JP6521098B2 - 合波レーザ光源 - Google Patents

合波レーザ光源 Download PDF

Info

Publication number
JP6521098B2
JP6521098B2 JP2017559998A JP2017559998A JP6521098B2 JP 6521098 B2 JP6521098 B2 JP 6521098B2 JP 2017559998 A JP2017559998 A JP 2017559998A JP 2017559998 A JP2017559998 A JP 2017559998A JP 6521098 B2 JP6521098 B2 JP 6521098B2
Authority
JP
Japan
Prior art keywords
laser light
light source
laser
optical element
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017559998A
Other languages
English (en)
Other versions
JPWO2017119111A1 (ja
Inventor
次郎 齊川
次郎 齊川
隼規 坂本
隼規 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2017119111A1 publication Critical patent/JPWO2017119111A1/ja
Application granted granted Critical
Publication of JP6521098B2 publication Critical patent/JP6521098B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3524Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being refractive
    • G02B6/3528Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being refractive the optical element being a prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3598Switching means directly located between an optoelectronic element and waveguides, including direct displacement of either the element or the waveguide, e.g. optical pulse generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4233Active alignment along the optical axis and passive alignment perpendicular to the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、互いに独立した複数の光源からのレーザ光を合波して高輝度化を図る合波レーザ光源に関する。また、本発明は、上述の合波レーザ光源を光源とする露光用装置、加工機、照明機器、医療用機器に関する。
従来、レーザの高出力化を図る方法として、複数の光源からの複数のレーザ光を一本の光ファイバ等に合波させる方法や複数の光源が結合されたファイバをバンドルして一本のファイバへ結合させる方法が知られている(特許文献1)。
また、高輝度化を図るために気密にパッケージングされた複数の半導体レーザの複数のビームのうち、集光光学系の光軸とは異なる方向に出射されたビームを光軸の方向に偏向して集光光学系に入射させて、集光光学系により集光されたビームをファイバに入射させて合波する方法が知られている(特許文献2)。
特開2002−202442号公報 特開2007−17925号公報
しかしながら、特許文献2では、パッケージングされた複数の半導体レーザの各々は配置される位置が異なり、複数の半導体レーザの各々は、三次元上に配置されていた。このため、複数の半導体レーザの光軸を三次元上で調整して配置するため、調整に時間がかかり、調整コストが増加してしまう。
また、半導体レーザが熱を発生するためにヒートシンクにより半導体レーザを放熱させる必要がある。しかし、半導体レーザの数が増加した場合には、より多くの放熱を行う必要があるため、ヒートシンク構造が複雑化してしまう。
本発明の課題は、レーザ光源の光軸を容易に調整でき、調整コストを低減することができる合波レーザ光源を提供することにある。
上記の課題を解決するために、本発明に係る合波レーザ光源は、X方向に配列された複数のレーザ光源と前記X方向と直交するY方向に配列された複数のレーザ光源とが二次元状に配列され二次元レーザ光源と、前記二次元レーザ光源に対応して配置され、前記X方向に配列された複数のレーザ光源の各レーザ光軸をX方向に偏向させるX方向ステアリング光学素子及び前記Y方向に配列された複数のレーザ光源の各レーザ光軸をY方向に偏向させるY方向ステアリング光学素子を有する二次元偏向光学素子と、前記二次元偏向光学素子からのレーザ光を集光させて光ファイバに結合させる結合レンズとを備え、各方向の前記複数のレーザ光源間の中央位置が前記結合レンズの略中心位置に来るように前記複数のレーザ光源が配置され、各方向ステアリング光学素子は、前記中央位置と配置された前記レーザ光源との距離に応じた長さを有し、前記レーザ光源からの光を前記結合レンズの中心付近に導く。
本発明によれば、二次元平面に配置されたレーザ光源は、光軸調整を同一平面内に限定できるため、二次元レーザ光源の光軸を容易に調整できる。これにより、調整の自動化等により調整コストを低減することができる。また、二次元偏向光学素子によりX方向及びY方向に二次元レーザ光源の各レーザ光軸を偏向させ、二次元偏向光学素子からのレーザ光を結合レンズで集光させて光ファイバに結合させる。従って、光束の高密度化を図ることができ高出力化が可能となる。
図1は本発明の第1の実施形態に係る合波レーザ光源の構成を示す図である。 図2は本発明の第1の実施形態に係る合波レーザ光源のCANタイプ半導体レーザを用いた二次元レーザマウント部の詳細な構造図である。 図3は本発明の第1の実施形態に係る合波レーザ光源のCANタイプ半導体レーザを用いX方向に分割された二次元レーザマウント部の詳細な構造図である。 図4は本発明の第1の実施形態に係る合波レーザ光源のCANタイプ半導体レーザを用いY方向に分割された二次元レーザマウント部の詳細な構造図である。 図5は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の詳細な構成図である。 図6は本発明の第1の実施形態に係る合波レーザ光源のY方向ステアリング光学素子の詳細な構成図である。 図7は本発明の第2の実施形態に係る合波レーザ光源の構成を示す図である。 図8は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の変形例を示す構成図である。 図9は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の他の変形例を示す構成図である。
以下、本発明の実施形態に係る合波レーザ光源を図面を参照しながら詳細に説明する。
(第1の実施形態)
図1は本発明の第1の実施形態に係る合波レーザ光源の構成を示す図である。図1に示す合波レーザ光源は、二次元レーザマウント部1、ヒートシンク2、X方向ステアリング光学素子3、Y方向ステアリング光学素子4、集光レンズ5、光ファイバ6を有している。
なお、Y方向ステアリング光学素子4と集光レンズ5との間に、テレスコープ等の光学素子を設けてもよい。これにより、ビームサイズ等の特性を変えることができる。
二次元レーザマウント部1は、本発明の二次元レーザ光源に対応し、平板状をなしており、図2に示すように、複数の半導体レーザ10x1〜10xmと複数の半導体レーザ10x1〜10xmに対向して配置された複数のレンズ11とをX方向及びY方向に、即ち二次元状に配列して構成されている。X方向(水平方向)には複数の半導体レーザ10x1〜10xm(この例はm=5)が所定間隔毎に配置され、Y方向(垂直方向)には複数の半導体レーザ10y1〜10yn(この例はn=3)が所定間隔毎に配置されている。
気密にパッケージングされた各々の半導体レーザ10x1〜10xm,10y1〜10ynは、レーザダイオードからなり、電流駆動によって注入された電子およびホールからなるキャリア注入によって励起され、注入された電子およびホールのキャリア対消滅の際に発生する誘導放出によって発生されたレーザ光を出力する。これらの半導体レーザとしては、CANタイプ半導体レーザが用いられている。なお、半導体レーザとしては、CANタイプ半導体レーザに限定されない。
複数の半導体レーザ10x1〜10xm,10y1〜10ynについて、半導体レーザとこの半導体レーザに対応するコリメートレンズ11とは一体化されて、光軸調整が可能なホルダ等で固定されている。エッジエミッタ型の半導体レーザではアナモルプリズムやシリンドリカルレンズ対を加えビーム整形してもよい。
また、二次元レーザマウント部1の表面には、各々のコリメートレンズ11に対向する位置に、貫通穴13が設けられており、各々の貫通穴13は、コリメートレンズ11を介する各々の半導体レーザ10x1〜10xmからのレーザ光をX方向ステアリング光学素子3に出力し、半導体レーザ10y1〜10ynからのレーザ光をY方向ステアリング光学素子4に出力する。
ヒートシンク2は、平板状をなしており、二次元レーザマウント部1に接触又は接近して配置され、二次元レーザマウント部1で発生した熱を放熱する放熱板からなる。ヒートシンク2としては、伝熱特性の良いアルミニウム、鉄、銅、黄銅等の金属材料が用いられる。
また、二次元レーザマウント部1を、図3に示すように、X方向に複数に分割して構成された分割マウント部20A〜20Eを用いても良い。あるいは、二次元レーザマウント部1を、図4に示すように、Y方向に複数に分割して構成された分割マウント部21A〜21Cを用いても良い。
この場合には、分割マウンド部20A〜20E,21A〜21C内の半導体レーザ10が故障した場合には、その故障した半導体レーザ10を有する分割マウント部のみを交換すればよい。また、半導体レーザ10を増加又は減少させる場合には、該当する分割マウント部のみを交換すればよい。
X方向ステアリング光学素子3及び方向ステアリング光学素子4は、本発明の二次元偏向光学素子に対応し、ガラス、水晶等の透明な媒質からなるロンボイドプリズム群からなり、レーザビームの進行方向を変えるものであり、より具体的には、X方向及びY方向に二次元レーザマウント部1の各レーザ光軸を偏向させる。
図5は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の詳細な構成図である。図5に示すように、複数の半導体レーザ10x1〜10x5(この例では、5個としたが、これに限定されない。)に対向して複数のビーム整形光学素子11x1〜11x5,12x1〜12x5、ロンボイドプリズム群からなる複数のロンボイドプリズム30x1〜30x4が配置されている。
なお、半導体レーザ10x3のレーザ光の光軸は、ステアリング光学素子3a,4aを通過した光束の光軸方向に一致し、ロンボイドプリズムを通すことなく、半導体レーザ10x3のレーザ光は、直接、コリメートレンズ14a,14bを介して結合レンズ5に導かれる。
複数のビーム整形光学素子11x1〜11x5,12x1〜12x5は、複数の半導体レーザ10x1〜10x5からのレーザ光を整形して、整形されたレーザ光を複数のロンボイドプリズム30x1〜30x4に導く。
複数のロンボイドプリズム30x1〜30x4は、菱形の直方体からなり、複数の半導体レーザ10x1〜10x5からのレーザ光をクランク状に偏向させてコリメートレンズ14a,14bに導く。
半導体レーザ10x1,10x5に対応して配置されたロンボイドプリズム30x1,30x4が最も長く、半導体レーザ10x2,10x4に対応して配置されたロンボイドプリズム30x2,30x3がその次に長い。
上記構成により、複数の半導体レーザ10x1〜10x5からのレーザ光を複数のビーム整形光学素子11x1〜11x5,12x1〜12x5と複数のロンボイドプリズム30x1〜30x4を通して、コリメートレンズ14a,14b及び結合レンズ5に導くことができる。
結合レンズ5は、集光レンズの役目をなし、コリメートレンズ14a,14bを介する複数のロンボイドプリズム30x1〜30x4からのレーザ光を集光して光ファイバ6に結合させる。
なお、複数のビーム整形光学素子11x1〜11x5,12x1〜12x5の代わりに、シリンドリカルレンズ系を用いても良い。
また、複数の半導体レーザ10x1〜10x5からのレーザ光をビーム整形しないで、複数のロンボイドプリズム30x1〜30x4に直接導くことができる場合には、複数のビーム整形光学素子11x1〜11x5,12x1〜12x5を設けなくても良い。
図6は本発明の第1の実施形態に係る合波レーザ光源のY方向ステアリング光学素子の詳細な構成図である。図6に示すように、Y方向の複数の半導体レーザ10y1〜10y5(この例では、5個としたが、これに限定されない。)に対向してコリメートレンズ15a,15b、ロンボイドプリズム群からなる複数のロンボイドプリズム40y1〜40y5が配置されている。
コリメートレンズ15a,15bは、複数の半導体レーザ10y1〜10y5からのレーザビームをコリメートして、複数のロンボイドプリズム40y1,40y2,40y4,40y5に導く。なお、半導体レーザ10y3のレーザ光の光軸は、光ファイバ6の光軸に一致し、ロンボイドプリズムを通すことなく、半導体レーザ10y3のレーザ光は、直接、結合レンズ5に導かれる。
複数のロンボイドプリズム40y1,40y2,40y4,40y5は、菱形の直方体からなり、複数の半導体レーザ10y1〜10y5からのレーザ光をクランク状に偏向させてコリメートレンズ15a,15bに導く。
半導体レーザ10y1,10y5に対応して配置されたロンボイドプリズム40y1,40y5が長く、半導体レーザ10y2,10y4に対応して配置されたロンボイドプリズム40y2,40y4が短い。
上記構成により、複数の半導体レーザ10y1〜10y5からのレーザ光をコリメートレンズ15a,15bと複数のロンボイドプリズム40y1,40y2,40y4,40y5を通して、結合レンズ5に導くことができる。
このように構成された第1の実施形態の合波レーザ光源によれば、二次元平面に配置された二次元レーザマウント部1は、二次元レーザマウント部1の光軸調整を同一平面内に限定することができるため、二次元レーザマウント部1の光軸を容易に調整できる。これにより、調整コストを低減することができる。
また、X方向ステアリング光学素子3及びY方向ステアリング光学素子4によりX方向及びY方向に二次元レーザマウント部1の各レーザ光軸を偏向させるので、X方向ステアリング光学素子3及びY方向ステアリング光学素子4からのレーザ光を結合レンズ5で集光させて光ファイバ6に結合させる。従って、光束の高密度化を図ることができる。
また、半導体レーザ10とコリメートレンズ11とを一体化し、一体化された半導体レーザ10とコリメートレンズ11とを同一平面内で左右方向に移動して、半導体レーザ10からのレーザ光が貫通穴13に導かれるように半導体レーザ10とコリメートレンズ11との位置を調整することができる。
また、従来の特許文献2に記載された図10(A)に示す構成では、半導体レーザLD1と半導体レーザLD7との光路差が大きいため、ビームが拡がってしまう。
これに対して、本発明では、図5に示すように、半導体レーザ10x1〜10x2と、半導体レーザ10x4〜10x5とは、対称となっている。このため、半導体レーザ10x1と半導体レーザ10x2との光路差は小さくなる。このため、ビームの拡がりが小さくなる。半導体レーザ間のビーム形状の差が小さくなる。
(第2の実施形態)
図7は本発明の第2の実施形態に係る合波レーザ光源の構成を示す図である。図7(a)は合波レーザ光源の上面図、図7(b)はレーザモジュール1a,1bを含むレーザ光源の断面図、図7(c)はミラー8と偏光合波素子9aの断面図である。
図7(a)に示すように、例えば、X方向(水平方向)に2個でY方向(垂直方向)に2個配置された4個のレーザモジュール1a〜1d(二次元レーザマウント部に対応)が取り付けられている。レーザモジュール1a〜1dの各々には、例えば、X方向に3個でY方向に5個配置された15個の半導体レーザ10が実装されている。
合波レーザ光源には、図7(b)に示すように、レーザモジュール1aとX方向ステアリング光学素子3aとY方向ステアリング光学素子4aとプリズム7aとからなる第1レーザ光源と、レーザモジュール1bとX方向ステアリング光学素子3bとY方向ステアリング光学素子4bとプリズム7bとからなる第2レーザ光源とが設けられている。第1レーザ光源と、第2レーザ光源との間には、ミラー8が設けられている。
レーザモジュール1a内の半導体レーザ10からのレーザ光は、X方向ステアリング光学素子3aとY方向ステアリング光学素子4aとでX方向及びY方向に偏向されて、プリズム7aに導かれる。プリズム7aは、偏光されたレーザモジュール1aからのレーザ光を180度偏向させてミラー8に導く。
一方、レーザモジュール1b内の半導体レーザ10からのレーザ光は、X方向ステアリング光学素子3bとY方向ステアリング光学素子4bとでX方向及びY方向に偏向されて、プリズム7bに導かれる。プリズム7bは、偏光されたレーザモジュール1bからのレーザ光を180度偏向させてミラー8に導く。
ミラー8は、図7(c)に示すように、プリズム7aからのレーザ光とプリズム7bからのレーザ光を反射させて偏光合波素子9aに導く。
また、レーザモジュール1c,1dについても、図7(b)に示す構成と同様に、レーザモジュール1cとX方向ステアリング光学素子3cとY方向ステアリング光学素子4cとプリズム7cとからなる第3レーザ光源と、レーザモジュール1dとX方向ステアリング光学素子3dとY方向ステアリング光学素子4dとプリズム7dとからなる第4レーザ光源とが設けられている。第3レーザ光源と、第4レーザ光源との間には、偏光合成波素子9aが設けられている。
レーザモジュール1c内の半導体レーザ10からのレーザ光は、X方向ステアリング光学素子3cとY方向ステアリング光学素子4cとでX方向及びY方向に偏向されて、プリズム7cに導かれる。プリズム7cは、偏光されたレーザモジュール1cからのレーザ光を180度偏向させて波長板9bを介して偏光合波素子9aに導く。
一方、レーザモジュール1d内の半導体レーザ10からのレーザ光は、X方向ステアリング光学素子3dとY方向ステアリング光学素子4dとでX方向及びY方向に偏向されて、プリズム7dに導かれる。プリズム7dは、偏光されたレーザモジュール1dからのレーザ光を180度偏向させて波長板9bを介して偏光合波素子9aに導く。
偏光合波素子9aは、ミラー8からのレーザ光と波長板9bからのレーザ光とを合波してレンズ5aを介してファイバ6に導く。
以上のように構成された第2の実施形態に係る合波レーザ光源によれば、レーザモジュール1a〜1dからのレーザ光は、X方向ステアリング光学素子3a〜3dとY方向ステアリング光学素子4a〜4dとにより偏向され、プリズム7a〜7dの偏向により180度反転され、レーザ光は、集光レンズ5aにより集光されて光ファイバ6に結合される。即ち、レーザの光軸に対して、プリズム7a,7bを通過した光束の光軸方向は、180度反転される。
また、レーザモジュール1a,1bからのレーザ光とレーザモジュール1c,1dからのレーザ光とを合波するので、高出力のレーザが得られる。特に、全てのレーザモジュール1a〜dの波長を同一にすることで2次元配置を維持しながら高出力のレーザが得られる。
また、レーザモジュール1a〜1dの各々は、互いに異なる波長に設定することができる。これにより、マルチカラーレーザを実現することができる。
また、半導体レーザ10に異常があった場合にも、異常の半導体レーザ10を有するレーザモジュールのみを交換するのみで済む。
図8は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の変形例を示す構成図である。図8に示すX方向ステアリング光学素子の変形例は、図5に示すX方向ステアリング光学素子であるロンボイドプリズム30x1〜30x5に代えて、45度プリズム対31,32を用いたことを特徴とする。
45度プリズム対31,32の各々は、45度の三角形状のプリズムからなり、互いに対向して配置され、一方の45度プリズムから他方の45度プリズムにレーザ光が伝送してレーザ光をクランク状に偏向させる。
このような45度プリズム対31,32を用いてもロンボイドプリズム30x1〜30x5と同様な効果が得られるとともに、45度プリズム対31,32は小さいので、より安価となる。
図9は本発明の第1の実施形態に係る合波レーザ光源のX方向ステアリング光学素子の他の変形例を示す構成図である。図9に示すX方向ステアリング光学素子の他の変形例は、図5に示すX方向ステアリング光学素子であるロンボイドプリズム30x1〜30x5に代えて、45度プリズムミラー33,34を用いたことを特徴とする。
45度プリズムミラー33,34の各々は、45度の三角形状のミラーからなり、互いに対向して配置され、一方の45度プリズムミラーから他方の45度プリズムミラーにレーザ光が伝送してレーザ光をクランク状に偏向させる。
45度プリズムミラー33,34を用いてもロンボイドプリズム30x1〜30x5と同様な効果が得られるとともに、45度プリズムミラー33,34は、小さいので、より安価となる。
本発明は、レーザ加工装置、レーザ照明装置等の高出力合波レーザ光源に適用可能である。

Claims (6)

  1. X方向に配列された複数のレーザ光源と前記X方向と直交するY方向に配列された複数のレーザ光源とが二次元状に配列され二次元レーザ光源と、
    前記二次元レーザ光源に対応して配置され、前記X方向に配列された複数のレーザ光源の各レーザ光軸をX方向に偏向させるX方向ステアリング光学素子及び前記Y方向に配列された複数のレーザ光源の各レーザ光軸をY方向に偏向させるY方向ステアリング光学素子を有する二次元偏向光学素子と、
    前記二次元偏向光学素子からのレーザ光を集光させて光ファイバに結合させる結合レンズと、
    を備え、
    各方向の前記複数のレーザ光源間の中央位置が前記結合レンズの略中心位置に来るように前記複数のレーザ光源が配置され、各方向ステアリング光学素子は、前記中央位置と配置された前記レーザ光源との距離に応じた長さを有し、前記レーザ光源からの光を前記結合レンズの中心付近に導く合波レーザ光源。
  2. 前記二次元レーザ光源は、コリメートレンズを有し、前記レーザ光源と前記コリメートレンズを一体化し一体化された前記レーザ光源が二次元状に配列されてなる請求項1記載の合波レーザ光源。
  3. 前記二次元レーザ光源は、X方向又はY方向に複数に分割されてなる請求項2記載の合波レーザ光源。
  4. 前記二次元偏向光学素子は、ロンボイドプリズムからなる請求項1乃至3のいずれか1項記載の合波レーザ光源。
  5. 前記二次元偏向光学素子は、45度プリズム対からなる請求項1乃至3のいずれか1項記載の合波レーザ光源。
  6. 前記二次元偏向光学素子は、45度プリズムミラーからなる請求項1乃至3のいずれか1項記載の合波レーザ光源。
JP2017559998A 2016-01-08 2016-01-08 合波レーザ光源 Expired - Fee Related JP6521098B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050428 WO2017119111A1 (ja) 2016-01-08 2016-01-08 合波レーザ光源

Publications (2)

Publication Number Publication Date
JPWO2017119111A1 JPWO2017119111A1 (ja) 2018-11-08
JP6521098B2 true JP6521098B2 (ja) 2019-05-29

Family

ID=59273411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559998A Expired - Fee Related JP6521098B2 (ja) 2016-01-08 2016-01-08 合波レーザ光源

Country Status (4)

Country Link
US (1) US20190013650A1 (ja)
JP (1) JP6521098B2 (ja)
CN (1) CN108463754A (ja)
WO (1) WO2017119111A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061665A (zh) * 2018-08-10 2018-12-21 江苏亮点光电科技有限公司 一种低发热多激光器高频测距***
CN111694160A (zh) * 2019-03-13 2020-09-22 深圳市联赢激光股份有限公司 一种激光光源装置
JP2021152567A (ja) * 2020-03-24 2021-09-30 株式会社島津製作所 光源装置、プロジェクタおよび機械加工装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028722A (en) * 1996-03-08 2000-02-22 Sdl, Inc. Optical beam reconfiguring device and optical handling system for device utilization
JPH11177181A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 2次元半導体レーザーアレイユニットと2次元半導体レーザーアレイ及びこれを用いたレーザー加工装置
JP2004096088A (ja) * 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd 合波レーザー光源および露光装置
US7773655B2 (en) * 2008-06-26 2010-08-10 Vadim Chuyanov High brightness laser diode module
CN102610995A (zh) * 2012-02-20 2012-07-25 深圳雅图数字视频技术有限公司 一种激光模组、投影及照明***
JP6393466B2 (ja) * 2013-10-02 2018-09-19 株式会社島津製作所 発光装置

Also Published As

Publication number Publication date
CN108463754A (zh) 2018-08-28
US20190013650A1 (en) 2019-01-10
WO2017119111A1 (ja) 2017-07-13
JPWO2017119111A1 (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
US10170892B2 (en) Laser unit and laser device
US7668214B2 (en) Light source
US8767790B2 (en) System and method for generating intense laser light from laser diode arrays
KR101616635B1 (ko) 레이저 합성 광학 장치
EP3018776B1 (en) Laser device
JP5082316B2 (ja) 集光ブロック
JP6521098B2 (ja) 合波レーザ光源
CN111468825B (zh) 光源组件
JP2014216361A (ja) レーザ装置および光ビームの波長結合方法
CN107209444B (zh) 激光光源装置和视频显示装置
WO2015145608A1 (ja) レーザ装置
WO2020116084A1 (ja) 光源ユニット、照明装置、加工装置及び偏向素子
US20190341745A1 (en) Laser device
JP2004022679A (ja) 半導体レーザモジュール
JP2006093586A (ja) レーザ装置、レーザ光の合波方法、画像表示装置、結合素子及びその製造方法
JP2014120621A (ja) 半導体レーザ装置
JP2019105705A (ja) 発光装置
JP7316098B2 (ja) 半導体レーザモジュール及びレーザ加工装置
JP2003315633A (ja) 半導体レーザモジュール
JP2004087958A (ja) 光半導体光源装置および光源パッケージ
WO2022254857A1 (ja) 光モジュール
JP7124465B2 (ja) ミラー駆動機構および光モジュール
JP2022042410A (ja) Ldモジュール、光学デバイス及び熱加工機
JP6613957B2 (ja) レーザ装置
JP2022173880A (ja) Ldモジュール、光学デバイス及び熱加工機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6521098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees