeds to step S510 as it is.

つぎに、回生制御手段128は、アクセルペダル24やブレーキペダル22の踏み込み量等に基づいて、回生走行条件が成立したか否かを判断する(ステップS510)。回生走行条件が成立しない場合は(ステップS510:No)、ステップS500に戻り、以降の処理をくり返す。
一方、回生走行条件が成立した場合(ステップS510:Yes)、回生制御手段128は、バッテリ劣化度Xが閾値劣化度XL以上か否かを判断し(ステップS512)、閾値劣化度XL以上の場合には(ステップS512:Yes)、回生電流量推定手段120に現在の電動車の走行状態に基づいて推定回生電流量IEを算出させる(ステップS514)。
そして、回生制御手段128は、推定回生電流量IEが現在のバッテリ劣化度Xに対応する上限電流Iを超えているか否かを判断する(ステップS516)。
推定回生電流量IEが上限電流Iを超えている場合は(ステップS516:Yes)、回生電流量を上限電流I以下とする回生抑制を行う(ステップS518)。
また、推定回生電流量IEが上限電流Iを超えていない場合は(ステップS516:No)、回生抑制を行わずにそのまま通常の回生動作を行う(ステップS520)。
なお、ステップS512で、バッテリ劣化度Xが閾値劣化度XL以上でない場合には(ステップS512:No)、上限電流Iは通常時上限電流In(モータ30で発生し得る回生電流の上限値以上の値)であるため、回生抑制を行わずにそのまま通常の回生動作を行う(ステップS520)。
Next, the regenerative control means 128 determines whether or not the regenerative travel condition is satisfied based on the depression amount of the accelerator pedal 24 and the brake pedal 22 (step S510). If the regenerative travel condition is not satisfied (step S510: No), the process returns to step S500, and the subsequent processing is repeated.
On the other hand, when the regenerative travel condition is satisfied (step S510: Yes), the regeneration control unit 128 determines whether or not the battery deterioration degree X is equal to or higher than the threshold deterioration degree XL (step S512). (Step S512: Yes), the regenerative current amount estimating means 120 is caused to calculate the estimated regenerative current amount IE based on the current running state of the electric vehicle (Step S514).
Then, the regeneration control unit 128 determines whether or not the estimated regeneration current amount IE exceeds the upper limit current I corresponding to the current battery deterioration degree X (step S516).
When the estimated regenerative current amount IE exceeds the upper limit current I (step S516: Yes), regeneration suppression is performed so that the regenerative current amount is equal to or less than the upper limit current I (step S518).
When the estimated regenerative current amount IE does not exceed the upper limit current I (step S516: No), the normal regenerative operation is performed as it is without suppressing regeneration (step S520).
In step S512, when the battery deterioration degree X is not equal to or higher than the threshold deterioration degree XL (step S512: No), the upper limit current I is equal to or higher than the normal upper limit current In (the upper limit value of the regenerative current that can be generated by the motor 30). Therefore, the normal regeneration operation is performed as it is without suppressing regeneration (step S520).

以上説明したように、実施の形態にかかるモータ制御装置10は、回生発電によって生じる回生電流量を、通常時の回生発電量である推定回生電流量よりも少なくする回生抑制が行われる可能性がある場合に、回生抑制が行われる可能性がある旨を報知する。
よって、実際に回生抑制が行われる前に回生ブレーキがかかりにくい場合があることを運転者に認知させることができ、回生抑制に伴う違和感を軽減させることができる。
また、モータ制御装置10は、バッテリ劣化度Xが閾値劣化度XL以上の場合に回生抑制を行う。一般に、バッテリ劣化度Xが高まるとバッテリ抵抗値が高まり、高電流を流すと劣化につながる可能性がある。このため、バッテリ劣化時に回生抑制を行うことによって、バッテリ20の更なる劣化を防止することができる。
また、モータ制御装置10は、バッテリ20の充電率Sが高いほど閾値劣化度XLを低くしているので、バッテリ20の充電率Sが高く過充電が懸念される状況で回生抑制に移行しやすくすることができる。
また、モータ制御装置10は、閾値劣化度マップMPを用いて閾値劣化度XLを特定し、回生抑制を行うか否かを判断するので、数式等を用いて閾値劣化度を算出する場合と比較してモータ制御装置の処理負荷を軽減することができる。
また、モータ制御装置10は、バッテリ劣化度Xが、閾値劣化度XL以下に設定された報知劣化度XA以上となった場合に回生抑制が行われる可能性を報知するので、実際に回生抑制が行われ得る状態になる前に運転者に報知を行うことができ、報知の実効性をより向上させることができる。
また、モータ制御装置10において、報知劣化度XAを複数設定し、それぞれの報知劣化度XA以上となった場合に報知の内容を変更するようにすれば、回生抑制の度合いに連動した報知を行うことができ、報知の有効性を向上させることができる。
As described above, in the motor control device 10 according to the embodiment, there is a possibility that regenerative suppression is performed so that the amount of regenerative current generated by regenerative power generation is smaller than the estimated regenerative current amount that is the amount of regenerative power generation in normal times. In some cases, a notification that regeneration suppression may be performed is given.
Therefore, the driver can be made aware that there is a case where the regenerative brake is not easily applied before the regeneration suppression is actually performed, and the uncomfortable feeling associated with the regeneration suppression can be reduced.
Moreover, the motor control apparatus 10 performs regeneration suppression when the battery deterioration degree X is equal to or greater than the threshold deterioration degree XL. In general, when the battery degradation level X increases, the battery resistance value increases, and when a high current is passed, there is a possibility that the battery degradation will occur. For this reason, further deterioration of the battery 20 can be prevented by suppressing regeneration when the battery is deteriorated.
Further, since the motor control device 10 decreases the threshold deterioration degree XL as the charging rate S of the battery 20 is higher, the motor control device 10 is likely to shift to regeneration suppression in a situation where the charging rate S of the battery 20 is high and there is a concern about overcharging. can do.
In addition, the motor control device 10 identifies the threshold deterioration degree XL using the threshold deterioration degree map MP and determines whether or not to perform regeneration suppression. Compared to the case where the threshold deterioration degree is calculated using mathematical formulas or the like. Thus, the processing load of the motor control device can be reduced.
In addition, since the motor control device 10 notifies the possibility that regeneration suppression is performed when the battery deterioration level X is equal to or higher than the notification deterioration level XA set to be equal to or lower than the threshold deterioration level XL, the regeneration suppression is actually performed. The driver can be notified before it can be performed, and the effectiveness of the notification can be further improved.
Further, in the motor control device 10, if a plurality of notification deterioration levels XA are set and the notification content is changed when the notification deterioration levels XA or more are set, notifications linked to the degree of regeneration suppression are performed. And the effectiveness of notification can be improved.

10……モータ制御装置、20……バッテリ、22……ブレーキペダル、24……アクセルペダル、26……ディスプレイ、28……スピーカ、30……モータ、112……温度センサ、114……電圧センサ、116……電流センサ、120……回生電流量推定手段、122……バッテリ劣化度検知手段、124……充電率検知手段、128……回生制御手段、130……報知手段、In……通常時上限電流、IE……推定回生電流量、MP……閾値劣化度マップ、S……充電率、SL……閾値充電率、X……バッテリ劣化度、XA(XA1,XA2)……報知劣化度、XL……閾値劣化度、V……バッテリ電圧。   DESCRIPTION OF SYMBOLS 10 ... Motor control device, 20 ... Battery, 22 ... Brake pedal, 24 ... Accelerator pedal, 26 ... Display, 28 ... Speaker, 30 ... Motor, 112 ... Temperature sensor, 114 ... Voltage sensor , 116... Current sensor, 120... Regenerative current amount estimating means, 122... Battery deterioration degree detecting means, 124... Charging rate detecting means, 128. Upper limit current, IE: Estimated regenerative current, MP: Threshold degradation map, S: Charging rate, SL: Threshold charging rate, X: Battery degradation, XA (XA1, XA2) ... Notification degradation Degree, XL: threshold deterioration degree, V: battery voltage.

Claims (4)

バッテリから供給される駆動電力により電動車の駆動輪を駆動するとともに所定の回生走行条件が成立した際には回生発電により回生電流を発生し前記駆動輪に回生制動力を与えるモータを制御するモータ制御装置であって、
前記電動車の走行状態に基づいて前記回生発電により発生する回生電流量を推定する回生電流量推定手段と、
前記バッテリのバッテリ劣化度を検知する劣化度検知手段と、
前記バッテリの充電率を検知する充電率検知手段と、
前記回生電流量推定手段によって推定された推定回生電流量と、前記バッテリ劣化度と、前記充電率とに基づいて、前記モータで発生する前記回生電流量を制御する回生制御手段と、
前記回生電流量を前記推定回生電流量よりも少なくする回生抑制が前記回生制御手段によって行われる可能性がある場合に、前記回生抑制が行われる可能性がある旨を報知する報知手段と、を備え、
前記回生制御手段は、前記バッテリ劣化度が前記充電率に基づいて決定される閾値劣化度以上か否かを判定し、前記バッテリ劣化度が前記閾値劣化度以上、かつ前記推定回生電流量が前記バッテリに供給可能な上限電流を上回った場合に前記回生抑制を行い、
前記報知手段は、前記バッテリ劣化度が前記充電率に基づいて決定される第1の報知劣化度以上となった場合に前記回生抑制が行われる可能性がある旨を報知し、
前記第1の報知劣化度は、前記閾値劣化度より小さく設定される、
ことを特徴とするモータ制御装置。
A motor that drives a drive wheel of an electric vehicle with drive power supplied from a battery and controls a motor that generates a regenerative current by regenerative power generation and applies a regenerative braking force to the drive wheel when a predetermined regenerative running condition is established. A control device,
Regenerative current amount estimating means for estimating a regenerative current amount generated by the regenerative power generation based on a running state of the electric vehicle;
A deterioration degree detecting means for detecting a battery deterioration degree of the battery;
Charging rate detection means for detecting the charging rate of the battery;
Regenerative control means for controlling the amount of regenerative current generated in the motor based on the estimated regenerative current amount estimated by the regenerative current amount estimating means, the battery deterioration degree, and the charging rate;
Informing means for informing that there is a possibility that the regeneration suppression may be performed when there is a possibility that the regeneration control means performs regeneration suppression that makes the amount of regenerative current less than the estimated amount of regenerative current. Prepared,
The regeneration control means determines whether or not the battery deterioration degree is equal to or greater than a threshold deterioration degree determined based on the charging rate, the battery deterioration degree is equal to or greater than the threshold deterioration degree , and the estimated regenerative current amount is When the upper limit current that can be supplied to the battery is exceeded, the regeneration is suppressed,
The notification means notifies that the regeneration suppression may be performed when the battery deterioration level is equal to or higher than a first notification deterioration level determined based on the charging rate ,
The first notification deterioration degree is set smaller than the threshold deterioration degree.
The motor control apparatus characterized by the above-mentioned.
前記閾値劣化度は、前記充電率が高いほど低い値に設定される、
ことを特徴とする請求項1記載のモータ制御装置。
The threshold deterioration degree is set to a lower value as the charging rate is higher.
The motor control device according to claim 1.
前記回生制御手段は、前記バッテリ劣化度と前記充電率とに基づいて前記閾値劣化度を決定するための閾値劣化度マップを有し、前記閾値劣化度マップに基づいて前記回生抑制を行うか否かを判断する、
ことを特徴とする請求項1または2記載のモータ制御装置。
The regeneration control means has a threshold deterioration degree map for determining the threshold deterioration degree based on the battery deterioration degree and the charging rate, and determines whether or not to perform the regeneration suppression based on the threshold deterioration degree map. To determine,
The motor control device according to claim 1, wherein
前記報知手段は、前記バッテリ劣化度が、前記充電率に基づいて決定される第2の報知劣化度以上となった場合にも報知を行い、前記バッテリ劣化度が前記第1の報知劣化度以上となった場合と、前記第2の報知劣化度以上となった場合とで報知内容を変更し、
前記第2の報知劣化度は、前記閾値劣化度より大きい値に設定される、
ことを特徴とする請求項1から3のいずれか1項に記載のモータ制御装置。
The notification means also notifies when the battery deterioration level is equal to or higher than a second notification deterioration level determined based on the charging rate, and the battery deterioration level is equal to or higher than the first notification deterioration level. The content of the notification is changed between the case where it becomes and the case where the second notification deterioration degree is exceeded ,
The second notification deterioration degree is set to a value larger than the threshold deterioration degree.
The motor control device according to claim 1, wherein the motor control device is a motor control device.
JP2014245490A 2014-12-04 2014-12-04 Motor control device Active JP6596816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245490A JP6596816B2 (en) 2014-12-04 2014-12-04 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245490A JP6596816B2 (en) 2014-12-04 2014-12-04 Motor control device

Publications (2)

Publication Number Publication Date
JP2016111773A JP2016111773A (en) 2016-06-20
JP6596816B2 true JP6596816B2 (en) 2019-10-30

Family

ID=56125130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245490A Active JP6596816B2 (en) 2014-12-04 2014-12-04 Motor control device

Country Status (1)

Country Link
JP (1) JP6596816B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264709A (en) * 1994-03-24 1995-10-13 Mitsubishi Electric Corp Motor controller for electric vehicle
JP3288927B2 (en) * 1996-06-14 2002-06-04 日野自動車株式会社 In-vehicle battery display
JP2006073309A (en) * 2004-09-01 2006-03-16 Toyota Motor Corp Fuel cell system and car equipped with the same
JP2010200557A (en) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd Device and method for controlling regenerative cooperation
DE112011102334T5 (en) * 2010-07-13 2013-04-18 Honda Motor Co., Ltd. Storage Management System
JP5837439B2 (en) * 2012-02-08 2015-12-24 トヨタ自動車株式会社 Electric vehicle
EP2927703A4 (en) * 2012-11-28 2016-08-03 Sony Corp Control apparatus, control method, power supply system, and electric vehicle
JP2014155388A (en) * 2013-02-12 2014-08-25 Toyota Industries Corp Charging device and charging method

Also Published As

Publication number Publication date
JP2016111773A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP5184406B2 (en) Electric vehicle control device
JP4494453B2 (en) Secondary battery control device and control method
KR101646115B1 (en) System and method for controlling torque of hybrid vehicle
EP2546089A2 (en) Regeneration control device of electrically powered vehicle
US20130293200A1 (en) Control apparatus and control method for electric storage apparatus
US20210119272A1 (en) Storage Battery Control Device
JP5733112B2 (en) Vehicle and vehicle control method
JP2007295700A (en) Motor controller and electric vehicle equipped with it
JP5837439B2 (en) Electric vehicle
JP5730588B2 (en) Electric car
JP2015118789A (en) Battery controller
CN112298077B (en) Method and device for improving energy recovery rate and electronic equipment
JP6600974B2 (en) Battery control device
JP6119103B2 (en) Control device for hybrid vehicle
JP6638650B2 (en) Lead storage battery deterioration determination apparatus and lead storage battery deterioration determination method
JP6596816B2 (en) Motor control device
JP6507603B2 (en) Motor controller
JP7183614B2 (en) Drive control device for vehicle drive system
JP6225691B2 (en) Battery control device
KR102435345B1 (en) Eco-friendly vehicle and method of controlling battery thereof
JP5270775B1 (en) Electric vehicle and control method of electric vehicle
JP2007295703A (en) Motor controller, informing device and electric vehicle
JP6299476B2 (en) Driving assistance device
JP6508449B2 (en) Control device of electric vehicle
JP5814156B2 (en) Electric vehicle and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6596816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151