JP6533267B2 - Electrolytic copper foil with minimized curl, electrode containing the same, secondary battery containing the same, and method of manufacturing the same - Google Patents

Electrolytic copper foil with minimized curl, electrode containing the same, secondary battery containing the same, and method of manufacturing the same Download PDF

Info

Publication number
JP6533267B2
JP6533267B2 JP2017206962A JP2017206962A JP6533267B2 JP 6533267 B2 JP6533267 B2 JP 6533267B2 JP 2017206962 A JP2017206962 A JP 2017206962A JP 2017206962 A JP2017206962 A JP 2017206962A JP 6533267 B2 JP6533267 B2 JP 6533267B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolyte
roughness
difference
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206962A
Other languages
Japanese (ja)
Other versions
JP2018080384A (en
Inventor
スン ミン キム
スン ミン キム
Original Assignee
ケイシーエフ テクノロジース カンパニー リミテッド
ケイシーエフ テクノロジース カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイシーエフ テクノロジース カンパニー リミテッド, ケイシーエフ テクノロジース カンパニー リミテッド filed Critical ケイシーエフ テクノロジース カンパニー リミテッド
Publication of JP2018080384A publication Critical patent/JP2018080384A/en
Application granted granted Critical
Publication of JP6533267B2 publication Critical patent/JP6533267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はカールを最小化した電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関するものである。   The present invention relates to an electrolytic copper foil with minimized curl, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same.

電解銅箔は、二次電池の陰極、軟性印刷回路基板(Flexible Printed Circuit Board:FPCB)などの多様な製品の製造に利用されている。   Electrolytic copper foils are used in the manufacture of various products such as cathodes of secondary batteries and flexible printed circuit boards (FPCBs).

一般に、電解銅箔はロールツーロール(Roll To Roll:RTR)工程を通じて製造されるだけでなく、ロールツーロール(RTR)工程を通しての二次電池の陰極、軟性印刷回路基板(FPCB)などの製造に利用される。   In general, electrolytic copper foils are manufactured not only through Roll To Roll (RTR) processes, but also as negative electrodes of secondary batteries through flexible Roll to Roll (RTR) processes, flexible printed circuit boards (FPCBs), etc. Used for

ロールツーロール(RTR)工程は連続生産を可能とするので、製品の大量生産に適した工程と知られている。しかし、現実としては、ロールツーロール(RTR)工程中に頻繁に引き起こされている電解銅箔の折れおよび/またはシワの発生によって、ロールツーロール工程設備を中断してこのような問題点を解決してから前記設備を再稼働しなければならず、このような工程設備の中断および再稼働の繰り返しによって生産性の低下という深刻な問題が引き起こされている。   Roll-to-roll (RTR) processes are known as processes suitable for mass production of products because they allow continuous production. However, as a matter of fact, the roll-to-roll process equipment is interrupted to solve such a problem by the occurrence of breakage and / or wrinkles of the electrolytic copper foil frequently caused during the roll-to-roll (RTR) process. It is then necessary to restart the equipment, and repeated interruptions and restarts of such process equipment cause a serious problem of reduced productivity.

すなわち、ロールツーロール(RTR)工程中に引き起こされる電解銅箔の折れおよび/またはシワの発生は製品の連続生産を不可能とさせてロールツーロール(RTR)工程固有の長所を毀損し、その結果、製品の生産性の低下および歩留まりの低下を招く。   That is, the occurrence of breakage and / or wrinkling of the electrodeposited copper foil caused during the roll-to-roll (RTR) process makes continuous production of the product impossible, thus impairing the inherent advantages of the roll-to-roll (RTR) process As a result, the productivity of the product is lowered and the yield is lowered.

カールの激しい電解銅箔であるほどロールツーロール(RTR)工程中に折れおよび/またはシワが発生する危険が大きい。しかし、電解銅箔のカールに影響を及ぼす因子はこれまで正確に究明されていない。   The higher the curled electrolytic copper foil, the greater the risk of breakage and / or wrinkling during the roll-to-roll (RTR) process. However, the factors that affect the curling of the electrodeposited copper foil have not been investigated accurately.

したがって、本発明は前記のような関連技術の制限および短所に起因した問題点が防止できる電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法に関するものである。   Accordingly, the present invention relates to an electrodeposited copper foil, an electrode including the same, a secondary battery including the same, and a method of manufacturing the same, which can prevent the problems caused by the limitations and disadvantages of the related art as described above.

本発明の一観点は、ロールツーロール(RTR)工程中に折れおよび/またはシワの発生が防止できるカールを最小化した電解銅箔を提供することである。   One aspect of the present invention is to provide an electrodeposited copper foil with minimized curl that can prevent the occurrence of breakage and / or wrinkles during a roll-to-roll (RTR) process.

本発明の他の観点は、ロールツーロール(RTR)工程中に折れおよび/またはシワの発生が防止できるカールを最小化した電解銅箔に製造されることによって、高生産性が担保できる電極を提供することである。   Another aspect of the present invention is an electrode that can ensure high productivity by being manufactured into an electrolytic copper foil with minimized curl that can prevent the occurrence of breakage and / or wrinkles during a roll-to-roll (RTR) process. It is to provide.

本発明のさらに他の観点は、ロールツーロール(RTR)工程中に折れおよび/またはシワの発生が防止できるカールを最小化した電解銅箔に製造されることによって、高生産性が担保できる二次電池を提供することである。   Still another aspect of the present invention is to be able to ensure high productivity by being manufactured into an electrolytic copper foil with minimized curl which can prevent the occurrence of breakage and / or wrinkles during a roll-to-roll (RTR) process. It is to provide the following battery.

本発明のさらに他の観点は、ロールツーロール(RTR)工程中に折れおよび/またはシワの発生が防止できるカールを最小化した電解銅箔を製造する方法を提供することである。   Yet another aspect of the present invention is to provide a method of manufacturing an electrolytic copper foil with minimized curl that can prevent the occurrence of breakage and / or wrinkles during a roll-to-roll (RTR) process.

前記で言及された本発明の観点の他にも、本発明の他の特徴および利点が以下で説明されるか、そのような説明から本発明が属する技術分野で通常の知識を有した者に明確に理解できるであろう。   Besides the aspects of the invention mentioned above, other features and advantages of the invention will be described in the following, or from such a description to the person skilled in the art to which the invention belongs. It will be clearly understood.

前記のような本発明の一観点に従って、第1面とその反対側の第2面を有する電解銅箔において、前記第1面に向かうマット面(matte surface)および前記第2面に向かうシャイニー面(shiny surface)を含む銅層;前記マット面上の第1保護層;および前記シャイニー面上の第2保護層を含み、前記第1および第2面の表面粗さ(R)の差は0.3μm以下であり、前記第1および第2面のピーク数粗さ(peak count roughness:Rpc)の差は96個以下であり、前記第1および第2面の220面集合組織係数[TC(220)]の差は0.39以下であり、前記第1および第2保護層のそれぞれはクロム(Cr)を含み、前記第1および第2面でのクロム(Cr)付着量の差は2.5mg/m以下であることを特徴とする、電解銅箔が提供される。 According to one aspect of the present invention as described above, in an electrodeposited copper foil having a first surface and a second surface opposite to the first surface, a matte surface facing the first surface and a shiny surface facing the second surface A copper layer including (shiny surface); a first protective layer on the matte surface; and a second protective layer on the shiny surface, wherein the difference in surface roughness (R a ) of the first and second surfaces is The difference between the peak count roughness (R pc ) of the first and second surfaces is 96 or less, and the 220 surface texture coefficient of the first and second surfaces The difference in TC (220) is 0.39 or less, and each of the first and second protective layers contains chromium (Cr), and the difference in the amount of chromium (Cr) deposited on the first and second surfaces. Is 2.5 An electrodeposited copper foil is provided, characterized in that it is at most mg / m 2 .

前記第1および第2面のそれぞれの表面粗さ(R)は0.1〜0.55μmであり得る。 The surface roughness (R a ) of each of the first and second surfaces may be 0.1 to 0.55 μm.

前記第1および第2面のそれぞれのピーク数粗さ(Rpc)は3〜106個であり得る。 The peak number roughness (R pc ) of each of the first and second surfaces may be 3 to 106.

前記第1および第2面のそれぞれの220面集合組織係数[TC(220)]は0.4〜1.32であり得る。   The 220 surface texture coefficient [TC (220)] of each of the first and second surfaces may be 0.4 to 1.32.

前記電解銅箔は25±15℃の常温で21〜55kgf/mmの降伏強度を有することができる。 The electrodeposited copper foil may have a yield strength of 21 to 55 kgf / mm 2 at a normal temperature of 25 ± 15 ° C.

前記電解銅箔は25±15℃の常温で3%以上の延伸率を有することができる。   The electrodeposited copper foil may have a stretch ratio of 3% or more at a normal temperature of 25 ± 15 ° C.

本発明の他の観点に従って、第1面とその反対側の第2面を有する電解銅箔;および前記第1面上の第1活物質層を含むものの、前記電解銅箔は、前記第1面に向かうマット面および前記第2面に向かうシャイニー面を含む銅層;前記マット面上の第1保護層;および前記シャイニー面上の第2保護層を含み、前記第1および第2面の表面粗さ(R)の差は0.3μm以下であり、前記第1および第2面のピーク数粗さ(Rpc)の差は96個以下であり、前記第1および第2面の220面集合組織係数[TC(220)]の差は0.39以下であり、前記第1および第2保護層のそれぞれはクロム(Cr)を含み、前記第1および第2面でのクロム(Cr)付着量の差は2.5mg/m以下であることを特徴とする、二次電池用電極が提供される。 According to another aspect of the present invention, an electrodeposited copper foil having a first surface and a second surface opposite to the first surface; and a first active material layer on the first surface, wherein the electrodeposited copper foil comprises A copper layer including a matte side facing the side and a shiny side facing the second side; a first protective layer on the matte side; and a second protective layer on the shiny side, of the first and second sides The difference between the surface roughness (R a ) is 0.3 μm or less, and the difference between the peak number roughness (R pc ) of the first and second surfaces is 96 or less, and the difference between the first and second surfaces is The difference between the 220 surface texture coefficient [TC (220)] is 0.39 or less, and each of the first and second protective layers contains chromium (Cr), and the chromium on the first and second surfaces Cr) An electrode for a secondary battery, wherein the difference in the amount of adhesion is 2.5 mg / m 2 or less Is provided.

前記第1および第2面のそれぞれの表面粗さ(R)は0.1〜0.55μmであり得、前記第1および第2面のそれぞれのピーク数粗さ(Rpc)は3〜106個であり得、前記第1および第2面のそれぞれの220面集合組織係数[TC(220)]は0.4〜1.32であり得る。 The surface roughness (R a ) of each of the first and second surfaces may be 0.1 to 0.55 μm, and the peak number roughness (R pc ) of each of the first and second surfaces may be 3 to 3 There may be 106, and the 220 surface texture coefficient [TC (220)] of each of the first and second surfaces may be 0.4 to 1.32.

前記電解銅箔は25±15℃の常温で21〜55kgf/mmの降伏強度および3%以上の延伸率を有することができる。 The electrodeposited copper foil may have a yield strength of 21 to 55 kgf / mm 2 and a draw ratio of 3% or more at a room temperature of 25 ± 15 ° C.

前記二次電池用電極は前記第2面上の第2活物質層をさらに含むことができ、前記第1および第2活物質層は、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質をそれぞれ含むことができる。   The electrode for the secondary battery may further include a second active material layer on the second surface, and the first and second active material layers may be, independently of each other, carbon; Si, Ge, Sn, Li A metal of Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; an oxide of the metal; and one or more active materials selected from the group consisting of the metal and the carbon complex Can be included.

本発明のさらに他の観点に従って、陽極(cathode);前記二次電池用電極で構成された陰極(anode);前記陽極と陰極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および前記陽極と前記陰極を電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池が提供される。   According to still another aspect of the present invention, an anode; a cathode comprising the electrode for the secondary battery; an electrolyte providing an environment in which lithium ions can move between the anode and the cathode; A secondary battery is provided, comprising: a separator electrically insulating the anode and the cathode.

本発明のさらに他の観点に従って、銅層を形成する段階;および前記銅層上に保護層を形成する段階を含むものの、前記銅層形成段階は、70〜90g/Lの銅イオン、80〜120g/Lの硫酸、10〜50ppmのビス(3−スルホプロピル)ジスルフィド[bis−(3−sulfopropyl)disulfide:SPS]、および10〜50ppmのポリエチレングリコール(PEG)を含む電解液を準備する段階;および前記電解液内に互いに離隔して配置された陽極板および回転陰極ドラムを40〜80A/dmの電流密度で通電させることによって電気メッキを遂行する段階を含み、前記電気メッキが遂行される間、前記電解液内の全体炭素量(Total Carbon:TC)は0.25g/L以下に維持され、前記電解液内の銀(Ag)濃度は0.2g/L以下に維持されることを特徴とする、電解銅箔の製造方法が提供される。 According to yet another aspect of the present invention, the step of forming a copper layer; and the step of forming a protective layer on the copper layer, wherein the step of forming the copper layer comprises 70 to 90 g / L of copper ions, 80 to Preparing an electrolyte comprising 120 g / L sulfuric acid, 10 to 50 ppm bis (3-sulfopropyl) disulfide [bis- (3-sulfopropyl) disulfide: SPS], and 10 to 50 ppm polyethylene glycol (PEG); And performing the electroplating by energizing the anode plate and the rotating cathode drum disposed apart from each other in the electrolyte at a current density of 40-80 A / dm 2 , wherein the electroplating is performed In the meantime, the total carbon (TC) in the electrolytic solution is maintained at 0.25 g / L or less. Silver (Ag) concentration of the serial in electrolyte characterized in that it is kept below 0.2 g / L, the manufacturing method of the electrodeposited copper foil is provided.

前記回転陰極ドラムの表面は#800〜#3000の粒度(Grit)を有する研磨ブラシで研磨され得る。   The surface of the rotating cathode drum may be polished with a polishing brush having a particle size (Grit) of # 800 to # 3000.

前記電解液準備段階は、銅ワイヤーを600〜900℃で30〜60分の間熱処理する段階;前記熱処理された銅ワイヤーを酸洗する段階;前記酸洗した銅ワイヤーを硫酸に投入する段階;および前記銅ワイヤーが投入された硫酸にビス(3−スルホプロピル)ジスルフィド(SPS)およびポリエチレングリコール(PEG)を添加する段階を含むことができる。   The preparing of the electrolyte comprises heat treating the copper wire at 600 to 900 ° C. for 30 to 60 minutes; pickling the heat treated copper wire; charging the pickled copper wire to sulfuric acid; And adding bis (3-sulfopropyl) disulfide (SPS) and polyethylene glycol (PEG) to the sulfuric acid charged with the copper wire.

前記銅層形成段階は、前記電気メッキが遂行される間過酸化水素および空気を前記電解液に投入する段階をさらに含むことができる。   The forming of the copper layer may further include introducing hydrogen peroxide and air into the electrolyte while the electroplating is performed.

前記銅層形成段階は、前記電解液内の銀(Ag)濃度が0.2g/Lを超過することを防止するために、銀(Ag)をAgCl形態で沈殿させ得る塩素イオンを前記電解液に添加する段階をさらに含むことができる。   The forming of the copper layer may be performed by using chloride ions capable of precipitating silver (Ag) in the form of AgCl in order to prevent the concentration of silver (Ag) in the electrolyte from exceeding 0.2 g / L. And the step of adding to

前記電解液はヒドロキシエチルセルロース(HEC)、有機硫化物、有機窒化物、グリコール(glycol)系高分子、およびチオ尿素(thiourea)系化合物で構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことができる。   The electrolyte comprises at least one organic additive selected from the group consisting of hydroxyethyl cellulose (HEC), organic sulfides, organic nitrides, glycol based polymers, and thiourea based compounds. It can further include.

前記保護層形成段階は0.5〜1.5g/LのCrを含む防錆液内に前記銅層を浸漬させる段階を含むことができる。   The forming of the protective layer may include immersing the copper layer in an anticorrosive solution containing 0.5 to 1.5 g / L of Cr.

前記のような本発明に対する一般的な叙述は本発明を例示したり説明するためのものに過ぎず、本発明の権利範囲を制限しない。   The foregoing general description of the present invention is merely for the purpose of illustrating and explaining the present invention and does not limit the scope of the present invention.

本発明によれば、カールを最小化した電解銅箔を利用してロールツーロール(RTR)工程を通じて軟性印刷回路基板(FPCB)、二次電池などの中間部品および最終品を製造することによって、ロールツーロール(RTR)工程中に前記電解銅箔の折れやシワの発生を防止することができ、その結果、前記中間部品はもちろん最終品の生産性を向上することができる。   According to the present invention, by using a curl-reduced electrolytic copper foil to manufacture intermediate parts and final products such as flexible printed circuit boards (FPCBs), secondary batteries, etc. through a roll-to-roll (RTR) process, During the roll-to-roll (RTR) process, it is possible to prevent the occurrence of breakage or wrinkles of the electrodeposited copper foil, and as a result, it is possible to improve the productivity of the intermediate product as well as the final product.

添付された図面は、本発明の理解を助け、本明細書の一部を構成するためのものであって、本発明の実施例を例示し、発明の詳細な説明とともに本発明の原理を説明する。
本発明の一実施例に係る二次電池用電極の断面図である。 ASME B46.1(2009)規格に従って得られた表面粗さプロファイルを例示した図面である。 電解銅箔のXRDグラフを例示した図面である。 電解銅箔のカール(curl)の程度を測定する方法を例示した図面である。
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are included to provide a further understanding of the present invention and to constitute a part of this specification, and illustrate an embodiment of the present invention and explain the principles of the present invention along with the detailed description of the invention. Do.
FIG. 2 is a cross-sectional view of a secondary battery electrode according to an embodiment of the present invention. It is the figure which illustrated the surface coarseness profile obtained according to ASME B46.1 (2009) standard. It is the drawing which illustrated the XRD graph of the electrolytic copper foil. It is drawing which illustrated the method of measuring the grade of the curl (curl) of an electrolytic copper foil.

以下、添付図面を参照して本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の技術的思想および範囲を逸脱しない範囲内で本発明の多様な変更および変形が可能であることは当業者に自明である。したがって、本発明は特許請求の範囲に記載された発明およびその均等の範囲内に入る変更および変形を全て含む。   It is obvious to those skilled in the art that various modifications and variations of the present invention are possible without departing from the technical spirit and scope of the present invention. Accordingly, the present invention includes all modifications and variations that fall within the scope of the claimed invention and equivalents thereof.

リチウムイオン二次電池は、陽極(cathode)、陰極(anode)、前記陽極と陰極の間でリチウムイオンが移動できる環境を提供する電解質(electrolyte)、および一つの電極で発生した電子が二次電池の内部を通じて他の電極に移動することによって無駄に消耗することを防止するために、前記陽極と陰極を電気的に絶縁させる分離膜(separator)を含む。   A lithium ion secondary battery includes an anode, a cathode, an electrolyte that provides an environment in which lithium ions can move between the anode and the cathode, and electrons generated at one electrode are the secondary battery. And a separator that electrically insulates the anode and the cathode to prevent them from being wasted by moving to the other electrode through the inside of the.

図1は本発明の一実施例に係る二次電池用電極の断面図である。   FIG. 1 is a cross-sectional view of a secondary battery electrode according to an embodiment of the present invention.

図1に例示された通り、本発明の一実施例に係る二次電池用電極100は、第1面S1とその反対側の第2面S2を有する電解銅箔110、前記第1面S1上の第1活物質層120a、および前記第2面S2上の第2活物質層120bを含む。図1は前記電解銅箔110の第1および第2面S1、S2の両方上に活物質層120a、120bがそれぞれ形成された例を示しているが、本発明はこれに限定されず、本発明の二次電池用電極100は活物質層として前記第1および第2活物質層120a、120bのうちいずれか一つのみを含むこともできる。   As illustrated in FIG. 1, an electrode 100 for a secondary battery according to an embodiment of the present invention includes an electrodeposited copper foil 110 having a first surface S1 and a second surface S2 opposite to the first surface S1. And a second active material layer 120b on the second surface S2. FIG. 1 shows an example in which active material layers 120a and 120b are respectively formed on both the first and second surfaces S1 and S2 of the electrodeposited copper foil 110, but the present invention is not limited to this, and the present invention is not limited thereto. The electrode 100 for a secondary battery of the invention may include only one of the first and second active material layers 120a and 120b as an active material layer.

リチウム二次電池において、陽極活物質と結合する陽極集電体としてはアルミホイル(foil)が使われ、陰極活物質と結合する陰極集電体としては電解銅箔が使われるのが一般的である。   In a lithium secondary battery, an aluminum foil is used as an anode current collector to be combined with an anode active material, and an electrolytic copper foil is generally used as a cathode current collector to be combined with a cathode active material. is there.

本発明の一実施例によれば、前記二次電池用電極100はリチウム二次電池の陰極に使われ、前記電解銅箔110は陰極集電体として機能し、前記第1および第2活物質層120a、120bは陰極活物質を含む。   According to one embodiment of the present invention, the secondary battery electrode 100 is used as a cathode of a lithium secondary battery, and the electrodeposited copper foil 110 functions as a cathode current collector, and the first and second active materials are used. The layers 120a and 120b contain a cathode active material.

図1に例示された通り、本発明の電解銅箔110はマット面(matte surface)MSおよびシャイニー面(shiny surface)SSを含む銅層111、前記銅層111の前記マット面MS上の第1保護層112a、および前記銅層111の前記シャイニー面SS上の第2保護層112bを含む。   As illustrated in FIG. 1, the electrodeposited copper foil 110 of the present invention has a copper layer 111 including a matte surface MS and a shiny surface SS, and a first surface of the copper layer 111 on the matte surface MS. A protective layer 112 a and a second protective layer 112 b on the shiny side SS of the copper layer 111 are included.

前記マット面MSは前記電解銅箔110の第1面S1に向かう銅層111の面であり、前記シャイニー面SSは前記電解銅箔110の第2面S2に向かう銅層111の面である。   The matte surface MS is a surface of the copper layer 111 directed to the first surface S 1 of the electrodeposited copper foil 110, and the shiny surface SS is a surface of the copper layer 111 directed to the second surface S 2 of the electrodeposited copper foil 110.

本発明の銅層111は電気メッキを通じて回転陰極ドラム上に形成され得るが、前記シャイニー面SSは電気メッキ過程で前記回転陰極ドラムと接触した面を指し示し、前記マット面MSは前記シャイニー面SSの反対側の面を指し示す。   The copper layer 111 of the present invention may be formed on the rotary cathode drum through electroplating, but the shiny surface SS indicates a surface in contact with the rotary cathode drum during the electroplating process, and the matte surface MS is the shiny surface SS. Point to the opposite side.

シャイニー面SSがマット面MSに比べてより低い表面粗さ(Rz)を有するのが一般的であるが、本発明はこれに限定されず、シャイニー面SSの表面粗さ(Rz)がマット面MSの表面粗さ(Rz)と同一であるかそれよりも高くてもよい。   Although the shiny surface SS generally has lower surface roughness (Rz) compared to the matte surface MS, the present invention is not limited thereto, and the surface roughness (Rz) of the shiny surface SS is the matte surface. It may be the same as or higher than the surface roughness (Rz) of MS.

前記第1および第2保護層112a、112bは、前記銅層111の腐食を防止し、耐熱性を向上させるためのものであって、クロム(Cr)を含むことができる。   The first and second protective layers 112a and 112b may prevent corrosion of the copper layer 111 to improve heat resistance, and may include chromium (Cr).

前述した通り、カール(curl)の激しい電解銅箔であるほどロールツーロール(RTR)工程中に折れおよび/またはシワが発生する危険が大きい。したがって、電解銅箔110のカールを引き起こす全ての因子を考慮して電解銅箔110を製造しなければならない。   As mentioned above, the more the curled electrolytic copper foil, the greater the risk of breakage and / or wrinkles during the roll-to-roll (RTR) process. Therefore, the electrolytic copper foil 110 must be manufactured in consideration of all the factors that cause the electrolytic copper foil 110 to curl.

本発明によれば、表面形状、表面プロファイル、表面の結晶構造、およびクロム(Cr)付着量のような因子に対する電解銅箔110の第1および第2面S1、S2の差が電解銅箔110のカールを引き起こすという事実が見出された。すなわち、前記因子に対する前記第1および第2面S1、S2の差は前記第1および第2面S1、S2での応力差を誘発し、このような応力差は電解銅箔110のカールを誘発する。したがって、電解銅箔110のカールを最小化するために、前記主要因子に対する前記第1および第2面S1、S2の差を最小化する必要がある。   According to the present invention, the difference between the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 with respect to factors such as surface shape, surface profile, surface crystal structure, and chromium (Cr) adhesion amount is the electrodeposited copper foil 110 Was found to cause curling. That is, the difference between the first and second surfaces S1 and S2 with respect to the factor induces a stress difference at the first and second surfaces S1 and S2, and such stress difference induces a curl of the electrodeposited copper foil 110. Do. Therefore, in order to minimize the curl of the electrodeposited copper foil 110, it is necessary to minimize the difference between the first and second surfaces S1 and S2 with respect to the main factor.

結晶粒サイズと密接な関係にある表面形状と表面プロファイルは表面粗さ(R)およびピーク数粗さ(peak count roughness:Rpc)で代表され得、表面の結晶構造は220面集合組織係数[TC(220)]で代表され得る。 The surface shape and surface profile closely related to the grain size can be represented by surface roughness (R a ) and peak count roughness (R pc ), and the crystal structure of the surface is a 220 surface aggregation coefficient It may be represented by [TC (220)].

したがって、本発明によれば、電解銅箔110のカールを最小化するために、前記第1および第2面S1、S2の表面粗さ(R)の差は0.3μm以下であり、前記第1および第2面S1、S2のピーク数粗さ(Rpc)の差は96個以下であり、前記第1および第2面S1、S2の220面集合組織係数[TC(220)]の差は0.39以下である。 Therefore, according to the present invention, in order to minimize the curl of the electrodeposited copper foil 110, the difference in surface roughness (R a ) between the first and second surfaces S1 and S2 is 0.3 μm or less. The difference in peak number roughness (R pc ) of the first and second surfaces S1 and S2 is 96 or less, and the 220 surface texture coefficient [TC (220)] of the first and second surfaces S1 and S2 The difference is less than 0.39.

前記表面粗さ(R)は、JIS B 0601−1994規格に沿って測定され得る[測定長さ:4mm(cut off区間は除外)]。本発明の一実施例によれば、前記電解銅箔110の第1および第2面S1、S2のそれぞれの表面粗さ(R)は0.1〜0.55μmであり得る。 The surface roughness (R a ) can be measured in accordance with the JIS B 0601-1994 standard [Measured length: 4 mm (cut off section excluded)]. According to an embodiment of the present invention, the surface roughness (R a ) of each of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 may be 0.1 to 0.55 μm.

前記表面粗さ(R)が0.1μm未満である場合、陰極活物質と接触できる電解銅箔110の活性比表面積が過度に少ないため電解銅箔110と第1および第2活物質層120a、120bの間に十分な密着力を確保することができない。反面、表面粗さ(R)が0.55μmを超過する場合には、電解銅箔110の第1および第2面S1、S2が過度に不均一であるため陰極活物質のコーティング均一性が低下し、これによって電解銅箔110と第1および第2活物質層120a、120bの間の密着力が顕著に低下する。 When the surface roughness (R a ) is less than 0.1 μm, the electrodeposited copper foil 110 and the first and second active material layers 120 a can be in contact with the cathode active material because the active specific surface area of the electrodeposited copper foil 110 is excessively small. , 120b can not ensure sufficient adhesion. On the other hand, when the surface roughness (R a ) exceeds 0.55 μm, the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 are excessively uneven, so that the coating uniformity of the cathode active material is As a result, the adhesion between the electrodeposited copper foil 110 and the first and second active material layers 120a and 120b is significantly reduced.

以下では、図2を参照して本発明の主要因子の一つであるピーク数粗さ(Rpc)を具体的に説明する。 The peak number roughness (R pc ), which is one of the main factors of the present invention, will be specifically described below with reference to FIG.

前記ピーク数粗さ(Rpc)は、表面中の任意の3地点のピーク数粗さ(Rpc)を測定し、その測定値の平均値を算出することによって得ることができる。前記地点のそれぞれのピーク数粗さ(Rpc)は、ASME B46.1(2009)規格に沿って得られた表面粗さプロファイルにおいて、4mmの単位サンプリング長当たり0.5μmの上位基準線(upper criteria line:C1)上にそびえている有効ピーク(P、P、P、P)の個数である。この時、前記有効ピークのうち隣り合う有効ピークの間には、−0.5μmの下位基準線(lower criteria line:C2)より深い少なくとも一つの谷(valley)が存在する。もし、上位基準線(C1)上にそびえている隣り合うピークの間に−0.5μmの下位基準線(C2)より深い谷が一つも存在しないのであれば、前記隣り合うピークの全てがピーク密度(PD)の測定に利用される「有効ピーク」となることはできず、「有効ピーク」の個数を求める際に前記ピークのうち相対的により低いピークは無視される。 The peak number roughness (R pc ) can be obtained by measuring the peak number roughness (R pc ) at any three points on the surface and calculating the average value of the measured values. The peak number roughness (R pc ) of each point is 0.5 μm per unit sampling length of 4 mm in the surface roughness profile obtained along the ASME B 46.1 (2009) standard. It is the number of effective peaks (P 1 , P 2 , P 3 , P 4 ) rising above the criteria line: C1). At this time, at least one valley deeper than a lower criteria line (C2) of -0.5 [mu] m exists between adjacent effective peaks among the effective peaks. If there is no valley deeper than the -0.5 μm lower reference line (C2) between the adjacent peaks rising above the upper reference line (C1), all the adjacent peaks are peaks It can not be the "effective peak" used for density (PD) measurement, and the lower one of the peaks is ignored when determining the number of "effective peaks".

本発明の一実施例によれば、前記電解銅箔110の第1および第2面S1、S2のそれぞれのピーク数粗さ(Rpc)はそれぞれ3〜106個であり得る。 According to an embodiment of the present invention, the peak number roughness (R pc ) of each of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 may be 3 to 106.

前記ピーク数粗さ(Rpc)が3個未満の場合、陰極活物質と接触できる電解銅箔110の活性比表面積が過度に少ないため電解銅箔110と第1および第2活物質層120a、120bの間に十分な密着力を確保することができない。反面、ピーク数粗さ(Rpc)が106個を超過する場合には、過度に多い表面凹凸によって陰極活物質のコーティング均一性が低下し、これによって電解銅箔110と第1および第2活物質層120a、120bの間の密着力が顕著に低下する。 When the peak number roughness (R pc ) is less than 3, the electrodeposited copper foil 110 and the first and second active material layers 120a, 120a, 120a, and 120a have an excessively small specific surface area of the electrodeposited copper foil 110 that can contact the cathode active material. Sufficient adhesion can not be secured between 120b. On the other hand, when the peak number roughness (R pc ) exceeds 106, the coating uniformity of the cathode active material is reduced due to excessive surface irregularities, which causes the electrodeposited copper foil 110 and the first and second activities to be active. The adhesion between the material layers 120a and 120b is significantly reduced.

本発明の主要因子の一つである220面集合組織係数[TC(220)]は次のように測定および算出する。   The 220 surface texture coefficient [TC (220)], which is one of the main factors of the present invention, is measured and calculated as follows.

まず、30°〜95°の回折角(2θ)の範囲でX線回折法(XRD)[Target:Copper K alpha1、2θinterval:0.01°、2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフ[例えば、図3に例示された通り、111面、200面、220面、および311面に該当するピークが表われたXRDグラフ]を得、このグラフから各結晶面(hkl)のXRD回折強度[I(hkl)]を求める。また、JCPDS(Joint Committee on Powder Diffraction Standards)によって規定された標準銅粉末の前記n個の結晶面のそれぞれに対するXRD回折強度[I(hkl)]を求める。引き続き、前記n個の結晶面のI(hkl)/I(hkl)の算術平均値を求めた後、前記算術平均値で220面のI(220)/I(220)を割ることによって、220面集合組織係数[TC(220)]を算出する。すなわち、220面集合組織係数[TC(220)]は下記の式1に基づいて算出される。 First, X-ray diffraction (XRD) [Target: Copper K alpha 1, 2θ interval: 0.01 °, 2θ scan speed: 3 ° / min] in the range of diffraction angles (2θ) of 30 ° to 95 ° , An XRD graph having peaks corresponding to n crystal planes [eg, an XRD graph showing peaks corresponding to 111, 200, 220, and 311 planes as illustrated in FIG. 3]. From this graph, the XRD diffraction intensity [I (hkl)] of each crystal plane (hkl) is determined. In addition, the XRD diffraction intensity [I 0 (hkl)] for each of the n crystal planes of the standard copper powder defined by JCPDS (Joint Committee on Powder Diffraction Standards) is determined. Subsequently, after obtaining the arithmetic mean of the n crystal plane I (hkl) / I 0 ( hkl), by dividing the I (220) of the 220 plane arithmetic mean value / I 0 (220) , 220 face organization coefficient [TC (220)] is calculated. That is, the 220 surface texture coefficient [TC (220)] is calculated based on Equation 1 below.

本発明の一実施例によれば、前記電解銅箔110の第1および第2面S1、S2のそれぞれの220面集合組織係数[TC(220)]はそれぞれ0.4〜1.32であり得る。   According to an embodiment of the present invention, the 220 surface texture coefficient [TC (220)] of each of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 is 0.4 to 1.32 respectively. obtain.

前記220面集合組織係数[TC(220)]が高いほど前記電解銅箔110がさらに緻密な結晶構造を有していることを意味するので、前記第1および第2面S1、S2のそれぞれの220面集合組織係数[TC(220)]は0.4以上であることが好ましい。   The higher the 220 plane texture coefficient [TC (220)] means that the electrodeposited copper foil 110 has a denser crystal structure, the respective first and second surfaces S1, S2 The 220 surface texture coefficient [TC (220)] is preferably 0.4 or more.

しかし、220面集合組織係数[TC(220)]が1.32を超過すると電解銅箔110の結晶構造が過度に緻密となって陰極活物質が安定的に接触できる活性場所が足りなくなり、その結果、電解銅箔110と陰極活物質の間に十分な接着力を確保することができなくなり、二次電池が充放電される時に電解銅箔110が第1および第2活物質層120a、120bとともに膨張および収縮しないため、電解銅箔110から第1および第2活物質層120a、120bが分離する危険が高くなる。   However, when the 220 surface texture coefficient [TC (220)] exceeds 1.32, the crystal structure of the electrodeposited copper foil 110 becomes excessively dense, and there are not enough active places where the cathode active material can contact stably. As a result, sufficient adhesion can not be secured between the electrodeposited copper foil 110 and the cathode active material, and the electrodeposited copper foil 110 becomes the first and second active material layers 120a and 120b when the secondary battery is charged and discharged. At the same time, the risk of separation of the first and second active material layers 120a and 120b from the electrodeposited copper foil 110 increases.

また、本発明によれば、電解銅箔110のカールを最小化するために、前記第1および第2面S1、S2でのクロム(Cr)付着量の差は2.5mg/m以下である。前記クロム(Cr)付着量は、AAS(Atomic Absorption Spectrometry)分析を通じて測定され得る。 Further, according to the present invention, in order to minimize the curling of the electrodeposited copper foil 110, the difference between the chromium (Cr) adhesion amount on the first and second surfaces S1 and S2 is 2.5 mg / m 2 or less. is there. The chromium (Cr) loading can be measured through atomic absorption spectrometry (AAS) analysis.

本発明の一実施例によれば、前記第1および第2面S1、S2でのクロム(Cr)付着量は、それぞれ1〜5mg/mであり得る。 According to an embodiment of the present invention, the chromium (Cr) deposition amount on the first and second surfaces S1 and S2 may be 1 to 5 mg / m 2 , respectively.

本発明の電解銅箔110は、常温(25±15℃)で21〜55kgf/mmの降伏強度を有することができる。前記降伏強度は、万能試験機(UTM)を利用して測定するが、この時、サンプルの幅は12.7mmであり、Grip間の距離は50mmであり、測定速度は50mm/minである。 The electrolytic copper foil 110 of the present invention can have a yield strength of 21 to 55 kgf / mm 2 at normal temperature (25 ± 15 ° C.). The yield strength is measured using a universal tester (UTM), where the width of the sample is 12.7 mm, the distance between Grips is 50 mm, and the measurement speed is 50 mm / min.

電解銅箔110の降伏強度が21kgf/mm未満であると、電極100および二次電池の製造過程で加えられる力によってシワおよび/または折れが発生する危険がある。反面、電解銅箔110の降伏強度が22kgf/mmを超過すると、二次電池の製造工程の作業性が低下する。 If the yield strength of the electrodeposited copper foil 110 is less than 21 kgf / mm 2 , there is a risk that wrinkles and / or breakage may occur due to the force applied during the manufacturing process of the electrode 100 and the secondary battery. On the other hand, when the yield strength of the electrodeposited copper foil 110 exceeds 22 kgf / mm 2 , the workability of the manufacturing process of the secondary battery is reduced.

本発明の電解銅箔110は、常温(25±15℃)で3%以上の延伸率を有することができる。電解銅箔110の延伸率が3%未満であると、電極100および二次電池の製造過程で加えられる力によって電解銅箔110が伸びずに破れる危険が大きくなる。   The electrolytic copper foil 110 of the present invention can have a stretch ratio of 3% or more at normal temperature (25 ± 15 ° C.). If the stretch ratio of the electrodeposited copper foil 110 is less than 3%, the risk of the electrodeposited copper foil 110 breaking without elongation due to the force applied in the manufacturing process of the electrode 100 and the secondary battery increases.

本発明の電解銅箔110は3〜20μmの厚さを有することができる。   The electrodeposited copper foil 110 of the present invention can have a thickness of 3 to 20 μm.

前記第1および第2活物質層120a、120bは、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質を陰極活物質として含むことができる。   The first and second active material layers 120a and 120b are, independently of each other, a metal of carbon; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; The cathode active material can include one or more active materials selected from the group consisting of metal oxides; and complexes of the metals and carbon.

二次電池の充放電容量を増加させるために、前記第1および第2活物質層120a、120bはSiを所定量含んだ混合物で形成され得る。   In order to increase the charge and discharge capacity of the secondary battery, the first and second active material layers 120a and 120b may be formed of a mixture containing a predetermined amount of Si.

以下では、本発明の一実施例に係る電解銅箔110の製造方法を具体的に説明する。   Hereinafter, a method of manufacturing the electrodeposited copper foil 110 according to an embodiment of the present invention will be specifically described.

本発明の方法は、銅層111を形成する段階および前記銅層111上に保護層112a、112bを形成する段階を含む。   The method of the present invention includes the steps of forming a copper layer 111 and forming protective layers 112a, 112b on the copper layer 111.

まず、70〜90g/Lの銅イオン、80〜120g/Lの硫酸、10〜50ppmのビス(3−スルホプロピル)ジスルフィド[bis−(3−sulfopropyl)disulfide:SPS]、および10〜50ppmのポリエチレングリコール(PEG)を含む電解液を準備する。   First, 70-90 g / L copper ion, 80-120 g / L sulfuric acid, 10-50 ppm bis (3-sulfopropyl) disulfide [bis- (3-sulfopropyl) disulfide: SPS], and 10-50 ppm polyethylene Prepare an electrolyte containing glycol (PEG).

引き続き、50〜60℃の前記電解液内に互いに離隔して配置された陽極板および回転陰極ドラムを40〜80A/dmの電流密度で通電させることによって、電気メッキを遂行することによって前記銅層111を前記回転陰極ドラム上に形成させる。 Subsequently, the copper is electroplated by conducting an electric current density of 40 to 80 A / dm 2 between an anode plate and a rotating cathode drum, which are disposed apart from each other in the electrolytic solution at 50 to 60 ° C. A layer 111 is formed on the rotating cathode drum.

本発明によれば、前記電気メッキが遂行される間、前記電解液内の全炭素量(Total Carbon:TC)が0.25g/L以下に維持されるように前記電解液が管理される。全炭素量(TC)は、全有機炭素(Total Organic Carbon:TOC)および全無機炭素(Total Inorganic Carbon:TIC)で構成され、TC測定設備を通じて分析され得る。   According to the present invention, the electrolyte is controlled so that the total carbon (TC) in the electrolyte is maintained at 0.25 g / L or less while the electroplating is performed. The total carbon content (TC) is composed of Total Organic Carbon (TOC) and Total Inorganic Carbon (TIC) and can be analyzed through a TC measurement facility.

電解液の全炭素量(TC)を0.25g/L以下に維持させるために、高純度の銅ワイヤーを600〜900℃で30〜60分の間熱処理して有機物を燃やし、前記熱処理された銅ワイヤーを酸洗し、前記酸洗した銅ワイヤーを硫酸に投入することによって不純物が全くまたは殆どない電解液を準備した後、ここにビス(3−スルホプロピル)ジスルフィド(SPS)およびポリエチレングリコール(PEG)を添加する。   In order to maintain the total carbon content (TC) of the electrolytic solution at 0.25 g / L or less, the high purity copper wire was heat treated at 600 to 900 ° C. for 30 to 60 minutes to burn the organic matter, and the heat treated After preparing an electrolytic solution having no or almost no impurities by pickling a copper wire and introducing the pickled copper wire into sulfuric acid, bis (3-sulfopropyl) disulfide (SPS) and polyethylene glycol ( Add PEG).

電解液の全炭素量(TC)を0.25g/L以下に維持させるために、オゾン処理を通じて電解液内の有機物を分解することによって前記全炭素量(TC)を低くすることもできる。また、前記電気メッキが遂行される間、過酸化水素および空気を前記電解液に投入することによって前記電解液の清浄度を向上させることができる。   In order to maintain the total carbon content (TC) of the electrolytic solution at 0.25 g / L or less, the total carbon content (TC) can also be lowered by decomposing organic substances in the electrolytic solution through ozone treatment. Also, the cleanliness of the electrolyte can be improved by introducing hydrogen peroxide and air into the electrolyte while the electroplating is performed.

本発明によれば、前記電気メッキが遂行される間、前記電解液内の銀(Ag)濃度は0.2g/L以下に維持される。   According to the present invention, the silver (Ag) concentration in the electrolyte is maintained at 0.2 g / L or less while the electroplating is performed.

前記電気メッキが遂行される時、銀(Ag)が前記電解液に流入して前記電解液内の銀(Ag)濃度が0.2g/Lを超過することを防止するために、銀(Ag)をAgCl形態で沈殿させ得る塩素イオンを少量(例えば、15〜25ppm)前記電解液に添加することができる。   When the electroplating is performed, silver (Ag) is added to prevent silver (Ag) from flowing into the electrolyte and the concentration of silver (Ag) in the electrolyte exceeds 0.2 g / L. A small amount (e.g., 15 to 25 ppm) of chloride ion can be added to the electrolyte, which can be precipitated in AgCl form.

電解液の全炭素量(TC)および銀(Ag)濃度を0.25g/L以下および0.2g/L以下にそれぞれ管理し、40〜80A/dmの電流密度を適用することによって、電解銅箔110の第1および第2面S1、S2の表面粗さ(R)の差およびピーク数粗さ(Rpc)の差が0.3μm以下および96個以下にそれぞれ制御され得る。 By controlling the total carbon content (TC) and silver (Ag) concentration of the electrolytic solution to 0.25 g / L or less and 0.2 g / L or less, respectively, and applying a current density of 40 to 80 A / dm 2 , The difference in surface roughness (R a ) of the first and second surfaces S1 and S2 of the copper foil 110 and the difference in peak number roughness (R pc ) can be controlled to 0.3 μm or less and 96 or less, respectively.

前記電気メッキが遂行される間前記電解液から固形不純物を除去するための連続(または循環)濾過を31〜45m/hrの流量で遂行できる。前記流量が31m/hr未満であると、流速が低くなって過電圧が増加し銅層111が不均一に形成される。反面、前記流量が45m/hrを超過すると、フィルタの損傷が誘発されて電解液内に異物が流入する。 Continuous (or circulation) filtration for removing solid impurities from the electrolyte may be performed at a flow rate of 31 to 45 m 3 / hr while the electroplating is performed. When the flow rate is less than 31 m 3 / hr, the flow rate is lowered, the overvoltage is increased, and the copper layer 111 is formed unevenly. On the other hand, when the flow rate exceeds 45 m 3 / hr, damage to the filter is induced and foreign matter flows into the electrolyte.

前述した通り、本発明の電解液は、10〜50ppmのビス(3−スルホプロピル)ジスルフィド(SPS)および10〜50ppmのポリエチレングリコール(PEG)を添加剤として含む。選択的に、前記電解液は、ヒドロキシエチルセルロース(HEC)、有機硫化物、有機窒化物、グリコール系高分子、およびチオ尿素(thiourea)系化合物で構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことができる。   As described above, the electrolyte of the present invention contains 10 to 50 ppm of bis (3-sulfopropyl) disulfide (SPS) and 10 to 50 ppm of polyethylene glycol (PEG) as additives. Optionally, the electrolyte comprises at least one organic additive selected from the group consisting of hydroxyethyl cellulose (HEC), organic sulfides, organic nitrides, glycol polymers, and thiourea compounds. It can further contain an agent.

電解液内のSPS濃度が50ppmを超過すると、回転陰極ドラムの表面上で銅メッキが活性化して銅層111のシャイニー面SSおよび電解銅箔110の第2面S2の表面粗さ(R)が過度に高くなり、その結果、電解銅箔110の第1および第2面S1、S2の表面粗さ(R)の差が0.3μmを超過することになる。また、銅層111のシャイニー面SSの比表面積の増加によって、電解銅箔110の第2面S2でのクロム(Cr)付着量が過度に増加し、その結果、電解銅箔110の第1および第2面S1、S2でのクロム(Cr)付着量の差が2.5mg/mを超過する危険が増加する。 When the SPS concentration in the electrolytic solution exceeds 50 ppm, copper plating is activated on the surface of the rotating cathode drum, and the surface roughness ( Ra ) of the shiny surface SS of the copper layer 111 and the second surface S2 of the electrodeposited copper foil 110 Is excessively high, and as a result, the difference in surface roughness (R a ) of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 exceeds 0.3 μm. Further, the increase in the specific surface area of the shiny surface SS of the copper layer 111 excessively increases the chromium (Cr) adhesion amount on the second surface S2 of the electrodeposited copper foil 110, and as a result, the first and the second electrodeposited copper foil 110 There is an increased risk that the difference in the amount of chromium (Cr) deposition on the second surface S1, S2 exceeds 2.5 mg / m 2 .

電解液内のPEG濃度が50ppmを超過すると、回転陰極ドラムの表面上に微細な銅メッキ核が生成されて銅層111のシャイニー面SSおよび電解銅箔110の第2面S2の表面粗さ(R)が過度に低くなり、その結果、電解銅箔110の第1および第2面S1、S2の表面粗さ(R)の差が0.3μmを超過することになる。また、銅層111のシャイニー面SSの比表面積の減少によって、電解銅箔110の第2面S2でのクロム(Cr)付着量が過度に減少し、その結果、電解銅箔110の第1および第2面S1、S2でのクロム(Cr)付着量の差が2.5mg/mを超過する危険が増加する。 When the PEG concentration in the electrolyte exceeds 50 ppm, fine copper plated nuclei are formed on the surface of the rotating cathode drum, and the surface roughness of the shiny surface SS of the copper layer 111 and the second surface S2 of the electrodeposited copper foil 110 ( R a ) becomes excessively low, and as a result, the difference in surface roughness (R a ) of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 exceeds 0.3 μm. Further, the reduction of the specific surface area of the shiny surface SS of the copper layer 111 excessively reduces the chromium (Cr) adhesion amount on the second surface S2 of the electrodeposited copper foil 110, and as a result, the first and the second electrodeposited copper foil 110 There is an increased risk that the difference in the amount of chromium (Cr) deposition on the second surface S1, S2 exceeds 2.5 mg / m 2 .

一方、回転陰極ドラムの表面(電気メッキによって銅が析出される面)の研磨の程度も電解銅箔110の第2面S2の表面粗さ(R)、ピーク数粗さ(Rpc)、およびクロム付着量を制御する一つの要素である。本発明の一実施例によれば、#800〜#3000の粒度(Grit)を有する研磨ブラシで前記回転陰極ドラムの表面が研磨される。 On the other hand, the degree of polishing of the surface of the rotating cathode drum (the surface on which copper is deposited by electroplating) is also the surface roughness (R a ) of the second surface S2 of the electrodeposited copper foil 110, peak number roughness (R pc ), And one factor to control the chromium deposition amount. According to an embodiment of the present invention, the surface of the rotating cathode drum is polished with a polishing brush having a particle size (Grit) of # 800 to # 3000.

電解銅箔110の第1および第2面S1、S2の220面集合組織係数[TC(220)]の差は電気メッキのための電流密度、回転陰極ドラムの研磨条件、および電解液内の添加剤の濃度によって決定される。特に、電解液内のSPSの濃度が120ppmを超過すると、電解銅箔110の第2面S2の集合組織が発達して前記第1および第2面S1、S2の220面集合組織係数[TC(220)]の差が0.39を超過することになる。また、PEGの濃度が90ppmを超過する場合にも、前記第1および第2面S1、S2の220面集合組織係数[TC(220)]の差が0.39を超過することになる。   The difference between the 220 surface texture coefficients [TC (220)] of the first and second surfaces S1 and S2 of the electrodeposited copper foil 110 is the current density for electroplating, the polishing conditions of the rotating cathode drum, and the addition in the electrolyte. It is determined by the concentration of the agent. In particular, when the concentration of SPS in the electrolyte exceeds 120 ppm, the texture of the second surface S2 of the electrodeposited copper foil 110 develops, and the 220 surface texture coefficient [TC (the first and second surfaces S1 and S2) 220)] will exceed 0.39. In addition, even when the concentration of PEG exceeds 90 ppm, the difference between the 220 surface texture coefficient [TC (220)] of the first and second surfaces S1 and S2 exceeds 0.39.

前記のように製造された銅層111を、0.5〜1.5g/LのCrを含む防錆液内に浸漬(例えば、常温に2〜20秒の間)させた後乾燥させることによって、前記銅層111上に第1および第2保護層112a、112bをそれぞれ形成させる。   The copper layer 111 produced as described above is immersed in an antirust solution containing 0.5 to 1.5 g / L of Cr (for example, at normal temperature for 2 to 20 seconds) and then dried. First and second protective layers 112a and 112b are formed on the copper layer 111, respectively.

前記防錆液は、シラン化合物と窒素化合物のうち少なくとも1種以上をさらに含むことができる。例えば、前記防錆液は、0.5〜1.5g/LのCrおよび0.5〜1.5g/Lのシラン化合物を含むことができる。   The anticorrosion solution may further contain at least one or more of a silane compound and a nitrogen compound. For example, the anticorrosion solution can contain 0.5 to 1.5 g / L of Cr and 0.5 to 1.5 g / L of a silane compound.

このように製造された本発明の電解銅箔110上に陰極活物質をコーティングすることによって、本発明の二次電池用電極(すなわち、陰極)が製造され得る。   By coating the cathode active material on the thus-produced electrodeposited copper foil 110 of the present invention, the secondary battery electrode (i.e., cathode) of the present invention can be produced.

前記陰極活物質は、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択され得る。   The cathode active material is a metal of carbon; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; an oxide of the metal; and a composite of the metal and carbon It may be selected from the group consisting of

例えば、100重量部の陰極活物質用炭素に1〜3重量部のスチレンブタジエンゴム(SBR)および1〜3重量部のカルボキシメチルセルロース(CMC)を混合した後、蒸溜水を溶剤として使ってスラリーを調製する。引き続き、ドクターブレードを利用して前記電解銅箔110上に20〜100μmの厚さで前記スラリーを塗布し、110〜130℃で0.5〜1.5ton/cmの圧力でプレスする。 For example, after mixing 100 parts by weight of carbon for a cathode active material with 1 to 3 parts by weight of styrene butadiene rubber (SBR) and 1 to 3 parts by weight of carboxymethylcellulose (CMC), a slurry is prepared using distilled water as a solvent Prepare. Subsequently, the slurry is applied to a thickness of 20 to 100 μm on the electrodeposited copper foil 110 using a doctor blade and pressed at 110 to 130 ° C. under a pressure of 0.5 to 1.5 ton / cm 2 .

以上の方法で製造された本発明の二次電池用電極(陰極)とともに通常の陽極、電解質、および分離膜を利用してリチウム二次電池を製造することができる。
以下では、実施例および比較例を通じて本発明を具体的に説明する。ただし、下記の実施例は本発明の理解を助けるためのものに過ぎず、本発明の権利範囲はこれらの実施例に制限されない。
A lithium secondary battery can be manufactured using a conventional anode, an electrolyte, and a separation membrane together with the electrode (cathode) for a secondary battery of the present invention manufactured by the above method.
Hereinafter, the present invention will be specifically described through examples and comparative examples. However, the following examples are only for the purpose of assisting the understanding of the present invention, and the scope of the present invention is not limited to these examples.

実施例1−3および比較例1−6
電解液内に互いに離隔して配置された陽極板および回転陰極ドラムを通電させることによって、前記回転陰極ドラム上に銅層を形成した。前記電解液は75g/Lの銅イオン、100g/Lの硫酸、20ppmの塩素イオン、SPS、およびPEGを含み、55℃に維持された。電気メッキのために加えられた電流密度、SPS濃度、PEGの濃度、全炭素量(TC)、銀(Ag)濃度および前記回転陰極ドラムの表面研磨に用いられた研磨ブラシの粒度は下記の表1の通りであった。前記電気メッキを通じて形成された銅層を防錆液に浸漬させた後乾燥させることによって電解銅箔を完成した。
Example 1-3 and Comparative Example 1-6
A copper layer was formed on the rotating cathode drum by energizing the anode plate and the rotating cathode drum, which are disposed apart from each other in the electrolyte solution. The electrolyte contained 75 g / L of copper ions, 100 g / L of sulfuric acid, 20 ppm of chlorine ions, SPS, and PEG, and was maintained at 55 ° C. The current density, the SPS concentration, the concentration of PEG, the total carbon content (TC), the silver (Ag) concentration, and the particle size of the polishing brush used for polishing the surface of the rotating cathode drum are listed in the following table. It was as of 1. An electrolytic copper foil was completed by immersing the copper layer formed through the electroplating in an anticorrosion solution and then drying it.

前記のように製造された実施例1−3および比較例1−6の電解銅箔の第1面(銅層のマット面に隣接した電解銅箔の面)およびその反対側の第2面の表面粗さ(R)、ピーク数粗さ(Rpc)、220面集合組織係数[TC(200)]、クロム(Cr)付着量、および電解銅箔のカール(curl)の程度を下記のようにそれぞれ求め、その結果を下記の表2に表わした。 The first surface (surface of the electrodeposited copper foil adjacent to the matte surface of the copper layer) and the opposite second surface of the electrodeposited copper foils of Examples 1-3 and Comparative Examples 1-6 manufactured as described above The surface roughness (R a ), peak number roughness (R pc ), 220 surface texture coefficient [TC (200)], chromium (Cr) adhesion amount, and degree of curl of electrolytic copper foil are as follows: The results are shown in Table 2 below.

*表面粗さ(R)(μm)
Mahr社のMahrsurf M300粗さ測定器を利用してJIS B 0601−1994規格に沿って電解銅箔の第1および第2面の表面粗さ(R)をそれぞれ測定した[測定長さ:4mm(cut off区間は除外)]。
* Surface roughness (R a ) (μm)
The surface roughness (R a ) of the first and second surfaces of the electrodeposited copper foil was measured according to the JIS B 0601-1994 standard using a Mahrsurf M300 roughness tester manufactured by Mahr Co., Ltd. [Measurement length: 4 mm (Exclude cut off section)].

*ピーク数粗さ(Rpc)(ea)
Mahr社のMahrsurf M300粗さ測定器を利用して電解銅箔の第1および第2面のピーク数粗さ(Rpc)をそれぞれ測定した。前述した通り、ピーク数粗さ(Rpc)は任意の3地点のピーク数粗さ(Rpc)の平均値であり、前記地点のそれぞれのピーク数粗さ(Rpc)はASME B46.1(2009)規格に沿って得られた表面粗さプロファイルで4mmの単位サンプリング長当たり0.5μmの上位基準線上にそびえている有効ピークの個数である。上位基準線上にそびえている隣り合うピーク間に−0.5μmの下位基準線より深い谷が一つも存在しない場合には、「有効ピーク」の個数を求める際に前記ピークのうち相対的により低いピークは無視された。
* Peak number roughness (R pc ) (ea)
The peak number roughness (R pc ) of the first and second surfaces of the electrodeposited copper foil was measured using a Mahrsurf M300 roughness tester manufactured by Mahr. As described above, the peak number of roughness (R pc) is the average value of the peak number roughness of any three points (R pc), each peak number roughness of the point (R pc) is ASME B46.1 (2009) The number of effective peaks rising on the upper reference line of 0.5 μm per unit sampling length of 4 mm in the surface roughness profile obtained according to the standard. When there is no valley deeper than the lower reference line of −0.5 μm between adjacent peaks rising above the upper reference line, the number of “effective peaks” is relatively lower among the peaks. The peak was ignored.

*220面集合組織係数[TC(220)]
30°〜95°の回折角(2θ)範囲でX線回折法(XRD)[(i)Target:Copper K alpha1、(ii)2θinterval:0.01°、(iii)2θscan speed:3°/min]を実施することによって、n個の結晶面に対応するピークを有するXRDグラフを得、このグラフから各結晶面(hkl)のXRD回折強度[I(hkl)]を求めた。また、JCPDS(Joint Committee on Powder Diffraction Standards)により規定された標準銅粉末の前記n個の結晶面のそれぞれに対するXRD回折強度[I(hkl)]を求めた。引き続き、前記n個の結晶面のI(hkl)/I(hkl)の算術平均値を求めた後、前記算術平均値で220面のI(220)/I(220)を割ることによって前記電解銅箔110の220面集合組織係数[TC(220)]を算出した。すなわち、220面集合組織係数[TC(220)]は次の式1に基づいて算出された。
* 220 face organization coefficient [TC (220)]
X-ray diffraction method (XRD) [(i) Target: Copper K alpha 1, (ii) 2θ interval: 0.01 °, (iii) 2θ scan speed: 3 ° / min, in a diffraction angle (2θ) range of 30 ° to 95 ° ] Was performed to obtain an XRD graph having peaks corresponding to n crystal planes, and from this graph, the XRD diffraction intensity [I (hkl)] of each crystal plane (hkl) was determined. In addition, XRD diffraction intensities [I 0 (hkl)] were determined for each of the n crystal planes of a standard copper powder defined by JCPDS (Joint Committee on Powder Diffraction Standards). Subsequently, after obtaining the arithmetic mean of the n crystal plane I (hkl) / I 0 ( hkl), by dividing the I (220) of the 220 plane arithmetic mean value / I 0 (220) The 220 surface texture coefficient [TC (220)] of the electrodeposited copper foil 110 was calculated. That is, the 220 surface texture coefficient [TC (220)] was calculated based on the following equation 1.

*防錆物質(クロム)電着量
電解銅箔の第2面をテープでマスキングして切断することによって、10cm×10cmのサンプルを得た。引き続き、前記電解銅箔の第1面を硝酸水溶液(硝酸と水を1:1で混合)で溶かした。このように生成された溶液を水で希釈して50mLの希釈液を得た。引き続き、前記希釈液を25℃で原子吸光光度計(Atomic Absorption Spectrometry:AAS)で分析して前記電解銅箔の第1面のクロム付着量を測定した。引き続き、同じ方法で前記電解銅箔の第2面のクロム付着量を測定した。
* Anticorrosion substance (chromium) electrodeposition amount The 10 cm x 10 cm sample was obtained by masking and cutting the 2nd surface of electrolytic copper foil with a tape. Subsequently, the first surface of the electrodeposited copper foil was dissolved with an aqueous solution of nitric acid (mixture of nitric acid and water at 1: 1). The solution thus generated was diluted with water to obtain 50 mL of dilution. Subsequently, the diluted solution was analyzed with an atomic absorption spectrometer (AAS) at 25 ° C. to measure the chromium deposition amount on the first surface of the electrodeposited copper foil. Then, the chromium adhesion amount of the 2nd surface of the said electrolytic copper foil was measured by the same method.

*電解銅箔のカール(curl)の程度(mm)
図4に図示された通り、電解銅箔の第1面上の任意の地点で十字型の切断ライン(8cm×8cm)に沿って切断した後、前記切断によって形成された4個のセグメントのカールの程度を定規(ruler)でそれぞれ測定し、この測定値の算術平均値を算出した。
* Degree of curl of electrolytic copper foil (mm)
As illustrated in FIG. 4, after cutting along a cross-shaped cutting line (8 cm × 8 cm) at any point on the first surface of the electrodeposited copper foil, the curl of the four segments formed by the cutting The degree of was respectively measured with a ruler (ruler), and the arithmetic mean value of this measured value was calculated.

表2からわかるように、電解銅箔の第1および第2面の表面粗さ(R)の差が0.3μmを超過する場合(比較例1)、ピーク数粗さ(Rpc)の差が96個を超過する場合(比較例2)、220面集合組織係数[TC(200)]の差が0.39を超過する場合(比較例3および4)、およびクロム(Cr)付着量の差が2.5mg/mを超過する場合(比較例5および6)において、電解銅箔のカール(curl)が10mmを超過するほど深刻であった。 As seen from Table 2, when the difference between the surface roughness (R a ) of the first and second surfaces of the electrodeposited copper foil exceeds 0.3 μm (Comparative Example 1), the peak number roughness (R pc ) When the difference exceeds 96 (comparative example 2), when the difference of the 220 surface texture coefficient [TC (200)] exceeds 0.39 (comparative examples 3 and 4), and the chromium (Cr) adhesion amount In the case where the difference in the ratio exceeds 2.5 mg / m 2 (Comparative Examples 5 and 6), the curl of the electrodeposited copper foil was so severe as to exceed 10 mm.

100:二次電池電極
110:電解銅箔
111:銅層
112a:第1保護層
112b:第2保護層
120a:第1活物質層
120b:第2活物質層
100: secondary battery electrode 110: electrolytic copper foil 111: copper layer 112a: first protective layer 112b: second protective layer 120a: first active material layer 120b: second active material layer

Claims (16)

第1面とその反対側の第2面を有する電解銅箔において、
前記第1面に向かうマット面(matte surface)および前記第2面に向かうシャイニー面(shiny surface)を含む銅層;
前記マット面上の第1保護層;および
前記シャイニー面上の第2保護層を含み、
前記第1および第2面の表面粗さ(R)の差は0.3μm以下であり、
前記第1および第2面のピーク数粗さ(peak count roughness:Rpc)の差は96個以下であり、
前記第1および第2面の220面集合組織係数[TC(220)]の差は0.39以下であり、
前記第1および第2保護層のそれぞれはクロム(Cr)を含み、
前記第1および第2面でのクロム(Cr)付着量の差は2.5mg/m以下であることを特徴とする、電解銅箔。
In an electrolytic copper foil having a first surface and a second surface opposite to the first surface,
A copper layer comprising a matte surface towards said first surface and a shiny surface towards said second surface;
A first protective layer on the matte side; and a second protective layer on the shiny side,
The difference between the surface roughness (R a ) of the first and second surfaces is 0.3 μm or less,
The difference between the peak count roughness (R pc ) of the first and second surfaces is 96 or less,
The difference between the first and second surface 220 surface texture coefficients [TC (220)] is 0.39 or less,
Each of the first and second protective layers comprises chromium (Cr),
The electrodeposited copper foil, wherein the difference between the chromium (Cr) adhesion amount on the first and second surfaces is 2.5 mg / m 2 or less.
前記第1および第2面のそれぞれの表面粗さ(R)は0.1〜0.55μmであることを特徴とする、請求項1に記載の電解銅箔。 The electrodeposited copper foil according to claim 1, wherein the surface roughness (R a ) of each of the first and second surfaces is 0.1 to 0.55 μm. 前記第1および第2面のそれぞれのピーク数粗さ(Rpc)は3〜106個であることを特徴とする、請求項1に記載の電解銅箔。 The electrodeposited copper foil according to claim 1, wherein the peak number roughness (R pc ) of each of the first and second surfaces is 3 to 106. 前記第1および第2面のそれぞれの220面集合組織係数[TC(220)]は0.4〜1.32であることを特徴とする、請求項1に記載の電解銅箔。   The electrodeposited copper foil of claim 1, wherein each of the first and second surfaces has a surface area coefficient of 220 [TC (220)] of 0.4 to 1.32. 25±15℃の常温で21〜55kgf/mmの降伏強度を有することを特徴とする、請求項1に記載の電解銅箔。 Characterized in that it has a yield strength of 21~55kgf / mm 2 at normal temperature of 25 ± 15 ° C., electrolytic copper foil according to claim 1. 25±15℃の常温で3%以上の延伸率を有することを特徴とする、請求項1に記載の電解銅箔。   The electrodeposited copper foil according to claim 1, having a stretch ratio of 3% or more at a normal temperature of 25 ± 15 ° C. 第1面とその反対側の第2面を有する電解銅箔;および
前記第1面上の第1活物質層を含むものの、
前記電解銅箔は、
前記第1面に向かうマット面および前記第2面に向かうシャイニー面を含む銅層;
前記マット面上の第1保護層;および
前記シャイニー面上の第2保護層を含み、
前記第1および第2面の表面粗さ(R)の差は0.3μm以下であり、
前記第1および第2面のピーク数粗さ(Rpc)の差は96個以下であり、
前記第1および第2面の220面集合組織係数[TC(220)]の差は0.39以下であり、
前記第1および第2保護層のそれぞれはクロム(Cr)を含み、
前記第1および第2面でのクロム(Cr)付着量の差は2.5mg/m以下であることを特徴とする、二次電池用電極。
An electrodeposited copper foil having a first surface and a second surface opposite to the first surface; and a first active material layer on the first surface,
The electrodeposited copper foil is
A copper layer including a matte side towards said first side and a shiny side towards said second side;
A first protective layer on the matte side; and a second protective layer on the shiny side,
The difference between the surface roughness (R a ) of the first and second surfaces is 0.3 μm or less,
The difference in peak number roughness (R pc ) of the first and second surfaces is 96 or less,
The difference between the first and second surface 220 surface texture coefficients [TC (220)] is 0.39 or less,
Each of the first and second protective layers comprises chromium (Cr),
The electrode for a secondary battery, wherein the difference between the chromium (Cr) adhesion amount on the first and second surfaces is 2.5 mg / m 2 or less.
前記第1および第2面のそれぞれの表面粗さ(R)は0.1〜0.55μmであり、
前記第1および第2面のそれぞれのピーク数粗さ(Rpc)は3〜106個であり、
前記第1および第2面のそれぞれの220面集合組織係数[TC(220)]は0.4〜1.32であることを特徴とする、請求項7に記載の二次電池用電極。
The surface roughness (R a ) of each of the first and second surfaces is 0.1 to 0.55 μm,
The peak number roughness (R pc ) of each of the first and second surfaces is 3 to 106,
The electrode for a secondary battery according to claim 7, wherein the 220 surface texture coefficient [TC (220)] of each of the first and second surfaces is 0.4 to 1.32.
前記電解銅箔は25±15℃の常温で21〜55kgf/mmの降伏強度および3%以上の延伸率を有することを特徴とする、請求項7に記載の二次電池用電極。 The electrolytic copper foil is characterized by having a room temperature in 21~55kgf / mm 2 yield strength and 3% or more elongation of 25 ± 15 ° C., the secondary battery electrode of claim 7. 前記第2面上の第2活物質層をさらに含み、
前記第1および第2活物質層は、互いに独立して、炭素;Si、Ge、Sn、Li、Zn、Mg、Cd、Ce、NiまたはFeの金属;前記金属を含む合金;前記金属の酸化物;および前記金属と炭素の複合体からなる群から選択される一つ以上の活物質をそれぞれ含む、請求項7に記載の二次電池用電極。
Further comprising a second active material layer on the second surface,
The first and second active material layers are, independently of one another, a metal of carbon; Si, Ge, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; an alloy containing the metal; oxidation of the metal The electrode for a secondary battery according to claim 7, further comprising: at least one active material selected from the group consisting of: metal; and a complex of the metal and carbon.
カソード(cathode);
請求項7〜請求項10のいずれか一項に記載された二次電池用電極で構成されたアノード(anode);
前記カソードアノードの間でリチウムイオンが移動できる環境を提供する電解質(electrolyte);および
前記カソードと前記アノードを電気的に絶縁させる分離膜(separator)を含むことを特徴とする、二次電池。
Cathode ;
An anode comprising the secondary battery electrode according to any one of claims 7 to 10;
A secondary battery comprising: an electrolyte providing an environment in which lithium ions can move between the cathode and the anode ; and a separator electrically insulating the cathode from the anode .
銅層を形成する段階;および
前記銅層上に保護層を形成する段階を含むものの、
前記銅層形成段階は、
70〜90g/Lの銅イオン、80〜120g/Lの硫酸、10〜50ppmのビス(3−スルホプロピル)ジスルフィド[bis−(3−sulfopropyl)disulfide:SPS]、および10〜50ppmのポリエチレングリコール(PEG)を含む電解液を準備する段階;および
前記電解液内に互いに離隔して配置された陽極板および回転陰極ドラムを40〜80A/dmの電流密度で通電させることによって電気メッキを遂行する段階を含み、
前記電気メッキが遂行される間、前記電解液内の全炭素量(Total Carbon:TC)は0.25g/L以下に維持され、前記電解液内の銀(Ag)濃度は0.2g/L以下に維持され
前記回転陰極ドラムの表面は#800〜#3000の粒度(Grit)を有する研磨ブラシで研磨され、
前記保護層形成段階は0.5〜1.5g/LのCrを含む防錆液内に前記銅層を浸漬させる段階を含むことを特徴とする、電解銅箔の製造方法。
Forming a copper layer; and forming a protective layer on the copper layer,
In the copper layer forming step,
70-90 g / L copper ion, 80-120 g / L sulfuric acid, 10-50 ppm bis (3-sulfopropyl) disulfide [bis- (3-sulfopropyl) disulfide: SPS], and 10-50 ppm polyethylene glycol ( Preparing an electrolyte comprising PEG); and performing the electroplating by energizing the anode plate and the rotating cathode drum, which are disposed apart from each other in the electrolyte, at a current density of 40 to 80 A / dm 2. Including stages
While the electroplating is performed, the total carbon (TC) in the electrolyte is maintained at 0.25 g / L or less, and the silver (Ag) concentration in the electrolyte is 0.2 g / L. Maintained below ,
The surface of the rotating cathode drum is polished with a polishing brush having a grain size (Grit) of # 800 to # 3000,
The method for producing an electrodeposited copper foil , wherein the step of forming the protective layer includes the step of immersing the copper layer in an anticorrosive solution containing 0.5 to 1.5 g / L of Cr .
前記電解液準備段階は、
銅ワイヤーを600〜900℃で30〜60分の間熱処理する段階;
前記熱処理された銅ワイヤーを酸洗する段階;
前記酸洗した銅ワイヤーを硫酸に投入する段階;および
前記銅ワイヤーが投入された硫酸にビス(3−スルホプロピル)ジスルフィド(SPS)およびポリエチレングリコール(PEG)を添加する段階を含むことを特徴とする、請求項12に記載の電解銅箔の製造方法。
In the electrolyte preparation step,
Heat treating the copper wire at 600-900 ° C. for 30-60 minutes;
Pickling the heat-treated copper wire;
Charging the acid-washed copper wire into sulfuric acid; and adding bis (3-sulfopropyl) disulfide (SPS) and polyethylene glycol (PEG) to the sulfuric acid charged with the copper wire. The manufacturing method of the electrolytic copper foil of Claim 12 which is.
前記銅層形成段階は、
前記電気メッキが遂行される間過酸化水素および空気を前記電解液に投入する段階をさらに含むことを特徴とする、請求項12に記載の電解銅箔の製造方法。
In the copper layer forming step,
The method of claim 12, further comprising introducing hydrogen peroxide and air into the electrolyte while the electroplating is performed.
前記銅層形成段階は、
前記電解液内の銀(Ag)濃度が0.2g/Lを超過することを防止するために、銀(Ag)をAgCl形態で沈殿させ得る塩素イオンを前記電解液に添加する段階をさらに含むことを特徴とする、請求項12に記載の電解銅箔の製造方法。
In the copper layer forming step,
The method may further include adding chloride ions to the electrolyte to precipitate silver (Ag) in the form of AgCl to prevent the concentration of silver (Ag) in the electrolyte exceeding 0.2 g / L. The manufacturing method of the electrolytic copper foil of Claim 12 characterized by the above-mentioned.
前記電解液は、ヒドロキシエチルセルロース(HEC)、有機硫化物、有機窒化物、グリコール(glycol)系高分子、およびチオ尿素(thiourea)系化合物で構成されたグループから選択される少なくとも一つの有機添加剤をさらに含むことを特徴とする、請求項12に記載の電解銅箔の製造方法。   The electrolyte may be at least one organic additive selected from the group consisting of hydroxyethyl cellulose (HEC), organic sulfides, organic nitrides, glycol based polymers, and thiourea based compounds. The method for producing an electrolytic copper foil according to claim 12, further comprising
JP2017206962A 2016-11-15 2017-10-26 Electrolytic copper foil with minimized curl, electrode containing the same, secondary battery containing the same, and method of manufacturing the same Active JP6533267B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0151713 2016-11-15
KR1020160151713A KR20180054985A (en) 2016-11-15 2016-11-15 Electrolytic Copper Foil with Minimized Curl, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same

Publications (2)

Publication Number Publication Date
JP2018080384A JP2018080384A (en) 2018-05-24
JP6533267B2 true JP6533267B2 (en) 2019-06-19

Family

ID=62159799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206962A Active JP6533267B2 (en) 2016-11-15 2017-10-26 Electrolytic copper foil with minimized curl, electrode containing the same, secondary battery containing the same, and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP6533267B2 (en)
KR (1) KR20180054985A (en)
CN (1) CN108075098B (en)
TW (1) TWI651436B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992840B1 (en) 2017-06-20 2019-06-27 케이씨에프테크놀로지스 주식회사 Copper foil with minimized bagginess and tear, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102180926B1 (en) 2017-06-28 2020-11-19 에스케이넥실리스 주식회사 Copper foil having improved workability and charge discharge characteristics, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR101992841B1 (en) 2017-07-13 2019-06-27 케이씨에프테크놀로지스 주식회사 Copper foil with minimized bagginess, wrinkle and tear, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102439621B1 (en) 2017-09-01 2022-09-01 에스케이넥실리스 주식회사 Copper Film, Manufacturing Methods Thereof, And Anode For Li Secondary Battery Comprising The Same
KR102518398B1 (en) * 2018-06-20 2023-04-04 에스케이넥실리스 주식회사 Copper foil with high stability, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP6700347B2 (en) * 2018-08-09 2020-05-27 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil with minimal sagging and tearing, electrode including the same, secondary battery including the same, and manufacturing method thereof
EP3608447B1 (en) * 2018-08-10 2021-10-06 SK Nexilis Co., Ltd. Copper foil with minimized bagginess, wrinkle and tear, electrode including the same, secondary battery including the same and method for manufacturing the same
EP3608446B1 (en) * 2018-08-10 2022-09-14 SK Nexilis Co., Ltd. Copper foil having workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
JP7075332B2 (en) * 2018-11-30 2022-05-25 三洋電機株式会社 Secondary battery and its manufacturing method
KR20210062369A (en) * 2019-11-21 2021-05-31 에스케이넥실리스 주식회사 Electrolytic Copper Foil Capable of Preventing Defects of Tear or Wrinkle Thereof, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
CN112981474B (en) * 2021-02-05 2021-12-07 广东嘉元科技股份有限公司 High-strength copper foil and preparation method thereof
US11962015B2 (en) 2022-06-28 2024-04-16 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and lithium-ion cell comprising the same
TWI800419B (en) * 2022-06-28 2023-04-21 長春石油化學股份有限公司 Electrolytic copper foil, electrode and lithium ion battery comprising the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107181B2 (en) * 1987-08-27 1995-11-15 日鉱金属株式会社 Copper material for superconductivity
JP2754157B2 (en) * 1994-03-31 1998-05-20 三井金属鉱業株式会社 Manufacturing method of electrolytic copper foil for printed wiring board
JP3608840B2 (en) * 1995-04-07 2005-01-12 古河サーキットフォイル株式会社 Electrolytic copper foil for flexible wiring boards
JP3943214B2 (en) * 1997-11-14 2007-07-11 日鉱金属株式会社 Electrolytic copper foil containing silver
JP3850155B2 (en) * 1998-12-11 2006-11-29 日本電解株式会社 Electrolytic copper foil, copper foil for current collector of secondary battery and secondary battery
JP4349690B2 (en) * 1999-06-29 2009-10-21 日本電解株式会社 Method for producing electrolytic copper foil
JP3670186B2 (en) * 2000-01-28 2005-07-13 三井金属鉱業株式会社 Method for producing surface-treated copper foil for printed wiring board
JP4712759B2 (en) * 2006-06-07 2011-06-29 古河電気工業株式会社 Surface-treated electrolytic copper foil, method for producing the same, and circuit board
WO2008132987A1 (en) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
JP4948654B2 (en) * 2010-03-01 2012-06-06 古河電気工業株式会社 Copper foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
TWI530586B (en) * 2010-06-30 2016-04-21 Mitsui Mining & Smelting Co Copper foil for negative electrode current collector and method of manufacturing the same
JP2012172198A (en) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp Electrolytic copper foil and method for manufacturing the same
JP5822928B2 (en) * 2011-07-13 2015-11-25 Jx日鉱日石金属株式会社 Electrolytic copper foil having high strength and low warpage and method for producing the same
JP5730742B2 (en) * 2011-10-25 2015-06-10 古河電気工業株式会社 Electrolytic copper foil for lithium ion secondary battery and method for producing the same
TWI539033B (en) * 2013-01-07 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil and its preparation method
TWI533496B (en) * 2013-07-23 2016-05-11 Chang Chun Petrochemical Co Electrolytic copper foil
KR101449342B1 (en) * 2013-11-08 2014-10-13 일진머티리얼즈 주식회사 Electrolytic copper foil, electric component and battery comprising the foil
TWI542739B (en) * 2014-03-21 2016-07-21 長春石油化學股份有限公司 Electrolytic copper foil
US9287566B1 (en) * 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil

Also Published As

Publication number Publication date
CN108075098A (en) 2018-05-25
JP2018080384A (en) 2018-05-24
TWI651436B (en) 2019-02-21
KR20180054985A (en) 2018-05-25
TW201819688A (en) 2018-06-01
CN108075098B (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP6533267B2 (en) Electrolytic copper foil with minimized curl, electrode containing the same, secondary battery containing the same, and method of manufacturing the same
JP6545300B2 (en) Electrolytic copper foil substantially free of wrinkles, electrode containing the same, secondary battery containing the same, and method of manufacturing the same
JP6680727B2 (en) Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and manufacturing method thereof
JP6527219B2 (en) Electrodeposited copper foil having optimized peak roughness, electrode containing the same, secondary battery containing the same, and method of manufacturing the same
EP3376574B1 (en) Method for manufacturing an electrolytic copper foil, electrolytic copper foil obtainable by the method, electrode comprising the same, and secondary battery comprising the same
US11352707B2 (en) Copper foil with minimized bagginess and tear, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same
JP2018063938A (en) Electrolytic copper foil easy to handle, electrode including the same, secondary battery including the same, and method for manufacturing the same
US10787752B2 (en) Copper foil with minimized bagginess, wrinkle or tear, electrode including the same, secondary battery including the same and method for manufacturing the same
JP7008128B2 (en) Electrolyzed copper foil, its manufacturing method and cathode for high-capacity Li secondary batteries including it
JP2018031072A (en) Electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
KR20180090532A (en) High Strength Electrolytic Copper Foil with Minimized Wrinkle and Curl, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR101246584B1 (en) Method for producing porous copper foil
JP2020508399A (en) Copper foil having excellent adhesive strength, electrode including the same, secondary battery including the same, and method of manufacturing the same
KR20180103231A (en) Copper foil having improved adheshion property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP6767441B2 (en) Copper foil with minimized sagging, wrinkles and tearing, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
EP3608447B1 (en) Copper foil with minimized bagginess, wrinkle and tear, electrode including the same, secondary battery including the same and method for manufacturing the same
KR20180083512A (en) Electrolytic Copper Foil of High Reliability, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
EP3608448B1 (en) Copper foil with minimized bagginess and tear, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same
KR102669501B1 (en) Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
CN110880601B (en) Copper foil with minimized swelling and tearing, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2020026536A (en) Copper foil having minimized sag and tear, electrode comprising the same, secondary battery comprising the same, and manufacturing method therefor
KR20180100939A (en) Copper foil with minimized wringkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6533267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250