JP6589339B2 - Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents

Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP6589339B2
JP6589339B2 JP2015073914A JP2015073914A JP6589339B2 JP 6589339 B2 JP6589339 B2 JP 6589339B2 JP 2015073914 A JP2015073914 A JP 2015073914A JP 2015073914 A JP2015073914 A JP 2015073914A JP 6589339 B2 JP6589339 B2 JP 6589339B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073914A
Other languages
Japanese (ja)
Other versions
JP2016076470A (en
Inventor
達哉 遠山
達哉 遠山
心 高橋
高橋  心
章 軍司
章 軍司
孝亮 馮
孝亮 馮
所 久人
久人 所
崇 中林
崇 中林
秀一 高野
秀一 高野
翔 古月
翔 古月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to US14/868,746 priority Critical patent/US10388944B2/en
Priority to KR1020150138455A priority patent/KR101888552B1/en
Publication of JP2016076470A publication Critical patent/JP2016076470A/en
Application granted granted Critical
Publication of JP6589339B2 publication Critical patent/JP6589339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、ニッケル・水素蓄電池やニッケル・カドミウム蓄電池等の他の二次電池と比較して、エネルギー密度が高くメモリ効果が小さいといった特徴を有している。そのため、携帯電子機器、家庭用電気機器等の小型電源から、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源といった中大型電源に至るまでその用途が拡大しており、電池性能のさらなる向上が求められている。特に、中大型電源として展開されるリチウムイオン二次電池については、低容積で高容量を達成できるような高エネルギー密度を有することが要求されている。   Lithium ion secondary batteries have a feature of high energy density and low memory effect compared to other secondary batteries such as nickel / hydrogen storage batteries and nickel / cadmium storage batteries. Therefore, from small power sources such as portable electronic devices and household electric appliances to stationary power sources such as power storage devices, uninterruptible power supply devices, power leveling devices, and driving power sources for ships, railways, hybrid vehicles, electric vehicles, etc. Applications have expanded to large power supplies, and further improvements in battery performance are required. In particular, lithium ion secondary batteries deployed as medium and large power supplies are required to have a high energy density that can achieve a high capacity with a low volume.

このような要請に応じて、α−NaFeO型層状構造を有するLiMO(Mは、Ni、Co、Mn等の元素を示す。)正極活物質は、高い充放電容量を有するため開発が鋭意進められている。その一方で、Niの含有量が高い層状正極活物質は、充放電サイクル特性、特にサイクルに伴い出力特性が低下するという課題があった。 In response to such demands, LiMO 2 with alpha-NaFeO 2 type layer structure (M represents Ni, Co, an element such as Mn.) Positive electrode active material, development has a high charge-discharge capacity intensive It is being advanced. On the other hand, the layered positive electrode active material having a high Ni content has a problem that the charge / discharge cycle characteristics, particularly, the output characteristics deteriorate with the cycle.

そこで、層状正極活物質の充放電サイクル特性を、正極活物質の粒子表面に存在する不純物量を低減することによって改善する技術が提案されている。例えば、特許文献1には、粒子を水洗して不純物を除去する技術を適用して得られる、Li1+xNi1−y−zCo(M=B、Alの少なくとも1種以上、−0.02≦x≦0.02、0<y≦0.20、0<z≦0.10)で示されるリチウム複合化合物粒子粉末において、該リチウム複合化合物粒子粉末の粒子表面を飛行時間型二次イオン質量分析装置で分析したときの、イオン強度比A(LiO/NiO )が0.3以下であって、かつ、イオン強度比B(LiCO /Ni)が20以下であることを特徴とする正極活物質が開示されている。その他、粒子を水洗する技術を開示する先行技術として、特許文献2が挙げられる。 Therefore, a technique for improving the charge / discharge cycle characteristics of the layered positive electrode active material by reducing the amount of impurities present on the particle surface of the positive electrode active material has been proposed. For example, Patent Document 1 discloses Li 1 + x Ni 1-yz Co y M z O 2 (M = B, at least one of Al, which is obtained by applying a technique for removing impurities by washing particles with water. , −0.02 ≦ x ≦ 0.02, 0 <y ≦ 0.20, 0 <z ≦ 0.10), the time of flight over the particle surface of the lithium composite compound particle powder Ionic strength ratio A (LiO / NiO 2 ) is 0.3 or less and ionic strength ratio B (Li 3 CO 3 + / Ni + ) when analyzed by a type secondary ion mass spectrometer A positive electrode active material characterized in that is 20 or less is disclosed. In addition, Patent Document 2 is cited as a prior art that discloses a technique for washing particles with water.

また、層状正極活物質の出力特性を、正極活物質の空隙率や開気孔比率を調整することによって改善する技術が提案されている。例えば、特許文献3には、平均粒子径が0.01μm以上5μm以下である多数の一次粒子からなる二次粒子において、空隙率が、3%以上30%以下であり、開気孔率が70%以上であることを特徴とする正極活物質が開示されている。   Further, a technique for improving the output characteristics of the layered positive electrode active material by adjusting the porosity and open pore ratio of the positive electrode active material has been proposed. For example, in Patent Document 3, in secondary particles composed of a large number of primary particles having an average particle diameter of 0.01 μm or more and 5 μm or less, the porosity is 3% or more and 30% or less, and the open porosity is 70%. A positive electrode active material characterized by the above is disclosed.

特開2010−155775号公報JP 2010-155775 A 特開2013−026199号公報JP 2013-026199 A 特開2014−67546号公報JP 2014-67546 A

特許文献1に開示されるように、層状正極活物質の粒子表面に存在する不純物である水酸化リチウム(LiOH)や炭酸リチウム(LiCO)の量を低くすることは、電極作製時の塗料のゲル化を抑制したり充放電に伴う電池内での副反応を抑制したりする効果があり、充放電サイクル特性を向上させることが可能であると考えられる。しかしながら、層状正極活物質の粒子表面に存在する不純物を低減させるために、層状正極活物質を水に分散させて洗浄したりすると、活物質内のLiが溶出して活物質表面の結晶性が低下し、抵抗が増加する虞がある。 As disclosed in Patent Document 1, reducing the amount of lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ), which are impurities present on the particle surface of the layered positive electrode active material, It is thought that there is an effect of suppressing gelation of the paint or suppressing side reactions in the battery accompanying charge / discharge, and it is possible to improve charge / discharge cycle characteristics. However, when the layered cathode active material is dispersed in water and washed in order to reduce impurities present on the particle surface of the layered cathode active material, Li in the active material is eluted and the crystallinity of the surface of the active material is reduced. There is a risk that the resistance decreases.

また、特許文献3に開示されるように、空隙に占める開気孔比率を70%以上とすることで、正極活物質粒子内部に電解液がより浸透でき、粒子内部へのリチウムイオンの拡散が促進されるとともに、電解液と正極活物質の接触面積が大きくなるため、充放電特性、特に出力特性の改善が期待できる。しかしながら、開気孔比率を高めるだけでは、電解液と正極活物質の接触面積が増えるため、電解液の分解が促進されて抵抗が増加してしまう虞がある。   Further, as disclosed in Patent Document 3, by setting the ratio of open pores in the voids to 70% or more, the electrolyte solution can penetrate more into the positive electrode active material particles, and the diffusion of lithium ions into the particles is promoted. In addition, since the contact area between the electrolytic solution and the positive electrode active material is increased, improvement of charge / discharge characteristics, particularly output characteristics can be expected. However, simply increasing the open pore ratio increases the contact area between the electrolytic solution and the positive electrode active material, which may accelerate the decomposition of the electrolytic solution and increase the resistance.

したがって、本発明は、低抵抗であり、高容量かつ充放電サイクル特性の優れたリチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することを目的とする。   Accordingly, the present invention provides a positive electrode active material for a lithium ion secondary battery having low resistance, high capacity and excellent charge / discharge cycle characteristics, and a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same. The purpose is to do.

前記課題を解決するために本発明に係るリチウムイオン二次電池用正極活物質は、以下の組成式(1)
Li1+xNiCo1−x−y−z (1)
[式中、xは−0.12≦x≦0.2を満たす数であり、yは0.7≦y≦0.9を満たす数であり、zは0.05≦z≦0.3を満たす数であり、MはMg、Al、Ti、Mn、Zr、Mo及びNbからなる群より選択される少なくとも1種の元素である。]
で表される一次粒子、又は前記一次粒子が凝集した二次粒子を含み、
前記一次粒子又は前記二次粒子が0.1%以上2.0%以下の重量割合で遊離リチウム化合物を含み、前記遊離リチウム化合物における水酸化リチウムの重量が、前記遊離リチウム化合物における炭酸リチウムの重量の60%以下であることを特徴とする。
In order to solve the above problems, a positive electrode active material for a lithium ion secondary battery according to the present invention has the following composition formula (1):
Li 1 + x Ni y Co z M 1-x-y-z O 2 (1)
[Wherein x is a number satisfying −0.12 ≦ x ≦ 0.2, y is a number satisfying 0.7 ≦ y ≦ 0.9, and z is 0.05 ≦ z ≦ 0.3. M is at least one element selected from the group consisting of Mg, Al, Ti, Mn, Zr, Mo and Nb. ]
Or a secondary particle in which the primary particles are aggregated,
The primary particles or the secondary particles contain a free lithium compound in a weight ratio of 0.1% to 2.0%, and the weight of lithium hydroxide in the free lithium compound is the weight of lithium carbonate in the free lithium compound. It is characterized by being 60% or less.

また、本発明に係るリチウムイオン二次電池用正極は、前記リチウムイオン二次電池用正極活物質を含むことを特徴とする。   Moreover, the positive electrode for lithium ion secondary batteries which concerns on this invention is characterized by including the said positive electrode active material for lithium ion secondary batteries.

さらに、本発明に係るリチウムイオン二次電池は、前記リチウムイオン二次電池用正極を備えることを特徴とする。   Furthermore, the lithium ion secondary battery according to the present invention includes the positive electrode for a lithium ion secondary battery.

本発明によれば、低抵抗であり、高容量及び高充放電サイクル特性のリチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供することができる。   According to the present invention, a positive electrode active material for a lithium ion secondary battery having low resistance, high capacity and high charge / discharge cycle characteristics, and a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same are provided. be able to.

本発明に係るリチウムイオン二次電池の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one Embodiment of the lithium ion secondary battery which concerns on this invention. 水銀圧入法により測定した実施例1の二次粒子の細孔容積分布を示す図である。It is a figure which shows the pore volume distribution of the secondary particle of Example 1 measured by the mercury intrusion method. 実施例及び比較例に係るリチウムイオン二次電池の容量と充放電サイクル特性の関係を示す図である。It is a figure which shows the relationship between the capacity | capacitance of the lithium ion secondary battery which concerns on an Example and a comparative example, and charging / discharging cycling characteristics.

以下に、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池について詳細に説明する。   Below, the positive electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention, the positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery are demonstrated in detail.

本実施形態に係るリチウムイオン二次電池用正極活物質は、層状構造を有する正極活物質であって、一次粒子、又はその一次粒子が凝集した二次粒子を含み、一次粒子又は二次粒子に含まれる遊離リチウム化合物のうち、水酸化リチウムと炭酸リチウムの重量比に特徴がある。なお、ここで遊離リチウム化合物とは、正極活物質として機能する化合物以外の、水に溶解するリチウム含有化合物をいう。すなわち、本明細書において、一次粒子又は二次粒子は、正極活物質として機能する化合物に加えて、遊離リチウム化合物をも含む。また、本明細書において、一次粒子又は二次粒子について「組成」又は「組成式」というときは、遊離リチウム化合物を除く、正極活物質として機能する化合物のみの「組成」又は「組成式」を意味する。   The positive electrode active material for a lithium ion secondary battery according to the present embodiment is a positive electrode active material having a layered structure, and includes primary particles or secondary particles obtained by aggregating the primary particles, and the primary particles or the secondary particles Among the free lithium compounds contained, the weight ratio of lithium hydroxide and lithium carbonate is characteristic. Here, the free lithium compound refers to a lithium-containing compound that dissolves in water other than a compound that functions as a positive electrode active material. That is, in this specification, primary particles or secondary particles include a free lithium compound in addition to a compound that functions as a positive electrode active material. In the present specification, the term “composition” or “composition formula” for primary particles or secondary particles refers to “composition” or “composition formula” of only a compound that functions as a positive electrode active material, excluding free lithium compounds. means.

本実施形態に係るリチウムイオン二次電池用正極活物質は、以下の組成式(1)
Li1+xNiCo1−x−y−z (1)
[式中、xは−0.12≦x≦0.2を満たす数であり、yは0.7≦y≦0.9を満たす数であり、zは0.05≦z≦0.3を満たす数であり、MはMg、Al、Ti、Mn、Zr、Mo及びNbからなる群より選択される少なくとも1種の元素である。]
で表される一次粒子、又は前記一次粒子が凝集した二次粒子を含み、前記一次粒子又は前記二次粒子が0.1%以上2.0%以下の重量割合で遊離リチウム化合物を含み、前記遊離リチウム化合物における水酸化リチウムの重量が、前記遊離リチウム化合物における炭酸リチウムの重量の60%以下である。
The positive electrode active material for a lithium ion secondary battery according to the present embodiment has the following composition formula (1):
Li 1 + x Ni y Co z M 1-x-y-z O 2 (1)
[Wherein x is a number satisfying −0.12 ≦ x ≦ 0.2, y is a number satisfying 0.7 ≦ y ≦ 0.9, and z is 0.05 ≦ z ≦ 0.3. M is at least one element selected from the group consisting of Mg, Al, Ti, Mn, Zr, Mo and Nb. ]
Or a secondary particle in which the primary particles are aggregated, and the primary particles or the secondary particles contain a free lithium compound in a weight ratio of 0.1% or more and 2.0% or less, The weight of lithium hydroxide in the free lithium compound is 60% or less of the weight of lithium carbonate in the free lithium compound.

この層状正極活物質は、充放電に伴ってリチウムイオンの可逆的な挿入及び脱離を繰り返すことが可能であり、かつ抵抗の低い正極活物質である。   This layered positive electrode active material is a positive electrode active material that can repeat reversible insertion and desorption of lithium ions with charge and discharge and has low resistance.

組成式(1)で表わされる層状正極活物質は、高容量が期待できる一方で、Liを一定量以上引き抜いた時の充放電サイクル特性が必ずしも優れてはいないという特徴を有している。この層状正極活物質を用いたリチウムイオン二次電池を高電圧まで充電した場合には、充放電サイクル特性が大きく劣化するため、通常は、充電終止電圧が低く抑えられ、高い理論容量を充分には活かせない現状がある。   While the layered positive electrode active material represented by the composition formula (1) can be expected to have a high capacity, it has a feature that charge / discharge cycle characteristics are not always excellent when a certain amount or more of Li is extracted. When a lithium ion secondary battery using this layered positive electrode active material is charged to a high voltage, the charge / discharge cycle characteristics are greatly deteriorated. Therefore, the end-of-charge voltage is usually kept low, and a high theoretical capacity is sufficient. There is a current situation that can not be utilized.

層状正極活物質の充放電サイクル特性を低下させる要因としては、層状正極活物質に含まれる遊離リチウム化合物が挙げられる。遊離リチウム化合物は炭酸リチウムと水酸化リチウムを主体とするものであって、特に水酸化リチウムと電解液との接触による電解液の分解が考えられる。水酸化リチウムは水酸基を含むため、電解液に含まれるフッ素系の電解質と反応して強酸であるフッ酸(HF)を生成し、さらには高電圧化によって電解液の酸化分解が促進されて、電池性能の劣化をきたすと考えられる。   As a factor for reducing the charge / discharge cycle characteristics of the layered positive electrode active material, a free lithium compound contained in the layered positive electrode active material can be mentioned. The free lithium compound is mainly composed of lithium carbonate and lithium hydroxide, and decomposition of the electrolytic solution by contact between lithium hydroxide and the electrolytic solution can be considered. Since lithium hydroxide contains a hydroxyl group, it reacts with a fluorine-based electrolyte contained in the electrolytic solution to generate hydrofluoric acid (HF), which is a strong acid, and further, the oxidative decomposition of the electrolytic solution is promoted by high voltage, It is thought that the battery performance deteriorates.

そこで、本実施形態に係るリチウムイオン二次電池用正極活物質においては、高容量に寄与するNiの割合を高くして高い充放電容量を維持し、水酸化リチウムと電解液との接触による電解液の酸化分解の進行を抑制するために、一次粒子又は二次粒子に含まれる遊離リチウム化合物の絶対量の抑制と共に、特に水酸化リチウムの重量を炭酸リチウムの重量より低下させて、充放電容量及び充放電サイクル特性を改善している。   Therefore, in the positive electrode active material for a lithium ion secondary battery according to the present embodiment, the ratio of Ni contributing to high capacity is increased to maintain a high charge / discharge capacity, and electrolysis by contact between lithium hydroxide and an electrolytic solution is performed. In order to suppress the progress of the oxidative decomposition of the liquid, in addition to the suppression of the absolute amount of the free lithium compound contained in the primary particles or the secondary particles, in particular, the weight of lithium hydroxide is reduced from the weight of lithium carbonate, and the charge / discharge capacity is reduced. And the charge / discharge cycle characteristics are improved.

前記組成式(1)において、xは、層状正極活物質(LiMO)の量論比率(Li:M:O=1:1:2)からのLiの過不足量を表している。Liの量が多いほど、充電前の遷移金属の価数が高くなって、Li脱離時の遷移金属の価数変化の割合が低減されるため充放電サイクル特性が向上する。その一方で、Liの量が多いほど、層状正極活物質の充放電容量が低下することになる。よって、xは−0.12以上0.2以下の範囲、好ましくは−0.1以上0.2以下の範囲、特に好ましくは−0.05以上0.1以下の範囲とする。xが−0.12以上の組成であれば、充放電に寄与するのに十分なLi量が確保され、高容量化を図ることができる。また、xが0.2以下の組成であれば、遷移金属の価数変化による電荷補償を十分確保することができ、高容量と高充放電サイクル特性を両立させる上で特に有効である。 In the composition formula (1), x represents the excess or deficiency of Li from the stoichiometric ratio (Li: M: O = 1: 1: 2) of the layered positive electrode active material (LiMO 2 ). As the amount of Li increases, the valence of the transition metal before charging becomes higher, and the rate of change in the valence of the transition metal at the time of Li desorption is reduced, so that the charge / discharge cycle characteristics are improved. On the other hand, the larger the amount of Li, the lower the charge / discharge capacity of the layered positive electrode active material. Therefore, x is in the range of −0.12 to 0.2, preferably in the range of −0.1 to 0.2, and more preferably in the range of −0.05 to 0.1. When x is a composition of −0.12 or more, an amount of Li sufficient to contribute to charging / discharging is ensured, and the capacity can be increased. Moreover, if x is a composition of 0.2 or less, charge compensation due to change in the valence of the transition metal can be sufficiently ensured, which is particularly effective in achieving both high capacity and high charge / discharge cycle characteristics.

前記組成式(1)において、Niの含有量は0.7以上0.9以下の範囲とする。Niの含有量が0.7以上の組成であれば、充放電に寄与するのに十分なNi量が確保され、高容量化を図ることができる。一方、Niの含有量が0.9を超える組成では、Liサイトの一部がNiによって置換され、充放電に寄与するのに十分なLi量が確保できず、充放電容量が低下する恐れがある。より好ましくは0.75以上0.85以下の範囲である。   In the composition formula (1), the Ni content is in the range of 0.7 to 0.9. If the content of Ni is 0.7 or more, a sufficient amount of Ni to contribute to charging / discharging is ensured, and the capacity can be increased. On the other hand, in a composition where the Ni content exceeds 0.9, a part of the Li site is replaced by Ni, and a sufficient amount of Li to contribute to charge / discharge cannot be secured, and the charge / discharge capacity may be reduced. is there. More preferably, it is the range of 0.75 or more and 0.85 or less.

前記組成式(1)において、Coの含有量は0.05以上0.3以下の範囲とする。Coの含有量が0.05以上の組成であれば、層状構造を維持することができ、優れた充放電サイクル特性を得ることができる。一方、Coの含有量が0.3を超える組成では、Coのコストが高いため工業的に不利となる。より好ましくは0.1以上0.2以下の範囲である。   In the composition formula (1), the Co content is in the range of 0.05 to 0.3. If the Co content is 0.05 or more, the layered structure can be maintained, and excellent charge / discharge cycle characteristics can be obtained. On the other hand, a composition having a Co content exceeding 0.3 is industrially disadvantageous because the cost of Co is high. More preferably, it is the range of 0.1 or more and 0.2 or less.

前記組成式(1)において、Mは必須成分ではなく、適宜添加されるその他の金属元素であり、Mg、Al、Ti、Mn、Zr、Mo及びNbからなる群より選択される少なくとも1種の元素である。組成式(1)では、NiやCoといった遷移金属元素を含有することによって、層状正極活物質における電気化学的活性を確保することができる。また、Mの元素として、Mg、Al、Ti、Mn、Zr、Mo及びNbからなる群より選択される少なくとも1種の元素でこれらの遷移金属サイトを置換することによって、結晶構造の安定性や層状正極活物質の電気化学特性(サイクル特性等)を向上させることができる。   In the composition formula (1), M is not an essential component, but is another metal element added as appropriate, and at least one selected from the group consisting of Mg, Al, Ti, Mn, Zr, Mo, and Nb. It is an element. In composition formula (1), the electrochemical activity in the layered positive electrode active material can be ensured by containing a transition metal element such as Ni or Co. Further, by substituting these transition metal sites with at least one element selected from the group consisting of Mg, Al, Ti, Mn, Zr, Mo and Nb as the element of M, stability of the crystal structure and The electrochemical characteristics (cycle characteristics, etc.) of the layered positive electrode active material can be improved.

本実施形態に係るリチウムイオン二次電池用正極活物質の一次粒子又は二次粒子の組成は、厳密に化学量論比に従うものに制限されず、本発明の趣旨を逸脱しない範囲で組成が不定比であっても良く、結晶構造上にサイト間の置換や欠損を有していても良い。つまり、層状化合物構造を維持できる範囲での結晶組成のずれによる組成の変動は許容されるものである。そのため、理想的な組成のバランスであれば、Mの量は1−x−y−zとなるが、上記許容範囲においてMの量は、1−x−y−zの値からずれても構わない。許容範囲は±0.06程度である。また酸素の量も層状構造が維持される範囲であれば欠損していても過剰であっても構わない。   The composition of the primary particles or secondary particles of the positive electrode active material for a lithium ion secondary battery according to the present embodiment is not limited to strictly following the stoichiometric ratio, and the composition is indefinite within the scope of the present invention. The ratio may be sufficient, and the crystal structure may have substitution or defect between sites. That is, the variation of the composition due to the deviation of the crystal composition within the range in which the layered compound structure can be maintained is allowed. Therefore, if the balance is an ideal composition, the amount of M is 1-xyz, but the amount of M may be deviated from the value of 1-xyz in the above-described allowable range. Absent. The allowable range is about ± 0.06. Further, the amount of oxygen may be deficient or excessive as long as the layered structure is maintained.

本実施形態に係るリチウム二次電池用正極活物質は、所定の組成を有する一次粒子、又はその一次粒子が凝集した二次粒子を含み、それら一次粒子又は二次粒子はさらに遊離リチウム化合物を含み得る。遊離リチウム化合物は、可逆的にLiを挿入脱離できる化合物ではなく、少なくとも炭酸リチウムを含み、さらに水酸化リチウム、硫酸リチウム、硝酸リチウム、塩化リチウムからなる群より選択される化合物を含む。本実施形態に係るリチウム二次電池用正極活物質は、遊離リチウム化合物における水酸化リチウムの重量が、炭酸リチウムの重量の60%以下である。   The positive electrode active material for a lithium secondary battery according to this embodiment includes primary particles having a predetermined composition, or secondary particles in which the primary particles are aggregated, and the primary particles or secondary particles further include a free lithium compound. obtain. The free lithium compound is not a compound that can reversibly insert and desorb Li, but includes at least lithium carbonate, and further includes a compound selected from the group consisting of lithium hydroxide, lithium sulfate, lithium nitrate, and lithium chloride. In the positive electrode active material for a lithium secondary battery according to this embodiment, the weight of lithium hydroxide in the free lithium compound is 60% or less of the weight of lithium carbonate.

前記のとおり、水酸化リチウムは電解液に含まれるフッ素系の電解質と反応すると強酸であるフッ酸(HF)を生成し、さらには高電圧化によって電解液の酸化分解が促進されて電池性能が劣化するため、良好な充放電サイクル特性を得ることは困難である。そこで、本実施形態に係るリチウムイオン二次電池用正極活物質では、遊離リチウム化合物の絶対量の抑制と共に、特に水酸化リチウムの重量を小さくすることによって、水酸化リチウムと電解液との接触による電解液の分解を抑制して充放電サイクル特性を向上させている。   As described above, lithium hydroxide generates hydrofluoric acid (HF), which is a strong acid, when it reacts with the fluorine-based electrolyte contained in the electrolytic solution, and further, the oxidative decomposition of the electrolytic solution is promoted by the high voltage, thereby improving the battery performance. Since it deteriorates, it is difficult to obtain good charge / discharge cycle characteristics. Therefore, in the positive electrode active material for a lithium ion secondary battery according to the present embodiment, the absolute amount of the free lithium compound is suppressed, and particularly by reducing the weight of the lithium hydroxide, the contact between the lithium hydroxide and the electrolytic solution is achieved. Charge / discharge cycle characteristics are improved by suppressing decomposition of the electrolyte.

遊離リチウム化合物の重量割合が多過ぎると、充放電容量が低下する傾向にある。また、LiCOが遊離リチウム化合物として少量存在すると、LiCO+CO+2LiHCOの反応が起こるため、大気中のCOやHOが結晶中のLiと反応して結晶中のLi量が減少することを抑制することができ好ましい。したがって、本実施形態に係るリチウムイオン二次電池用正極活物質の一次粒子又は二次粒子においては、遊離リチウム化合物の重量割合を0.1%以上2.0%以下とする。より好ましくは、0.1%以上1.0%以下である。さらに好ましくは、0.4%以上0.8%以下である。この範囲であれば、高い放電容量特性と高い充放電サイクル特性を両立することができる。正極活物質の一次粒子又は二次粒子における炭酸リチウムの含有量は、0.07重量%以上1.50重量%以下とすることが好ましい。 When the weight ratio of the free lithium compound is too large, the charge / discharge capacity tends to decrease. Further, when a small amount of Li 2 CO 3 is present as a free lithium compound, a reaction of Li 2 CO 3 + CO 2 + 2LiHCO 3 occurs, so that CO 2 and H 2 O in the atmosphere react with Li in the crystal and It is preferable because the amount of Li can be suppressed from decreasing. Therefore, in the primary particles or secondary particles of the positive electrode active material for a lithium ion secondary battery according to this embodiment, the weight ratio of the free lithium compound is set to 0.1% or more and 2.0% or less. More preferably, it is 0.1% or more and 1.0% or less. More preferably, it is 0.4% or more and 0.8% or less. Within this range, both high discharge capacity characteristics and high charge / discharge cycle characteristics can be achieved. The lithium carbonate content in the primary particles or secondary particles of the positive electrode active material is preferably 0.07 wt% or more and 1.50 wt% or less.

また、層状正極活物質の充放電サイクル特性を低下させる他の要因として、充放電に伴う膨張収縮による二次粒子の割れが挙げられる。二次粒子が割れると、二次粒子表面と電解液との接触面積が必要以上に増加して、電解液の分解が促進され、電池性能の劣化をきたす虞がある。   Another factor that reduces the charge / discharge cycle characteristics of the layered positive electrode active material is cracking of secondary particles due to expansion / contraction due to charge / discharge. When the secondary particles are cracked, the contact area between the secondary particle surface and the electrolytic solution is increased more than necessary, and the decomposition of the electrolytic solution is promoted, and the battery performance may be deteriorated.

そこで、本実施形態に係るリチウムイオン二次電池用正極活物質においては、充放電に伴う膨張収縮による二次粒子の割れを抑制するため、二次粒子に、空隙が粒子表面とつながった開気孔を設け、さらに、水銀圧入法により求められる細孔径0.1μm以上0.5μm以下の範囲内の開気孔容積率(二次粒子のみかけの体積に占める、細孔径0.1μm以上0.5μm以下の開気孔の合計容積の割合)が、7%以上20%以下であることが好ましい。開気孔容積率が小さ過ぎると、充放電に伴う二次粒子の割れを抑制することは難しい。一方、開気孔容積率が大き過ぎると、電極内の正極活物質の比率が小さくなり、高い充放電容量を得ることは難しい。そこで、上記のように二次粒子の開気孔容積率は7%以上20%以下であることが好ましく、より好ましくは8%以上16%以下である。この範囲内であれば、高い充放電容量特性と、高い充放電サイクル特性とを両立することができる。   Therefore, in the positive electrode active material for a lithium ion secondary battery according to the present embodiment, in order to suppress cracking of the secondary particles due to expansion and contraction associated with charge and discharge, open pores in which voids are connected to the particle surface. Furthermore, the open pore volume ratio within the range of 0.1 μm or more and 0.5 μm or less of the pore diameter determined by the mercury intrusion method (pore diameter 0.1 μm or more and 0.5 μm or less occupying the apparent volume of the secondary particles) The ratio of the total volume of the open pores) is preferably 7% or more and 20% or less. If the open pore volume ratio is too small, it is difficult to suppress cracking of secondary particles accompanying charge / discharge. On the other hand, if the open pore volume ratio is too large, the ratio of the positive electrode active material in the electrode becomes small, and it is difficult to obtain a high charge / discharge capacity. Therefore, as described above, the open pore volume ratio of the secondary particles is preferably 7% or more and 20% or less, and more preferably 8% or more and 16% or less. Within this range, both high charge / discharge capacity characteristics and high charge / discharge cycle characteristics can be achieved.

二次粒子内の空隙には粒子表面までつながっている開気孔と、粒子表面にはつながっていない閉気孔の二種類が存在する。このうち閉気孔は充放電に関与し難いため、開気孔率を制御することが有効である。   There are two types of voids in the secondary particles: open pores connected to the particle surface and closed pores not connected to the particle surface. Of these, closed pores are unlikely to be involved in charge and discharge, so it is effective to control the open porosity.

また、本実施形態に係るリチウム二次電池用正極活物質は、一次粒子又は二次粒子の表面のNi濃度が、中心近傍のNi濃度よりも低いことが好ましい。ここで、「表面」とは、一次粒子又は二次粒子の最表面から深さ20nmまでの領域をいい、「中心近傍」とは、一次粒子又は二次粒子の直径を100%としたときに粒子の中心部分の50%の領域をいう。Ni濃度は、上記各領域での平均濃度である。Niは充電時には不安定な電荷状態となり、電解液の酸化分解を促進して電池性能の劣化をきたす恐れがあるため、表面近傍のみ濃度が低くなっていることが好ましい。ここで、濃度が「低い」とは、中心近傍におけるNi/(Ni+Co+M)の値(原子比)が表面におけるNi/(Ni+Co+M)の値(原子比)に比べて少なくとも0.01低いことをいう。   In the positive electrode active material for a lithium secondary battery according to this embodiment, the Ni concentration on the surface of the primary particles or the secondary particles is preferably lower than the Ni concentration near the center. Here, “surface” means a region from the outermost surface of the primary particle or secondary particle to a depth of 20 nm, and “near the center” means that the diameter of the primary particle or secondary particle is 100%. This refers to the region of 50% of the central part of the particle. The Ni concentration is an average concentration in each of the above regions. Ni is in an unstable charge state when charged, and may accelerate the oxidative decomposition of the electrolytic solution to deteriorate the battery performance. Therefore, the concentration is preferably low only in the vicinity of the surface. Here, the “low” concentration means that the Ni / (Ni + Co + M) value (atomic ratio) in the vicinity of the center is at least 0.01 lower than the Ni / (Ni + Co + M) value (atomic ratio) at the surface. .

なお、本実施形態に係るリチウム二次電池用正極活物質の粒子の結晶構造は、X線回折法(X-ray diffraction;XRD)等で確認することができる。また、本実施形態に係るリチウム二次電池用正極活物質の粒子の平均組成(この場合、正極活物質として機能する化合物と遊離リチウム化合物とを合わせた平均組成をいう)は、高周波誘導結合プラズマ(Inductively Coupled Plasma;ICP)、原子吸光分析(Atomic Absorption Spectrometry;AAS)等で確認することができる。さらに、本実施形態に係るリチウム二次電池用正極活物質の粒子における元素分布は、飛行時間型二次イオン質量分析法(Time of flight-secondary ion mass spectrometer;TOF−SIMS)、オージェ電子分光(Auger Electron Spectroscopy;AES)、X線光電子分光(X-ray Photoelectron Spectroscopy;XPS)、透過電子顕微鏡−電子エネルギー損失分光(Transmission Electron Microscopy-Electron Energy Loss Spectroscopy;TEM−EELS)等で確認することができる。   In addition, the crystal structure of the particles of the positive electrode active material for a lithium secondary battery according to the present embodiment can be confirmed by X-ray diffraction (XRD) or the like. Further, the average composition of the particles of the positive electrode active material for a lithium secondary battery according to this embodiment (in this case, the average composition of the compound functioning as the positive electrode active material and the free lithium compound) is a high frequency inductively coupled plasma. It can be confirmed by (Inductively Coupled Plasma; ICP), atomic absorption spectrometry (AAS) or the like. Furthermore, the element distribution in the particles of the positive electrode active material for the lithium secondary battery according to the present embodiment is determined by time of flight-secondary ion mass spectrometer (TOF-SIMS), Auger electron spectroscopy ( Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy-Electron Energy Loss Spectroscopy (TEM-EELS), etc. .

また、本実施形態に係るリチウム二次電池用正極活物質の開気孔容積は、水銀圧入法を用いて測定する。水銀圧入法では、そもそも粒子表面とつながった空隙(開気孔)のみ測定され、閉気孔は測定されない。また、測定値が二次粒子間の空隙を含まないようにする必要があるため、本実施形態においては細孔径0.1μm以上0.5μm以下の範囲内の開気孔容積を測定する。このように測定された開気孔容積(単位重量当たり)と、二次粒子のみかけの密度との積から開気孔容積率を算出することができる。   Moreover, the open pore volume of the positive electrode active material for a lithium secondary battery according to the present embodiment is measured using a mercury intrusion method. In the mercury intrusion method, only voids (open pores) connected to the particle surface are measured in the first place, and closed pores are not measured. In addition, since it is necessary that the measured value does not include voids between the secondary particles, in this embodiment, the open pore volume within the range of the pore diameter of 0.1 μm or more and 0.5 μm or less is measured. The open pore volume ratio can be calculated from the product of the open pore volume (per unit weight) thus measured and the apparent density of the secondary particles.

本実施形態に係るリチウム二次電池用正極活物質の一次粒子又は二次粒子における遊離リチウム化合物の定量は、滴定法(Titration Method)、加熱発生ガス分析(Temperature Programmed Desorption-Mass Spectrometry;TPD−MS)、イオンクロマトグラフィー(Ion Chromatography;IC)等により確認することができる。なお、そして、ICP等により測定したリチウム二次電池用正極活物質の粒子の平均組成と、遊離リチウム化合物の定量結果とから、組成式(1)における「1+x」の値を算出することができる。   The determination of the free lithium compound in the primary particles or the secondary particles of the positive electrode active material for a lithium secondary battery according to the present embodiment is performed by titration method, heat generation gas analysis (Temperature Programmed Desorption-Mass Spectrometry; TPD-MS). ), Ion chromatography (Ion Chromatography; IC) and the like. The value of “1 + x” in the composition formula (1) can be calculated from the average composition of the positive electrode active material particles for the lithium secondary battery measured by ICP or the like and the quantitative result of the free lithium compound. .

本実施形態に係るリチウム二次電池用正極活物質の一次粒子の平均粒径は、0.1μm以上2μm以下であることが好ましい。平均粒径を2μm以下とすることによって、正極における正極活物質の充填性が改善し、良好なエネルギー密度を達成することができる。また、正極活物質は、製造された一次粒子を、乾式造粒又は湿式造粒によって造粒することで二次粒子化しても良い。造粒手段としては、例えば、スプレードライヤや転動流動層装置等の造粒機を利用することができる。二次粒子の平均粒径は、5μm以上50μm以下であることが好ましい。   The average particle diameter of the primary particles of the positive electrode active material for a lithium secondary battery according to this embodiment is preferably 0.1 μm or more and 2 μm or less. By setting the average particle size to 2 μm or less, the filling property of the positive electrode active material in the positive electrode is improved, and a good energy density can be achieved. Further, the positive electrode active material may be formed into secondary particles by granulating the produced primary particles by dry granulation or wet granulation. As the granulating means, for example, a granulator such as a spray dryer or a rolling fluidized bed apparatus can be used. The average particle size of the secondary particles is preferably 5 μm or more and 50 μm or less.

平均粒径は、走査型電子顕微鏡(Scanning Electron Microscope;SEM)や、透過型電子顕微鏡(Transmission Electron Microscope;TEM)による観察に基づいて測定することができる。観察により、粒子径が中央値に近い順に10個の一次粒子又は二次粒子を抽出し、これらの粒子径の加重平均を算出することによって平均粒径とする。なお、粒子径は、観察された電子顕微鏡像における粒子の長径と短径の平均値として求めることができる。   The average particle size can be measured based on observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). By observation, 10 primary particles or secondary particles are extracted in order of the particle diameter close to the median value, and the weighted average of these particle diameters is calculated to obtain the average particle diameter. In addition, a particle diameter can be calculated | required as an average value of the long diameter and short diameter of a particle | grain in the observed electron microscope image.

本実施形態に係るリチウム二次電池用正極活物質のBET比表面積は、0.2m/g以上1.5m/g以下とすることが好ましい。特に好ましくは0.2m/g以上1.0m/g以下である。BET比表面積を1.5m/g以下、好ましくは1.0m/g以下にすることによって、正極における正極活物質の充填性が改善し、良好なエネルギー密度を達成することができる。BET比表面積は、自動比表面積測定装置を用いて測定することができる。 The BET specific surface area of the positive electrode active material for a lithium secondary battery according to this embodiment is preferably 0.2 m 2 / g or more and 1.5 m 2 / g or less. Particularly preferably at most 0.2 m 2 / g or more 1.0 m 2 / g. By setting the BET specific surface area to 1.5 m 2 / g or less, preferably 1.0 m 2 / g or less, the filling property of the positive electrode active material in the positive electrode is improved, and a good energy density can be achieved. The BET specific surface area can be measured using an automatic specific surface area measuring device.

本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法について説明する。正極活物質は、一般的な正極活物質の製造方法に準じて製造することができ、このような製造方法としては、例えば、固相法、共沈法、ゾルゲル法、水熱法等が挙げられる。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries which concerns on this embodiment is demonstrated. The positive electrode active material can be manufactured according to a general method for manufacturing a positive electrode active material, and examples of such a manufacturing method include a solid phase method, a coprecipitation method, a sol-gel method, and a hydrothermal method. It is done.

固相法を用いた正極活物質の製造では、原料のLi含有化合物、Ni含有化合物、Co含有化合物及びM含有化合物等を所定の元素組成となる比率で秤量し、粉砕及び混合して原料粉末を調製する。Li含有化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、塩化リチウム、硫酸リチウム等を用いることができるが、炭酸リチウム、水酸化リチウムを用いることが好ましい。Ni及びCoの含有化合物としては、例えば、酸化物、水酸化物、炭酸塩、硫酸塩、酢酸塩等を用いることができるが、酸化物、水酸化物、炭酸塩を用いることが好ましい。また、M含有化合物としては、例えば、酢酸塩、硝酸塩、炭酸塩、硫酸塩、酸化物、水酸化物等を用いることができるが、炭酸塩、酸化物、水酸化物を用いることが好ましい。   In the production of a positive electrode active material using a solid phase method, raw material Li-containing compound, Ni-containing compound, Co-containing compound, M-containing compound, etc. are weighed at a ratio of a predetermined element composition, pulverized and mixed, and raw material powder To prepare. As the Li-containing compound, for example, lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium chloride, lithium sulfate and the like can be used, and lithium carbonate and lithium hydroxide are preferably used. As the Ni and Co-containing compounds, for example, oxides, hydroxides, carbonates, sulfates, acetates, and the like can be used, but oxides, hydroxides, and carbonates are preferably used. As the M-containing compound, for example, acetate, nitrate, carbonate, sulfate, oxide, hydroxide, and the like can be used, but carbonate, oxide, and hydroxide are preferably used.

原料粉末を調製する粉砕、混合には、乾式粉砕及び湿式粉砕のいずれの方式も用いることができる。粉砕手段としては、例えば、ボールミル、ビーズミル、遊星型ボールミル、アトライター、ジェットミル等の粉砕機を利用することができる。   For the pulverization and mixing for preparing the raw material powder, any of dry pulverization and wet pulverization methods can be used. As the pulverizing means, for example, a pulverizer such as a ball mill, a bead mill, a planetary ball mill, an attritor, or a jet mill can be used.

調製された原料粉末は、焼成することによって正極活物質の一次粒子となる。原料粉末の焼成は、仮焼成することによって原料化合物を熱分解させ、本焼成することによって焼結させることが好ましい。また、本焼成前に適宜解砕及び分級しても良い。仮焼成における加熱温度は、例えば、400℃以上700℃以下程度、本焼成における加熱温度は、例えば、700℃以上900℃以下、好ましくは750℃以上850℃以下とする。このような温度範囲であれば、正極活物質の分解や成分の揮発を避けつつ、結晶性を向上させることができる。また、仮焼成における焼成時間は、2時間以上24時間以下、好ましくは4時間以上16時間以下であり、本焼成における焼成時間は、2時間以上24時間以下、好ましくは4時間以上16時間以下とする。焼成は、複数回を繰り返し行っても良い。また、本発明において、焼成後の水洗は不要である。   The prepared raw material powder becomes primary particles of the positive electrode active material by firing. The firing of the raw material powder is preferably performed by pre-baking to thermally decompose the raw material compound and then performing the main firing. Moreover, you may crush and classify suitably before this baking. The heating temperature in the pre-baking is, for example, about 400 ° C. to 700 ° C., and the heating temperature in the main baking is, for example, 700 ° C. to 900 ° C., preferably 750 ° C. to 850 ° C. Within such a temperature range, crystallinity can be improved while avoiding decomposition of the positive electrode active material and volatilization of components. The firing time in the pre-baking is 2 hours or more and 24 hours or less, preferably 4 hours or more and 16 hours or less, and the firing time in the main firing is 2 hours or more and 24 hours or less, preferably 4 hours or more and 16 hours or less. To do. The firing may be repeated a plurality of times. Moreover, in this invention, the water washing after baking is unnecessary.

焼成の雰囲気は、不活性ガス雰囲気及び酸化ガス雰囲気のいずれでも良いが、酸素、空気等の酸化ガス雰囲気とすることが好ましい。酸化ガス雰囲気で焼成を行うことによって、原料化合物の不完全な熱分解による不純物の混入を避けることができ、また結晶性を向上させることができる。なお、焼成された粒子は、除冷や空冷しても良く、液体窒素等を用いて急冷しても良い。   The firing atmosphere may be either an inert gas atmosphere or an oxidizing gas atmosphere, but is preferably an oxidizing gas atmosphere such as oxygen or air. By performing firing in an oxidizing gas atmosphere, it is possible to avoid contamination by impurities due to incomplete thermal decomposition of the raw material compound and to improve crystallinity. Note that the fired particles may be cooled or air cooled, or may be rapidly cooled using liquid nitrogen or the like.

特に、本発明においては、一次粒子又は二次粒子に含まれる遊離リチウム化合物が0.1%以上2.0%以下であり、かつ遊離リチウム化合物における水酸化リチウムの重量が、炭酸リチウムの重量の60%以下であることを特徴とする。本実施形態に係るリチウムイオン二次電池用正極活物質を製造するに際しては、原料粉末の組成を調整したり、焼成条件を変更することによって上記「0.1%以上2.0%以下」及び「60%以下」を実現することができる。例えば、Li含有化合物として炭酸リチウムを用いる場合は焼成条件を酸素雰囲気とし、Li含有化合物として水酸化リチウムを用いる場合は、本焼後の空冷を炭酸ガス雰囲気とすることにより水酸化リチウムの重量を60%以下にすることが可能であるが、この方法に限定されるものではない。なお、本発明において、一次粒子又は二次粒子に含まれる遊離リチウム化合物の定量値は、本焼成後、大気中に放置される時間が10時間以内の条件下で測定された値を採用するものとする。10時間を超えると、大気中で水酸化リチウムが炭酸リチウムに変化して炭素含有量が多くなる傾向が現れるためである。   In particular, in the present invention, the free lithium compound contained in the primary particles or secondary particles is 0.1% or more and 2.0% or less, and the weight of lithium hydroxide in the free lithium compound is the weight of lithium carbonate. It is characterized by being 60% or less. In producing the positive electrode active material for a lithium ion secondary battery according to the present embodiment, by adjusting the composition of the raw material powder or changing the firing conditions, the above “0.1% or more and 2.0% or less” and “60% or less” can be realized. For example, when lithium carbonate is used as the Li-containing compound, the firing condition is an oxygen atmosphere, and when lithium hydroxide is used as the Li-containing compound, the weight of lithium hydroxide is reduced by setting the air cooling after the firing to a carbon dioxide gas atmosphere. Although it is possible to make it 60% or less, it is not limited to this method. In the present invention, the quantitative value of the free lithium compound contained in the primary particles or the secondary particles adopts a value measured under the condition that the time allowed to stand in the atmosphere after the main calcination is within 10 hours. And This is because, if it exceeds 10 hours, lithium hydroxide changes to lithium carbonate in the atmosphere and the carbon content tends to increase.

また、開気孔容積率は、スプレードライヤや転動流動層装置等の造粒機を用いて一次粒子を造粒する際の造粒条件や、焼成工程での焼成温度の条件を適宜設定することにより調整することができる。例えば、焼成温度を高くすることによって一次粒子の焼結が進んで開気孔容積率が減少し、逆に焼成温度を低くすることによって開気孔容積率は増加する。なお、造粒は、焼成工程の後に行っても良く、あるいは原料粉末を粉砕混合した後に行っても良い。   The open pore volume ratio should be set appropriately for the granulation conditions when the primary particles are granulated using a granulator such as a spray dryer or a rolling fluidized bed apparatus, or the conditions for the firing temperature in the firing step. Can be adjusted. For example, by increasing the firing temperature, the sintering of the primary particles proceeds and the open pore volume ratio decreases, and conversely, the open pore volume ratio increases by lowering the firing temperature. The granulation may be performed after the firing step, or may be performed after the raw material powder is pulverized and mixed.

以上のようにして製造されたリチウムイオン二次電池用正極活物質は、リチウムイオン二次電池用正極の材料として用いられる。   The positive electrode active material for a lithium ion secondary battery produced as described above is used as a material for a positive electrode for a lithium ion secondary battery.

本実施形態に係るリチウムイオン二次電池用正極は、主に、リチウムイオン二次電池用正極活物質、導電材及び結着剤を含む正極合材層と、正極合材層が塗工された正極集電体とを備える。   The positive electrode for a lithium ion secondary battery according to this embodiment is mainly coated with a positive electrode mixture layer including a positive electrode active material for a lithium ion secondary battery, a conductive material, and a binder, and a positive electrode mixture layer. A positive electrode current collector.

導電材としては、一般的なリチウムイオン二次電池に用いられている導電材を用いることができる。具体的には、例えば、黒鉛粉末、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等の炭素粒子や炭素繊維等が挙げられる。導電材は、例えば、正極合材層全体の質量に対して3質量%以上10質量%以下程度となる量を用いれば良い。   As the conductive material, a conductive material used in a general lithium ion secondary battery can be used. Specific examples include carbon particles such as graphite powder, acetylene black, furnace black, thermal black, and channel black, carbon fibers, and the like. What is necessary is just to use the quantity used as a electrically conductive material about 3 mass% or more and 10 mass% or less with respect to the mass of the whole positive mix layer, for example.

結着剤としては、一般的なリチウムイオン二次電池に用いられている結着剤を用いることができる。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、スチレン−ブタジエンゴム、カルボキシメチルセルロース等が挙げられる。結着剤は、例えば、正極合材層全体の質量に対して2質量%以上10質量%以下程度となる量を用いれば良い。   As the binder, a binder used in a general lithium ion secondary battery can be used. Specific examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, styrene-butadiene rubber, and carboxymethyl cellulose. What is necessary is just to use the quantity used as a binder, for example about 2 mass% or more and 10 mass% or less with respect to the mass of the whole positive electrode compound-material layer.

正極集電体としては、アルミニウム製又はアルミニウム合金製の箔、エキスパンドメタル、パンチングメタル等を用いることができる。箔については、例えば、8μm以上20μm以下程度の厚さとすれば良い。   As the positive electrode current collector, foil made of aluminum or aluminum alloy, expanded metal, punching metal, or the like can be used. The foil may have a thickness of about 8 μm to 20 μm, for example.

本実施形態に係るリチウムイオン二次電池用正極は、前記のリチウムイオン二次電池用正極活物質を用いて、一般的な正極の製造方法に準じて製造することができる。リチウムイオン二次電池用正極の製造方法の一例は、正極合材調製工程、正極合材塗工工程、成形工程を含む。   The positive electrode for a lithium ion secondary battery according to this embodiment can be manufactured according to a general positive electrode manufacturing method using the positive electrode active material for a lithium ion secondary battery. An example of a method for producing a positive electrode for a lithium ion secondary battery includes a positive electrode mixture preparation step, a positive electrode mixture coating step, and a molding step.

正極合材調製工程では、材料となる正極活物質、導電材、結着剤を溶媒中で混合することでスラリー状の正極合材を調製する。溶媒としては、結着剤の種類に応じて、N−メチルピロリドン、水、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、グリセリン、ジメチルスルホキシド、テトラヒドロフラン等から選択することができる。材料を混合する撹拌手段としては、例えば、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等が挙げられる。   In the positive electrode mixture preparation step, a positive electrode active material, a conductive material, and a binder as materials are mixed in a solvent to prepare a slurry-like positive electrode mixture. Depending on the type of binder, N-methylpyrrolidone, water, N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, glycerin, dimethyl It can be selected from sulfoxide, tetrahydrofuran and the like. Examples of the stirring means for mixing the materials include a planetary mixer, a disper mixer, and a rotation / revolution mixer.

正極合材塗工工程では、調製されたスラリー状の正極合材を正極集電体上に塗布した後、熱処理により溶媒乾燥させることによって正極合材層を形成する。正極合材を塗布する塗工手段としては、例えば、バーコーター、ドクターブレード、ロール転写機等が挙げられる。   In the positive electrode mixture coating step, the prepared slurry-like positive electrode mixture is applied onto the positive electrode current collector, and then the solvent is dried by heat treatment to form the positive electrode mixture layer. Examples of the coating means for applying the positive electrode mixture include a bar coater, a doctor blade, and a roll transfer machine.

成形工程では、乾燥させた正極合材層をロールプレス等により加圧成形し、必要に応じて正極集電体と共に裁断することによって、所望の形状のリチウムイオン二次電池用正極とする。正極集電体上に形成される正極合材層の厚さは、例えば、50μm以上300μm以下程度とすれば良い。   In the forming step, the dried positive electrode mixture layer is pressure-formed by a roll press or the like, and cut together with a positive electrode current collector as necessary to obtain a positive electrode for a lithium ion secondary battery having a desired shape. The thickness of the positive electrode mixture layer formed on the positive electrode current collector may be, for example, about 50 μm to 300 μm.

以上のようにして製造されたリチウムイオン二次電池用正極は、リチウムイオン二次電池の材料として用いられる。本実施形態に係るリチウムイオン二次電池は、主に、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、セパレータ、非水電解液を含み、これらが円筒型、角型、ボタン型、ラミネートシート型等の種々の形状の外装体に収容された構成とされる。   The positive electrode for a lithium ion secondary battery manufactured as described above is used as a material for a lithium ion secondary battery. The lithium ion secondary battery according to the present embodiment mainly includes a positive electrode for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a separator, and a non-aqueous electrolyte, which are cylindrical, rectangular, and button type It is configured to be accommodated in various shapes of exterior bodies such as a laminate sheet type.

図1は、本実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。図1は円筒型のリチウムイオン二次電池を例示しており、このリチウムイオン二次電池10は、正極集電体の両表面に正極合材が塗工された正極1と、負極集電体の両表面に負極合材が塗工された負極2と、正極1及び負極2の間に介装されたセパレータ3とからなる電極群を備えている。正極1及び負極2は、セパレータ3を介して捲回され、円筒型の電池缶4に収容されている。また、正極1は、正極リード片7を介して密閉蓋6と電気的に接続され、負極2は、負極リード片5を介して電池缶4と電気的に接続され、正極リード片7と負極2、負極リード片5と正極1の間には、それぞれエポキシ樹脂等を材質とする絶縁板9が配設されて電気的に絶縁されている。各リード片は、それぞれの集電体と同様の材質からなる電流引き出し用の部材であり、スポット溶接又は超音波溶接により各集電体と接合されている。また、電池缶4は、内部に非水電解液が注入された後、ゴム等のシール材8で密封され、頂部を密閉蓋6で封止される構造とされている。   FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to the present embodiment. FIG. 1 illustrates a cylindrical lithium ion secondary battery. The lithium ion secondary battery 10 includes a positive electrode 1 having a positive electrode mixture coated on both surfaces of a positive electrode current collector, and a negative electrode current collector. The electrode group which consists of the negative electrode 2 by which the negative electrode compound material was coated on both surfaces of this, and the separator 3 interposed between the positive electrode 1 and the negative electrode 2 is provided. The positive electrode 1 and the negative electrode 2 are wound through a separator 3 and accommodated in a cylindrical battery can 4. The positive electrode 1 is electrically connected to the sealing lid 6 via the positive electrode lead piece 7, and the negative electrode 2 is electrically connected to the battery can 4 via the negative electrode lead piece 5, and the positive electrode lead piece 7 and the negative electrode 2. Between the negative electrode lead piece 5 and the positive electrode 1, an insulating plate 9 made of an epoxy resin or the like is disposed to be electrically insulated. Each lead piece is a current drawing member made of the same material as each current collector, and is joined to each current collector by spot welding or ultrasonic welding. The battery can 4 has a structure in which a nonaqueous electrolyte is injected into the battery can 4 and then sealed with a sealing material 8 such as rubber and the top is sealed with a sealing lid 6.

リチウムイオン二次電池用負極としては、一般的なリチウムイオン二次電池に用いられている負極活物質及び負極集電体から構成することができる。   As a negative electrode for lithium ion secondary batteries, it can be comprised from the negative electrode active material and negative electrode collector which are used for the general lithium ion secondary battery.

負極活物質としては、例えば、金属リチウム、炭素材料、金属材料、金属酸化物材料等の一種以上を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類や、コークス、ピッチ等の炭化物類や、非晶質炭素や、炭素繊維等がある。また、金属材料としては、リチウム、シリコン、スズ、アルミニウム、インジウム、ガリウム、マグネシウムやこれらの合金、金属酸化物材料としては、スズ、ケイ素等を含む金属酸化物がある。   As the negative electrode active material, for example, one or more of metal lithium, carbon material, metal material, metal oxide material, and the like can be used. Examples of the carbon material include graphites such as natural graphite and artificial graphite, carbides such as coke and pitch, amorphous carbon, and carbon fibers. Examples of the metal material include lithium, silicon, tin, aluminum, indium, gallium, magnesium, and alloys thereof, and examples of the metal oxide material include metal oxides including tin, silicon, and the like.

このリチウムイオン二次電池用負極には、必要に応じて、前記のリチウムイオン二次電池用正極において用いられる結着剤、導電材と同種の群から選択されるものを用いても良い。結着剤は、例えば、負極合材層全体の質量に対して5質量%程度となる量を用いれば良い。   As the negative electrode for the lithium ion secondary battery, a material selected from the same group as the binder and conductive material used in the positive electrode for the lithium ion secondary battery may be used as necessary. What is necessary is just to use the quantity used as a binder about 5 mass% with respect to the mass of the whole negative electrode compound material layer, for example.

負極集電体としては、銅製又はニッケル製の箔、エキスパンドメタル、パンチングメタル等を用いることができる。箔については、例えば、5μm以上20μm以下程度の厚さとすれば良い。   As the negative electrode current collector, copper or nickel foil, expanded metal, punching metal, or the like can be used. The foil may have a thickness of about 5 μm to 20 μm, for example.

リチウムイオン二次電池用負極は、リチウムイオン二次電池用正極と同様に、負極活物質と結着剤を混合した負極合材を負極集電体上に塗工し、加圧成形し、必要に応じて裁断することによって製造される。負極集電体上に形成される負極合材層の厚さは、例えば、20μm以上150μm以下程度とすれば良い。   A negative electrode for a lithium ion secondary battery is coated with a negative electrode mixture obtained by mixing a negative electrode active material and a binder on a negative electrode current collector, and pressure-molded, as with a positive electrode for a lithium ion secondary battery. It is manufactured by cutting according to. The thickness of the negative electrode mixture layer formed on the negative electrode current collector may be, for example, about 20 μm to 150 μm.

セパレータとしては、ポリエチレン、ポリプロピレン、ポリエチレン−ポリプロピレン共重合体等のポリオレフィン系樹脂、ポリアミド樹脂、アラミド樹脂等の微孔性フィルムや不織布等を用いることができる。   As the separator, a polyolefin resin such as polyethylene, polypropylene, and a polyethylene-polypropylene copolymer, a microporous film such as a polyamide resin and an aramid resin, a nonwoven fabric, and the like can be used.

非水電解液としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO等のリチウム塩を非水溶媒に溶解させた溶液を用いることができる。非水電解液におけるリチウム塩の濃度は、0.7M以上1.5M以下とすることが好ましい。 Non-aqueous electrolytes include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2. A solution in which a lithium salt such as LiN (CF 3 SO 2 ) 2 or LiC (CF 3 SO 2 ) 3 is dissolved in a non-aqueous solvent can be used. The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.7M or more and 1.5M or less.

非水溶媒としては、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルアセテート、ジメトキシエタン等を用いることができる。また、非水電解液には、電解液の酸化分解及び還元分解の抑制、金属元素の析出防止、イオン伝導性の向上、難燃性の向上等を目的として、各種の添加剤を添加することができる。このような添加剤としては、例えば、電解液の分解を抑制する1,3−プロパンサルトン、1,4−ブタンサルトン等や、電解液の保存性を向上させる不溶性ポリアジピン酸無水物、ヘキサヒドロ無水フタル酸等や、難燃性を向上させるフッ素置換アルキルホウ素等がある。   As the non-aqueous solvent, diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl acetate, dimethoxyethane and the like can be used. In addition, various additives should be added to the non-aqueous electrolyte for the purpose of suppressing oxidative decomposition and reductive decomposition of the electrolytic solution, preventing precipitation of metal elements, improving ion conductivity, and improving flame retardancy. Can do. Examples of such additives include 1,3-propane sultone and 1,4-butane sultone that suppress decomposition of the electrolytic solution, insoluble polyadipic anhydride that improves the storage stability of the electrolytic solution, and hexahydrophthalic anhydride. Examples include acids and the like, and fluorine-substituted alkylborons that improve flame retardancy.

以上の構成を有する本実施形態に係るリチウムイオン二次電池は、例えば、携帯電子機器や家庭用電気機器等の小型電源、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源や、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源として使用することができる。   The lithium ion secondary battery according to the present embodiment having the above-described configuration is, for example, a small power source such as a portable electronic device or a household electric device, a power storage device, an uninterruptible power supply device, a stationary power source such as a power leveling device. It can also be used as a drive power source for ships, railways, hybrid cars, electric cars and the like.

以下、実施例及び比較例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, the technical scope of this invention is not limited to this.

(実施例1)
実施例1に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnが、モル濃度比で、1.03:0.75:0.15:0.10となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。得られた原料粉末を、スプレードライヤで噴霧乾燥した後、高純度アルミナ容器に投入し、酸素気流下において600℃で12時間の仮焼成を行った。そして、得られた仮焼成体を空冷し、解砕した後、再び高純度アルミナ容器に投入して、酸素気流下において780℃で8時間の本焼成を行った。そして、得られた焼成体を空冷し、解砕及び分級した。
Example 1
The positive electrode active material for a lithium ion secondary battery according to Example 1 was manufactured according to the following procedure. First, the raw material lithium carbonate, nickel carbonate, cobalt carbonate and manganese carbonate are mixed so that Li: Ni: Co: Mn has a molar concentration ratio of 1.03: 0.75: 0.15: 0.10. Weighed, wet pulverized and mixed to prepare raw material powder. The obtained raw material powder was spray-dried with a spray dryer, then charged into a high-purity alumina container, and calcined at 600 ° C. for 12 hours in an oxygen stream. The obtained pre-fired body was air-cooled and crushed, and then charged again into a high-purity alumina container, followed by main firing at 780 ° C. for 8 hours under an oxygen stream. And the obtained sintered body was air-cooled, crushed and classified.

得られた正極活物質の結晶構造を分析した。X線回折装置(リガク製 RINTIII)を用い、CuKα線を用いて測定した結果、R3−mに帰属する層状構造のピークが確認できた。ICPにより平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.75:0.15:0.10であった。   The crystal structure of the obtained positive electrode active material was analyzed. As a result of measurement using an X-ray diffractometer (RINTIII manufactured by Rigaku) using CuKα rays, a peak of a layered structure belonging to R3-m could be confirmed. When the average composition was measured by ICP, Li: Ni: Co: Mn was 1.00: 0.75: 0.15: 0.10.

滴定法を用いて総遊離リチウム化合物量を定量し、さらにIC法を用いてLiCO量を定量して残りは全てLiOHであると仮定してLiOH量を定量した結果、LiOHは0.08重量%、LiCOは0.49重量%で、LiOHの重量はLiCOの重量の16%であることが分かった。リチウム原料として炭酸塩を用いており、LiCO以外は大気中の水分と反応して形成されるLiOHとして存在する可能性が最も高いため、総遊離リチウム化合物のうちLiCO以外は全てLiOHであるとする上記の仮定は妥当である。ICPにより測定した平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.984Ni0.75Co0.15Mn0.10であった。 As a result of quantifying the total amount of free lithium compounds using a titration method, and further quantifying the amount of Li 2 CO 3 using an IC method and assuming that the rest is all LiOH, the LiOH content was 0.1. It was found that 08 wt%, Li 2 CO 3 was 0.49 wt%, and the LiOH weight was 16% of the Li 2 CO 3 weight. And using the carbonate as a lithium source, because most likely than Li 2 CO 3 is present as LiOH formed by reaction with moisture in the atmosphere, other than Li 2 CO 3 of the total free lithium compound The above assumption that all are LiOH is reasonable. The composition formula calculated from the average composition measured by ICP and the quantification result of the free lithium compound was Li 0.984 Ni 0.75 Co 0.15 Mn 0.10 O 2 .

また、図2に、水銀圧入法により測定した二次粒子の細孔容積分布を示す。測定装置はマイクロメリティックス製オートポア9520形を用いた。細孔径0.1μm以上0.5μm以下の範囲内の開気孔容積は0.0404ml/gであり、二次粒子のみかけ密度3.58g/mlであったので、開気孔容積率は14%であることが分かった。 FIG. 2 shows the pore volume distribution of secondary particles measured by mercury porosimetry. The measuring device used was Automer 9520 manufactured by Micromeritics. The open pore volume within the pore diameter range of 0.1 μm or more and 0.5 μm or less was 0.0404 ml / g, and the apparent density of the secondary particles was 3.58 g / ml, so the open pore volume ratio was 14%. It turns out that.

また、正極活物質の一次粒子の平均粒径を算出した。SEM(日立ハイテクノロジーズ製 S−4300)を用い、加速電圧5kV、倍率10kで観察し、10個の一次粒子の平均粒子径を平均粒径として算出した結果、平均粒径は0.6μmであった。   Further, the average particle size of primary particles of the positive electrode active material was calculated. Using an SEM (S-4300, manufactured by Hitachi High-Technologies Corporation), the observation was performed at an acceleration voltage of 5 kV and a magnification of 10 k, and the average particle size of the 10 primary particles was calculated as the average particle size. As a result, the average particle size was 0.6 μm. It was.

また、正極活物質のBET比表面積を測定した。自動比表面積/細孔分布測定装置(BEL製 BELSORP−mini)を用い、吸脱着等温曲線からLangmuir法によって比表面積を算出した結果、BET比表面積は0.5m/gであった。 Further, the BET specific surface area of the positive electrode active material was measured. As a result of calculating the specific surface area by the Langmuir method from the adsorption / desorption isotherm using an automatic specific surface area / pore distribution measuring apparatus (BELSORP-mini manufactured by BEL), the BET specific surface area was 0.5 m 2 / g.

次に、得られたリチウムイオン二次電池用正極活物質を含有する正極を備えるリチウムイオン二次電池を作製した。はじめに、得られた90質量部の正極活物質と、6質量部の導電材と、4質量部の結着剤を溶媒中で混合し、プラネタリーミキサを用いて3時間撹拌して正極合材を調製した。なお、導電材としては炭素粒子の粉末を用い、結着剤としてはポリフッ化ビニリデンを用い、溶媒としてはN−メチルピロリドンを用いた。続いて、得られた正極合材をブレードコーターを用いて、厚さ15μmのアルミニウム製の箔である正極集電体の片面に塗布した後、ロールプレスを用いて、合材密度が2.70g/cmとなるように加圧し、直径15mmの円板状に打ち抜き、リチウムイオン二次電池用正極とした。 Next, the lithium ion secondary battery provided with the positive electrode containing the obtained positive electrode active material for lithium ion secondary batteries was produced. First, 90 parts by mass of the obtained positive electrode active material, 6 parts by mass of a conductive material, and 4 parts by mass of a binder are mixed in a solvent and stirred for 3 hours using a planetary mixer. Was prepared. Carbon powder was used as the conductive material, polyvinylidene fluoride was used as the binder, and N-methylpyrrolidone was used as the solvent. Subsequently, the obtained positive electrode mixture was applied to one surface of a positive electrode current collector, which is a 15 μm thick aluminum foil, using a blade coater, and then the mixture density was 2.70 g using a roll press. / Cm 3, and punched out into a disk shape having a diameter of 15 mm to obtain a positive electrode for a lithium ion secondary battery.

負極は金属リチウムを用いて作製した。非水電解液としては、体積比1:2のエチレンカーボネートとジメチルカーボネートとの混合溶媒に、LiPFを1.0mol/Lの濃度で溶解させたものを用い、実施例1に係るリチウムイオン二次電池を作製した。 The negative electrode was produced using metallic lithium. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 was used. A secondary battery was produced.

次に、作製したリチウムイオン二次電池について、充放電試験を行い、放電容量特性及び充放電サイクル特性を評価した。なお、充放電試験は、25℃の環境温度下で行った。   Next, the produced lithium ion secondary battery was subjected to a charge / discharge test to evaluate discharge capacity characteristics and charge / discharge cycle characteristics. The charge / discharge test was performed at an environmental temperature of 25 ° C.

放電容量特性については、以下の手順で求めた。充放電の条件は、充電については、0.2C相当の電流で上限電圧4.3Vまで定電流低電圧充電とし、放電については、充電後に30分間休止した後、0.2C相当の定電流で下限電圧3.0Vまでの放電とした。この充放電サイクルを計2サイクル繰り返した。そして、2サイクル目の0.2C放電容量を正極活物質の重量当たりの値として放電容量特性を評価した。   The discharge capacity characteristics were obtained by the following procedure. The charging / discharging conditions are as follows: charging is a constant current / low voltage charging up to an upper limit voltage of 4.3V at a current equivalent to 0.2C, and discharging is a constant current equivalent to 0.2C after resting for 30 minutes after charging. The discharge was set to a lower limit voltage of 3.0V. This charge / discharge cycle was repeated two times in total. Then, the discharge capacity characteristics were evaluated using the 0.2C discharge capacity at the second cycle as the value per weight of the positive electrode active material.

充放電サイクル特性については、以下の手順で求めた。放電容量特性を評価した後、1C相当の電流で上限電圧4.3Vまで定電流低電圧充電し、10分間の休止の後、1.0C相当の定電流で下限電圧3.0Vまで放電した。この充放電サイクルを計47サイクル繰り返した後、0.2C相当の電流で上限電圧4.3Vまで定電流低電圧充電し、30分間の休止の後、0.2C相当の定電流で下限電圧3.0Vまで放電した。そして、放電容量特性に対する、50サイクル目の0.2C放電容量の分率をサイクル容量維持率として算出し、充放電サイクル特性を評価した。   The charge / discharge cycle characteristics were determined by the following procedure. After evaluating the discharge capacity characteristics, the battery was charged at a constant current and low voltage up to an upper limit voltage of 4.3 V with a current corresponding to 1 C, and after a pause of 10 minutes, the battery was discharged to a lower limit voltage of 3.0 V with a constant current equivalent to 1.0 C. This charge / discharge cycle was repeated for a total of 47 cycles, and then charged at a constant current and low voltage up to an upper limit voltage of 4.3 V with a current corresponding to 0.2 C. After a 30-minute pause, the lower limit voltage 3 Discharged to 0V. Then, the fraction of the 0.2C discharge capacity at the 50th cycle with respect to the discharge capacity characteristics was calculated as the cycle capacity maintenance ratio, and the charge / discharge cycle characteristics were evaluated.

その結果、実施例1に係るリチウムイオン二次電池の放電容量特性は191Ah/kgであり、充放電サイクル特性は92%であった。   As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 1 was 191 Ah / kg, and the charge / discharge cycle characteristic was 92%.

(実施例2)
実施例2に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で1.03:0.80:0.10:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 2)
A positive electrode active material for a lithium ion secondary battery according to Example 2 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and manganese carbonate were weighed so that Li: Ni: Co: Mn was 1.03: 0.80: 0.10: 0.10 in terms of molar concentration ratio. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.80:0.10:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.13重量%、LiCOは0.56重量%で、LiOHの重量はLiCOの重量の23%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.980Ni0.80Co0.10Mn0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.13% by weight, Li 2 CO 3 was 0.56% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 23%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.980 Ni 0.80 Co 0.10 Mn 0.10 O 2.

また、開気孔容積率は16%であった。一次粒子の平均粒径は0.6μm、BET比表面積は0.5m/gであった。 The open pore volume ratio was 16%. The average particle diameter of the primary particles was 0.6 μm, and the BET specific surface area was 0.5 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例2に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例2に係るリチウムイオン二次電池の放電容量特性は198Ah/kgであり、充放電サイクル特性は89%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 2 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 2 was 198 Ah / kg, and the charge / discharge cycle characteristic was 89%.

(実施例3)
本焼成の温度を760℃とした以外は、実施例2と同様の手順で、正極活物質を作製した。
(Example 3)
A positive electrode active material was produced in the same procedure as in Example 2 except that the temperature for the main firing was 760 ° C.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.80:0.10:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.16重量%、LiCOは0.59重量%で、LiOHの重量はLiCOの重量の27%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.978Ni0.80Co0.10Mn0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.16 wt%, Li 2 CO 3 was 0.59 wt%, and the weight of LiOH was the weight of Li 2 CO 3 . It was found to be 27%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.978 Ni 0.80 Co 0.10 Mn 0.10 O 2.

また、開気孔容積率は23%であった。一次粒子の平均粒径は0.5μm、BET比表面積は1.5m/gであった。 The open pore volume ratio was 23%. The average particle diameter of the primary particles was 0.5 μm, and the BET specific surface area was 1.5 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例3に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例3に係るリチウムイオン二次電池の放電容量特性は202Ah/kgであり、充放電サイクル特性は86%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 3 including the positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 3 was 202 Ah / kg, and the charge / discharge cycle characteristic was 86%.

(実施例4)
実施例4に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル及び炭酸コバルトを、Li:Ni:Coがモル濃度比で1.03:0.85:0.15となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
Example 4
A positive electrode active material for a lithium ion secondary battery according to Example 4 was produced by the following procedure. First, the raw material lithium carbonate, nickel carbonate and cobalt carbonate were the same as in Example 1 except that Li: Ni: Co was weighed so that the molar concentration ratio was 1.03: 0.85: 0.15. A positive electrode active material was prepared by the procedure.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Coは1.00:0.85:0.15であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co was 1.00: 0.85: 0.15.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.20重量%、LiCOは0.60重量%で、LiOHの重量はLiCOの重量の33%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.976Ni0.85Co0.15であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.20% by weight, Li 2 CO 3 was 0.60% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 33%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.976 Ni 0.85 Co 0.15 O 2 .

また、開気孔容積率は14%であった。一次粒子の平均粒径は0.6μm、BET比表面積は0.5m/gであった。 The open pore volume ratio was 14%. The average particle diameter of the primary particles was 0.6 μm, and the BET specific surface area was 0.5 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例4に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例4に係るリチウムイオン二次電池の放電容量特性は205Ah/kgであり、充放電サイクル特性は85%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 4 provided with a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 4 was 205 Ah / kg, and the charge / discharge cycle characteristic was 85%.

(実施例5)
実施例5に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル及び炭酸コバルトを、Li:Ni:Coがモル濃度比で1.13:0.80:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 5)
A positive electrode active material for a lithium ion secondary battery according to Example 5 was produced by the following procedure. First, the raw material lithium carbonate, nickel carbonate and cobalt carbonate were the same as in Example 1 except that Li: Ni: Co was weighed so that the molar concentration ratio was 1.13: 0.80: 0.10. A positive electrode active material was prepared by the procedure.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Coは1.10:0.80:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co was 1.10: 0.80: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.20重量%、LiCOは0.80重量%で、LiOHの重量はLiCOの重量の25%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li1.071Ni0.80Co0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.20% by weight, Li 2 CO 3 was 0.80% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 25%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 1.071 Ni 0.80 Co 0.10 O 2 .

また、開気孔容積率は8%であった。一次粒子の平均粒径は1.0μm、BET比表面積は0.2m/gであった。 The open pore volume ratio was 8%. The average particle diameter of the primary particles was 1.0 μm, and the BET specific surface area was 0.2 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例5に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例5に係るリチウムイオン二次電池の放電容量特性は186Ah/kgであり、充放電サイクル特性は80%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 5 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 5 was 186 Ah / kg, and the charge / discharge cycle characteristic was 80%.

(実施例6)
実施例6に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び水酸化アルミニウムを、Li:Ni:Co:Alがモル濃度比で1.03:0.70:0.20:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 6)
A positive electrode active material for a lithium ion secondary battery according to Example 6 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate and aluminum hydroxide are weighed so that the molar concentration ratio of Li: Ni: Co: Al is 1.03: 0.70: 0.20: 0.10. A positive electrode active material was produced in the same procedure as in Example 1 except for the points described above.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Alは1.00:0.70:0.20:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Al was 1.00: 0.70: 0.20: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.04重量%、LiCOは0.36重量%で、LiOHの重量はLiCOの重量の11%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.989Ni0.70Co0.20Al0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.04% by weight, Li 2 CO 3 was 0.36% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 11%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.989 Ni 0.70 Co 0.20 Al 0.10 O 2.

また、開気孔容積率は12%であった。一次粒子の平均粒径は0.6μm、BET比表面積は0.5m/gであった。 The open pore volume ratio was 12%. The average particle diameter of the primary particles was 0.6 μm, and the BET specific surface area was 0.5 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例6に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例6に係るリチウムイオン二次電池の放電容量特性は187Ah/kgであり、充放電サイクル特性は92%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 6 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 6 was 187 Ah / kg, and the charge / discharge cycle characteristic was 92%.

(実施例7)
実施例7に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で0.98:0.75:0.20:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 7)
A positive electrode active material for a lithium ion secondary battery according to Example 7 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate and manganese carbonate were weighed so that Li: Ni: Co: Mn was 0.98: 0.75: 0.20: 0.10 in terms of molar concentration ratio. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは0.95:0.75:0.20:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 0.95: 0.75: 0.20: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.28重量%、LiCOは0.53重量%で、LiOHの重量はLiCOの重量の53%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.925Ni0.75Co0.20Mn0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.28% by weight, Li 2 CO 3 was 0.53% by weight, and LiOH was in the weight of Li 2 CO 3 . It was found to be 53%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.925 Ni 0.75 Co 0.20 Mn 0.10 O 2.

また、開気孔容積率は11%であった。一次粒子の平均粒径は0.4μm、BET比表面積は0.7m/gであった。 The open pore volume ratio was 11%. The average particle diameter of the primary particles was 0.4 μm, and the BET specific surface area was 0.7 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例7に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例7に係るリチウムイオン二次電池の放電容量特性は180Ah/kgであり、充放電サイクル特性は84%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 7 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 7 was 180 Ah / kg, and the charge / discharge cycle characteristic was 84%.

(実施例8)
実施例8に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び水酸化マグネシウムを、Li:Ni:Co:Mgがモル濃度比で1.03:0.80:0.19:0.01となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 8)
A positive electrode active material for a lithium ion secondary battery according to Example 8 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate and magnesium hydroxide are weighed so that the molar concentration ratio of Li: Ni: Co: Mg is 1.03: 0.80: 0.19: 0.01. A positive electrode active material was produced in the same procedure as in Example 1 except for the points described above.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mgは1.00:0.80:0.19:0.01であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mg was 1.00: 0.80: 0.19: 0.01.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.15重量%、LiCOは0.53重量%で、LiOHの重量はLiCOの重量の28%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.980Ni0.80Co0.19Mg0.01であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.15% by weight, Li 2 CO 3 was 0.53% by weight, and LiOH was in the weight of Li 2 CO 3 . It was found to be 28%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.980 Ni 0.80 Co 0.19 Mg 0.01 O 2.

また、開気孔容積率は14%であった。一次粒子の平均粒径は0.3μm、BET比表面積は0.8m/gであった。 The open pore volume ratio was 14%. The average particle diameter of the primary particles was 0.3 μm, and the BET specific surface area was 0.8 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例8に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例8に係るリチウムイオン二次電池の放電容量特性は195Ah/kgであり、充放電サイクル特性は90%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 8 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 8 was 195 Ah / kg, and the charge / discharge cycle characteristic was 90%.

(実施例9)
実施例9に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び酸化チタンを、Li:Ni:Co:Tiがモル濃度比で1.03:0.80:0.19:0.01となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
Example 9
A positive electrode active material for a lithium ion secondary battery according to Example 9 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and titanium oxide were weighed so that the molar ratio of Li: Ni: Co: Ti was 1.03: 0.80: 0.19: 0.01. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Tiは1.00:0.80:0.19:0.01であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Ti was 1.00: 0.80: 0.19: 0.01.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.12重量%、LiCOは0.56重量%で、LiOHの重量はLiCOの重量の21%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.980Ni0.80Co0.19Ti0.01であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.12% by weight, Li 2 CO 3 was 0.56% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 21%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.980 Ni 0.80 Co 0.19 Ti 0.01 O 2.

また、開気孔容積率は8%であった。一次粒子の平均粒径は0.5μm、BET比表面積は0.4m/gであった。 The open pore volume ratio was 8%. The average particle diameter of the primary particles was 0.5 μm, and the BET specific surface area was 0.4 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例9に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例9に係るリチウムイオン二次電池の放電容量特性は202Ah/kgであり、充放電サイクル特性は88%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 9 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 9 was 202 Ah / kg, and the charge / discharge cycle characteristic was 88%.

(実施例10)
実施例10に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び酸化ジルコニウムを、Li:Ni:Co:Zrがモル濃度比で1.03:0.80:0.19:0.01となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 10)
A positive electrode active material for a lithium ion secondary battery according to Example 10 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and zirconium oxide were weighed so that Li: Ni: Co: Zr had a molar concentration ratio of 1.03: 0.80: 0.19: 0.01. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Zrは1.00:0.80:0.19:0.01であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Zr was 1.00: 0.80: 0.19: 0.01.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.17重量%、LiCOは0.55重量%で、LiOHの重量はLiCOの重量の31%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.979Ni0.80Co0.19Zr0.01であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.17% by weight, Li 2 CO 3 was 0.55% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 31%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.979 Ni 0.80 Co 0.19 Zr 0.01 O 2.

また、開気孔容積率は11%であった。一次粒子の平均粒径は0.5μm、BET比表面積は0.4m/gであった。 The open pore volume ratio was 11%. The average particle diameter of the primary particles was 0.5 μm, and the BET specific surface area was 0.4 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例10に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例10に係るリチウムイオン二次電池の放電容量特性は199Ah/kgであり、充放電サイクル特性は90%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 10 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 10 was 199 Ah / kg, and the charge / discharge cycle characteristic was 90%.

(実施例11)
実施例11に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び酸化モリブデンを、Li:Ni:Co:Moがモル濃度比で1.03:0.80:0.19:0.01となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 11)
A positive electrode active material for a lithium ion secondary battery according to Example 11 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and molybdenum oxide were weighed so that the molar ratio of Li: Ni: Co: Mo was 1.03: 0.80: 0.19: 0.01. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Moは1.00:0.80:0.19:0.01であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mo was 1.00: 0.80: 0.19: 0.01.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.23重量%、LiCOは0.72重量%で、LiOHの重量はLiCOの重量の32%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.972Ni0.80Co0.19Mo0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.23% by weight, Li 2 CO 3 was 0.72% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 32%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.972 Ni 0.80 Co 0.19 Mo 0.10 O 2.

また、開気孔容積率は14%であった。一次粒子の平均粒径は0.4μm、BET比表面積は0.7m/gであった。 The open pore volume ratio was 14%. The average particle diameter of the primary particles was 0.4 μm, and the BET specific surface area was 0.7 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例11に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例11に係るリチウムイオン二次電池の放電容量特性は193Ah/kgであり、充放電サイクル特性は86%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 11 including the positive electrode containing the obtained positive electrode active material was manufactured, and the discharge capacity characteristics and the charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 11 was 193 Ah / kg, and the charge / discharge cycle characteristic was 86%.

(実施例12)
実施例12に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び酸化ニオブを、Li:Ni:Co:Nbがモル濃度比で1.03:0.80:0.19:0.01となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 12)
A positive electrode active material for a lithium ion secondary battery according to Example 12 was produced by the following procedure. First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and niobium oxide were weighed so that the molar concentration ratio of Li: Ni: Co: Nb was 1.03: 0.80: 0.19: 0.01. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Nbは1.00:0.80:0.19:0.01であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Nb was 1.00: 0.80: 0.19: 0.01.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.15重量%、LiCOは0.60重量%で、LiOHの重量はLiCOの重量の25%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.978Ni0.80Co0.19Nb0.01であった。 As a result of quantifying LiOH and Li 2 CO 3 in the same procedure as in Example 1, LiOH was 0.15 wt%, Li 2 CO 3 was 0.60 wt%, and the weight of LiOH was the weight of Li 2 CO 3 . It was found to be 25%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.978 Ni 0.80 Co 0.19 Nb 0.01 O 2.

また、開気孔容積率は14%であった。一次粒子の平均粒径は0.4μm、BET比表面積は0.7m/gであった。 The open pore volume ratio was 14%. The average particle diameter of the primary particles was 0.4 μm, and the BET specific surface area was 0.7 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例12に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例12に係るリチウムイオン二次電池の放電容量特性は188Ah/kgであり、充放電サイクル特性は87%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 12 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 12 was 188 Ah / kg, and the charge / discharge cycle characteristic was 87%.

(実施例13)
実施例13に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnが、モル濃度比で、1.00:0.80:0.10:0.10となるように秤量し、コア粒子を実施例1と同様の手順で作製した。コア粒子の平均粒径は0.6μmであった。また、炭酸リチウム、炭酸ニッケル及び炭酸マンガンを、Li:Ni:Mnがモル濃度比で1.22:0.2:0.6となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。得られた原料粉末を乾燥した後、高純度アルミナ容器に投入し、大気中において700℃で12時間の熱処理を行った。そして、得られた仮焼成体を空冷し、解砕した。
(Example 13)
A positive electrode active material for a lithium ion secondary battery according to Example 13 was produced by the following procedure. First, the raw materials lithium carbonate, nickel carbonate, cobalt carbonate, and manganese carbonate are mixed so that Li: Ni: Co: Mn has a molar concentration ratio of 1.00: 0.80: 0.10: 0.10. The sample was weighed and core particles were produced in the same manner as in Example 1. The average particle diameter of the core particles was 0.6 μm. Further, lithium carbonate, nickel carbonate, and manganese carbonate are weighed so that Li: Ni: Mn is a molar concentration ratio of 1.22: 0.2: 0.6, and these are wet pulverized and mixed to obtain a raw material powder. Was prepared. After the obtained raw material powder was dried, it was put into a high-purity alumina container and heat-treated at 700 ° C. for 12 hours in the atmosphere. And the obtained temporary baked body was air-cooled and crushed.

仮焼成体の一次粒子の平均粒径をコア粒子と同様に算出した結果、平均粒径は0.05μmであった。次に、正極活物質コア粒子と仮焼成体の粒子を重量比で98:2となるように秤量し、これらを湿式混合した後、この溶液を噴霧乾燥してコア粒子の表面に仮焼成体の粒子を付着させた。続いて、得られた粒子を高純度アルミナ容器に投入し、酸素気流下において800℃で1時間加熱処理することによって、実施例13に係るリチウムイオン二次電池用正極活物質を製造した。   As a result of calculating the average particle size of the primary particles of the calcined body in the same manner as the core particles, the average particle size was 0.05 μm. Next, the positive electrode active material core particles and the pre-fired particles are weighed so that the weight ratio is 98: 2, and these are wet mixed, and then the solution is spray-dried to the surface of the core particles. Of particles were adhered. Subsequently, the obtained particles were put into a high-purity alumina container and heat-treated at 800 ° C. for 1 hour under an oxygen stream to produce a positive electrode active material for a lithium ion secondary battery according to Example 13.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.01:0.78:0.10:0.11であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.01: 0.78: 0.10: 0.11.

次に、正極活物質の表面及び中心近傍の元素分析を行った。製造した正極活物質の試料は、研磨機(gatan社製、600型)を用い、アルゴンイオンエッチングによって薄片化した後、元素分析に供した。表面における原子の濃度分布等の元素分析は、エネルギー損失分光法(以下、EELSと略す)(gatan社製、Enfina)を備えた電界放出型透過型電子顕微鏡(日立製作所製、HF−2000(以下、TEMと略す))を用いて、加速電圧200kVで測定し確認した。なお、元素分布はこの他に、TEMとX線分析装置(EDS)を組み合わせたTEM−EDSや、飛行時間型二次イオン質量分析法(TOF−SIMS)、オージェ電子分光法(AES)等で確認することが可能である。   Next, elemental analysis of the surface of the positive electrode active material and the vicinity of the center was performed. The manufactured positive electrode active material sample was sliced by argon ion etching using a polishing machine (manufactured by Gatan, model 600) and subjected to elemental analysis. Elemental analysis such as the concentration distribution of atoms on the surface is performed using a field emission transmission electron microscope (manufactured by Hitachi, HF-2000 (hereinafter referred to as EELS) (hereinafter referred to as EELS) (manufactured by Gatan, Enfina)). , Abbreviated as TEM))) and measured at an acceleration voltage of 200 kV. In addition to this, the element distribution can also be determined by TEM-EDS, a combination of TEM and X-ray analyzer (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), Auger electron spectroscopy (AES), etc. It is possible to confirm.

Ni/(Ni+Co+Mn)濃度比(原子比)は、正極活物質の最表面から深さ20nmまでの領域において約0.65であり、深さ20nmから深さ60nmまでの領域において約0.70であり、最表面から深さ90nmを超える領域においては約0.80であった。最表面から深さ90nmを超える領域ではNi/(Ni+Co+Mn)濃度比は一定になることから、中心近傍におけるNi/(Ni+Co+Mn)濃度比も約0.80と推定される。よって、表面は中心近傍と比較してNi/(Ni+Co+Mn)濃度比が低くなっていることが確認された。   The Ni / (Ni + Co + Mn) concentration ratio (atomic ratio) is about 0.65 in the region from the outermost surface of the positive electrode active material to the depth of 20 nm, and is about 0.70 in the region from the depth of 20 nm to the depth of 60 nm. In the region exceeding 90 nm in depth from the outermost surface, it was about 0.80. Since the Ni / (Ni + Co + Mn) concentration ratio is constant in the region exceeding the depth of 90 nm from the outermost surface, the Ni / (Ni + Co + Mn) concentration ratio in the vicinity of the center is estimated to be about 0.80. Therefore, it was confirmed that the Ni / (Ni + Co + Mn) concentration ratio was lower on the surface than in the vicinity of the center.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.02重量%、LiCOは0.08重量%で、LiOHの重量はLiCOの重量の25%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li1.007Ni0.78Co0.10Mn0.11であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.02% by weight, Li 2 CO 3 was 0.08% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 25%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 1.007 Ni 0.78 Co 0.10 Mn 0.11 O 2.

また、開気孔容積率は8%であった。一次粒子の平均粒径は0.5μm、BET比表面積は0.4m/gであった。 The open pore volume ratio was 8%. The average particle diameter of the primary particles was 0.5 μm, and the BET specific surface area was 0.4 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例13に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例13に係るリチウムイオン二次電池の放電容量特性は187Ah/kgであり、充放電サイクル特性は94%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 13 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 13 was 187 Ah / kg, and the charge / discharge cycle characteristic was 94%.

(実施例14)
実施例14に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル及び炭酸コバルトを、Li:Ni:Coがモル濃度比で1.22:0.70:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 14)
A positive electrode active material for a lithium ion secondary battery according to Example 14 was produced by the following procedure. First, the raw material lithium carbonate, nickel carbonate, and cobalt carbonate were the same as in Example 1 except that Li: Ni: Co was weighed so that the molar concentration ratio was 1.22: 0.70: 0.10. A positive electrode active material was prepared by the procedure.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Coは1.20:0.70:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co was 1.20: 0.70: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.22重量%、LiCOは1.1重量%で、LiOHの重量はLiCOの重量の20%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li1.162Ni0.70Co0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.22% by weight, Li 2 CO 3 was 1.1% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 20%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 1.162 Ni 0.70 Co 0.10 O 2 .

また、開気孔容積率は10%であった。一次粒子の平均粒径は0.2μm、BET比表面積は1.0m/gであった。 The open pore volume ratio was 10%. The average particle diameter of the primary particles was 0.2 μm, and the BET specific surface area was 1.0 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例14に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例14に係るリチウムイオン二次電池の放電容量特性は175Ah/kgであり、充放電サイクル特性は85%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 14 provided with a positive electrode containing the obtained positive electrode active material was produced, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 14 was 175 Ah / kg, and the charge / discharge cycle characteristic was 85%.

(実施例15)
実施例15に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で0.92:0.80:0.20:0.10となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 15)
A positive electrode active material for a lithium ion secondary battery according to Example 15 was produced by the following procedure. First, raw materials lithium carbonate, nickel carbonate, cobalt carbonate and manganese carbonate were weighed so that Li: Ni: Co: Mn was 0.92: 0.80: 0.20: 0.10 in terms of molar concentration ratio. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは0.90:0.80:0.20:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 0.90: 0.80: 0.20: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.10重量%、LiCOは0.45重量%で、LiOHの重量はLiCOの重量の22%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.884Ni0.80Co0.20Mn0.10であった。 As a result of quantifying LiOH and Li 2 CO 3 in the same procedure as in Example 1, LiOH was 0.10% by weight, Li 2 CO 3 was 0.45% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 22%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.884 Ni 0.80 Co 0.20 Mn 0.10 O 2.

また、開気孔容積率は17%であった。一次粒子の平均粒径は0.4μm、BET比表面積は0.7m/gであった。 The open pore volume ratio was 17%. The average particle diameter of the primary particles was 0.4 μm, and the BET specific surface area was 0.7 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例15に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例15に係るリチウムイオン二次電池の放電容量特性は181Ah/kgであり、充放電サイクル特性は83%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 15 including the positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 15 was 181 Ah / kg, and the charge / discharge cycle characteristic was 83%.

(実施例16)
実施例16に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、本焼成温度を800℃とした点以外は実施例2と同様の手順で、正極活物質を作製した。
(Example 16)
A positive electrode active material for a lithium ion secondary battery according to Example 16 was produced by the following procedure. First, a positive electrode active material was produced in the same procedure as in Example 2 except that the main firing temperature was 800 ° C.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは、1.00:0.80:0.10:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.31重量%、LiCOは1.50重量%で、LiOHの重量はLiCOの重量の21%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.948Ni0.80Co0.10Mn0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.31% by weight, Li 2 CO 3 was 1.50% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 21%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.948 Ni 0.80 Co 0.10 Mn 0.10 O 2.

また、開気孔容積率は20%であった。一次粒子の平均粒径は0.1μm、BET比表面積は1.8m/gであった。 The open pore volume ratio was 20%. The average particle diameter of the primary particles was 0.1 μm, and the BET specific surface area was 1.8 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例16に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例16に係るリチウムイオン二次電池の放電容量特性は182Ah/kgであり、充放電サイクル特性は80%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 16 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 16 was 182 Ah / kg, and the charge / discharge cycle characteristic was 80%.

(実施例17)
実施例17に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、本焼成温度を900℃とした点以外は実施例2と同様の手順で、正極活物質を作製した。
(Example 17)
A positive electrode active material for a lithium ion secondary battery according to Example 17 was produced by the following procedure. First, a positive electrode active material was produced in the same procedure as in Example 2 except that the main firing temperature was 900 ° C.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.80:0.10:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.08重量%、LiCOは0.15重量%で、LiOHの重量はLiCOの重量の53%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.993Ni0.80Co0.10Mn0.10であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.08% by weight, Li 2 CO 3 was 0.15% by weight, and the weight of LiOH was the same as that of Li 2 CO 3 . It was found to be 53%. The composition formula calculated from the average composition and the quantitative result of the free lithium compound was Li 0.993 Ni 0.80 Co 0.10 Mn 0.10 O 2 .

また、開気孔容積率は7%であった。一次粒子の平均粒径は2.4μm、BET比表面積は0.1m/gであった。 The open pore volume ratio was 7%. The average particle diameter of the primary particles was 2.4 μm, and the BET specific surface area was 0.1 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例17に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例17に係るリチウムイオン二次電池の放電容量特性は184Ah/kgであり、充放電サイクル特性は80%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 17 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 17 was 184 Ah / kg, and the charge / discharge cycle characteristic was 80%.

(実施例18)
実施例18に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。はじめに、原料の水酸化リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で1.05:0.80:0.10:0.10となるように秤量し、本焼成温度を750℃とし、得られた焼成体をCO雰囲気中で空冷した以外は実施例1と同様の手順で、正極活物質を作製した。
(Example 18)
A positive electrode active material for a lithium ion secondary battery according to Example 18 was produced by the following procedure. First, raw material lithium hydroxide, nickel carbonate, cobalt carbonate and manganese carbonate are weighed so that the molar ratio of Li: Ni: Co: Mn is 1.05: 0.80: 0.10: 0.10. Then, a positive electrode active material was produced in the same procedure as in Example 1 except that the main firing temperature was 750 ° C. and the obtained fired body was air-cooled in a CO 2 atmosphere.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは、1.00:0.80:0.10:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.24重量%、LiCOは0.65重量%で、LiOHの重量はLiCOの重量の37%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.973Ni0.80Co0.10Mn0.10であった。 As a result of quantifying LiOH and Li 2 CO 3 in the same procedure as in Example 1, LiOH was 0.24% by weight, Li 2 CO 3 was 0.65% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 37%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.973 Ni 0.80 Co 0.10 Mn 0.10 O 2.

また、開気孔容積率は11%であった。一次粒子の平均粒径は1.0μm、BET比表面積は0.2m/gであった。 The open pore volume ratio was 11%. The average particle diameter of the primary particles was 1.0 μm, and the BET specific surface area was 0.2 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える実施例18に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、実施例18に係るリチウムイオン二次電池の放電容量特性は196Ah/kgであり、充放電サイクル特性は85%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Example 18 including the positive electrode containing the obtained positive electrode active material was manufactured, and the discharge capacity characteristics and the charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Example 18 was 196 Ah / kg, and the charge / discharge cycle characteristic was 85%.

(比較例1)
比較例1に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。なお、比較例1に係るリチウムイオン二次電池用正極活物質は、実施例と比較してNiの比率が低い組成からなる。
(Comparative Example 1)
A positive electrode active material for a lithium ion secondary battery according to Comparative Example 1 was produced by the following procedure. In addition, the positive electrode active material for lithium ion secondary batteries according to Comparative Example 1 has a composition having a lower Ni ratio than that of the example.

はじめに、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で1.02:0.60:0.20:0.20となるように秤量した点以外は実施例1と同様の手順で、正極活物質を作製した。   First, raw material lithium carbonate, nickel carbonate, cobalt carbonate, and manganese carbonate were weighed so that Li: Ni: Co: Mn was 1.02: 0.60: 0.20: 0.20 in terms of molar concentration ratio. A positive electrode active material was prepared in the same procedure as in Example 1 except for the point.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.60:0.20:0.20であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.60: 0.20: 0.20.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.05重量%、LiCOは0.12重量%で、LiOHの重量はLiCOの重量の42%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.995Ni0.60Co0.20Mn0.20であった。 LiOH and Li 2 CO 3 were quantified in the same procedure as in Example 1. As a result, LiOH was 0.05% by weight, Li 2 CO 3 was 0.12% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 42%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.995 Ni 0.60 Co 0.20 Mn 0.20 O 2.

また、開気孔容積率は5%であった。一次粒子の平均粒径は0.6μm、BET比表面積は0.5m/gであった。 The open pore volume ratio was 5%. The average particle diameter of the primary particles was 0.6 μm, and the BET specific surface area was 0.5 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える比較例1に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、比較例1に係るリチウムイオン二次電池の放電容量特性は170Ah/kgであり、充放電サイクル特性は93%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Comparative Example 1 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Comparative Example 1 was 170 Ah / kg, and the charge / discharge cycle characteristic was 93%.

(比較例2)
比較例2に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。なお、比較例2に係るリチウムイオン二次電池用正極活物質は、実施例と比較してNiの比率が高い組成からなる。また、Li源として水酸化リチウムを用いた。
(Comparative Example 2)
A positive electrode active material for a lithium ion secondary battery according to Comparative Example 2 was produced by the following procedure. In addition, the positive electrode active material for lithium ion secondary batteries according to Comparative Example 2 has a composition having a higher Ni ratio than that of the example. Moreover, lithium hydroxide was used as a Li source.

はじめに、原料の水酸化リチウム及び炭酸ニッケルを、Li:Niがモル濃度比で1.05:1.00となるように秤量し、本焼成温度を730℃とした点以外は実施例1と同様の手順で、正極活物質を作製した。   First, the raw material lithium hydroxide and nickel carbonate were weighed so that the molar ratio of Li: Ni was 1.05: 1.00, and the same as in Example 1 except that the main firing temperature was 730 ° C. A positive electrode active material was prepared by the procedure described above.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Niは1.00:1.00であった。   When the average composition of the positive electrode active material was measured, Li: Ni was 1.00: 1.00.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは1.80重量%、LiCOは0.25重量%で、LiOHの重量はLiCOの重量の720%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.920Ni1.00であった。 As a result of quantifying LiOH and Li 2 CO 3 in the same procedure as in Example 1, LiOH was 1.80% by weight, Li 2 CO 3 was 0.25% by weight, and the weight of LiOH was the weight of Li 2 CO 3 . It was found to be 720%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.920 Ni 1.00 O 2.

また、開気孔容積率は1%であった。一次粒子の平均粒径は2.1μm、BET比表面積は0.1m/gであった。 The open pore volume ratio was 1%. The average particle diameter of the primary particles was 2.1 μm, and the BET specific surface area was 0.1 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える比較例2に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、比較例2に係るリチウムイオン二次電池の放電容量特性は135Ah/kgであり、充放電サイクル特性は61%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Comparative Example 2 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Comparative Example 2 was 135 Ah / kg, and the charge / discharge cycle characteristic was 61%.

(比較例3)
比較例3に係るリチウムイオン二次電池用正極活物質を、以下の手順で製造した。なお、比較例3に係るリチウムイオン二次電池用正極活物質は、実施例と比較して遊離リチウム化合物量におけるLiOHの重量比が高い粒子からなる。
(Comparative Example 3)
A positive electrode active material for a lithium ion secondary battery according to Comparative Example 3 was produced by the following procedure. In addition, the positive electrode active material for lithium ion secondary batteries according to Comparative Example 3 is composed of particles having a higher weight ratio of LiOH in the amount of free lithium compound than in the Examples.

はじめに、原料の水酸化リチウム、炭酸ニッケル、炭酸コバルト及び炭酸マンガンを、Li:Ni:Co:Mnがモル濃度比で1.05:0.75:0.15:0.10となるように秤量し、本焼成温度を750℃とした点以外は実施例1と同様の手順で、正極活物質を作製した。   First, raw material lithium hydroxide, nickel carbonate, cobalt carbonate and manganese carbonate are weighed so that the molar ratio of Li: Ni: Co: Mn is 1.05: 0.75: 0.15: 0.10. A positive electrode active material was prepared in the same procedure as in Example 1 except that the main firing temperature was 750 ° C.

得られた正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。   As a result of analyzing the crystal structure of the obtained positive electrode active material, the peak of the layered structure attributed to R3-m was confirmed.

正極活物質の平均組成を測定したところ、Li:Ni:Co:Mnは1.00:0.75:0.15:0.10であった。   When the average composition of the positive electrode active material was measured, Li: Ni: Co: Mn was 1.00: 0.75: 0.15: 0.10.

LiOHとLiCOを実施例1と同様の手順で定量した結果、LiOHは0.72重量%、LiCOは0.19重量%で、LiOHの重量はLiCOの重量の379%であることが分かった。また、平均組成と遊離リチウム化合物の定量結果から算出した組成式は、Li0.966Ni0.75Co0.15Mn0.10であった。 As a result of quantifying LiOH and Li 2 CO 3 in the same procedure as in Example 1, LiOH was 0.72% by weight, Li 2 CO 3 was 0.19% by weight, and the weight of LiOH was the same as the weight of Li 2 CO 3 . It was found to be 379%. Further, the composition formula calculated from quantitative results of free lithium compound and the average composition was Li 0.966 Ni 0.75 Co 0.15 Mn 0.10 O 2.

また、開気孔容積率は3%であった。一次粒子の平均粒径は1.6μm、BET比表面積は0.1m/gであった。 The open pore volume ratio was 3%. The average particle diameter of the primary particles was 1.6 μm, and the BET specific surface area was 0.1 m 2 / g.

次に、実施例1と同様の手順で、得られた正極活物質を含有する正極を備える比較例3に係るリチウムイオン二次電池を製造し、放電容量特性及び充放電サイクル特性を評価した。その結果、比較例3に係るリチウムイオン二次電池の放電容量特性は192Ah/kgであり、充放電サイクル特性は75%であった。   Next, in the same procedure as in Example 1, a lithium ion secondary battery according to Comparative Example 3 including a positive electrode containing the obtained positive electrode active material was manufactured, and discharge capacity characteristics and charge / discharge cycle characteristics were evaluated. As a result, the discharge capacity characteristic of the lithium ion secondary battery according to Comparative Example 3 was 192 Ah / kg, and the charge / discharge cycle characteristic was 75%.

表1に、以上の実施例1〜18、及び比較例1〜3に係るリチウムイオン二次電池における放電容量特性(Ah/kg)及び充放電サイクル特性(%)を、正極活物質の組成及び遊離リチウム化合物量、開気孔容積率、一次粒子の平均粒径、BET比表面積と共に示す。   Table 1 shows the discharge capacity characteristics (Ah / kg) and the charge / discharge cycle characteristics (%) in the lithium ion secondary batteries according to Examples 1 to 18 and Comparative Examples 1 to 3, and the composition of the positive electrode active material and It is shown together with the amount of free lithium compound, the open pore volume ratio, the average particle size of primary particles, and the BET specific surface area.

なお、実施例において、組成式は以下のように算出した。本発明に係る正極活物質は、層状構造を有するため、LiM’O(M’は金属元素)となる。したがって、Li、Ni、Co、Mの測定値mass%から、それぞれのモル濃度比を求め、求めたモル濃度比の和が2になるように比例配分すれば、酸素を除く元素の組成比を算出でき、組成式Li1+xNiCo1−x−y−zの係数x、y、zを算出評価できる。 In the examples, the composition formula was calculated as follows. Since the positive electrode active material according to the present invention has a layered structure, it becomes LiM′O 2 (M ′ is a metal element). Therefore, if the respective molar concentration ratios are obtained from the measured values mass% of Li, Ni, Co, and M, and are proportionally distributed so that the sum of the obtained molar concentration ratios is 2, the composition ratio of elements excluding oxygen can be determined. And the coefficients x, y, and z of the composition formula Li 1 + x Ni y Co z M 1-xyz O 2 can be calculated and evaluated.

本明細書の実施例の各係数は、遊離リチウム化合物に関わるリチウム量を定量する前に、Li、Ni、Co、Mのモル濃度比の和が2になるように比例配分し、次いで、遊離リチウム化合物に関わるリチウム量を単に減じた値を示している。実施例の各係数の和が2になるように再度比例配分することにより、正確な係数x、y、zの値を求めることができる。   Each coefficient in the examples of the present specification is proportionally distributed so that the sum of the molar concentration ratios of Li, Ni, Co, and M is 2 before quantifying the amount of lithium related to the free lithium compound, The value obtained by simply reducing the amount of lithium related to the lithium compound is shown. By proportionally allocating again so that the sum of the coefficients in the embodiment becomes 2, accurate values of the coefficients x, y, and z can be obtained.

Figure 0006589339
Figure 0006589339

図3は、実施例及び比較例に係るリチウムイオン二次電池の放電容量特性と充放電サイクル特性の関係を示す図である。図3に示すように、実施例1〜18に係るリチウムイオン二次電池は、放電容量特性及び充放電サイクル特性がいずれも高い水準にあり、優れた特性を有している。その一方で、比較例1〜3に係るリチウムイオン二次電池は、放電容量特性及び充放電サイクル特性の少なくとも一方が、実施例の水準には及ばず、良好な放電容量特性及び充放電サイクル特性が両立していない。   FIG. 3 is a diagram illustrating the relationship between the discharge capacity characteristics and the charge / discharge cycle characteristics of the lithium ion secondary batteries according to Examples and Comparative Examples. As shown in FIG. 3, the lithium ion secondary batteries according to Examples 1 to 18 are both excellent in discharge capacity characteristics and charge / discharge cycle characteristics, and have excellent characteristics. On the other hand, in the lithium ion secondary batteries according to Comparative Examples 1 to 3, at least one of the discharge capacity characteristic and the charge / discharge cycle characteristic does not reach the level of the example, and the good discharge capacity characteristic and the charge / discharge cycle characteristic. Are not compatible.

特に、Niの比率(y)が低い比較例1、及びNiの比率(y)が高い比較例2は、表1に示すように、放電容量特性が135Ah/kg〜170Ah/kgと低かった。これに対し、Niの比率(y)が適正な実施例1では、放電容量特性が改善されていた。また、実施例2〜18についても放電容量特性が改善傾向を示した。   In particular, Comparative Example 1 with a low Ni ratio (y) and Comparative Example 2 with a high Ni ratio (y) had low discharge capacity characteristics of 135 Ah / kg to 170 Ah / kg, as shown in Table 1. On the other hand, in Example 1 in which the Ni ratio (y) was appropriate, the discharge capacity characteristics were improved. Moreover, also about Examples 2-18, the discharge capacity characteristic showed the improvement tendency.

また、遊離リチウム化合物におけるLiOHの比率が高い比較例2及び3では、充放電サイクル特性が61%〜75%と低かった。比較例2及び3は、LiOHと電解液との接触による電解液の分解によって、充放電サイクル特性が低下したと考えられる。これに対し、実施例1〜18は、充放電サイクル特性が改善傾向を示した。よって、遊離リチウム化合物におけるLiOHの重量比をLiCOの60%以下と低くすることにより、正極活物質の放電容量を低下させることなく、LiOHと電解液との接触による電解液の分解の進行が抑制され、放電容量特性及び充放電サイクル特性の向上に寄与することが確認された。 In Comparative Examples 2 and 3 having a high LiOH ratio in the free lithium compound, the charge / discharge cycle characteristics were as low as 61% to 75%. In Comparative Examples 2 and 3, it is considered that the charge / discharge cycle characteristics were degraded due to the decomposition of the electrolytic solution due to the contact between LiOH and the electrolytic solution. On the other hand, Examples 1-18 showed the improvement tendency in charging / discharging cycling characteristics. Therefore, by reducing the LiOH weight ratio in the free lithium compound to 60% or less of Li 2 CO 3 , the electrolytic solution can be decomposed by contact between LiOH and the electrolytic solution without reducing the discharge capacity of the positive electrode active material. It was confirmed that the progress was suppressed and contributed to the improvement of discharge capacity characteristics and charge / discharge cycle characteristics.

1 正極
2 負極
3 セパレータ
4 電池缶
5 負極リード片
6 密閉蓋
7 正極リード片
8 シール材
9 絶縁板
10 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Negative electrode lead piece 6 Sealing lid 7 Positive electrode lead piece 8 Sealing material 9 Insulating plate 10 Lithium ion secondary battery

Claims (8)

以下の組成式(1)
Li1+xNiCo1−x−y−z (1)
[式中、xは−0.12≦x≦0.2を満たす数であり、yは0.7≦y≦0.9を満たす数であり、zは0.05≦z≦0.3を満たす数であり、MはMg、Al、Ti、Mn、Zr、Mo及びNbからなる群より選択される少なくとも1種の元素である。]
で表される一次粒子、又は前記一次粒子が凝集した二次粒子を含み、
前記一次粒子又は前記二次粒子が0.1%以上2.0%以下の重量割合で遊離リチウム化合物を含み、前記遊離リチウム化合物における水酸化リチウムの重量が、前記遊離リチウム化合物における炭酸リチウムの重量の60%以下であり、
前記二次粒子が開気孔を有し、水銀圧入法により求められる細孔径0.1μm以上0.5μm以下の範囲内の開気孔容積率が7%以上20%以下であるリチウムイオン二次電池用正極活物質。
The following composition formula (1)
Li 1 + x Ni y Co z M 1-x-y-z O 2 (1)
[Wherein x is a number satisfying −0.12 ≦ x ≦ 0.2, y is a number satisfying 0.7 ≦ y ≦ 0.9, and z is 0.05 ≦ z ≦ 0.3. M is at least one element selected from the group consisting of Mg, Al, Ti, Mn, Zr, Mo and Nb. ]
Or a secondary particle in which the primary particles are aggregated,
The primary particles or the secondary particles contain a free lithium compound in a weight ratio of 0.1% to 2.0%, and the weight of lithium hydroxide in the free lithium compound is the weight of lithium carbonate in the free lithium compound. der 60% of the following is,
Wherein a secondary particle of the open pores, 20% der less open pore volume ratio is more than 7% Ru lithium ion secondary battery in the range of pore diameter 0.1μm or 0.5μm or less as determined by mercury porosimetry Positive electrode active material.
前記一次粒子又は前記二次粒子における炭酸リチウムの含有量が0.07重量%以上1.50重量%以下である請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein a content of lithium carbonate in the primary particles or the secondary particles is 0.07 wt% or more and 1.50 wt% or less . 前記一次粒子又は前記二次粒子に含まれる前記遊離リチウム化合物の重量割合が0.1%以上1.0%以下である請求項1又は2に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 1 or 2, wherein a weight ratio of the free lithium compound contained in the primary particles or the secondary particles is 0.1% or more and 1.0% or less. 前記一次粒子又は前記二次粒子の表面におけるNi濃度が、前記一次粒子又は前記二次粒子の中心近傍におけるNi濃度よりも低い請求項1〜3のいずれかに記載のリチウムイオン二次電池用正極活物質。   4. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the Ni concentration on the surface of the primary particle or the secondary particle is lower than the Ni concentration in the vicinity of the center of the primary particle or the secondary particle. Active material. 前記一次粒子の平均粒径が0.1μm以上2μm以下である請求項1〜4のいずれかに記載のリチウムイオン二次電池用正極活物質。   5. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein an average particle size of the primary particles is 0.1 μm or more and 2 μm or less. BET比表面積が0.2m/g以上1.5m/g以下である請求項1〜5のいずれかに記載のリチウムイオン二次電池用正極活物質。 Cathode active material for a lithium ion secondary battery according to any one of claims 1 to 5 BET specific surface area is less than 0.2 m 2 / g or more 1.5 m 2 / g. 請求項1〜6のいずれかに記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries containing the positive electrode active material for lithium ion secondary batteries in any one of Claims 1-6. 請求項7に記載のリチウムイオン二次電池用正極を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 7.
JP2015073914A 2014-10-06 2015-03-31 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same Active JP6589339B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/868,746 US10388944B2 (en) 2014-10-06 2015-09-29 Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR1020150138455A KR101888552B1 (en) 2014-10-06 2015-10-01 Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014205787 2014-10-06
JP2014205787 2014-10-06

Publications (2)

Publication Number Publication Date
JP2016076470A JP2016076470A (en) 2016-05-12
JP6589339B2 true JP6589339B2 (en) 2019-10-16

Family

ID=55951574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073914A Active JP6589339B2 (en) 2014-10-06 2015-03-31 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (2)

Country Link
JP (1) JP6589339B2 (en)
KR (1) KR101888552B1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615414B2 (en) 2016-01-15 2020-04-07 Toda Kogyo Corp. Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
TWI652846B (en) * 2016-01-22 2019-03-01 日商旭化成股份有限公司 Non-aqueous lithium storage element
WO2017208703A1 (en) * 2016-05-30 2017-12-07 日立金属株式会社 Positive electrode active material for lithium ion secondary cell and positive electrode containing same, and lithium ion secondary cell provided with said positive electrode
WO2018012015A1 (en) * 2016-07-14 2018-01-18 三井金属鉱業株式会社 Cathode active material for all-solid-state lithium secondary battery
JP6337360B2 (en) * 2016-08-31 2018-06-06 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7011890B2 (en) * 2016-09-26 2022-01-27 株式会社Gsユアサ Power storage element
KR102311052B1 (en) * 2017-03-30 2021-10-08 주식회사 엘지에너지솔루션 Preparation method of positive electrode slurry composition and positive electrode slurry composition for secondary battery by manufactured thereof
JP6368022B1 (en) * 2017-05-31 2018-08-01 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2019117281A1 (en) 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for production of transition metal hydroxide precursor, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102354265B1 (en) 2017-12-27 2022-01-21 히타치 긴조쿠 가부시키가이샤 Positive electrode active material for lithium ion secondary batteries, method for producing positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2020016077A1 (en) * 2018-07-16 2020-01-23 Umicore A rechargeable lithium ion battery with improved life characteristics
EP3847711A1 (en) * 2018-09-05 2021-07-14 Albemarle Germany GmbH Method of producing a rechargeable high-energy battery having an anionically redox-active composite cathode
WO2020066846A1 (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
KR102254848B1 (en) * 2019-07-23 2021-05-24 주식회사 엘 앤 에프 Novel Lithium Complex Oxide and Lithium Secondary Battery Comprising the Same
KR102254846B1 (en) * 2019-07-23 2021-05-24 주식회사 엘 앤 에프 Novel Lithium Complex Oxide and Lithium Secondary Battery Comprising the Same
EP4191703A1 (en) * 2020-07-30 2023-06-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for all-solid-state lithium ion secondary batteries, and method for producing same
CN116964779A (en) * 2021-03-30 2023-10-27 株式会社博迈立铖 Method for producing positive electrode active material for lithium ion secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2009259605A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Positive electrode active substance, manufacturing method for same and battery provided with positive electrode active substance
CN102239118B (en) 2008-12-04 2016-11-09 户田工业株式会社 Lithium complex chemical compound particle powder and manufacture method, rechargeable nonaqueous electrolytic battery
KR101171734B1 (en) * 2009-04-01 2012-08-07 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
JP2012113823A (en) * 2010-11-19 2012-06-14 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
CN103329330A (en) * 2011-01-24 2013-09-25 松下电器产业株式会社 Lithium secondary battery and method for producing same
WO2012141258A1 (en) * 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5894388B2 (en) 2011-07-26 2016-03-30 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101502658B1 (en) * 2012-05-22 2015-03-13 주식회사 엘지화학 Cathode active material composition for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR101805542B1 (en) * 2012-08-22 2017-12-07 삼성에스디아이 주식회사 Composite cathode active material, cathode and lithium battery containing the material and preparation method thereof
JP2014067546A (en) 2012-09-25 2014-04-17 Ngk Insulators Ltd Positive electrode active material of lithium secondary battery, and lithium secondary battery
CN103337614B (en) * 2013-05-20 2015-11-25 深圳市贝特瑞新能源材料股份有限公司 A kind of method of modification of lithium ion battery anode material

Also Published As

Publication number Publication date
KR101888552B1 (en) 2018-08-16
KR20160041004A (en) 2016-04-15
JP2016076470A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6589339B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6341318B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP7001082B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP6601593B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
US10388944B2 (en) Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP7272345B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP6476776B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP5494199B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JP6542421B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
JP2016081626A (en) Cathode active material for nonaqueous secondary battery, manufacturing method thereof, cathode for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery module
JP2018172257A (en) Method for producing lithium metal composite oxide
JP2023027147A (en) Metal composite hydroxide and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery using the same
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016100064A (en) Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module
JP2016051504A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
JP2015130272A (en) Positive electrode for nonaqueous secondary battery, positive electrode active material for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery
JP7235130B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2015174225A1 (en) Lithium manganese nickel complex oxide and production method therefor, active substance for non-aqueous electrolyte secondary battery containing same, positive electrode, and non-aqueous electrolyte secondary battery
JP5949199B2 (en) Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US20220271272A1 (en) Positive electrode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350