JP6561572B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP6561572B2
JP6561572B2 JP2015098077A JP2015098077A JP6561572B2 JP 6561572 B2 JP6561572 B2 JP 6561572B2 JP 2015098077 A JP2015098077 A JP 2015098077A JP 2015098077 A JP2015098077 A JP 2015098077A JP 6561572 B2 JP6561572 B2 JP 6561572B2
Authority
JP
Japan
Prior art keywords
disk
input
axial direction
rotating shaft
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015098077A
Other languages
Japanese (ja)
Other versions
JP2016211708A (en
JP2016211708A5 (en
Inventor
豊田 俊郎
俊郎 豊田
井上 英司
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015098077A priority Critical patent/JP6561572B2/en
Publication of JP2016211708A publication Critical patent/JP2016211708A/en
Publication of JP2016211708A5 publication Critical patent/JP2016211708A5/ja
Application granted granted Critical
Publication of JP6561572B2 publication Critical patent/JP6561572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

この発明は、自動車用変速装置又は航空機用変速装置として、若しくはポンプ等の各種産業用機械の運転速度を調節する為の変速装置等として利用する、トロイダル型無段変速機の改良に関する。   The present invention relates to an improvement in a toroidal continuously variable transmission that is used as a transmission for an automobile or an aircraft, or as a transmission for adjusting the operating speed of various industrial machines such as a pump.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、例えば特許文献1等の刊行物に記載されると共に、一部で実施されている。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献2等の刊行物に記載されて従来から知られている。   The use of a toroidal-type continuously variable transmission as an automobile transmission is described in, for example, publications such as Patent Document 1 and is partially implemented. A structure in which the adjustment range of the gear ratio is widened by combining a toroidal continuously variable transmission and a planetary gear mechanism has been described in publications such as Patent Document 2 and the like.

図8は、これら各特許文献に記載され、従来から知られているトロイダル型無段変速機の従来構造の第1例を示している。この従来構造の第1例の場合、入力回転軸1の軸方向両端寄り部分の周囲に1対の入力側ディスク2a、2bを、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、ボールスプライン3、3を介して支持し、遠近動可能に、且つ、前記入力回転軸1と同期して回転する様にしている。又、この入力回転軸1の軸方向中間部の周囲に出力筒4を、この入力回転軸1に対する相対回転を可能に支持している。又、この出力筒4の外周面には、軸方向中央部に出力歯車5を固設すると共に、軸方向両端部に1対の出力側ディスク6、6を、スプライン係合により、前記出力筒4と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力側ディスク6、6の側面を、前記両入力側ディスク2a、2bの内側面に対向させている。   FIG. 8 shows a first example of a conventional structure of a toroidal type continuously variable transmission described in each of these patent documents and conventionally known. In the case of the first example of this conventional structure, a pair of input-side discs 2a and 2b are disposed around the axially opposite ends of the input rotation shaft 1, and the inner side surfaces, each of which is a toroidal curved surface, face each other. These are supported via the ball splines 3 and 3 so as to be able to move forward and backward and to rotate in synchronization with the input rotary shaft 1. Further, an output cylinder 4 is supported around an intermediate portion in the axial direction of the input rotary shaft 1 so as to be able to rotate relative to the input rotary shaft 1. Further, an output gear 5 is fixed to the outer peripheral surface of the output cylinder 4 at the center in the axial direction, and a pair of output side disks 6 and 6 are connected to both ends in the axial direction by spline engagement. Rotation synchronized with 4 is supported. Further, in this state, the side surfaces of the two output side disks 6 and 6, each of which is a toroidal curved surface, are opposed to the inner side surfaces of the two input side disks 2a and 2b.

又、前記両入力側ディスク2a、2bと前記両出力側ディスク6、6との間に、それぞれの周面を球状凸面とした複数個のパワーローラ7、7を挟持している。これら各パワーローラ7、7は、それぞれトラニオン8、8に回転自在に支持されており、前記両入力側ディスク2a、2bの回転に伴って回転しつつ、これら両入力側ディスク2a、2bから前記両出力側ディスク6、6に動力を伝達する。即ち、トロイダル型無段変速機の運転時には、駆動軸9により一方(図8の左方)の入力側ディスク2aを、押圧装置10(図示の構造はローディングカム式の押圧装置)を介して回転駆動する。この結果、前記入力回転軸1の軸方向両端部に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ7、7を介して前記両出力側ディスク6、6に伝わり、前記出力歯車5から取り出される。   Further, a plurality of power rollers 7 and 7 each having a spherical convex surface are sandwiched between the input disks 2a and 2b and the output disks 6 and 6. The power rollers 7 and 7 are rotatably supported by the trunnions 8 and 8, respectively, and rotate from the two input side disks 2a and 2b while rotating with the rotation of the two input side disks 2a and 2b. Power is transmitted to both output side disks 6, 6. That is, when the toroidal-type continuously variable transmission is operated, the drive shaft 9 rotates one input disk 2a (left side in FIG. 8) via the pressing device 10 (the structure shown is a loading cam type pressing device). To drive. As a result, the pair of input side disks 2a, 2b supported at both axial ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output side disks 6 and 6 through the power rollers 7 and 7 and is taken out from the output gear 5.

又、前記入力回転軸1の軸方向両端部近傍で前記両入力側ディスク2a、2bを軸方向両側から挟む位置に、それぞれが大きな弾力を有する皿ばね等である予圧ばね11a、11bを設けている。そして、前記押圧装置10の非作動時(駆動軸9の停止時)にも、前記各パワーローラ7、7の周面と、前記入力側、出力側各ディスク2a、2b、6の側面との転がり接触部(トラクション部)の面圧を、必要最低限は確保できる様にしている。従って、これら各転がり接触部は、トロイダル型無段変速機の運転開始直後から、過大な滑りを生じる事なく、動力伝達を開始する。尚、前記必要最低限の面圧を確保する為の弾力は、前記押圧装置10の内径側に配置した予圧ばね11aにより得る。前記入力回転軸1の先端部に螺着したローディングナット12と入力側ディスク2bの外側面との間に配置した予圧ばね11bは、前記押圧装置10の急な作動時に加わる衝撃を緩和するものであって、省略する事もできる。前記予圧ばね11bを設ける場合には、十分に(大きなトルクを伝達する際にも完全に押し潰されない程度に)大きな弾力を持たせる。   Also, preload springs 11a and 11b, each of which is a disc spring or the like having a large elasticity, are provided at positions where both the input side disks 2a and 2b are sandwiched from both sides in the axial direction in the vicinity of both axial ends of the input rotary shaft 1. Yes. Even when the pressing device 10 is not in operation (when the drive shaft 9 is stopped), the peripheral surfaces of the power rollers 7 and 7 and the side surfaces of the input side and output side disks 2a, 2b, and 6 are provided. The surface pressure of the rolling contact part (traction part) can be secured to the minimum necessary. Therefore, these rolling contact portions start power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission. The elasticity for securing the minimum necessary surface pressure is obtained by a preload spring 11 a disposed on the inner diameter side of the pressing device 10. The preload spring 11b disposed between the loading nut 12 screwed to the tip of the input rotary shaft 1 and the outer surface of the input side disk 2b alleviates the impact applied when the pressing device 10 is suddenly operated. It can be omitted. In the case where the preload spring 11b is provided, a sufficiently large elasticity is provided (so as not to be completely crushed even when a large torque is transmitted).

上述の様なトロイダル型無段変速機の場合、前記必要最低限の面圧を確保する為の前記予圧ばね11aの弾力を調整する作業が面倒である。即ち、前記従来構造の第1例の場合、この予圧ばね11aの弾力を、前記入力回転軸1の先端部に螺着したローディングナット12の締め付け量を変更する事により調整する必要があり、面倒である。   In the case of the toroidal-type continuously variable transmission as described above, the work of adjusting the elasticity of the preload spring 11a for ensuring the necessary minimum surface pressure is troublesome. That is, in the case of the first example of the conventional structure, it is necessary to adjust the elasticity of the preload spring 11a by changing the tightening amount of the loading nut 12 screwed to the tip end portion of the input rotary shaft 1. It is.

これに対し、特許文献3等には、ローディングナットに代えてコッタと呼ばれる係止環を用いた構造が記載されている。図9〜12は、この様な係止環を組み込んだ従来構造の第2例を示している。この従来構造の第2例の場合、1対の入力側ディスク2c、2dのうち、入力回転軸1aの先端側に配置された入力側ディスク2dを、内周面の軸方向中間部乃至外端部(図9〜11の右端部)に亙る範囲に雌スプライン部13を形成し、この雌スプライン部13と、前記入力回転軸1aの先端寄り部分の外周面に形成した雄スプライン部14とを係合している。又、この入力回転軸1aの先端部外周面で、この雄スプライン部14から軸方向に外れた部分に、全周に亙って係止溝15を形成し、この係止溝15に、複数(2〜4個)の部分円弧状の素子から成る係止環16の径方向内半部を係止している。そして、この係止環16の側面(図9〜10の左側面)のうちの径方向外端寄り部分を、入力側ディスク2dの外側面のうちの径方向内端部に当接させる。   On the other hand, Patent Document 3 and the like describe a structure using a locking ring called a cotter instead of a loading nut. 9 to 12 show a second example of a conventional structure incorporating such a locking ring. In the case of this second example of the conventional structure, of the pair of input side disks 2c and 2d, the input side disk 2d disposed on the front end side of the input rotation shaft 1a is connected to the axially intermediate portion or outer end of the inner peripheral surface. A female spline portion 13 is formed in a range extending over the portion (the right end portion in FIGS. 9 to 11), and the female spline portion 13 and a male spline portion 14 formed on the outer peripheral surface of the portion near the tip of the input rotary shaft 1a are formed. Is engaged. In addition, a locking groove 15 is formed over the entire circumference on the outer peripheral surface of the tip end portion of the input rotating shaft 1a at a portion that is axially removed from the male spline portion 14, and a plurality of locking grooves 15 are formed in the locking groove 15. The radially inner half of the locking ring 16 made up of (2 to 4) partially arcuate elements is locked. Then, a portion near the radially outer end of the side surface (the left side surface in FIGS. 9 to 10) of the locking ring 16 is brought into contact with the radially inner end portion of the outer side surface of the input side disk 2d.

又、押圧装置10a(図示の構造は油圧式の押圧装置)の非作動時に、各パワーローラ7、7(図8参照)の周面と入力、出力側各ディスク2c、2d、6aの内側面との転がり接触部の面圧を必要最低限確保する為の、予圧ばね11cの弾力の調整は、前記係止環16として、適正な軸方向の厚さ寸法を有するものを選択する事により図る。又、前記入力回転軸1aの先端部に断面L字形の抑え環17を外嵌し、この抑え環17の内周面を、前記係止環16の外周面に当接又は近接対向させる事により、この係止環16(を構成する各素子)が前記係止溝15から抜け出るのを防止している。この様な抑え環17は、前記入力回転軸1aの先端部に係止した止め輪18により軸方向の変位を阻止する。   Further, when the pressing device 10a (the illustrated structure is a hydraulic pressing device) is not in operation, the peripheral surfaces of the power rollers 7, 7 (see FIG. 8) and the inner surfaces of the input and output disks 2c, 2d, 6a Adjustment of the elasticity of the preload spring 11c in order to ensure the necessary minimum surface pressure of the rolling contact portion is achieved by selecting the locking ring 16 having an appropriate axial thickness dimension. . Further, a retaining ring 17 having an L-shaped cross section is externally fitted to the tip of the input rotating shaft 1a, and the inner peripheral surface of the retaining ring 17 is brought into contact with or close to the outer peripheral surface of the locking ring 16. The locking ring 16 (each element constituting the locking ring 16) is prevented from coming out of the locking groove 15. Such a retaining ring 17 prevents axial displacement by a retaining ring 18 that is engaged with the tip of the input rotary shaft 1a.

以上の様な構成により、前記入力側ディスク2dを前記入力回転軸1aに、この入力回転軸1aと同期した回転を自在に支持している。尚、従来構造の第2例の場合、出力側ディスク6aとして一体型のものを使用する事により、トロイダル型無段変速機全体として小型・軽量化を図っている。但し、この部分の構造及び作用に就いては、本発明の要旨とは関係しない為、詳しい説明は省略する。   With the configuration as described above, the input side disk 2d is supported on the input rotary shaft 1a so as to freely rotate in synchronization with the input rotary shaft 1a. In the case of the second example of the conventional structure, the entire toroidal type continuously variable transmission is reduced in size and weight by using an integrated output side disk 6a. However, since the structure and operation of this portion are not related to the gist of the present invention, detailed description thereof is omitted.

上述の様な従来構造の第2例に係るトロイダル型無段変速機の場合、運転時に、前記入力回転軸1aの先端側に配置された入力側ディスク2dは、前記押圧装置10aの発生する推力に基づく前記各パワーローラ7、7から受ける力に基づいて、図13に誇張して示す様に、この入力側ディスク2dの外径寄り部分が前記係止環16側に近付く方向(軸方向)に弾性変形する。即ち、運転時に前記推力に基づき前記入力側ディスク2dに加わる力は、トロイダル型無段変速機の運転時に最大で数十kN〜百数十kN(数tF〜十数tF)程度となり、この様な力に基づく入力側ディスク2dの軸方向に関する弾性変形量は、コンマ数mm(10分の数mm)程度と無視できない量となる。そして、この様に前記入力側ディスク2dが軸方向に弾性変形すると、この入力側ディスク2dの外側面と前記係止環16の側面とが断続的に繰り返し当接する事で互いに擦れ合い、当該部分でフレッチング摩耗が生じる可能性がある。   In the case of the toroidal-type continuously variable transmission according to the second example of the conventional structure as described above, during operation, the input side disk 2d disposed on the distal end side of the input rotary shaft 1a has a thrust generated by the pressing device 10a. As shown in an exaggerated manner in FIG. 13, based on the force received from each of the power rollers 7 and 7 based on the above, the direction closer to the outer diameter of the input side disk 2d (axial direction) approaches the locking ring 16 side. It is elastically deformed. That is, the force applied to the input side disk 2d based on the thrust during operation is about several tens kN to hundreds tens kN (several tF to several tens tF) at the maximum during operation of the toroidal type continuously variable transmission. The amount of elastic deformation in the axial direction of the input side disk 2d based on the force is a comma number of mm (a few tenths of a millimeter) and cannot be ignored. When the input side disk 2d is elastically deformed in the axial direction in this way, the outer side surface of the input side disk 2d and the side surface of the locking ring 16 are repeatedly abutted against each other to rub against each other. May cause fretting wear.

特に、前記入力側ディスク2dが弾性変形する円周方向位置は、前記各パワーローラ7、7により押し付けられる部分が変化するのに伴って常に変化する。この為、前記擦れ合いの周波数は相当に高く(例えば百数十Hzに)なり、フレッチング摩耗発生の面からはかなり厳しい条件となる。更に、従来構造の第2例の場合には、前記入力側ディスク2dの内周面の軸方向中間部乃至外端部に亙る範囲に雌スプライン部13を設けている為、この入力側ディスク2dが弾性変形するのに伴って、この雌スプライン部13を構成する各雌スプライン溝の軸方向外端縁(図9、10、13の右端縁)と、前記係止環16の側面(図9、10、13の左側面)とが断続的に繰り返し当接して互いに擦れ合い、これら各雌スプライン溝の外端縁が前記係止環16の側面に食い込む傾向となる可能性があり、この面からもフレッチング摩耗が発生し易い厳しい条件となる。この様なフレッチング摩耗は、剥離等の損傷の起点となったり、発生した摩耗粉が潤滑油(トラクションオイル)を汚染し、各部の潤滑状態を不良にする可能性がある。   In particular, the circumferential position at which the input side disk 2d is elastically deformed always changes as the portions pressed by the power rollers 7 and 7 change. For this reason, the frequency of the rubbing becomes considerably high (for example, hundreds of tens Hz), which is a severe condition in terms of occurrence of fretting wear. Further, in the case of the second example of the conventional structure, since the female spline portion 13 is provided in a range extending from the axially intermediate portion to the outer end portion of the inner peripheral surface of the input side disc 2d, the input side disc 2d. Are elastically deformed, the axially outer end edge of each female spline groove constituting the female spline portion 13 (the right end edge in FIGS. 9, 10 and 13) and the side surface of the locking ring 16 (FIG. 9). 10 and the left side surface of 13 and 13) repeatedly and abut against each other, and the outer edge of each female spline groove may tend to bite into the side surface of the locking ring 16. Therefore, it is a severe condition in which fretting wear is likely to occur. Such fretting wear may become a starting point of damage such as peeling, or the generated wear powder may contaminate the lubricating oil (traction oil), resulting in poor lubrication of each part.

特開2003−214516号公報JP 2003-214516 A 特開2004−169719号公報JP 2004-169719 A 特開2000−205361号公報JP 2000-205361 A

本発明は、上述の様な事情に鑑みて、押圧装置の発生する推力に基づいて、外側ディスクと係止部材との間でフレッチング摩耗が発生するのを防止できる構造を、トロイダル型無段変速機の組み立て作業性を確保しつつ、実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a structure capable of preventing fretting wear between the outer disk and the locking member based on the thrust generated by the pressing device. The invention was invented to ensure the assembly workability of the machine.

本発明のトロイダル型無段変速機は、回転軸と、1対の外側ディスクと、内側ディスクと、複数個のパワーローラと、押圧装置と、予圧付与部材と、係止部材とを備える。
このうちの両外側ディスクは、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で前記回転軸の両端部に、この回転軸と同期した回転を自在に、それぞれ支持されている。
又、前記内側ディスクは、前記回転軸の軸方向中間部の周囲に、断面円弧形である軸方向両側面を前記両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持されたもので、一体又は1対の素子を結合して成る。
又、前記各パワーローラは、前記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に支持され、球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接させている。
この為に、軸方向に関して前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、前記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられた支持部材(トラニオン)に対し、前記各パワーローラを回転自在に支持する事ができる。
又、前記押圧装置は、前記回転軸と、前記両外側ディスクのうちの一方の外側ディスクとの間に設けられ、この一方の外側ディスクを、これら両外側ディスクのうちの他方の外側ディスクに向け押圧する。この様な押圧装置としては、機械式又は油圧式の構造を採用する事ができる。
又、前記予圧付与部材は、前記回転軸と前記一方の外側ディスクとの間に設けられ、この一方の外側ディスクを前記他方の外側ディスクに向け、軸方向に押圧する。これにより、前記押圧装置が押圧力を発生しない状態でも、前記両外側ディスクを前記内側ディスクに向け押圧し、前記各パワーローラの周面と前記両外側ディスク及び前記内側ディスクの側面との転がり接触部(トラクション部)に面圧を付与する。この様な予圧付与部材としては、例えば皿ばねやコイルばね等のばねやゴム等の弾性部材を利用できる。
又、前記係止部材は、前記回転軸のうち、軸方向に関して前記他方の外側ディスクが配置された側の端部(先端部)に係止され、この他方の外側ディスクが前記一方の外側ディスクから軸方向に離れる方向に変位するのを阻止する。
The toroidal continuously variable transmission of the present invention includes a rotating shaft, a pair of outer disks, an inner disk, a plurality of power rollers, a pressing device, a preload applying member, and a locking member.
Both of these outer disks are supported in a freely rotating manner in synchronism with the rotating shaft at both ends of the rotating shaft in a state in which the respective axial side surfaces of each of the outer disks are arc-shaped. Has been.
In addition, the inner disk has a circular arc cross section around the axially intermediate portion of the rotating shaft, with the axially opposite sides facing the one axial side surface of the outer disks. It is supported by relative rotation freely, and is formed by integrating a single element or a pair of elements.
Each of the power rollers is supported by a swinging displacement centering on a pivot that is twisted with respect to the rotating shaft, and each circumferential surface having a spherical convex surface is formed on both side surfaces in the axial direction of the inner disk. And abutted against one side surface in the axial direction of the both outer disks.
For this purpose, with respect to the axial direction, a plurality of each is provided between the axial side surfaces of the inner disk and the axial side surfaces of the outer disks, and the pivot is located at a position twisted with respect to the rotational axis. Each of the power rollers can be rotatably supported by a support member (trunnion) that is provided with swinging displacement.
The pressing device is provided between the rotating shaft and one outer disk of the two outer disks, and the one outer disk faces the other outer disk of the two outer disks. Press. As such a pressing device, a mechanical or hydraulic structure can be adopted.
The preload applying member is provided between the rotating shaft and the one outer disk, and presses the one outer disk toward the other outer disk in the axial direction. Thus, even when the pressing device does not generate a pressing force, the both outer disks are pressed against the inner disk, and the rolling contact between the peripheral surfaces of the power rollers and the side surfaces of the outer disks and the inner disks is achieved. A surface pressure is applied to the part (traction part). As such a preload applying member, for example, a spring such as a disc spring or a coil spring, or an elastic member such as rubber can be used.
Further, the locking member is locked to an end portion (tip portion) on the side where the other outer disk is disposed in the axial direction of the rotating shaft, and the other outer disk is the one outer disk. Is prevented from moving in the direction away from the axial direction.

特に本発明のトロイダル型無段変速機の場合は、前記他方の外側ディスクの内周面の軸方向一部に形成された例えば雌スプライン部や雌セレーション部の内周面側凹凸部と、前記回転軸の外周面の軸方向一部に形成された例えば雄スプライン部や雄セレーション部等の外周面側凹凸部とを、例えば凹凸係合等により相対回転不能に係合させている。
これと共に、前記他方の外側ディスクの内周面のうちで、前記内周面側凹凸部の軸方向他側(係止部材側)に隣接する部分に形成されたディスク側嵌合面部を、前記回転軸の外周面のうちで、軸方向に関して前記外周面側凹凸部と前記係止部材が係止された部分との間部分に形成された軸側嵌合面部に、直接圧入している。
この様な構造により、前記他方の外側ディスクを前記回転軸に対し、この回転軸と同期した回転を自在に(これら他方の外側ディスクと回転軸との間で動力の伝達を可能に)支持している。
更に、本発明のトロイダル型無段変速機の場合には、前記ディスク側嵌合面部と前記軸側嵌合面部との間の圧入部に於ける締め代の大きさを、前記予圧付与部材が発揮する弾力に基づき、前記他方の外側ディスクを前記回転軸に対して軸方向に相対変位させられる(回転軸を外側ディスクから軸方向に引き抜く事が可能となる)大きさに規制している。
Especially in the case of the toroidal type continuously variable transmission of the present invention, the inner peripheral surface concavo-convex portion of the other example is formed in the axial direction part of the inner circumferential surface of the outer disc of the female spline portion and the female serration portion, the an outer peripheral surface uneven portion such as a part axially formed e.g. male spline portion of the outer peripheral surface and a male serration portion of the rotary shaft, for example by relatively non-rotatably engaged by recess-projection engaging like.
At the same time, among the inner circumferential surface of the other outer disc, the disc-side fitting surface portion which is formed in a portion adjacent the leading Symbol inner peripheral surface uneven portions other axial side of (engaging member side), wherein among the outer peripheral surface of the rotary shaft, the shaft-side fitting surface portion formed between portions of the front and Kigai circumferential surface concavo-convex portion and the locking member is locked portion in the axial direction, a straight contact pressure It has entered.
With such a structure, the other outer disk is supported with respect to the rotating shaft so as to freely rotate in synchronization with the rotating shaft (allowing transmission of power between the other outer disk and the rotating shaft). ing.
Furthermore, in the case of the toroidal type continuously variable transmission according to the present invention, the preload applying member has a size of a tightening margin at a press- fitting portion between the disc-side fitting surface portion and the shaft-side fitting surface portion. Based on the elasticity exerted, the other outer disk is restricted to a size that can be displaced in the axial direction relative to the rotating shaft (the rotating shaft can be pulled out from the outer disk in the axial direction).

尚、本発明のトロイダル型無段変速機を実施する場合、前記係止部材としては、例えばコッタと呼ばれる係止環を使用する事ができる。この係止環は、複数(例えば2〜4個)の部分円弧状の素子を組み合わせる事により、全体を円環状に構成したものであって、前記回転軸に形成された係止凹溝に係止される。そして、前記係止環は、その軸方向側面の外径寄り部分(係止凹溝から露出した部分)を、前記他方の外側ディスクの軸方向他側面に当接させる(突き当てる)事により、この他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位するのを阻止する。
又は、前記係止部材として、ローディングナットを使用する事もできる。このローディングナットは、前記回転軸の端部に形成された雄ねじ部に螺合して更に緊締される。そして、このローディングナットは、その先端部を直接又は他の部材(予圧ばね等)を介し、前記他方の外側ディスクの軸方向他側面に当接させる(突き当てる)事により、この他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位するのを阻止する。
When implementing the toroidal type continuously variable transmission according to the present invention, for example, a locking ring called a cotter can be used as the locking member. This locking ring is formed as a whole by combining a plurality of (for example, 2 to 4) partial arc-shaped elements, and is engaged with a locking groove formed on the rotating shaft. Stopped. Then, the locking ring has a portion close to the outer diameter on the side surface in the axial direction (a portion exposed from the locking groove) abutting against (abuts) the other side surface in the axial direction of the other outer disk, The other outer disk is prevented from being displaced away from the one outer disk.
Alternatively, a loading nut can be used as the locking member. The loading nut is further screwed into a male thread formed at the end of the rotating shaft. Then, the loading nut is brought into contact with (abuts) the other axial side surface of the other outer disk, either directly or via another member (a preload spring or the like). Is prevented from moving away from the one outer disk.

上述の様に構成する、本発明のトロイダル型無段変速機によれば、押圧装置の発生する推力に基づいて、外側ディスク(他方の外側ディスク)と係止部材との間でフレッチング摩耗が発生するのを防止できる構造を、トロイダル型無段変速機の組み立て作業性を確保しつつ実現できる。
即ち、本発明の場合には、前記外側ディスクの内周面のうちで、回転軸の外周面に相対回転不能に係合させた内周面側凹凸部の軸方向他側(係止部材側)に隣接する部分に形成されたディスク側嵌合面部を、この回転軸の外周面のうちで、軸方向に関して前記内周面側凹凸部に相対回転不能に係合させた外周面側凹凸部と前記係止部材が係止された部分との間部分に形成された軸側嵌合面部に、直接圧入している。
この為、前記外側ディスクのうち、軸方向他端部(係止部材側の端部)の前記回転軸に対する支持剛性を高くできる。又、この外側ディスクの内周面のうち、軸方向他端部の縮径方向の剛性を高くできる。従って、前記押圧装置の発生する推力に基づいて、前記外側ディスクの内周面のうち、軸方向他端部が縮径する方向に弾性変形する傾向となるのを抑えられ、延いては、前記外側ディスクの外径寄り部分が軸方向に弾性変形するのを抑えられる(この外側ディスクの軸方向への弾性変形量を小さくできる)。この結果、この外側ディスクの他側面と前記係止部材の側面とが互いに擦れ合って、これら両側面に著しいフレッチング摩耗が発生するのを防止できる。
According to the toroidal type continuously variable transmission of the present invention configured as described above, fretting wear occurs between the outer disk (the other outer disk) and the locking member based on the thrust generated by the pressing device. A structure that can prevent this can be achieved while ensuring the assembly workability of the toroidal type continuously variable transmission.
That is, in the case of the present invention, among the inner peripheral surfaces of the outer disk, the other side in the axial direction of the inner peripheral surface side concavo-convex portion engaged with the outer peripheral surface of the rotating shaft so as not to be relatively rotatable (on the locking member side) the disk-side fitting surface portion formed in a portion adjacent to), of the outer peripheral surface of the rotary shaft, the outer peripheral surface uneven portion was relatively non engaged with the inner peripheral surface concavo-convex portion in the axial direction the locking member is axially side fitting surface portion formed between the portion of the engaged portion, and entering directly contact pressure and.
For this reason, the support rigidity with respect to the said rotating shaft of the axial direction other end part (end part by the side of a locking member) among the said outer side disks can be made high. Further, the rigidity in the reduced diameter direction of the other axial end portion of the inner peripheral surface of the outer disk can be increased. Therefore, based on the thrust generated by the pressing device, it is possible to suppress the tendency of the other end portion in the axial direction of the inner peripheral surface of the outer disk to be elastically deformed in the direction of reducing the diameter. It is possible to suppress elastic deformation of the outer disk near the outer diameter in the axial direction (the amount of elastic deformation of the outer disk in the axial direction can be reduced). As a result, it can be prevented that the other side surface of the outer disk and the side surface of the locking member are rubbed against each other and significant fretting wear occurs on both side surfaces.

又、本発明の場合には、前記外側ディスクの内周面の軸方向一部に形成された、前記外周面側凹凸部と相対回転不能に係合する内周面側凹凸部の端縁と、前記係止部材の側面とを軸方向に関して互いに離隔させられる。従って、仮に前記押圧装置の発生する推力に基づいて、前記外側ディスクが軸方向に弾性変形した場合であっても、前記端縁が前記係止部材の側面に食い込む傾向となる事はない。この面からも、前記外側ディスクとこの係止部材との間でフレッチング摩耗が発生する事を防止できる。 Further, in the case of the present invention, an edge of the inner peripheral surface side uneven portion that is formed on a part of the inner peripheral surface of the outer disk in the axial direction and engages with the outer peripheral surface side uneven portion in a relatively non-rotatable manner. The side surfaces of the locking members are separated from each other in the axial direction. Therefore, even if the outer disk is elastically deformed in the axial direction based on the thrust generated by the pressing device, the end edge does not tend to bite into the side surface of the locking member. Also from this surface, fretting wear can be prevented from occurring between the outer disk and the locking member.

更に、本発明の場合には、前記ディスク側嵌合面部と前記軸側嵌合面部との間の圧入部に於ける締め代の大きさを、前記予圧付与部材が発揮する弾力に基づき、前記外側ディスクを前記回転軸に対して軸方向に相対変位させられる(入力回転軸を入力側ディスクから引き抜ける)大きさに規制している。この為、トロイダル型無段変速機の組み立て作業時に、前記外側ディスクの組み付け位置を厳密に管理しなくても、前記予圧付与部材の発揮する弾力に基づき、前記外側ディスクを前記係止部材に向けて押し付けて、前記外側ディスクの位置決めを図る事ができる。従って、本発明によれば、トロイダル型無段変速機の組み立て作業性を良好にできる。 Furthermore, in the case of the present invention, the size of the tightening allowance at the press- fitting portion between the disc-side fitting surface portion and the shaft-side fitting surface portion is based on the elasticity exerted by the preload applying member. The outer disk is regulated so as to be relatively displaced in the axial direction with respect to the rotating shaft (the input rotating shaft is pulled out of the input disk). For this reason, during the assembly work of the toroidal type continuously variable transmission, the outer disk is directed toward the locking member based on the elasticity exerted by the preload applying member without strictly managing the assembly position of the outer disk. The outer disk can be positioned by pressing it. Therefore, according to the present invention, the assembly workability of the toroidal type continuously variable transmission can be improved.

本発明の実施の形態の第1例を示す、トロイダル型無段変速機の断面図。Sectional drawing of the toroidal type continuously variable transmission which shows the 1st example of embodiment of this invention. 同じく図1の左側から見た状態を示す端面図。FIG. 2 is an end view showing the state seen from the left side of FIG. 1. 同じく図1の左部拡大図。The left part enlarged view of FIG. 1 similarly. 同じく図1のX部拡大図。The X section enlarged view of FIG. 1 similarly. 同じく先端側の入力側ディスクと入力回転軸との係合部のうち、軸方向内端部の状態を示す断面図(A)と、軸方向中間部の状態を示す断面図(B)と、軸方向外端部の状態を示す断面図(C)。Similarly, a cross-sectional view (A) showing the state of the inner end in the axial direction, and a cross-sectional view (B) showing the state of the intermediate portion in the axial direction, among the engaging portions of the input side disk on the tip side and the input rotation shaft, Sectional drawing (C) which shows the state of an axial direction outer end part. 締め代の大きさが本発明の範囲から外れた場合に生じる問題点を説明する為に示す、図4に相当する断面図。Sectional drawing equivalent to FIG. 4 shown in order to demonstrate the problem which arises when the magnitude | size of a fastening margin remove | deviates from the range of this invention. 本発明に関する参考例を示す、図4に相当する図。The figure equivalent to FIG. 4 which shows the reference example regarding this invention. 従来構造のトロイダル型無段変速機の第1例を示す断面図。Sectional drawing which shows the 1st example of the toroidal type continuously variable transmission of conventional structure. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 同じく図9の右上半部拡大図(A)と、(A)のY部拡大図(B)。Similarly, the upper right half enlarged view (A) of FIG. 9 and the Y part enlarged view (B) of (A). 先端側の入力側ディスクを取り出して示す斜視図。The perspective view which takes out and shows the input side disk of the front end side. この先端側の入力側ディスクと入力回転軸との係合部の状態を示す断面図。Sectional drawing which shows the state of the engaging part of this input side disk of this front end side, and an input rotating shaft. この先端側の入力側ディスクの弾性変形を誇張して示す模式図。The schematic diagram which exaggerates and shows the elastic deformation of this input side disk of the front end side.

図1〜5は、本発明の実施の形態の第1例を示している。本例のトロイダル型無段変速機は、特許請求の範囲に記載した回転軸に相当する入力回転軸1bの軸方向両端寄り部分の周囲に、特許請求の範囲に記載した1対の外側ディスクに相当する1対の入力側ディスク2e、2fを、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で支持し、前記入力回転軸1bと同期して回転する様にしている。又、この入力回転軸1bの軸方向中間部の周囲に、特許請求の範囲に記載した内側ディスクに相当する出力側ディスク6bを、この入力回転軸1bに対する相対回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記出力側ディスク6bの両側面を、前記両入力側ディスク2e、2fの内側面に対向させている。尚、図示の構造の場合には、これら両入力側ディスク2e、2fのうち、前記入力回転軸1bの基端側に設けられた入力側ディスク2eのみを、ボールスプライン3を介してこの入力回転軸1bに支持し、前記両入力側ディスク2e、2f同士の遠近動を可能にしている。又、本明細書中、入力側ディスクの内側面が、特許請求の範囲に記載した外側ディスクの軸方向片側面に相当する。   1 to 5 show a first example of an embodiment of the present invention. The toroidal-type continuously variable transmission of this example has a pair of outer disks described in the claims around a portion near both ends in the axial direction of the input rotating shaft 1b corresponding to the rotating shaft described in the claims. A pair of corresponding input-side disks 2e and 2f are supported in a state where the inner side surfaces, each of which is a toroidal curved surface, face each other, and rotate in synchronization with the input rotation shaft 1b. Further, an output side disk 6b corresponding to the inner disk described in the claims is supported around an intermediate portion in the axial direction of the input rotation shaft 1b so as to be capable of relative rotation with respect to the input rotation shaft 1b. In this state, both side surfaces of the output side disk 6b, each of which is a toroidal curved surface, are made to face the inner side surfaces of the input side disks 2e and 2f. In the case of the structure shown in the figure, only the input side disk 2e provided on the base end side of the input rotation shaft 1b among these both input side disks 2e, 2f is rotated by this input via the ball spline 3. It is supported by the shaft 1b and enables the two discs 2e and 2f to move in the near and far directions. In the present specification, the inner side surface of the input side disk corresponds to one side surface in the axial direction of the outer side disk described in the claims.

又、前記両入力側ディスク2e、2fと前記出力側ディスク6bとの間に、それぞれの周面を球状凸面とした複数個のパワーローラ7、7(図8参照)を挟持している。これら各パワーローラ7、7は、それぞれトラニオン8、8(図8参照)に回転自在に支持されており、前記両入力側ディスク2e、2fの回転に伴って回転しつつ、これら両入力側ディスク2e、2fから前記出力側ディスク6bに動力を伝達する。即ち、トロイダル型無段変速機の運転時には、駆動軸により、特許請求の範囲に記載した一方の外側ディスクに相当する入力側ディスク2eを、押圧装置10b(図示の構造は油圧式の押圧装置)を介して回転駆動する。この結果、前記入力回転軸1bの軸方向両端部に支持された1対の入力側ディスク2e、2fが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ7、7を介して前記出力側ディスク6bに伝わり、外周面に形成された出力歯車から取り出される。尚、前記各トラニオン8、8は、軸方向に関して前記両入力側ディスク2e、2fの内側面と前記出力側ディスク6bの両側面との間位置にそれぞれ複数個ずつ、前記入力回転軸1bに対し捩れの位置にある枢軸を中心とする揺動変位を自在に設けられており、前記各パワーローラ7、7は、この様なトラニオン8、8に対し回転自在に支持されている。   Further, a plurality of power rollers 7 and 7 (see FIG. 8) each having a spherical convex surface are sandwiched between the input disks 2e and 2f and the output disk 6b. These power rollers 7 and 7 are rotatably supported by trunnions 8 and 8 (see FIG. 8), respectively, and rotate while the both input side disks 2e and 2f rotate, Power is transmitted from 2e, 2f to the output side disk 6b. That is, when the toroidal-type continuously variable transmission is operated, the input side disk 2e corresponding to one of the outer disks described in the claims is pressed by the drive shaft by the pressing device 10b (the structure shown is a hydraulic pressing device). It is driven to rotate through. As a result, the pair of input-side disks 2e and 2f supported at both axial ends of the input rotation shaft 1b rotate synchronously while being pressed toward each other. Then, this rotation is transmitted to the output side disk 6b via the power rollers 7 and 7 and is taken out from the output gear formed on the outer peripheral surface. Each of the trunnions 8, 8 has a plurality of positions in the axial direction between the inner side surfaces of the two input side disks 2e, 2f and both side surfaces of the output side disk 6b. The power rollers 7 and 7 are rotatably supported with respect to the trunnions 8 and 8. The power rollers 7 and 7 are supported by the trunnions 8 and 8.

前記押圧装置10bは、図3に示す様に、1対のピストンを力の伝達方向に関して互いに並列に配置した、所謂ダブルピストン型と呼ばれる構造を有する。前記押圧装置10bは、第一シリンダハウジング19と、第一ピストン20と、第一油圧室21と、第一圧油給排路22と、第二シリンダハウジング23と、第二ピストン24と、第二油圧室25と、第二圧油給排路26とを備える。   As shown in FIG. 3, the pressing device 10b has a so-called double piston type structure in which a pair of pistons are arranged in parallel with each other in the force transmission direction. The pressing device 10 b includes a first cylinder housing 19, a first piston 20, a first hydraulic chamber 21, a first pressure oil supply / discharge passage 22, a second cylinder housing 23, a second piston 24, Two hydraulic chambers 25 and a second pressure oil supply / discharge passage 26 are provided.

このうちの第一シリンダハウジング19は、全体をシャーレ状に構成しており、前記入力回転軸1bの基端部に、油密を確保できる様に、締り嵌めで外嵌している。又、前記第一シリンダハウジング19の内径寄り部分を、前記入力回転軸1bの基端部外周面に形成された鍔部に突き当てる事で、前記第一シリンダハウジング19が前記入力側ディスク2eから遠ざかる方向に変位しない様にしている。同時に、前記第一油圧室21内への圧油送り込みに伴って前記第一シリンダハウジング19に、図1、3の左向きに加わるスラスト力を、前記入力回転軸1bに伝達自在としている。   Of these, the first cylinder housing 19 is configured in a petri dish as a whole, and is fitted on the base end portion of the input rotary shaft 1b with an interference fit so as to ensure oil tightness. Further, the first cylinder housing 19 is moved away from the input side disk 2e by abutting a portion closer to the inner diameter of the first cylinder housing 19 against a flange formed on the outer peripheral surface of the base end portion of the input rotary shaft 1b. It is designed not to be displaced in the direction of moving away. At the same time, the thrust force applied to the first cylinder housing 19 in the leftward direction in FIGS. 1 and 3 as the pressure oil is fed into the first hydraulic chamber 21 can be transmitted to the input rotary shaft 1b.

又、前記第一ピストン20は、全体を円輪状に構成しており、前記第一シリンダハウジング19の内周面と、前記入力回転軸1bの基端寄り部分の外周面との間に、油密に、且つ、軸方向(図1、3の左右方向)の変位を可能に、嵌装している。前記第一油圧室21は、この様に組み合わされた前記第一シリンダハウジング19と前記第一ピストン20との間に設けられている。そして、前記入力回転軸1bの基端寄り部分で前記第一油圧室21の内径側に対向する部分に設けた、前記第一圧油給排路22により、この第一油圧室21内に圧油を給排自在としている。 The first piston 20 has a ring shape as a whole, and an oil is formed between the inner peripheral surface of the first cylinder housing 19 and the outer peripheral surface near the base end of the input rotary shaft 1b. tightly, and, to permit axial displacement (horizontal direction in FIGS. 1 and 3), are fitted instrumentation. The first hydraulic chamber 21 is provided between the first cylinder housing 19 and the first piston 20 combined in this way. Then, the first hydraulic oil supply / discharge passage 22 provided in a portion facing the inner diameter side of the first hydraulic chamber 21 near the base end of the input rotary shaft 1b is pressurized into the first hydraulic chamber 21. Oil can be freely supplied and discharged.

又、前記第二シリンダハウジング23は、円筒状で、前記入力側ディスク2eの外周縁部に、この入力側ディスク2eの外側面側(図1、3の左側)に突出する状態で設けられている。図示の例では、前記第二シリンダハウジング23を前記入力側ディスク2eの外側面の外周縁部に、この入力側ディスク2eと一体に形成している。前記第二ピストン24は、断面L字形で全体を円輪状に形成されており、前記入力回転軸1aの基端寄り部分に油密に外嵌した状態で、前記第二シリンダハウジング23の内径側に油密に、且つ、この第二シリンダハウジング23に対する軸方向の変位を可能に嵌装している。   The second cylinder housing 23 has a cylindrical shape and is provided on the outer peripheral edge of the input side disk 2e so as to protrude to the outer surface side (left side in FIGS. 1 and 3) of the input side disk 2e. Yes. In the illustrated example, the second cylinder housing 23 is formed integrally with the input side disk 2e on the outer peripheral edge of the outer surface of the input side disk 2e. The second piston 24 has an L-shaped cross section and is formed in an annular shape as a whole. The second piston 24 is oil-tightly fitted to a portion near the base end of the input rotary shaft 1a, and the inner diameter side of the second cylinder housing 23 The second cylinder housing 23 is fitted in an oiltight manner so as to be capable of axial displacement.

又、前記第二油圧室25は、前記第二シリンダハウジング23の内径側で、前記入力側ディスク2eの外側面と前記第二ピストン24との間に設けられている。そして、前記入力回転軸1bの基端寄り部分で前記第二油圧室25の内径側に対向する部分に設けた、前記第二圧油給排路26により、この第二油圧室25内に圧油を給排自在としている。   The second hydraulic chamber 25 is provided between the outer surface of the input side disk 2 e and the second piston 24 on the inner diameter side of the second cylinder housing 23. Then, the pressure in the second hydraulic chamber 25 is increased by the second pressure oil supply / discharge passage 26 provided at a portion near the base end of the input rotary shaft 1b and facing the inner diameter side of the second hydraulic chamber 25. Oil can be freely supplied and discharged.

尚、前記第二圧油給排路26と前記第一圧油給排路22とは、前記入力回転軸1bの中心孔27と図示しない油圧制御弁とを介して、給油ポンプ(図示省略)の吐出口に通じている。前記トロイダル型無段変速機の運転時には、油圧制御弁の切換に基づいて、前記第一油圧室21と前記第二油圧室25とに、所定圧の圧油を送り込む。そして、これら両油圧室21、25内に、これら両油圧室21、25の軸方向寸法が増大する方向の力を惹起させる。これら両油圧室21、25部分で発生した力は、何れも、前記入力側ディスク2eを前記出力側ディスク6bに向け押圧すると共に、前記入力回転軸1bを基端側(図1、3の左側)に引っ張り、他方の入力側ディスク2fを前記出力側ディスク6bに押圧する方向の力として加わる。   The second pressure oil supply / discharge passage 26 and the first pressure oil supply / discharge passage 22 are connected to an oil supply pump (not shown) via a center hole 27 of the input rotary shaft 1b and a hydraulic control valve (not shown). Leading to the discharge port. During operation of the toroidal continuously variable transmission, pressure oil of a predetermined pressure is fed into the first hydraulic chamber 21 and the second hydraulic chamber 25 based on switching of the hydraulic control valve. Then, a force is generated in the hydraulic chambers 21 and 25 in the direction in which the axial dimensions of the hydraulic chambers 21 and 25 increase. The forces generated in these hydraulic chambers 21 and 25 both press the input side disk 2e toward the output side disk 6b, and the input rotating shaft 1b is moved to the base end side (the left side in FIGS. 1 and 3). ) And the other input side disk 2f is applied as a force in the direction of pressing the output side disk 6b.

又、本例の場合、前記第一油圧室21内に、前記第一シリンダハウジング19と前記第一ピストン20とに互いに離れる方向の弾性力を付与する、特許請求の範囲に記載した予圧付与部材に相当する、予圧ばね(皿ばね)11dを設けている。これにより、前記各油圧室21、25内に油圧が導入されていない、前記押圧装置10bの非作動時(駆動軸の停止時)の状態でも、前記各パワーローラ7、7の周面と、前記入力側、出力側各ディスク2e、2f、6bの側面との転がり接触部(各トラクション部)に動力伝達の為に必要な最低限以上の押し付け力(面圧)を付与すると共に、同じく圧油が供給されない状態で構成部材同士ががたつくのを防止している。具体的には、前記予圧ばね11dが発揮する弾力により、前記入力側ディスク2eを前記出力側ディスク6bに向け押圧すると共に、前記入力回転軸1bを基端側(図1、3の左側)に引っ張り、他方の入力側ディスク2fを前記出力側ディスク6bに押圧している。従って、本例の場合、前記各転がり接触部は、トロイダル型無段変速機の運転開始直後から、過大な滑りを生じる事なく、動力伝達を開始する。   Further, in the case of this example, the preload applying member according to claim 1, wherein elastic force in a direction away from each other is applied to the first cylinder housing 19 and the first piston 20 in the first hydraulic chamber 21. 11d corresponding to a preload spring (disc spring) is provided. Accordingly, even when the pressure device 10b is not in operation (when the drive shaft is stopped) in which no hydraulic pressure is introduced into the hydraulic chambers 21 and 25, the peripheral surfaces of the power rollers 7 and 7; A pressing force (surface pressure) more than the minimum necessary for power transmission is applied to the rolling contact portions (each traction portion) with the side surfaces of the input side and output side discs 2e, 2f, 6b, and the same pressure. It prevents the structural members from rattling with no oil supplied. Specifically, the input side disk 2e is pressed against the output side disk 6b by the elasticity exerted by the preload spring 11d, and the input rotary shaft 1b is moved to the base end side (left side in FIGS. 1 and 3). The other input side disk 2f is pressed against the output side disk 6b. Therefore, in the case of this example, each rolling contact portion starts power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission.

又、本例の場合、図4、5に示す様に、特許請求の範囲に記載した他方の外側ディスクに相当する前記入力側ディスク2fを、前記入力回転軸1bの先端部に対して、次の様な構成により支持している。
即ち、前記入力側ディスク2fの中心部に、この入力側ディスク2fを軸方向に貫通する状態で中心孔28を形成している。そして、この中心孔28の内周面のうちの軸方向中間部にのみ、雌スプライン部13aを形成している。又、この中心孔28の内周面のうち、この雌スプライン部13aの軸方向内側(図4の左側)に隣接した部分には、ディスク側円筒面部29を形成しており、この雌スプライン部13aの軸方向外側(図4の右側)に隣接した部分には、ディスク側嵌合面部30を形成している。
In the case of this example, as shown in FIGS. 4 and 5, the input side disk 2f corresponding to the other outer disk described in the claims is placed next to the tip of the input rotating shaft 1b. It is supported by such a configuration.
That is, a central hole 28 is formed in the central portion of the input side disk 2f so as to penetrate the input side disk 2f in the axial direction. And the female spline part 13a is formed only in the axial direction intermediate part of the internal peripheral surface of this center hole 28. FIG. Further, a disk side cylindrical surface portion 29 is formed in a portion of the inner peripheral surface of the center hole 28 adjacent to the axially inner side (left side in FIG. 4) of the female spline portion 13a. A disc-side fitting surface portion 30 is formed in a portion adjacent to the axially outer side of 13a (the right side in FIG. 4).

前記ディスク側円筒面部29は、前記入力側ディスク2fの中心軸に直交する仮想平面に関する断面形状が、この入力側ディスク2fの中心軸を中心とする正円形である。又、ディスク側円筒面部29の内径d29は、軸方向に亙り一定であり、前記雌スプライン部13aの歯底円直径(最大内径)dmaxよりも大きい(d29>dmax)。これに対し、前記ディスク側嵌合面部30は、前記入力側ディスク2fの中心軸に直交する仮想平面に関する断面形状が、この入力側ディスク2fの中心軸を中心とする正円形である。又、前記ディスク側嵌合面部30の内径d30は、軸方向に亙り一定であり、前記雌スプライン部13aの歯先円直径(最小内径)dminよりも小さい(d30<dmin)。 In the disk-side cylindrical surface portion 29, the cross-sectional shape related to a virtual plane orthogonal to the center axis of the input-side disk 2f is a regular circle centered on the center axis of the input-side disk 2f. The inner diameter d 29 of the disk-side cylindrical surface portion 29 is constant in the axial direction and is larger than the root diameter (maximum inner diameter) d max of the female spline portion 13a (d 29 > d max ). On the other hand, the disk-side fitting surface portion 30 has a cross-sectional shape with respect to a virtual plane orthogonal to the central axis of the input-side disk 2f having a regular circle centered on the central axis of the input-side disk 2f. Further, the inner diameter d 30 of the disk-side fitting surface 30 is constant over the axial direction, the tip diameter (minimum inner diameter) of the female spline portion 13a is smaller than d min (d 30 <d min ).

一方、前記入力回転軸1bの外周面のうちの先端寄り部分(図1、4の右端寄り部分)に、前記雌スプライン部13aとスプライン係合する雄スプライン部14aを形成している。そして、前記入力回転軸1bの外周面のうち、この雄スプライン部14aよりも先端側に隣接する部分に、この入力回転軸1bの中心軸に直交する仮想平面に関する断面形状が、この入力回転軸1bの中心軸を中心とする正円形である、軸側嵌合面部31を形成している。この軸側嵌合面部31の外径D31は、軸方向に亙り一定であり、前記雄スプライン部14aの歯底円直径(最小外径)Dminよりも小さい(D31<Dmin)。又、前記軸側嵌合面部31の自由状態(入力側ディスク2fを入力回転軸1bに圧入する以前の状態)での外径は、前記ディスク側嵌合面部30の自由状態での内径よりも僅かに大きく設定している。 On the other hand, a male spline portion 14a that is spline-engaged with the female spline portion 13a is formed in a portion closer to the tip (portion closer to the right end in FIGS. 1 and 4) of the outer peripheral surface of the input rotary shaft 1b. And the cross-sectional shape regarding the virtual plane orthogonal to the central axis of this input rotating shaft 1b is formed in this input rotating shaft in the part adjacent to the front end side rather than this male spline part 14a among the outer peripheral surfaces of the said input rotating shaft 1b. A shaft-side fitting surface portion 31 that is a regular circle centered on the central axis 1b is formed. Outer diameter D 31 of the shaft-side fitting surface 31 is constant over the axial direction, the root circle diameter of the male spline portion 14a (minimum outer diameter) smaller than D min (D 31 <D min ). The outer diameter of the shaft-side fitting surface portion 31 in a free state (a state before the input-side disc 2f is press-fitted into the input rotary shaft 1b) is larger than the inner diameter of the disc-side fitting surface portion 30 in a free state. Set slightly larger.

より具体的には、前記ディスク側嵌合面部30の内径と前記軸側嵌合面部31の外径との差に相当する、これらディスク側嵌合面部30と軸側嵌合面部31との間の圧入部に於ける締め代の大きさ(|D31−d30|)を、前記予圧ばね11dが発揮する弾力に基づき、前記入力側ディスク2fを前記入力回転軸1bに対して軸方向に相対変位させられる(入力回転軸1bを入力側ディスク2fから軸方向に引き抜く事が可能な)大きさに規制している。別な言い方をすれば、前記予圧ばね11dが発揮する弾力の大きさを、前記入力回転軸1bを前記入力側ディスク2fから基端側に引き抜く(図1、3、4の左側に移動させる)のに必要となる荷重であり、前記締め代の影響を受ける、引き抜き力よりも大きく設定している(弾力>引き抜き力)。 More specifically, between the disc-side fitting surface portion 30 and the shaft-side fitting surface portion 31, which corresponds to the difference between the inner diameter of the disc-side fitting surface portion 30 and the outer diameter of the shaft-side fitting surface portion 31. press-fit portion in interference of the size of (| D 31 -d 30 |) and based on the elastic force the preload spring 11d exerts, the input side disk 2f in the axial direction with respect to the input rotary shaft 1b The size is regulated so as to be relatively displaced (the input rotary shaft 1b can be pulled out in the axial direction from the input side disk 2f). In other words, the magnitude of the elasticity exerted by the preload spring 11d is pulled out from the input side disk 2f to the base end side (moved to the left side of FIGS. 1, 3 and 4). Is set to be larger than the pull-out force that is affected by the tightening allowance (elasticity> pull-out force).

更に、前記入力回転軸1bの外周面のうちで、前記軸側嵌合面部31よりも先端側に隣接する部分には、係止溝15aを全周に亙り形成している。そして、この係止溝15aに、特許請求の範囲に記載した係止部材に相当する、複数(2〜4個)の部分円弧状の素子から成る係止環(コッタ)16aの内径側半部を係止している。そして、この係止環16aの側面(図1〜4の左側面)のうちの径方向外端寄り部分を、前記入力側ディスク2fの外側面のうちの径方向内端部に当接させている。   Further, in the outer peripheral surface of the input rotary shaft 1b, a locking groove 15a is formed over the entire circumference in a portion adjacent to the tip side from the shaft-side fitting surface portion 31. And in this latching groove | channel 15a, the inner diameter side half part of the latching ring (cotter) 16a which consists of a several (2-4 pieces) partial arc-shaped element corresponded to the latching member described in the claim Is locked. Then, the radially outer end portion of the side surface of the locking ring 16a (the left side surface in FIGS. 1 to 4) is brought into contact with the radially inner end portion of the outer surface of the input side disk 2f. Yes.

前記入力側ディスク2fを前記入力回転軸1bの先端部に組み付けるには、前記予圧ばね11dを弾性的に縮めつつ(圧縮しつつ)、この入力回転軸1bの先端部を前記入力側ディスク2fの中心孔28内に、この入力側ディスク2fの軸方向内側から挿通する。そして、前記雄スプライン部14aを前記雌スプライン部13aにスプライン係合させると共に、前記軸側嵌合面部31を前記ディスク側嵌合面部30に圧入する(締り嵌めで内嵌する)。そして、この状態で、前記係止溝15aに前記係止環16aを係止し、この係止環16aの側面を前記入力側ディスク2fの外側面に当接させる(突き当てる)。又、この状態で、前記入力回転軸1bの先端部に断面L字形の抑え環17aを外嵌し、この抑え環17aの内周面を、前記係止環16aの外周面に当接又は近接対向させると共に、前記入力回転軸1bの先端部に止め輪18aを係止する。これにより、前記係止環16a(を構成する各素子)が前記係止溝15aから抜け出るのを防止する。   In order to assemble the input side disk 2f to the front end portion of the input rotary shaft 1b, the preload spring 11d is elastically contracted (compressed), and the front end portion of the input rotary shaft 1b is moved to the input side disc 2f. The input side disk 2f is inserted into the center hole 28 from the inner side in the axial direction. Then, the male spline portion 14a is spline-engaged with the female spline portion 13a, and the shaft-side fitting surface portion 31 is press-fitted into the disk-side fitting surface portion 30 (it is fitted with an interference fit). In this state, the locking ring 16a is locked in the locking groove 15a, and the side surface of the locking ring 16a is brought into contact with (abuts against) the outer surface of the input side disk 2f. In this state, a retaining ring 17a having an L-shaped cross section is fitted on the tip of the input rotary shaft 1b, and the inner peripheral surface of the retaining ring 17a is in contact with or close to the outer peripheral surface of the locking ring 16a. While making it oppose, the retaining ring 18a is latched to the front-end | tip part of the said input rotating shaft 1b. This prevents the locking ring 16a (each element constituting the locking ring 16a) from coming out of the locking groove 15a.

以上の様な構成により、前記入力側ディスク2fが前記入力回転軸1bの先端側に変位するのを阻止すると共に、この入力側ディスク2fをこの入力回転軸1bに対し、この入力回転軸1bと同期した回転を自在に(入力側ディスク2fと入力回転軸1bとの間で動力の伝達を可能に)支持する。尚、本例の場合、この入力回転軸1bの外周面のうちで前記雄スプライン部14aよりも基端側に隣接する部分と、前記ディスク側円筒面部29とは、隙間嵌としている。   With the configuration as described above, the input-side disk 2f is prevented from being displaced toward the tip end side of the input rotary shaft 1b, and the input-side disk 2f is separated from the input rotary shaft 1b with the input rotary shaft 1b. Synchronized rotation is supported freely (allowing transmission of power between the input side disk 2f and the input rotation shaft 1b). In the case of this example, a portion of the outer peripheral surface of the input rotary shaft 1b adjacent to the base end side with respect to the male spline portion 14a and the disc-side cylindrical surface portion 29 are fitted with a gap.

上述の様に構成する本例のトロイダル型無段変速機の場合、前記押圧装置10bの発生する推力に基づいて、前記入力側ディスク2fと前記係止環16aとの間でフレッチング摩耗が発生するのを防止できると共に、組み立て作業性を良好に確保できる。
即ち、前述した従来構造の第2例の場合には、前記入力側ディスク2dの内周面の軸方向中間部乃至外端部に亙る範囲に雌スプライン部13を設け、この雌スプライン部13と、入力回転軸1aの先端寄り部分の外周面に形成した雄スプライン部14とを係合させている。この為、押圧装置10の発生する推力に基づいて、前記入力側ディスク2dの外径寄り部分が軸方向外側(図13の右側)に弾性変形すると、前記雌スプライン部13の軸方向外端寄り部分が、入力回転軸1aの外周面に押し付けられて、その内径を縮める(縮径する)方向に弾性変形し易くなる。
In the case of the toroidal type continuously variable transmission of this example configured as described above, fretting wear occurs between the input side disk 2f and the locking ring 16a based on the thrust generated by the pressing device 10b. Can be prevented, and the assembly workability can be secured well.
That is, in the case of the second example of the conventional structure described above, a female spline portion 13 is provided in a range extending from the axially intermediate portion to the outer end portion of the inner peripheral surface of the input side disk 2d. The male spline portion 14 formed on the outer peripheral surface near the tip of the input rotary shaft 1a is engaged. For this reason, when the portion near the outer diameter of the input side disk 2d is elastically deformed outward in the axial direction (the right side in FIG. 13) based on the thrust generated by the pressing device 10, it approaches the outer end in the axial direction of the female spline portion 13. The portion is pressed against the outer peripheral surface of the input rotary shaft 1a, and is easily elastically deformed in a direction of reducing (reducing) the inner diameter thereof.

これに対し、本例の場合には、前記入力側ディスク2fの中心孔28の内周面と入力回転軸1bの外周面との間部分のうちで、この入力側ディスク2fの外側面と前記係止環16aの側面との当接部の軸方向内側(図4の左側)に隣接する部分は、何れも断面形状が正円形であり、締り嵌めにより嵌合された、ディスク側嵌合面部30と軸側嵌合面部31とを設けている。従って、前記入力側ディスク2fのうち、軸方向外端部の前記入力回転軸1bに対する支持剛性を、前記従来構造の第2例の場合と比較して高くできる。又、前記入力側ディスク2fの中心孔28の内周面のうち、軸方向外端部の縮径方向の剛性を高くでき、前記押圧装置10bの発生する推力に基づいて、前記入力側ディスク2fが、前記中心孔28の軸方向外端寄り部分を縮径する方向に弾性変形する傾向となるのを抑え、延いては、前記入力側ディスク2fの外径寄り部分が軸方向外側に弾性変形するのを抑えられる(入力側ディスク2fの外径寄り部分の軸方向への弾性変形量を小さくできる)。この為、この入力側ディスク2fの外側面と前記係止環16aの側面とが互いに擦れ合って、これら両側面に著しいフレッチング摩耗が発生するのを防止できる。   On the other hand, in the case of this example, of the portion between the inner peripheral surface of the center hole 28 of the input side disk 2f and the outer peripheral surface of the input rotating shaft 1b, The disc-side fitting surface portion that is adjacent to the axially inner side (left side in FIG. 4) of the contact portion with the side surface of the locking ring 16a has a circular cross-sectional shape and is fitted by an interference fit. 30 and the shaft side fitting surface part 31 are provided. Therefore, the support rigidity of the input side disk 2f with respect to the input rotation shaft 1b at the axially outer end can be made higher than that in the second example of the conventional structure. Further, the rigidity in the diameter-reducing direction of the outer end in the axial direction of the inner peripheral surface of the center hole 28 of the input side disk 2f can be increased, and the input side disk 2f is based on the thrust generated by the pressing device 10b. However, it is possible to suppress a tendency to elastically deform the portion near the outer end in the axial direction of the center hole 28 in the direction of reducing the diameter. As a result, the portion closer to the outer diameter of the input side disk 2f is elastically deformed outward in the axial direction. (The amount of elastic deformation in the axial direction of the portion near the outer diameter of the input side disk 2f can be reduced). For this reason, it is possible to prevent the outer side surface of the input side disk 2f and the side surface of the locking ring 16a from rubbing with each other to cause significant fretting wear on both side surfaces.

更に、本例の構造の場合には、前記中心孔28の内周面の軸方向中間部に形成された雌スプライン部13aを構成する各雌スプライン溝の軸方向外端縁と、前記係止環16aの側面とが軸方向に関して互いに離隔している。この為、仮に前記押圧装置10bの発生する推力に基づいて、前記入力側ディスク2fの外径寄り部分が軸方向外側に向け弾性変形した場合であっても、前記雌スプライン部13aを構成する各雌スプライン溝の軸方向外端縁が前記係止環16aの側面に食い込む傾向となる事はない。この面からも前記入力側ディスク2fと係止環16aとの間でフレッチング摩耗が発生する事を防止できる。   Further, in the case of the structure of this example, the axial outer end edge of each female spline groove constituting the female spline portion 13a formed in the axially intermediate portion of the inner peripheral surface of the center hole 28, and the locking The side surfaces of the ring 16a are separated from each other in the axial direction. For this reason, even if the portion near the outer diameter of the input side disk 2f is elastically deformed outward in the axial direction based on the thrust generated by the pressing device 10b, each of the female spline portions 13a is configured. The outer edge in the axial direction of the female spline groove does not tend to bite into the side surface of the locking ring 16a. From this surface, fretting wear can be prevented from occurring between the input side disk 2f and the locking ring 16a.

更に、本例の場合には、前記入力側ディスク2fの内周面に形成したディスク側嵌合面部30と、前記入力回転軸1bの外周面に形成した前記軸側嵌合面部31との間の圧入部に於ける締め代の大きさを、前記予圧ばね11dが発揮する弾力に基づき、前記入力側ディスク2fを前記入力回転軸1bに対して軸方向に相対変位させられる(入力回転軸1bを入力側ディスク2fから引き抜ける)大きさに規制している。この為、トロイダル型無段変速機の組み立て作業時に、前記入力側ディスク2fの組み付け位置を厳密に管理しなくても、前記予圧ばね11dの発揮する弾力に基づき、前記入力側ディスク2fを前記係止環16bに対し押し付けて(入力回転軸1bを入力側ディスク2fから引き抜く方向に移動させて)、この入力側ディスク2fの位置決めを図る事ができる。従って、本例の構造によれば、トロイダル型無段変速機の組み立て作業性を良好にできる。   Furthermore, in the case of this example, between the disc-side fitting surface portion 30 formed on the inner peripheral surface of the input-side disc 2f and the shaft-side fitting surface portion 31 formed on the outer peripheral surface of the input rotating shaft 1b. Based on the elastic force exerted by the preload spring 11d, the input disk 2f can be displaced relative to the input rotary shaft 1b in the axial direction (input rotary shaft 1b). Is pulled out from the input side disk 2f). For this reason, at the time of assembling the toroidal-type continuously variable transmission, the input-side disk 2f is engaged with the engagement side based on the elasticity exerted by the preload spring 11d without strictly managing the assembly position of the input-side disk 2f. The input side disk 2f can be positioned by pressing against the retaining ring 16b (moving the input rotary shaft 1b in the direction of pulling out from the input side disk 2f). Therefore, according to the structure of this example, the assembly workability of the toroidal type continuously variable transmission can be improved.

尚、比較例として、締め代の大きさを、予圧ばねが発揮する弾力に拘らず、入力側ディスクが入力回転軸に対して軸方向に相対変位できない程大きな値に設定した場合に就いて、図6を参照しつつ説明する。比較例の場合、予圧ばねが発揮する弾力によっては、入力側ディスク2fを係止環16aに押し付ける(入力回転軸1bを入力側ディスク2fから引き抜く)事ができない。この為、組み立て作業時に、この入力側ディスク2fを正規の組み付け位置(係止環16aに突き当たる位置)よりも軸方向片側(図6の左側)に誤って移動させてしまうと、前記入力側ディスク2fに反対側から外力を加えて、前記入力回転軸1bから引き抜き、再度圧入作業をやり直す必要がある。この為、トロイダル型無段変速機の組み立て作業性が悪くなる。又、前記入力側ディスク2fが、正規の組み付け位置よりも軸方向片側に組み付けられている事に気付かずに、トロイダル型無段変速機の運転を開始させてしまうと、前記入力側ディスク2fに大きな軸力がかかるまでは、この入力側ディスク2fを軸方向に移動させる(正規の組み付け位置に移動させる)事ができない。この為、パワーローラの周面と入力側、出力側各ディスクの側面との転がり接触部に作用する面圧が過大になると共に、予圧ばねを過剰に弾性変形させてしまうと言った問題を生じる可能性がある。
これに対し、本例の構造によれば、前記予圧ばね11dの弾力に基づき、前記入力側ディスク2fを前記入力回転軸1bに対し軸方向に相対変位させられる為、この様な問題を生じずに済む。
In addition, as a comparative example, when the size of the tightening margin is set to such a large value that the input-side disk cannot be displaced in the axial direction relative to the input rotation axis regardless of the elasticity exerted by the preload spring, This will be described with reference to FIG. In the case of the comparative example, the input side disk 2f cannot be pressed against the locking ring 16a (the input rotary shaft 1b is pulled out from the input side disk 2f) depending on the elasticity exerted by the preload spring. For this reason, if the input side disk 2f is mistakenly moved to one axial side (left side in FIG. 6) from the normal assembly position (position where it abuts against the locking ring 16a) during assembly work, the input side disk It is necessary to apply an external force to 2f from the opposite side, pull it out from the input rotary shaft 1b, and perform the press-fitting operation again. For this reason, the assembling workability of the toroidal type continuously variable transmission is deteriorated. Further, when the operation of the toroidal continuously variable transmission is started without noticing that the input side disk 2f is assembled on one side in the axial direction from the regular assembly position, the input side disk 2f Until a large axial force is applied, the input-side disk 2f cannot be moved in the axial direction (moved to the proper assembly position). For this reason, the surface pressure acting on the rolling contact portion between the peripheral surface of the power roller and the side surface of each disk on the input side and the output side becomes excessive, and the preload spring is excessively elastically deformed. there is a possibility.
On the other hand, according to the structure of this example, the input side disk 2f can be relatively displaced in the axial direction with respect to the input rotary shaft 1b based on the elasticity of the preload spring 11d. It will end.

又、本例の場合、前記入力回転軸1bの先端部を前記入力側ディスク2fの中心孔28に挿通する際に、この入力回転軸1bの挿通方向前側となるこの中心孔28の軸方向内端部に、前記雌スプライン部13aの歯底円直径dmaxよりも大きな内径を有するディスク側円筒面部29を設けている。この為、組み付け作業の初期段階で、このディスク側円筒面部29に、前記軸側嵌合面部31乃至前記雄スプライン部14aを隙間嵌で内嵌する事により、前記入力側ディスク2fと前記入力回転軸1bとの心合わせを行える。この為、この面からも前記トロイダル型無段変速機の組み立て作業を容易化できる。 In the case of this example, when the tip end of the input rotary shaft 1b is inserted into the center hole 28 of the input side disk 2f, the inside of the center hole 28 in the axial direction which is the front side of the input rotary shaft 1b is inserted. the end portion is provided with a disc-side cylindrical surface portion 29 having an inner diameter larger than the root circle diameter d max of the female spline portion 13a. Therefore, in the initial stage of the assembling operation, the input side disk 2f and the input rotation are inserted into the disk side cylindrical surface part 29 by fitting the shaft side fitting surface part 31 to the male spline part 14a with gap fitting. Centering with the shaft 1b can be performed. For this reason, the assembling work of the toroidal type continuously variable transmission can be facilitated also from this aspect.

尚、本例の場合、前記入力側ディスク2fの中心孔28の内周面のうちで軸方向内端部に形成された前記ディスク側円筒面部29は、前記入力回転軸1bの外周面のうち、前記雄スプライン部14aよりも基端側に隣接する部分に、隙間嵌めで外嵌している。但し、当該部分に、前記入力回転軸1bの中心軸を中心とする正円形で、軸方向に関して外径が変化しない軸側円筒面部を形成し、この軸側円筒面部の自由状態での外径を、前記ディスク側円筒面部29の自由状態での内径よりも僅かに大きくして、このディスク側円筒面部29を前記軸側円筒面部に圧入(締り嵌めで外嵌)する様に構成しても良い。これらディスク側、軸側両円筒面部29同士を締り嵌めで嵌合すれば、前記入力側ディスク2fと前記入力回転軸1bとの同心性を向上でき(中心軸同士の偏心量及び傾斜角度を低減でき)、前記トロイダル型無段変速機の各種性能をより一層向上できる(例えば前記入力側ディスク2fの振れ回り運動を低減して、振動の低減及び変速比制御の精度向上を図れる)。尚、この様な構成を採用した場合には、前記ディスク側円筒面部29と前記軸側円筒面部との間の圧入部、及び、前記ディスク側嵌合面部30と前記軸側嵌合面部31との圧入部でそれぞれ生じる引き抜き力の合計よりも、前記予圧ばね11dが発揮する弾力が大きくなる様に、前記各圧入部に於ける締め代の大きさを設定する。   In the case of this example, the disk-side cylindrical surface portion 29 formed at the inner end in the axial direction of the inner peripheral surface of the center hole 28 of the input-side disc 2f is included in the outer peripheral surface of the input rotary shaft 1b. The outer side of the male spline portion 14a is adjacent to the base end side with a clearance fit. However, in this portion, a shaft-shaped cylindrical surface portion that is a circular shape centered on the central axis of the input rotation shaft 1b and whose outer diameter does not change in the axial direction is formed, and the outer diameter of the shaft-side cylindrical surface portion in a free state. Is slightly larger than the inner diameter of the disk-side cylindrical surface portion 29 in the free state, and the disk-side cylindrical surface portion 29 is press-fitted into the shaft-side cylindrical surface portion (externally fitted by an interference fit). good. If the disc side and shaft side cylindrical surface portions 29 are fitted together by interference fit, the concentricity of the input side disc 2f and the input rotating shaft 1b can be improved (the amount of eccentricity and the inclination angle between the center shafts are reduced). Therefore, various performances of the toroidal-type continuously variable transmission can be further improved (for example, the swinging motion of the input side disk 2f can be reduced to reduce vibration and improve the accuracy of the gear ratio control). When such a configuration is adopted, the press-fitting portion between the disc-side cylindrical surface portion 29 and the shaft-side cylindrical surface portion, and the disc-side fitting surface portion 30 and the shaft-side fitting surface portion 31 The tightening allowance at each of the press-fit portions is set so that the elasticity exerted by the preload spring 11d is larger than the total pull-out force generated at each of the press-fit portions.

参考例
図7は、本発明に関する参考例を示している。本参考例の場合には、入力側ディスク2gと入力回転軸1cとを、円環状の中間部材32を介して間接的に圧入している。より具体的には、この中間部材32を、前記入力回転軸1cの先端寄り部分に形成された軸側嵌合面部31aに対し圧入している。又、前記中間部材32の外周面に対し、前記入力側ディスク2gの内周面の軸方向他端部(図6の右端部)に形成されたディスク側嵌合面部30aを圧入している。本参考例の場合、前記入力側ディスク2gの内周面の軸方向外端部に、雌スプライン部13aの歯底円直径よりも内径寸法が大きくなった環状凹部33を全周に亙り形成しており、この環状凹部33の底面を、前記ディスク側嵌合面部30aとしている。又、この環状凹部33の側面を前記中間部材32の側面に当接させている。
[ Reference example ]
FIG. 7 shows a reference example related to the present invention. In the case of this reference example, the input side disk 2g and the input rotating shaft 1c are indirectly press-fitted through an annular intermediate member 32. More specifically, the intermediate member 32 is press-fitted into a shaft-side fitting surface portion 31a formed near the tip of the input rotary shaft 1c. Further, a disc side fitting surface portion 30a formed at the other axial end portion (the right end portion in FIG. 6) of the inner peripheral surface of the input side disc 2g is press-fitted into the outer peripheral surface of the intermediate member 32. In the case of this reference example, an annular recess 33 having an inner diameter larger than the root diameter of the female spline portion 13a is formed over the entire circumference at the axially outer end of the inner peripheral surface of the input side disk 2g. The bottom surface of the annular recess 33 is the disk-side fitting surface portion 30a. The side surface of the annular recess 33 is in contact with the side surface of the intermediate member 32.

以上の様な構成を有する本参考例の場合、前記中間部材32の側面と前記環状凹部33の側面との当接に基づき、この中間部材32は、前記入力側ディスク2gに対して、前記入力回転軸1cの基端側に相対変位する事が阻止される。この為、本参考例の場合には、前記ディスク側嵌合面部30aと前記中間部材32の外周面との間の締め代を小さく設定し、前記入力側ディスク2gをこの中間部材32に軽圧入している。これに対し、この中間部材32の内周面と前記軸側嵌合面部31aとの間の締め代は、前記実施の形態の第1例の場合と同様に、予圧ばね11d(図1、3参照)が発揮する弾力に基づき、前記中間部材32(入力側ディスク2g)を前記入力回転軸1cに対して軸方向に相対変位させられる大きさの範囲で規制している。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this reference example having the above-described configuration, based on the contact between the side surface of the intermediate member 32 and the side surface of the annular recess 33, the intermediate member 32 is connected to the input side disk 2g with respect to the input side. Relative displacement to the base end side of the rotating shaft 1c is prevented. For this reason, in the case of this reference example, a tightening margin between the disk side fitting surface portion 30a and the outer peripheral surface of the intermediate member 32 is set small, and the input side disk 2g is lightly press-fitted into the intermediate member 32. doing. On the other hand, the fastening allowance between the inner peripheral surface of the intermediate member 32 and the shaft-side fitting surface portion 31a is the same as that in the first example of the embodiment, as shown in FIG. The intermediate member 32 (input-side disk 2g) is regulated within a range in which the intermediate member 32 (input-side disk 2g) can be relatively displaced in the axial direction with respect to the input rotation shaft 1c.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

上述した実施の形態及び参考例の各例では、入力側ディスクが軸方向外側に向け変位するのを阻止する為の係止部材として、コッタと呼ばれる係止環を使用した場合に就いて説明したが、本発明のトロイダル型無段変速機を構成する係止部材としては、前述の図8に示した様な、ローディングナットを使用する事もできる。又、本発明は、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。 In each example of the embodiment and the reference example described above, a case where a locking ring called a cotter is used as a locking member for preventing the input side disk from being displaced outward in the axial direction has been described. However, a loading nut as shown in FIG. 8 can also be used as the locking member constituting the toroidal-type continuously variable transmission of the present invention. Further, the present invention is not limited to the half toroidal type as shown in the figure, but can be implemented by a full toroidal type toroidal continuously variable transmission.

1、1a〜1c 入力回転軸
2a〜2g 入力側ディスク
3 ボールスプライン
4 出力筒
5 出力歯車
6、6a、6b 出力側ディスク
7 パワーローラ
8 トラニオン
9 駆動軸
10、10a、10b 押圧装置
11a〜11d 予圧ばね
12 ローディングナット
13、13a 雌スプライン部
14、14a 雄スプライン部
15、15a 係止溝
16、16a 係止環
17、17a 抑え環
18、18a 止め輪
19 第一シリンダハウジング
20 第一ピストン
21 第一油圧室
22 第一圧油給排路
23 第二シリンダハウジング
24 第二ピストン
25 第二油圧室
26 第二圧油給排路
27 中心孔
28、28a 中心孔
29 ディスク側円筒面部
30、30a ディスク側嵌合面部
31、31a 軸側嵌合面部
32 中間部材
33 環状凹部
DESCRIPTION OF SYMBOLS 1, 1a-1c Input rotary shaft 2a-2g Input side disk 3 Ball spline 4 Output cylinder 5 Output gear 6, 6a, 6b Output side disk 7 Power roller 8 Trunnion 9 Drive shaft 10, 10a, 10b Pressing device 11a-11d Preload Spring 12 Loading nut 13, 13a Female spline part 14, 14a Male spline part 15, 15a Locking groove 16, 16a Locking ring 17, 17a Retaining ring 18, 18a Retaining ring 19 First cylinder housing 20 First piston 21 First Hydraulic chamber 22 First pressure oil supply / discharge passage 23 Second cylinder housing 24 Second piston 25 Second hydraulic chamber 26 Second pressure oil supply / discharge passage 27 Center hole 28, 28a Center hole 29 Disc side cylindrical surface portion 30, 30a Disc side Fitting surface portion 31, 31a Shaft side fitting surface portion 32 Intermediate member 33 Annular recess

Claims (1)

回転軸と、
それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で、前記回転軸と同期した回転を自在として支持された1対の外側ディスクと、
前記回転軸の軸方向中間部の周囲に、断面円弧形である軸方向両側面を前記両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持された、一体又は1対の素子を結合して成る、内側ディスクと、
前記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を自在に支持され、球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接させたパワーローラと、
前記回転軸と前記両外側ディスクのうちの一方の外側ディスクとの間に設けられ、この一方の外側ディスクを、これら両外側ディスクのうちの他方の外側ディスクに向け押圧する押圧装置と、
前記回転軸と前記一方の外側ディスクとの間に設けられ、この一方の外側ディスクを前記他方の外側ディスクに向け押圧する事で、前記押圧装置が押圧力を発生しない状態でも、これら両外側ディスクを前記内側ディスクに向け押圧する予圧付与部材と、
前記回転軸のうち、軸方向に関して前記他方の外側ディスクが配置される側の端部に係止され、この他方の外側ディスクが前記一方の外側ディスクから軸方向に離れる方向に変位するのを阻止する係止部材と、を備えたトロイダル型無段変速機に於いて、
前記他方の外側ディスクの内周面の軸方向一部に形成された内周面側凹凸部と、前記回転軸の外周面の軸方向一部に形成された外周面側凹凸部とを相対回転不能に係合させると共に、前記他方の外側ディスクの内周面のうちで、前記内周面側凹凸部の軸方向他側に隣接する部分に形成されたディスク側嵌合面部を、この回転軸の外周面のうちで、軸方向に関して前記外周面側凹凸部と前記係止部材が係止された部分との間部分に形成された軸側嵌合面部に、直接圧入する事により、前記他方の外側ディスクを前記回転軸に対し、この回転軸と同期した回転を可能に支持しており、且つ、前記ディスク側嵌合面部前記軸側嵌合面部との間の圧入部に於ける締め代の大きさを、前記予圧付与部材が発揮する弾力に基づき、前記他方の外側ディスクを前記回転軸に対して軸方向に相対変位させられる大きさに規制している、事を特徴とするトロイダル型無段変速機。
A rotation axis;
A pair of outer disks supported so as to be freely rotatable in synchronization with the rotating shaft, with each axial side surface having a circular arc shape facing each other;
Around the intermediate portion in the axial direction of the rotating shaft, relative rotation with respect to the rotating shaft is supported freely with both axial side surfaces having an arcuate cross section facing one axial side surface of the outer disks. An inner disk formed by combining one or a pair of elements;
The circumferential surfaces of the spherically convex surfaces are supported in a freely oscillating displacement centered on a pivot that is twisted with respect to the rotating shaft, and both the axial sides of the inner disk and the axial direction of the outer disks A power roller in contact with one side surface;
A pressing device that is provided between the rotating shaft and one outer disk of the two outer disks and presses the one outer disk toward the other outer disk of the two outer disks;
Even if the outer disk is provided between the rotating shaft and the one outer disk, and the one outer disk is pressed against the other outer disk, the pressing device does not generate a pressing force. A preload applying member that presses the inner disk toward the inner disk;
The rotating shaft is locked to the end portion on the side where the other outer disk is arranged in the axial direction, and the other outer disk is prevented from being displaced in the axial direction from the one outer disk. A toroidal continuously variable transmission comprising: a locking member;
Relative rotation of an inner peripheral surface side uneven portion formed in a part of the inner peripheral surface of the other outer disk in the axial direction and an outer peripheral surface side uneven portion formed in a part of the outer peripheral surface of the rotating shaft in the axial direction A disc-side fitting surface portion formed on a portion adjacent to the other side in the axial direction of the inner circumferential surface side uneven portion of the inner circumferential surface of the other outer disc is in of the outer peripheral surface, the axis-side fitting surface portion formed between the portion of said locking member and the outer peripheral surface concavo-convex portion with respect to the axial direction is locked portion, by entering directly contact pressure, The other outer disk is supported with respect to the rotating shaft so as to be able to rotate in synchronization with the rotating shaft, and at the press- fitting portion between the disk-side fitting surface portion and the shaft-side fitting surface portion. The size of the tightening allowance is determined based on the elasticity exerted by the preload applying member. The regulates the size is caused to relative displacement in the axial direction with respect to the rotation axis, a toroidal type continuously variable transmission, wherein a thing.
JP2015098077A 2015-05-13 2015-05-13 Toroidal continuously variable transmission Active JP6561572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098077A JP6561572B2 (en) 2015-05-13 2015-05-13 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098077A JP6561572B2 (en) 2015-05-13 2015-05-13 Toroidal continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2016211708A JP2016211708A (en) 2016-12-15
JP2016211708A5 JP2016211708A5 (en) 2018-06-21
JP6561572B2 true JP6561572B2 (en) 2019-08-21

Family

ID=57550045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098077A Active JP6561572B2 (en) 2015-05-13 2015-05-13 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6561572B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005925B2 (en) * 1992-09-18 2000-02-07 本田技研工業 株式会社 Spline connection structure
JP2006342941A (en) * 2005-06-10 2006-12-21 Jtekt Corp Mounting structure for driving force transmission device
JP2007247771A (en) * 2006-03-15 2007-09-27 Ntn Corp Torque-transmitting mechanism
JP2014062569A (en) * 2012-09-20 2014-04-10 Nsk Ltd Toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP2016211708A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP3714226B2 (en) Toroidal continuously variable transmission
JP6117991B2 (en) Toroidal continuously variable transmission
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP2011149481A (en) Toroidal type continuously variable transmission
JP5935473B2 (en) Toroidal continuously variable transmission
JP6252227B2 (en) Toroidal continuously variable transmission
JP4079691B2 (en) Toroidal continuously variable transmission
JP6561572B2 (en) Toroidal continuously variable transmission
JP6110215B2 (en) Toroidal continuously variable transmission
JP6277833B2 (en) Toroidal continuously variable transmission
JP4696537B2 (en) Toroidal continuously variable transmission
JP6413383B2 (en) Toroidal continuously variable transmission
JP5045805B2 (en) Toroidal continuously variable transmission
JP6705735B2 (en) Toroidal type continuously variable transmission
WO2018096941A1 (en) Toroidal continuously variable transmission
JP4605495B2 (en) Toroidal continuously variable transmission
JP5982291B2 (en) Toroidal continuously variable transmission
JP5953977B2 (en) Toroidal continuously variable transmission
JP5982326B2 (en) Toroidal continuously variable transmission
JP2018084282A5 (en)
JP6561554B2 (en) Toroidal continuously variable transmission
JP6519333B2 (en) Toroidal type continuously variable transmission
JP6492906B2 (en) Toroidal continuously variable transmission
WO2018078921A1 (en) Friction clutch
JP6528361B2 (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150