JP6519840B2 - Particle production apparatus and particle production method - Google Patents

Particle production apparatus and particle production method Download PDF

Info

Publication number
JP6519840B2
JP6519840B2 JP2014193916A JP2014193916A JP6519840B2 JP 6519840 B2 JP6519840 B2 JP 6519840B2 JP 2014193916 A JP2014193916 A JP 2014193916A JP 2014193916 A JP2014193916 A JP 2014193916A JP 6519840 B2 JP6519840 B2 JP 6519840B2
Authority
JP
Japan
Prior art keywords
air flow
liquid
temperature
particles
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014193916A
Other languages
Japanese (ja)
Other versions
JP2015186793A (en
Inventor
泰禎 設楽
泰禎 設楽
慎司 青木
慎司 青木
清正 加藤
清正 加藤
大垣 傑
傑 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014193916A priority Critical patent/JP6519840B2/en
Publication of JP2015186793A publication Critical patent/JP2015186793A/en
Application granted granted Critical
Publication of JP6519840B2 publication Critical patent/JP6519840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles

Description

本発明は、吐出孔から液体を吐出して液滴化する液滴吐出装置を備えたトナー製造装置などの粒子製造装置、及び粒子製造方法に関するものである。   The present invention relates to a particle manufacturing apparatus such as a toner manufacturing apparatus provided with a droplet discharge apparatus which discharges liquid from discharge holes to form droplets, and a particle manufacturing method.

電子写真記録方法に基づく複写機、プリンタ、ファクシミリ及びそれらの複合機などの画像形成装置に使用される静電荷像現像用のトナーを製造する方法としては、従来は粉砕法が主流であったが、近年では重合法を採用することが多くなってきている。重合法とは、水系媒体中でトナー粒子を形成する工法であり、トナー粒子形成時あるいはその過程においてトナー原材料の重合反応を伴うことから、このように称される。重合法は、各種重合方法が実用化されており、懸濁重合、乳化凝集、ポリマー懸濁(ポリマー凝集)、エステル伸長反応等を利用したものが知られている。重合法により製造されたトナーは、重合トナーあるいはケミカルトナーなどと呼ばれる。   As a method of manufacturing toner for electrostatic charge image development used in image forming apparatuses such as copiers, printers, facsimiles and composite machines thereof based on the electrophotographic recording method, the pulverization method has conventionally been mainstream. In recent years, the polymerization method has been increasingly adopted. The polymerization method is a method of forming toner particles in an aqueous medium, and is referred to as such because it involves the polymerization reaction of toner raw materials at the time of or during the formation of toner particles. As the polymerization method, various polymerization methods are put to practical use, and those utilizing suspension polymerization, emulsion aggregation, polymer suspension (polymer aggregation), ester elongation reaction and the like are known. The toner produced by the polymerization method is called a polymerization toner or a chemical toner.

重合法で得られたトナーは、総じて、粉砕法で得られたトナーに比べ、小粒径が得やすく、粒径分布が狭く、形状が球形に近いといった特徴を有する。これらの特徴は、電子写真方式で形成される画像として高画質を得やすいという効果をもたらす。しかしながら、重合過程に長時間を必要とし、さらに固化終了後に溶媒とトナー粒子とを分離し、その後洗浄乾燥を繰り返すという作業が必要となり、多くの時間、多量の水、多くのエネルギーを必要とするといった問題点がある。   Generally, the toner obtained by the polymerization method is characterized in that the particle diameter is easy to obtain, the particle diameter distribution is narrow, and the shape is nearly spherical compared to the toner obtained by the pulverization method. These features bring about the effect that it is easy to obtain high image quality as an image formed by the electrophotographic method. However, it takes a long time for the polymerization process, and after the completion of solidification, it is necessary to separate the solvent and the toner particles, and then to repeat washing and drying, requiring a large amount of water and a large amount of energy. There is a problem such as

また、トナーの原材料成分を有機溶媒に溶解または分散した液体(トナー成分液)を、噴霧器(アトマイザ)などを用いて微小な液滴となるように放出し、これを乾燥させて微粒子状のトナーを得る、噴射造粒法と呼ばれるトナー製造方法が知られている(特許文献1〜4)。このトナー製造方法によれば、水を用いる必要がないため、洗浄や乾燥に要する時間とエネルギーを大幅に削減でき、重合法の問題点を回避することができる。   In addition, a liquid (toner component liquid) in which raw material components of toner are dissolved or dispersed in an organic solvent is discharged into fine droplets using a sprayer (atomizer) or the like, and dried to obtain fine particle toner. There is known a toner production method called an injection granulation method to obtain (Patent Documents 1 to 4). According to this toner manufacturing method, since it is not necessary to use water, the time and energy required for washing and drying can be greatly reduced, and the problems of the polymerization method can be avoided.

トナー等の微粒子を噴射造粒法で製造する場合、液滴形成手段によって液滴吐出装置の吐出孔面に開口した複数の吐出孔からトナー成分液等の微粒子含有液(微粒子の原材料成分を溶媒に溶解または分散した液体)の液滴を吐出する吐出動作を継続する。固化手段によって吐出した液滴を固化させることにより粒子を製造する。   When fine particles such as toner are produced by the injection granulation method, the fine particle-containing liquid such as toner component liquid (the raw material component of fine particles is a solvent from the plurality of discharge holes opened in the discharge hole surface of the droplet discharge device The discharge operation of discharging the liquid droplets of the liquid dissolved or dispersed in The particles are manufactured by solidifying the droplets discharged by the solidifying means.

例えば、特許文献5、6の粒子製造装置では、液室に液体に振動を付与する振動発生手段が設けられ、液室内の液体に振動を付与して液室内に液柱共鳴による定在波を形成する。その定在波の腹となる領域に形成されている吐出孔から液体を、高温の搬送気流が流れている気流路内に吐出し、液滴化した液滴を搬送気流中で乾燥させて固化する。捕集手段によって、固化された粒子を捕集することで粒子が製造される。   For example, in the particle manufacturing apparatus of Patent Documents 5 and 6, vibration generating means for applying vibration to the liquid chamber is provided, vibration is applied to the liquid in the liquid chamber, and a standing wave is generated by liquid column resonance in the liquid chamber. Form. The liquid is discharged from the discharge hole formed in the area which becomes the antinode of the standing wave into the air flow path in which the high temperature carrier air flow is flowing, and the droplet formed into droplets is dried in the carrier air and solidified Do. The particles are produced by collecting the solidified particles by the collection means.

しかしながら、特許文献5、6の微粒子製造装置では、高温の搬送気流に吐出孔が晒されている。このため、吐出孔で微粒子含有液が乾いて吐出孔が詰まり、吐出不良が発生する虞があり、狙いの生産量を確保することが困難になる。詰まっている吐出孔の数が経時により増大し液滴の吐出量が減少してゆくと、粒子が形成される際の蒸発潜熱の量も低下し、搬送気流の温度の低下は小さくなる。乾燥された粒子は搬送気流にのって搬送されるので、粒子の温度は搬送気流の温度とほぼ同じになり、乾燥された粒子の温度は狙いより高くなる。この結果、粒子はやわらかくなり、粒子同士が付着し、狭い粒径分布を有する粒子が得られなくなるという問題がある。   However, in the particle manufacturing apparatus of Patent Documents 5 and 6, the discharge holes are exposed to the high temperature carrier air flow. For this reason, there is a possibility that the fine particle-containing liquid is dried in the discharge hole and the discharge hole is clogged to cause discharge failure, which makes it difficult to secure a target production amount. As the number of clogged discharge holes increases with time and the discharge amount of droplets decreases, the amount of latent heat of vaporization at the time of particle formation also decreases, and the decrease in temperature of the carrier air flow decreases. As the dried particles are carried along the carrier stream, the temperature of the particles is approximately the same as the temperature of the carrier stream, and the temperature of the dried particles is higher than the target. As a result, the particles become soft, particles adhere to each other, and particles having a narrow particle size distribution can not be obtained.

本発明は以上の問題点に鑑みなされたものであり、その目的は、搬送気流が接触する吐出孔面の温度上昇を抑制しつつ、狭い粒径分布を有する粒子を製造できる粒子製造装置、及び粒子製造方法を提供することである。   The present invention has been made in view of the above problems, and an object thereof is a particle manufacturing apparatus capable of manufacturing particles having a narrow particle size distribution while suppressing the temperature rise of the discharge hole surface in contact with the carrier air flow, It is an object of the present invention to provide a particle production method.

上記目的を達成するために、請求項1の発明は、気流路形成手段と、平面上に複数の吐出孔を有し、該吐出孔から樹脂及び溶媒を含有する樹脂組成液を気流路内に吐出させて液滴を形成する液滴形成手段と、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流を前記気流路内に供給する気流供給手段と、前記高温の搬送気流中で乾燥させて固化した粒子を捕集する捕集手段とを備えた粒子製造装置において、前記気流供給手段は、前記吐出孔面に接触しながら流れるように供給する第1搬送気流と、該第1搬送気流を挟んで前記吐出孔面とは反対側を流れるように供給する前記第1搬送気流より高温の第2搬送気流と、前記第1搬送気流と前記第2搬送気流とをともに挟んで前記吐出孔面とは反対側の、前記気流路を形成する部材の内壁面に接触しながら流れるように供給する前記第2搬送気流より低温の第3搬送気流とを前記気流路内に供給し、前記第3搬送気流の温度は環境温度の変動に応じて調整可能であり、前記高温の搬送気流の流れ方向に対し前記吐出孔の上流側に、前記吐出孔面に平行な気流になるよう複数の搬送気流を整える孔径が0.1[mm]〜10[mm]のハニカム形状の整流手段を設けることを特徴とするものである。 In order to achieve the above object, the invention according to claim 1 has an air flow path forming means and a plurality of discharge holes on a plane, and a resin composition liquid containing a resin and a solvent from the discharge holes into the air flow path. Droplet forming means for forming droplets by discharging, air flow supplying means for supplying high temperature carrier air flow into the air flow path so as to flow in a direction parallel to the surface direction of the discharge hole surface, and high temperature carrier air flow In the particle manufacturing apparatus, further comprising: a collection means for collecting particles solidified by drying in the air, the air flow supply means supplying a first carrier air flow so as to flow while contacting the discharge hole surface; The second carrier air stream having a temperature higher than that of the first carrier air stream supplied so as to flow on the opposite side to the discharge hole surface across the first carrier air stream, the first carrier air stream, and the second carrier air stream A member forming the air flow path on the opposite side to the discharge hole surface And a third conveying gas stream from the second transport stream supplied to flow while being in contact with a low temperature on the inner wall surface is supplied to the air flow path, the temperature of the third conveying airflow adjustable in response to variations in ambient temperature der is, on the upstream side of the discharge port to the flow direction of the transport stream of the high temperature, the pore size to arrange a plurality of transport stream so as to be parallel airflow discharge holes face 0.1 [mm] ~10 [ the Rukoto provided rectifying means honeycomb shape mm] are those characterized.

本発明によれば、搬送気流が接触する吐出孔面の温度上昇を抑制しつつ、狭い粒径分布を有する粒子を製造できるという特有な効果が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the specific effect that the particle | grains which have narrow particle size distribution can be manufactured is acquired, suppressing the temperature rise of the discharge hole surface which conveyance air flow contacts.

本実施形態で用いる液柱共鳴タイプの液滴吐出装置の液滴形成手段の一部を拡大して示した模式図である。It is the schematic diagram which expanded and showed a part of droplet formation means of the droplet discharge apparatus of a liquid column resonance type used in this embodiment. 同液滴吐出装置である液柱共鳴液滴形成ユニットの一部を模式的に示した断面図である。It is sectional drawing which showed typically a part of liquid column resonance droplet formation unit which is the same droplet discharge apparatus. 吐出孔の断面形状の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional shape of a discharge hole. (a)〜(d)はN=1、2、3の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示す模式図である。(A)-(d) is a schematic diagram which shows the shape (resonance mode) of the standing wave of the speed | velocity and the pressure fluctuation in the case of N = 1, 2, 3. FIG. (a)〜(e)は液滴形成手段における液滴吐出ヘッド内の液柱共鳴液室で生じる液柱共鳴現象の様子を説明する模式図である。(A)-(e) is a schematic diagram explaining the mode of the liquid column resonance phenomenon which arises in the liquid column resonance liquid chamber in the droplet discharge head in a droplet formation means. 本実施形態の粒子製造装置の構成を説明する概略図である。It is the schematic explaining the structure of the particle manufacturing apparatus of this embodiment. 本実施形態の粒子製造装置の別の構成を説明する概略図である。It is the schematic explaining another structure of the particle manufacturing apparatus of this embodiment. 基本粒子が結着した状態の様子を示す図である。It is a figure which shows the mode which the basic particle | grains couple | bonded. 合着した粒子の様子を示す概略図である。It is the schematic which shows the appearance of the particle | grains which adhered. 合着した粒子の様子を示す概略図である。It is the schematic which shows the appearance of the particle | grains which adhered. 液滴同士の合着が発生した場合に捕集したトナーの粒径分布を示す図である。FIG. 6 is a view showing a particle size distribution of toner collected when coalescence of droplets occurs. 液滴同士の合着が発生していない場合に捕集したトナーの粒径分布を示す図である。FIG. 6 is a view showing a particle size distribution of the toner collected when no coalescence of droplets occurs. レイリー***タイプの液柱の液滴化現象を説明する図である。It is a figure explaining the droplet formation phenomenon of a Rayleigh breakup type liquid column. レイリー***タイプの液滴吐出装置の液滴吐出部の一部を拡大して示した模式図である。FIG. 6 is a schematic view showing an enlarged part of a droplet discharge portion of a Rayleigh breakup type droplet discharge device.

以下、本発明に係る粒子製造装置をトナーの製造に適用した一実施形態について、図面を参照しながら説明する。
本実施形態のトナー製造装置は、液滴が固化するとトナー粒子(微粒子)となるトナー成分液(微粒子成分含有液)を液滴吐出装置へ補充しながら、液滴吐出装置の吐出孔からトナー成分液の液滴を吐出する吐出動作を継続して行う。その後、吐出した液滴を固化させることによりトナー粒子を得るものである。
Hereinafter, an embodiment in which a particle manufacturing apparatus according to the present invention is applied to the manufacture of toner will be described with reference to the drawings.
In the toner manufacturing apparatus of this embodiment, the toner component liquid (liquid containing fine particle component), which becomes toner particles (fine particles) when liquid droplets are solidified, is replenished to the liquid droplet discharge device while the toner component is discharged from the discharge hole of the liquid droplet discharge device. The discharge operation for discharging liquid droplets is continued. Thereafter, the discharged droplets are solidified to obtain toner particles.

本実施形態の液滴吐出装置は、吐出する液滴の粒径分布が狭いものが好ましいが、特に制限は無く、公知のものを用いることができる。液滴吐出装置としては、1流体ノズル、2流体ノズル、膜振動タイプの液滴吐出手段、レイリー***タイプの液滴吐出手段、液振動タイプの液滴吐出手段、液柱共鳴タイプの液滴吐出手段等が挙げられる。膜振動タイプの液滴吐出手段は、例えば特開2008−292976号公報に開示されたものがある。また、レイリー***タイプの液滴吐出手段としては、特許第4647506号公報に開示されたものがある。また、液振動タイプの液滴吐出手段としては、特開2010−102195号公報に開示されたものがある。   Although it is preferable that the droplet discharge device of the present embodiment has a narrow particle diameter distribution of the droplets to be discharged, there is no particular limitation, and a known device can be used. The droplet discharge apparatus includes: 1 fluid nozzle, 2 fluid nozzle, droplet discharge means of film vibration type, droplet discharge means of Rayleigh split type, droplet discharge means of liquid vibration type, droplet discharge of liquid column resonance type Means etc. The film vibration type droplet discharge means is disclosed, for example, in Japanese Patent Application Laid-Open No. 2008-292976. Further, as a Rayleigh split type droplet discharge means, there is one disclosed in Japanese Patent No. 4647506. Further, as a liquid vibration type droplet discharge means, there is one disclosed in Japanese Patent Application Laid-Open No. 2010-102195.

液滴の粒径分布が狭く、トナーの生産性を確保するためには、複数の吐出孔が形成された液柱共鳴液室内の液体に振動を付与して液柱共鳴による定在波を形成する。その定在波の腹となる領域に形成された吐出孔から液体を吐出する液柱共鳴タイプの液滴吐出装置が好適である。本実施形態では、液柱共鳴タイプの液滴吐出装置を用いてトナーを製造する例について説明する。   In order to secure the productivity of the toner, the particle size distribution of the droplets is narrow, vibration is applied to the liquid in the liquid column resonance liquid chamber in which a plurality of discharge holes are formed, and a standing wave is formed by the liquid column resonance. Do. A liquid column resonance type droplet discharge device which discharges a liquid from the discharge hole formed in the region which becomes the antinode of the standing wave is preferable. In this embodiment, an example of manufacturing toner using a liquid column resonance type droplet discharge device will be described.

本発明の粒子製造装置は、気流路形成手段と、液滴形成手段と、気流供給手段と、捕集手段と、を少なくとも有し、更に必要に応じて、その他の手段を有する。本発明の粒子製造方法は、気流路形成工程と、液滴形成工程と、気流供給工程と、捕集工程と、を少なくとも含み、更に必要に応じて、その他の工程を含む。   The particle production apparatus of the present invention comprises at least an air flow path forming unit, a droplet forming unit, an air flow supplying unit, and a collecting unit, and further has other units as required. The particle production method of the present invention at least includes an air flow path forming step, a droplet forming step, an air flow supplying step, and a collecting step, and further includes other steps as necessary.

粒子製造方法は、粒子製造装置により好適に実施でき、気流路形成工程は、気流路形成手段により好適に実施でき、液滴形成工程は、液滴形成手段により好適に実施でき、気流供給工程は、気流供給手段により好適に実施でき、捕集工程は、捕集手段により好適に実施でき、その他の工程は、その他の手段により好適に実施できる。   The particle production method can be suitably carried out by the particle production apparatus, the air flow passage forming step can be suitably carried out by the gas flow passage forming means, the droplet formation step can be suitably carried out by the droplet formation means, and the air flow supply step is The present invention can be suitably carried out by means of air flow supplying means, the collecting step can be suitably carried out by the collecting means, and the other steps can be suitably carried out by other means.

樹脂及び溶媒を含有する樹脂組成液を吐出させて液滴を形成し、その液滴を搬送気流中で乾燥して粒子を形成する粒子製造においては、搬送気流中で樹脂組成液中の溶媒を揮発させて得られた粒子を捕集する。   In the production of particles in which a resin composition liquid containing a resin and a solvent is discharged to form droplets, and the droplets are dried in a carrier air stream to form particles, the solvent in the resin composition liquid is The particles obtained by volatilization are collected.

吐出された液滴が搬送気流中に放出されると、液滴周囲の蒸気圧と温度との関係により、液滴の温度は、一旦は湿球温度に達するが、液滴の溶媒量が少なくなると、液滴の温度は搬送気流の温度まで上昇する。このため、液滴を乾燥して得られた粒子の温度は、気流の温度とほぼ同じである。   When the discharged droplets are discharged into the carrier air stream, the temperature of the droplets once reaches the wet bulb temperature due to the relationship between the vapor pressure around the droplets and the temperature, but the amount of solvent in the droplets is small. Then, the temperature of the droplets rises to the temperature of the carrier air stream. Thus, the temperature of the particles obtained by drying the droplets is about the same as the temperature of the air stream.

搬送気流中で液滴から溶媒が蒸発する際には、搬送気流から蒸発潜熱を奪うため、搬送気流の温度は低下する。即ち、気流の温度は蒸発潜熱で奪われる温度を見越して予め高い温度に設定しておく必要がある。そして、樹脂組成液の吐出量が変動すると、粒子が形成される際の蒸発潜熱の量が変わるため、搬送気流の温度は樹脂組成液の吐出量によって変動する。そのため、吐出孔に詰まりなどが生じて樹脂組成液の吐出量が減少すると、搬送気流の温度の低下は小さくなる。そして、粒子形成工程において乾燥された粒子の温度は、搬送気流の温度とほぼ同じになるため、樹脂組成液の吐出量が減少すると、乾燥された粒子の温度は高くなる。   When the solvent evaporates from the droplets in the carrier gas stream, the temperature of the carrier gas stream drops because the latent heat of vaporization is deprived from the carrier gas stream. That is, it is necessary to set the temperature of the air flow to a high temperature in advance in anticipation of the temperature taken away by the latent heat of vaporization. Then, when the discharge amount of the resin composition liquid fluctuates, the amount of latent heat of vaporization when the particles are formed changes, so the temperature of the carrier air flow fluctuates depending on the discharge amount of the resin composition liquid. Therefore, if the discharge holes are clogged and the discharge amount of the resin composition liquid is reduced, the decrease in temperature of the carrier air flow is reduced. Then, since the temperature of the particles dried in the particle forming step becomes substantially the same as the temperature of the carrier air stream, the temperature of the dried particles becomes high when the discharge amount of the resin composition liquid decreases.

そうすると、乾燥された粒子を捕集する際に粒子同士が付着して、狭い粒径分布を有する粒子が得られなくなる。製造される粒子によっては、低い軟化温度を有するものがあるが、軟化温度が低い粒子については、その傾向が顕著である。例えば、トナーは、電子写真システムの運転中の消費電力を抑えるために、低い軟化温度に設計される傾向にある。粒子の温度が粒子の軟化温度より高い状態で粒子を捕集すると、粒子同士が付着した状態で固化することとなり、捕集直前まで単分散に近い粒径分布の粒子が生成できていたとしても、捕集部で粒径分布が大幅に広くなることになる。このような粒度分布悪化の原因は液滴形成手段の不安定性によってもたらされるものであり、これを改善することで、生産性が向上するだけでなく、粒子も常に安定した乾燥状態となるため、品質の安定化が図れる。   Then, when the dried particles are collected, the particles adhere to each other, and particles having a narrow particle size distribution can not be obtained. Some particles produced have a low softening temperature, but the tendency is remarkable for particles having a low softening temperature. For example, toners tend to be designed at lower softening temperatures to reduce power consumption during operation of the electrophotographic system. If the particles are collected in a state where the temperature of the particles is higher than the softening temperature of the particles, the particles will be solidified in a state in which the particles adhere to each other, even if particles with a particle size distribution close to monodispersion were generated just before the collection. The particle size distribution in the collecting section is significantly broadened. The cause of the deterioration of the particle size distribution is caused by the instability of the droplet forming means, and by improving it, not only the productivity is improved but also the particles are always in a stable dry state, The quality can be stabilized.

そこで、本発明者らは鋭意検討を行った。その結果、粒子製造装置において、少なくとも平面上に複数の吐出孔を有し、該吐出孔から、樹脂及び溶媒を含有する樹脂組成液を吐出させ、液滴を形成する液滴形成手段と、気流路を形成する気流路形成手段と、気流路に搬送気流を供給する気流供給手段と、捕集手段とを有する。これにより、液滴形成手段の温度上昇を抑制し、ノズルの乾きによる閉塞を抑制し、液滴吐出量を大幅に改善できるだけでなく、粒子捕集を安定して行うことができ、粒子同士の合着を防止し、狭い粒径分布を有する粒子を長期にわたって製造できることを見出した。   Therefore, the present inventors diligently studied. As a result, in the particle manufacturing apparatus, a droplet forming unit that has a plurality of discharge holes on at least a flat surface and discharges a resin composition liquid containing a resin and a solvent from the discharge holes to form droplets; It has an air flow path forming means for forming a path, an air flow supply means for supplying a carrier air flow to the air flow path, and a collection means. As a result, the temperature rise of the droplet forming means can be suppressed, the clogging due to the drying of the nozzle can be suppressed, and not only the droplet discharge amount can be greatly improved, but also particle collection can be performed stably. It has been found that coalescence can be prevented and particles with a narrow particle size distribution can be produced over a long period of time.

液滴形成手段としては、平面上に複数の吐出孔を有し、該吐出孔から、樹脂及び溶媒を含有する樹脂組成液を吐出させ、均一な粒径の液滴を形成する手段であれば、特に制限はなく、目的に応じて適宜選択することができ、膜振動型、レイリー***型、液振動型、液柱共鳴型などが挙げられる。膜振動型としては、例えば、特開2008−292976号公報に記載されたものなどが挙げられる。レイリー***型としては、例えば、特許第4647506号公報に記載されたものなどが挙げられる。液振動型としては、例えば、特開2010−102195号公報に記載されたものなどが挙げられる。これらの中でも、液滴形成手段は、液滴の粒径分布が狭く、粒子の生産性を確保できる点で、液柱共鳴型が好ましい。   As a droplet forming means, it is a means having a plurality of discharge holes on a flat surface and discharging a resin composition liquid containing a resin and a solvent from the discharge holes to form droplets of uniform particle diameter. There is no particular limitation, and it can be selected appropriately according to the purpose, and may be membrane vibration type, Rayleigh split type, liquid vibration type, liquid column resonance type and the like. As a film | membrane vibration type, the thing etc. which were described in Unexamined-Japanese-Patent No. 2008-292976 are mentioned, for example. As the Rayleigh split type, for example, those described in Japanese Patent No. 4647506 and the like can be mentioned. As a liquid vibration type, the thing etc. which were described in Unexamined-Japanese-Patent No. 2010-102195 are mentioned, for example. Among them, the droplet forming means is preferably a liquid column resonance type in that the particle size distribution of droplets is narrow and the productivity of particles can be secured.

液滴形成工程としては、平面上の複数の吐出孔から、樹脂及び溶媒を含有する樹脂組成液を吐出させ、液滴を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができるが、液滴形成手段により行うことが好ましい。   The droplet forming process is not particularly limited as long as it is a process of forming a droplet by discharging a resin composition liquid containing a resin and a solvent from a plurality of discharge holes on a plane, and it is appropriately selected according to the purpose. It is preferable to use droplet forming means.

次に、液滴形成手段の一例の液柱共鳴型液滴形成手段について、説明する。
液柱共鳴型液滴形成手段は、少なくとも1つの吐出孔を有する液柱共鳴液室の内部の樹脂組成液に振動を付与することで液柱共鳴による圧力定在波を形成させ、圧力定在波の腹となる領域に配置された少なくとも1つの吐出孔から樹脂組成液を吐出して液滴を形成する手段である。
Next, a liquid column resonance type droplet forming unit as an example of the droplet forming unit will be described.
The liquid column resonance type droplet forming means forms a pressure standing wave by liquid column resonance by applying vibration to the resin composition liquid inside the liquid column resonance liquid chamber having at least one discharge hole, and pressure standing It is a means for discharging a resin composition liquid from at least one discharge hole arranged in a region which becomes an antinode of a wave to form a droplet.

液柱共鳴型液滴形成手段は、少なくとも1つの吐出孔を有する液柱共鳴液室と、該液柱共鳴液室内の樹脂組成液に振動を付与する振動発生部とを有し、これが複数配置されることで、平面上に複数のノズル穴が配置されることが好ましい。振動発生部によって液柱共鳴液室内の樹脂組成液に振動を付与して液柱共鳴により圧力定在波を形成し、該圧力定在波の腹となる領域に形成された吐出孔から樹脂組成液を液滴状に吐出することができる。   The liquid column resonance type droplet forming means has a liquid column resonance liquid chamber having at least one discharge hole, and a vibration generating portion for applying vibration to the resin composition liquid in the liquid column resonance liquid chamber, and a plurality of these are arranged. Preferably, a plurality of nozzle holes are arranged on a plane. The vibration generating section applies vibration to the resin composition liquid in the liquid column resonance liquid chamber to form a pressure standing wave by liquid column resonance, and the resin composition is formed from the discharge hole formed in the area which becomes the pressure standing wave The liquid can be discharged in the form of droplets.

「圧力定在波の腹となる領域」とは、液柱共鳴定在波の圧力波において振幅が大きく、圧力変動が大きい領域であり、かつ液滴を吐出するのに十分な大きさの圧力変動を有する領域である。そのような圧力定在波の腹となる領域としては、特に制限はなく、目的に応じて適宜選択することができるが、圧力定在波の振幅が極大となる位置(速度定在波としての節)から極小となる位置に向かって±1/3波長が好ましく、±1/4波長がより好ましい。吐出孔が、圧力定在波の腹となる領域に形成されていると、複数の吐出孔が開口されていても、それぞれの吐出孔からほぼ均一な液滴を形成することができる点で好ましい。   The “region that becomes the antinode of the pressure standing wave” is a region where the amplitude is large and the pressure fluctuation is large in the pressure wave of the liquid column resonance standing wave, and the pressure is large enough to eject the droplet. It is an area with fluctuations. There is no restriction | limiting in particular as an area | region used as the antinode of such a pressure standing wave, Although it can select suitably according to the objective, The position where the amplitude of a pressure standing wave becomes maximum (as a velocity standing wave From the clause (1), ± 1/3 wavelength is preferable, and ± 1/4 wavelength is more preferable toward the position where the local minimum is obtained. It is preferable that the discharge holes are formed in the area that becomes the antinode of the pressure standing wave, so that substantially uniform droplets can be formed from the respective discharge holes even when the plurality of discharge holes are opened. .

液柱共鳴液室とは、後述する液柱共鳴現象の原理に従い、振動発生部によって付与される振動により圧力定在波を形成することができる液室である。液柱共鳴液室を形成する材質としては、例えば、金属、セラミックス、プラスチック、シリコーンなどが挙げられる。これらの中でも、樹脂組成液に溶解せず、かつ樹脂組成液の変性を起こさないものが好ましい。   The liquid column resonance liquid chamber is a liquid chamber capable of forming a pressure standing wave by the vibration applied by the vibration generating unit according to the principle of liquid column resonance phenomenon described later. Examples of the material forming the liquid column resonance liquid chamber include metals, ceramics, plastics, silicone and the like. Among these, those which do not dissolve in the resin composition liquid and do not cause denaturation of the resin composition liquid are preferable.

図1は、本実施形態で用いる液柱共鳴タイプの液滴吐出装置の液滴形成手段の一部を拡大して示した模式図である。
図1に示すように、本実施形態の液滴形成手段11は、液柱共鳴液室18を備えており、この液柱共鳴液室18は、長手方向(図1中の左右方向)の両端の側壁部のうち、一方の側壁部(開口側壁部)に設けられた連通路を介して液共通供給路17へと連通している。また、液柱共鳴液室18は、長手方向両端の側壁部間を連結する壁部のうち1つの壁部(図1中の下側の底壁部)に液滴21を吐出する複数の吐出孔19を備えている。搬送気流41を吐出孔面の面方向に平行な方向に流している。この結果、吐出孔19から吐出された液滴21は吐出方向に対して直交する方向から搬送気流を受け、斜め方向に搬送される。これにより、液滴21の間隔が拡大され、液滴21の合着が抑制される。また、液柱共鳴液室18における吐出孔19と対向する上壁部側には、振動板22を介して、液柱共鳴定在波を形成するために高周波振動を発生させる振動発生手段20が設けられている。この振動発生手段20は、図示しない高周波電源に接続されている。
FIG. 1 is a schematic view showing an enlarged part of droplet forming means of a droplet discharge apparatus of a liquid column resonance type used in the present embodiment.
As shown in FIG. 1, the droplet forming means 11 of the present embodiment is provided with a liquid column resonance liquid chamber 18, and the liquid column resonance liquid chamber 18 has both ends in the longitudinal direction (left and right direction in FIG. 1). Among the side wall portions, the liquid common supply path 17 is in communication via a communication path provided in one side wall portion (opening side wall portion). Further, the liquid column resonance liquid chamber 18 has a plurality of discharges for discharging the droplets 21 to one wall (bottom wall in FIG. 1) of the walls connecting the side walls at both ends in the longitudinal direction. A hole 19 is provided. The carrier air flow 41 is made to flow in a direction parallel to the surface direction of the discharge hole surface. As a result, the droplets 21 discharged from the discharge holes 19 receive the carrier air flow from the direction orthogonal to the discharge direction, and are conveyed in the oblique direction. Thereby, the interval of the droplets 21 is enlarged, and the coalescence of the droplets 21 is suppressed. Further, on the upper wall side facing the discharge hole 19 in the liquid column resonance liquid chamber 18, a vibration generating means 20 for generating high frequency vibration to form a liquid column resonance standing wave through the diaphragm 22 is provided. It is provided. The vibration generating means 20 is connected to a high frequency power supply (not shown).

図1に示すように、液柱共鳴液室18は、後述するメカニズムにより液柱共鳴定在波が発生する液柱共鳴液室18内の樹脂組成液14を液滴21として吐出孔19から吐出する。液滴形成手段11は、液柱共鳴液室が複数配列された液滴形成ユニットを構成する。   As shown in FIG. 1, the liquid column resonance liquid chamber 18 discharges the resin composition liquid 14 in the liquid column resonance liquid chamber 18 in which liquid column resonance standing waves are generated as a droplet 21 from the discharge holes 19 by a mechanism described later. Do. The droplet forming means 11 constitutes a droplet forming unit in which a plurality of liquid column resonance liquid chambers are arranged.

図1に示すような、液柱共鳴液室18の長手方向の両端の壁面間の長さLとしては、特に制限はなく、目的に応じて適宜選択することができるが、後述するような液柱共鳴原理に基づいて決定されることが好ましい。また、図2に示すように、液柱共鳴液室18の幅Wとしても、特に制限はなく、目的に応じて適宜選択することができるが、液柱共鳴に余分な周波数を与えないように、液柱共鳴液室18の長さLの2分の1より小さいことが好ましい。   The length L between the wall surfaces at both ends in the longitudinal direction of the liquid column resonance liquid chamber 18 as shown in FIG. 1 is not particularly limited and may be appropriately selected according to the purpose. Preferably, it is determined based on the pillar resonance principle. Further, as shown in FIG. 2, the width W of the liquid column resonance liquid chamber 18 is not particularly limited and may be appropriately selected according to the purpose, but it is preferable not to give an extra frequency to the liquid column resonance. Preferably, the length is smaller than one half of the length L of the liquid column resonance liquid chamber 18.

液滴形成手段における液柱共鳴液室の数としては、特に制限はなく、目的に応じて適宜選択することができる。液滴の生産性を飛躍的に向上させるために、1つの液滴形成手段に対して複数配置されることが好ましく、操作性と生産性が両立できる点において、100個〜2,000個がより好ましく、200個〜1,000個がより好ましく、300個〜700個が特に好ましい。   The number of liquid column resonance liquid chambers in the droplet forming means is not particularly limited, and can be appropriately selected according to the purpose. In order to dramatically improve the productivity of droplets, it is preferable that a plurality of droplets be arranged for one droplet forming means, and in the point that operability and productivity are compatible, 100 to 2,000 are More preferably, 200 to 1,000 are more preferable, and 300 to 700 are particularly preferable.

吐出孔としては、特に制限はなく、目的に応じて適宜選択することができるが、圧力定在波の腹となる領域の少なくとも1つの領域に、少なくとも1つの吐出孔が配置されることが好ましく、また、1つの液柱共鳴液室に、複数配置されることが好ましい。   There is no restriction | limiting in particular as a discharge hole, Although it can select suitably according to the objective, It is preferable that at least 1 discharge hole is arrange | positioned in at least 1 area | region of the area | region which becomes an antinode of a pressure standing wave Also, it is preferable that a plurality of the liquid column resonance liquid chambers are disposed.

吐出孔の個数としては、特に制限はなく、目的に応じて適宜選択することができる。液滴形成手段が液柱共鳴タイプである場合、1つの液柱共鳴液室に形成された吐出孔の個数としては、1つでも構わないが、複数個配置することが生産性の観点から好ましく、2個〜100個が好ましく、4個〜60個がより好ましく、4個〜20個が特に好ましい。1つの液柱共鳴液室に形成された吐出孔の個数が、100個を超えると、吐出孔から所望の樹脂組成液の液滴を形成させる場合に、振動発生手段に与える電圧を高く設定する必要が生じ、振動発生手段の挙動が不安定となることがある。一方、4個〜20個の場合、圧力定在波が安定し、かつ生産性が保たれる。吐出孔の個数は多いほど生産性が高くなるが、20個を超えると、吐出孔が密集しすぎ、吐出した液滴が合着して粗大な粒子となって画質に悪影響を及ぼすことがある。   There is no restriction | limiting in particular as the number of objects of a discharge hole, According to the objective, it can select suitably. When the droplet forming means is a liquid column resonance type, the number of discharge holes formed in one liquid column resonance liquid chamber may be one, but it is preferable from the viewpoint of productivity to arrange a plurality of discharge holes. 2 to 100 are preferable, 4 to 60 are more preferable, and 4 to 20 are particularly preferable. When the number of discharge holes formed in one liquid column resonance liquid chamber exceeds 100, the voltage applied to the vibration generating means is set high when forming droplets of the desired resin composition liquid from the discharge holes. This may cause the behavior of the vibration generating means to become unstable. On the other hand, in the case of 4 to 20, the pressure standing wave is stabilized and productivity is maintained. The productivity increases as the number of ejection holes increases, but if the number exceeds 20, the ejection holes may become too dense, and the ejected droplets may coalesce to become coarse particles and adversely affect the image quality. .

吐出孔の開口径としては、特に制限はなく、目的に応じて適宜選択することができるが、1[μm]〜40[μm]が好ましく、2[μm]〜15[μm]がより好ましく、6[μm]〜12[μm]が特に好ましい。開口径が、1[μm]未満であると、形成される液滴が非常に小さくなるため粒子(例えば、トナー)を得ることができない場合がある。また、開口径が、40[μm]を超えると、樹脂組成液の液滴の直径が大きく、これを乾燥固化させて所望の粒子径3[μm]〜6[μm]を得る場合、有機溶媒で樹脂組成液(例えば、トナー組成液)を非常に希薄な液に希釈する必要がある。この場合、一定量の粒子(例えば、トナー)を得るための乾燥エネルギーが大量に必要となってしまい、乾燥に要する時間が長くなることがある。一方、開口径が、6[μm]〜12[μm]であると、吐出孔が開口する部材を製造する際に、多数の吐出孔の孔径ばらつきを小さく保つことができ、吐出孔を密集させて生産性を高く保つことができる点で有利である。なお、吐出孔の開口径とは、吐出孔の液滴が吐出される側に位置する開口部の直径であり、真円であれば直径を意味し、楕円、若しくは四角形、六角形、八角形等の多角形乃至正多角形であれば平均径を意味する。   There is no restriction | limiting in particular as an opening diameter of a discharge hole, Although it can select suitably according to the objective, 1 [μm]-40 [μm] is preferable, 2 [μm]-15 [μm] is more preferable, 6 [μm] to 12 [μm] is particularly preferred. If the opening diameter is less than 1 μm, the formed droplets may be so small that particles (for example, toner) can not be obtained. When the opening diameter exceeds 40 [μm], the diameter of the droplets of the resin composition liquid is large, and when drying and solidifying this to obtain a desired particle size of 3 [μm] to 6 [μm], an organic solvent It is necessary to dilute the resin composition liquid (for example, toner composition liquid) to a very dilute liquid. In this case, a large amount of drying energy is required to obtain a certain amount of particles (for example, toner), and the time required for drying may be extended. On the other hand, when manufacturing the member in which the discharge hole is open when the diameter of the opening is 6 [μm] to 12 [μm], the variation in the hole diameter of many discharge holes can be kept small, and the discharge holes are densely packed. Is advantageous in that the productivity can be kept high. The opening diameter of the discharge hole is the diameter of the opening located on the side of the discharge hole from which the liquid droplets are discharged. If it is a perfect circle, it means the diameter and it is an ellipse, or a quadrangle, a hexagon, an octagon If it is a polygon or regular polygon such as, it means the mean diameter.

吐出孔の断面形状としては、特に制限はなく、目的に応じて適宜選択することができる。
図3(a)〜(d)に、吐出孔の断面形状の一例を示す。図3(a)に示す吐出孔19は、その吐出孔19の接液面から吐出口に向かってラウンド形状を持ちながら開口径が狭くなるような形状を有している。そのため、液柱共鳴液室の吐出孔が形成された薄膜42が振動した際に吐出孔19の出口付近で液にかかる圧力が最大となるため、吐出の安定化に際しては最も好ましい形状である。
図3(b)に示す吐出孔19は、その吐出孔19の接液面から吐出口に向かって一定の角度を持って開口径が狭くなるようなテーパ角Aを有するテーパ形状を有する。ここで、テーパ角とは、吐出孔19の開口面(吐出孔19の形成面の厚み方向に対して垂直な面)に対する垂線(開口軸)と、吐出孔19の形成面の厚み方向の断面における、吐出孔19の断面形状の側面とのなす角度をいう。テーパ角Aは、適宜変更することができる。図3(a)と同様に、テーパ角Aによって薄膜42が振動したときの吐出孔19の出口付近で液にかかる圧力を高めることができるが、テーパ角Aの範囲としては、60[°]〜90[°]が好ましい。テーパ角Aが、60[°]未満であると、樹脂組成液に圧力がかかりにくく、更に薄膜42の加工が難しくなることがある。テーパ角Aが、90[°]である場合は、図3(c)が相当する。この場合、吐出孔19の出口に圧力がかかりにくくなることがある。テーパ角が、90[°]を超えると、吐出孔19の出口に圧力がかからなくなり、液滴吐出が非常に不安定化することがある。図3(d)は、図3(a)と図3(b)とを組み合わせた形状である。このように段階的に形状を変更しても構わない。
There is no restriction | limiting in particular as a cross-sectional shape of a discharge hole, According to the objective, it can select suitably.
FIGS. 3A to 3D show an example of the sectional shape of the discharge hole. The discharge hole 19 shown in FIG. 3A has a shape in which the opening diameter is narrowed while having a round shape from the liquid contact surface of the discharge hole 19 toward the discharge port. Therefore, the pressure applied to the liquid becomes maximum near the outlet of the discharge hole 19 when the thin film 42 in which the discharge hole of the liquid column resonance liquid chamber is formed vibrates, and therefore, the shape is the most preferable for the discharge stabilization.
The discharge hole 19 shown in FIG. 3B has a tapered shape having a taper angle A such that the opening diameter is narrowed at a constant angle from the liquid contact surface of the discharge hole 19 toward the discharge port. Here, the taper angle is a cross-section in the thickness direction of the surface (opening axis) perpendicular to the opening surface of the discharge hole 19 (surface perpendicular to the thickness direction of the formation surface of the discharge hole 19) and the formation surface of the discharge hole 19 Of the cross-sectional shape of the discharge hole 19 in the The taper angle A can be changed as appropriate. Similar to FIG. 3A, the pressure applied to the liquid can be increased near the outlet of the discharge hole 19 when the thin film 42 vibrates due to the taper angle A, but the range of the taper angle A is 60 °. -90 [°] is preferable. When the taper angle A is less than 60 °, pressure may not be applied to the resin composition liquid, and processing of the thin film 42 may be difficult. When the taper angle A is 90 [°], FIG. 3C corresponds. In this case, pressure may not easily be applied to the outlet of the discharge hole 19. If the taper angle exceeds 90 °, pressure may not be applied to the outlet of the discharge hole 19, and droplet discharge may be extremely destabilized. FIG. 3 (d) shows a shape obtained by combining FIG. 3 (a) and FIG. 3 (b). Thus, the shape may be changed stepwise.

また、複数の吐出孔が形成された場合、圧力定在波の腹となる領域の1つにおける吐出孔間のピッチ(隣接する吐出孔の中心部間の最短間隔)としては、特に制限はなく、目的に応じて適宜選択することができる。20[μm]以上かつ液柱共鳴液室の長さL以下が好ましく、20[μm]〜200[μm]がより好ましく、40[μm]〜135[μm]が更に好ましく、40[μm]〜80[μm]が特に好ましい。吐出孔間のピッチが20[μm]未満であると、隣り合う吐出孔より放出された液滴同士が衝突して大きな滴となってしまう確率が高くなり、粒子の粒径分布悪化につながることがある。吐出孔間のピッチは、吐出孔間において、全て等間隔であってもよく、少なくとも1つのピッチが異なっていてもよいが、全て等間隔であることが、均一な粒径の粒子を得ることができる点で好ましい。   In addition, when a plurality of discharge holes are formed, the pitch between discharge holes (the shortest distance between the center portions of adjacent discharge holes) in one of the regions which become antinodes of the pressure standing wave is not particularly limited. Can be selected appropriately according to the purpose. 20 μm or more and the length L or less of the liquid column resonance liquid chamber are preferable, 20 μm to 200 μm is more preferable, 40 μm to 135 μm is further preferable, and 40 μm to 80 [μm] is particularly preferred. If the pitch between the discharge holes is less than 20 μm, the probability that the droplets discharged from the adjacent discharge holes collide with each other and become large drops increases, leading to the deterioration of the particle size distribution of the particles. There is. The pitch between the discharge holes may be all equally spaced between the discharge holes, or at least one pitch may be different, but it is necessary to obtain particles of uniform particle diameter that all are equally spaced. Is preferable in that

振動発生手段としては、所定の周波数で駆動でき、液柱共鳴液室内の樹脂組成液に振動を付与できるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、圧電体、超音波振動発生部などが挙げられる。圧電体としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックス、ポリフッ化ビニリデン(PVDF)等の圧電高分子、水晶、LiNbO、LiTaO、KNbO等の単結晶などの材質から形成された圧電体などが挙げられる。超音波振動発生部としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、磁歪素子などが挙げられる。これらの中でも、圧電体が好ましい。その圧電体は、一般に変位量が小さいため積層して使用されることが多い。圧電体を、弾性板に貼りあわせた形態が好ましい。弾性板は、圧電体が接液しないように液柱共鳴液室の壁の一部を形成している。 The vibration generating means is not particularly limited as long as it can be driven at a predetermined frequency and can impart vibration to the resin composition liquid in the liquid column resonance liquid chamber, and can be appropriately selected according to the purpose. A piezoelectric body, an ultrasonic vibration generation part, etc. are mentioned. There is no restriction | limiting in particular as a piezoelectric material, According to the objective, it can select suitably. For example, a piezoelectric body formed of piezoelectric ceramics such as lead zirconate titanate (PZT), piezoelectric polymers such as polyvinylidene fluoride (PVDF), single crystals such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 or the like Etc. There is no restriction | limiting in particular as an ultrasonic vibration generation part, According to the objective, it can select suitably, For example, a magnetostriction element etc. are mentioned. Among these, a piezoelectric body is preferable. In general, the piezoelectric body is often used in lamination because the amount of displacement is small. It is preferable that the piezoelectric body be bonded to an elastic plate. The elastic plate forms a part of the wall of the liquid column resonance liquid chamber so that the piezoelectric body does not contact the liquid.

振動発生手段の配置としては、特に制限はなく、目的に応じて適宜選択することができるが、少なくとも1つの吐出孔が形成された液柱共鳴液室の一の壁面(長手方向の面)と対面する壁に形成されていることが好ましい。また、振動発生手段は、弾性板に貼りあわせた形態であることが好ましく、該弾性板は、振動発生手段が接液しないように液柱共鳴液室の壁の一部を形成することが好ましい。更に、振動発生手段は、1つの液柱共鳴液室毎に個別に制御できるように配置されることが好ましい。また、液柱共鳴液室の配置にあわせて、弾性板を介してブロック状の圧電体等の振動発生手段を配置することが、それぞれの液柱共鳴液室を個別制御できる観点から好ましい。   The arrangement of the vibration generating means is not particularly limited and may be appropriately selected according to the purpose. However, with one wall (surface in the longitudinal direction) of the liquid column resonance liquid chamber in which at least one discharge hole is formed Preferably, it is formed on the facing wall. The vibration generating means is preferably bonded to an elastic plate, and the elastic plate preferably forms a part of the wall of the liquid column resonance liquid chamber so that the vibration generating means does not contact the liquid. . Furthermore, it is preferable that the vibration generating means be disposed so as to be individually controllable for each liquid column resonance liquid chamber. Further, it is preferable to dispose vibration generating means such as a block-like piezoelectric body via an elastic plate in accordance with the arrangement of the liquid column resonance liquid chambers from the viewpoint of individually controlling each liquid column resonance liquid chamber.

次に、液柱共鳴型の液滴形成手段による液滴形成のメカニズムについて説明する。
液柱共鳴液室(例えば、図1の液滴形成手段11内の液柱共鳴液室18)において生じる液柱共鳴現象の原理について以下説明する。液柱共鳴液室内の樹脂組成液の音速をcとし、振動発生手部(例えば、図1の振動発生手段20)から媒質である樹脂組成液に与えられた駆動周波数をfとした場合、樹脂組成液の共鳴が発生する波長λは、下記式(1)の関係にある。
λ=c/f ・・・式(1)
Next, the mechanism of droplet formation by the liquid column resonance type droplet formation means will be described.
The principle of the liquid column resonance phenomenon that occurs in the liquid column resonance liquid chamber (for example, the liquid column resonance liquid chamber 18 in the droplet forming means 11 of FIG. 1) will be described below. Assuming that the sound velocity of the resin composition liquid in the liquid column resonance liquid chamber is c, and the driving frequency given to the resin composition liquid as the medium from the vibration generating hand (for example, the vibration generating means 20 in FIG. 1) is f. The wavelength λ at which the resonance of the composition liquid occurs is in the relationship of the following formula (1).
λ = c / f formula (1)

ここで、液柱共鳴液室が、両側固定端の場合、或いは両側固定端と等価である場合、液柱共鳴液室の長手方向の両端における反射壁面間の長さを、液柱共鳴液室の長手方向の長さLとする。この場合、長さLが波長λの4分の1の偶数倍に一致する場合に共鳴が最も効率的に形成される。つまり、下記式(2)で表される。
L=(N/4)λ ・・・式(2)
ただし、Nは、偶数である。
なお、「両側固定端と等価である場合」とは、ある端において圧力の逃げ部がないとみなすことができる場合である。例えば、ある端において反射壁面の高さが、樹脂組成液供給のための連通口の高さの2倍以上である場合、及びある端において反射壁面の面積が、樹脂組成液供給のための連通口の開口部の面積の2倍以上である場合などを指す。図1において、液柱共鳴液室18の固定端側のフレームの端部から液共通供給路17側の端部までの長さが、図1中の長さLに相当する。また、液共通供給路17側のフレームの端部の高さh1(=約80[μm])は、連通口の高さh2(=約40[μm])の約2倍あり当該端部が閉じている両側固定端と等価であるとみなすことができる。
Here, in the case where the liquid column resonance liquid chamber is both fixed ends or equivalent to both fixed ends, the length between the reflecting wall surfaces at both ends in the longitudinal direction of the liquid column resonance liquid chamber is the liquid column resonance liquid chamber Length L in the longitudinal direction. In this case, the resonance is most efficiently formed when the length L coincides with an even multiple of one quarter of the wavelength λ. That is, it is represented by the following formula (2).
L = (N / 4) λ formula (2)
However, N is an even number.
In addition, "when it is equivalent to a both-sides fixed end" is a case where it can be regarded that there is no pressure relief portion at a certain end. For example, if the height of the reflecting wall at one end is twice or more the height of the communication port for supplying the resin composition liquid, and the area of the reflecting wall at one end is the communication for supplying the resin composition liquid It refers to the case where the area of the opening of the mouth is twice or more. In FIG. 1, the length from the end of the frame at the fixed end of the liquid column resonance liquid chamber 18 to the end at the liquid common supply path 17 corresponds to the length L in FIG. In addition, the height h1 (= about 80 [μm]) of the end of the frame on the common liquid supply path 17 side is about twice the height h2 (= about 40 [μm]) of the communication port, and the end is It can be considered equivalent to a closed fixed end.

更に、両端が完全に開いている両側開放端の場合にも上記式(2)が成り立つ。同様にして、片方側が圧力の逃げ部がある開放端と等価で、他方側が閉じている(固定端である)場合、つまり片側固定端の場合、或いは片側開放端の場合には、長さLが波長λの4分の1の奇数倍に一致する場合に共鳴が最も効率的に形成される。つまり、上記式(2)のNが奇数で表される場合に相当する。なお、両側開放端の場合は、Lが波長の4分の1の偶数倍、片側固定端の場合は、Lが波長の4分の1の奇数倍に相当する。   Furthermore, the above equation (2) holds also in the case of both open ends where both ends are completely open. Similarly, if one side is equivalent to an open end with a pressure relief and the other side is closed (fixed end), that is, one fixed end or one open end, the length L Is most efficiently formed when it corresponds to an odd multiple of one quarter of the wavelength λ. That is, this corresponds to the case where N in the above equation (2) is represented by an odd number. In the case of open ends on both sides, L corresponds to an even multiple of a quarter of the wavelength, and in the case of fixed end on one side, L corresponds to an odd multiple of a quarter of the wavelength.

最も効率の高い駆動周波数fは、上記式(1)及び上記式(2)より、下記式(3)が導かれる。
f=N×c/(4L) ・・・式(3)
ただし、Lは液柱共鳴液室の長手方向の長さを表し、cは樹脂組成液の音波の速度を表し、Nは整数を表す。
The following equation (3) is derived from the above equation (1) and the above equation (2) for the driving frequency f with the highest efficiency.
f = N × c / (4 L) formula (3)
Here, L represents the length of the liquid column resonance liquid chamber in the longitudinal direction, c represents the velocity of the sound wave of the resin composition liquid, and N represents an integer.

したがって、本発明の粒子製造装置及び粒子製造方法において、樹脂組成液に対して、上記式(3)が成立する周波数fの振動を付与することが好ましい。しかし、実際には、樹脂組成液は、共鳴を減衰させる粘性を持つために無限に振動が増幅されるわけではなく、Q値を持ち、後述する式(4)、式(5)に示すように、上記式(3)に示す最も効率の高い駆動周波数fの近傍の周波数でも共鳴は発生する。   Therefore, in the particle manufacturing apparatus and the particle manufacturing method of the present invention, it is preferable to apply vibration of the frequency f in which the above equation (3) holds, to the resin composition liquid. However, in practice, the resin composition liquid does not amplify vibrations infinitely because it has a viscosity that attenuates resonance, but has a Q value, as shown in formulas (4) and (5) described later. In addition, resonance occurs even at a frequency near the most efficient drive frequency f shown in the above equation (3).

図4(a)〜(d)にN=1、2、3の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示す。本来は疎密波(縦波)であるが、図4(a)〜(d)のように表記することが一般的である。実線が速度定在波(速度分布)、点線が圧力定在波(圧力分布)である。   The shape (resonance mode) of the standing wave of the speed | velocity and pressure fluctuation in the case of N = 1, 2, 3 is shown in FIG. 4 (a)-(d). Although it is originally compression wave (longitudinal wave), it is generally described as shown in FIGS. 4 (a) to 4 (d). The solid line is the velocity standing wave (velocity distribution), and the dotted line is the pressure standing wave (pressure distribution).

例えば、N=1の片側固定端の場合を示す図4(a)からわかるように、速度定在波の場合、閉口端で速度定在波の振幅がゼロとなり、開口端で振幅が最大となる。液柱共鳴液室の長手方向の両端の間の長さをLとしたとき、液体が液柱共鳴する波長をλとし、整数Nが1〜5の場合(N=4、5は不図示)に定在波が最も効率よく発生する。また、両端の開閉状態によっても定在波パターンは異なるため、それらも併記した。後述するが、吐出孔の開口や供給側の開口の状態によって、端部の条件が決まる。   For example, as can be seen from FIG. 4A showing the case of N = 1 one-side fixed end, in the case of a velocity standing wave, the amplitude of the velocity standing wave becomes zero at the closed end and the amplitude is maximum at the aperture end. Become. When the length between both ends in the longitudinal direction of the liquid column resonance liquid chamber is L, the wavelength at which the liquid undergoes liquid column resonance is λ, and the integer N is 1 to 5 (N = 4 and 5 are not shown) Standing waves occur most efficiently. In addition, since the standing wave pattern differs depending on the open / close state of both ends, they are also described. As described later, the condition of the end portion is determined by the state of the opening of the discharge hole and the opening on the supply side.

なお、音響学において、開口端とは長手方向の媒質(液)の移動速度がゼロとなる端であり、逆に圧力は極大となる。閉口端においては、逆に媒質の移動速度がゼロとなる端と定義される。閉口端は音響的に硬い壁として考え、波の反射が発生する。理想的に完全に閉口、若しくは開口している場合は、波の重ね合わせによって図4(a)〜(d)のような形態の共鳴定在波を生じる。しかし、吐出孔数、吐出孔の開口位置によって定在波パターンは変動し、上記式(3)より求めた位置からずれた位置に共鳴周波数が現れる。その場合、適宜駆動周波数を調整することで安定吐出条件を作り出すことができる。   In acoustics, the open end is an end at which the moving speed of the medium (liquid) in the longitudinal direction becomes zero, and conversely, the pressure becomes maximum. At the closed end, conversely, it is defined as an end where the moving speed of the medium becomes zero. The closed end is considered as an acoustically hard wall, and wave reflections occur. In the case of ideally completely closed or open, superposition of waves produces a resonant standing wave having a form as shown in FIGS. 4 (a) to 4 (d). However, the standing wave pattern fluctuates depending on the number of discharge holes and the opening position of the discharge holes, and a resonance frequency appears at a position deviated from the position obtained from the above equation (3). In that case, stable discharge conditions can be created by appropriately adjusting the drive frequency.

例えば、液体の音速cが1,200[m/s]、液柱共鳴液室の長さLが1.85[mm]を用い、両端に壁面が存在して、両側固定端と完全に等価のN=2の共鳴モードを用いた場合、上記式(3)より、最も効率の高い共鳴周波数は324[kHz]と導かれる。他の例では、液体の音速cが1200[m/s]、液柱共鳴液室の長さLが1.85[mm]と、上記と同じ条件を用い、両端に壁面が存在して、両側固定端と等価のN=4の共鳴モードを用いた場合、上記式(3)より、最も効率の高い共鳴周波数は648[kHz]と導かれ、同じ構成の液柱共鳴液室においても、より高次の共鳴を利用することができる。   For example, the sound velocity c of the liquid is 1,200 m / s, the length L of the liquid column resonance liquid chamber is 1.85 mm, wall surfaces exist at both ends, and both ends are completely equivalent From the above equation (3), when the N = 2 resonance mode of is used, the most efficient resonance frequency is derived as 324 [kHz]. In another example, using the same conditions as described above, the sound velocity c of the liquid is 1200 m / s, the length L of the liquid column resonance liquid chamber is 1.85 mm, and there are wall surfaces at both ends, When N = 4 resonance modes equivalent to the fixed ends on both sides are used, the highest efficient resonance frequency is derived as 648 [kHz] from the above equation (3), and even in the liquid column resonance liquid chamber having the same configuration, Higher order resonances can be used.

図1に示す液滴形成手段11における液柱共鳴液室18は、両端が閉口端状態と等価であるか、吐出孔の開口の影響で、音響的に軟らかい壁として説明できるような端部であることが周波数を高めるためには好ましいが、それに限らず開放端であってもよい。ここでの吐出孔の開口の影響とは、音響インピーダンスが小さくなり、特にコンプライアンス成分が大きくなることを意味する。よって、図4(b)のような液柱共鳴液室の長手方向の両端に壁面を形成する構成は、両側固定端の共鳴モード、そして吐出孔側が開口とみなす片側開放端の全ての共鳴モードが利用できるために、好ましい構成である。   The liquid column resonance liquid chamber 18 in the droplet forming means 11 shown in FIG. 1 is an end portion which can be described as an acoustically soft wall under the influence of the opening of the discharge hole or both ends being equivalent to the closed end state. Although it is preferable to increase the frequency, it is not limited to this and may be an open end. Here, the influence of the opening of the discharge hole means that the acoustic impedance becomes smaller, and in particular, the compliance component becomes larger. Therefore, in the configuration in which wall surfaces are formed at both ends in the longitudinal direction of the liquid column resonance liquid chamber as shown in FIG. 4B, resonance modes at both fixed ends and all resonance modes at one open end where the discharge hole side is regarded as an opening Is a preferred configuration because it is available.

また、吐出孔の開口数、開口配置位置、吐出孔の断面形状も駆動周波数を決定する因子となり、駆動周波数はこれに応じて適宜決定することができる。例えば、吐出孔の数を多くすると、徐々に固定端であった液柱共鳴液室の先端の拘束が緩くなり、ほぼ開口端に近い共鳴定在波が発生し、駆動周波数は高くなる。更に、最も液供給路側に存在する吐出孔の開口配置位置を起点に緩い拘束条件となり、また吐出孔の断面形状がラウンド形状となったりフレームの厚さによる吐出孔の体積が変動したり、実際上の定在波は短波長となり、駆動周波数よりも高くなる。このように決定された駆動周波数で振動発生部に電圧を与えたとき、振動発生部が変形し、駆動周波数にて最も効率よく共鳴定在波を発生する。また、共鳴定在波が最も効率よく発生する駆動周波数の近傍の周波数でも液柱共鳴定在波は発生する。つまり、液柱共鳴液室の長手方向の両端間の長さをL、液供給側の端部に最も近い吐出孔までの距離をLeとした。このとき、L及びLeの両方の長さを用いて下記式(4)及び下記式(5)で決定される範囲の駆動周波数fを主成分とした駆動波形を用いて振動発生部を振動させ、液柱共鳴を誘起して液滴を吐出孔から吐出することが可能である。   Further, the numerical aperture of the discharge hole, the arrangement position of the opening, and the cross-sectional shape of the discharge hole also become factors to determine the drive frequency, and the drive frequency can be appropriately determined accordingly. For example, when the number of discharge holes is increased, the restraint of the tip of the liquid column resonance liquid chamber, which has been a fixed end, is loosened gradually, a resonant standing wave near the open end is generated, and the drive frequency is increased. In addition, the restriction condition is relaxed starting from the opening position of the discharge hole located closest to the liquid supply path, and the cross-sectional shape of the discharge hole is round or the volume of the discharge hole varies depending on the thickness of the frame. The upper standing wave has a short wavelength and is higher than the drive frequency. When a voltage is applied to the vibration generating unit at the driving frequency determined in this manner, the vibration generating unit is deformed to generate the resonant standing wave most efficiently at the driving frequency. The liquid column resonant standing wave is also generated at a frequency near the driving frequency at which the resonant standing wave is most efficiently generated. That is, the length between both ends in the longitudinal direction of the liquid column resonance liquid chamber is L, and the distance to the discharge hole closest to the liquid supply side end is Le. At this time, the vibration generating unit is vibrated using a drive waveform whose main component is the drive frequency f in the range determined by the following equation (4) and the following equation (5) using both the lengths L and Le. It is possible to eject liquid droplets from the ejection holes by inducing liquid column resonance.

N×c/(4L)≦f≦N×c/(4Le) ・・・式(4)
N×c/(4L)≦f≦(N+1)×c/(4Le) ・・・式(5)
ただし、Lは液柱共鳴液室の長手方向の長さを表し、Leは液供給路側の端部に最も近い吐出孔までの距離を表し、cは樹脂組成液の音波の速度を表し、Nは整数を表す。
なお、液柱共鳴液室の長手方向の両端間の長さLと、液供給側の端部に最も近い吐出孔までの距離Leの比がLe/L>0.6であることが好ましい。
N × c / (4 L) ≦ f ≦ N × c / (4 Le) Formula (4)
N × c / (4 L) ≦ f ≦ (N + 1) × c / (4 Le) (5)
Here, L represents the length of the liquid column resonance liquid chamber in the longitudinal direction, Le represents the distance to the discharge hole closest to the end on the liquid supply path side, c represents the velocity of the sound wave of the resin composition liquid, and N Represents an integer.
Preferably, the ratio of the length L between both ends in the longitudinal direction of the liquid column resonance liquid chamber and the distance Le to the discharge hole closest to the end on the liquid supply side is Le / L> 0.6.

以上説明した液柱共鳴現象の原理を用いて、図1の液柱共鳴液室18において液柱共鳴圧力定在波が形成され、液柱共鳴液室18の一部に配置された吐出孔19において連続的に液滴21の吐出が発生する。なお、定在波の圧力が最も大きく変動する位置に吐出孔19を配置すると、吐出効率が高くなり、低い電圧で駆動することができる点で好ましい。   By using the principle of the liquid column resonance phenomenon described above, the liquid column resonance pressure standing wave is formed in the liquid column resonance liquid chamber 18 of FIG. 1 and the discharge holes 19 disposed in a part of the liquid column resonance liquid chamber 18. Discharge of the droplets 21 occurs continuously. It is preferable to dispose the discharge hole 19 at the position where the pressure of the standing wave fluctuates the most, since the discharge efficiency becomes high and the drive can be performed with a low voltage.

次に、液滴形成手段における液滴吐出ヘッド内の液柱共鳴液室で生じる液柱共鳴現象の様子について当該様子を示す図5(a)〜(e)を用いて説明する。なお、図5(a)〜(e)において、液柱共鳴液室内に記した実線は、液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における速度をプロットした速度分布を示し、液共通供給路側から液柱共鳴液室への方向を「+」とし、その逆方向を「−」とする。また、液柱共鳴液室内に記した点線は、液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における圧力値をプロットした圧力分布を示し、大気圧に対して正圧を「+」とし、負圧は「−」とする。また、正圧であれば図中の下方向に圧力が加わることになり、負圧であれば図中の上方向に圧力が加わることになる。
更に、図5(a)〜(e)において、上述したように液共通供給路側が開放されているが液共通供給路17と液柱共鳴液室18とが連通する開口の高さ(図1に示す高さh2)に比して固定端となるフレームの高さ(図1に示す高さh1)が約2倍以上である。そのため、液柱共鳴液室18はほぼ両側固定端であるという近似的な条件のもとでの速度分布及び圧力分布の時間的なそれぞれの変化を示している。
Next, the state of the liquid column resonance phenomenon generated in the liquid column resonance liquid chamber in the droplet discharge head in the droplet forming means will be described with reference to FIGS. 5 (a) to 5 (e). 5 (a) to 5 (e), the solid lines in the liquid column resonance liquid chamber indicate arbitrary measurement positions from the fixed end side in the liquid column resonance liquid chamber to the end on the common liquid supply path side. The velocity distribution is shown by plotting the velocity at the position of (1), the direction from the common fluid supply channel side to the liquid column resonance liquid chamber is "+", and the opposite direction is "-". Further, dotted lines in the liquid column resonance liquid chamber indicate pressure distributions obtained by plotting pressure values at arbitrary measurement positions from the fixed end side in the liquid column resonance liquid chamber to the end on the liquid common supply path side, The positive pressure is "+" and the negative pressure is "-" with respect to the atmospheric pressure. Further, if the pressure is positive, the pressure is applied downward in the drawing, and if the pressure is negative, the pressure is applied upward in the drawing.
Furthermore, in FIGS. 5 (a) to 5 (e), as described above, the liquid common supply passage side is opened, but the height at which the liquid common supply passage 17 and the liquid column resonance liquid chamber 18 communicate with each other (FIG. The height (height h1 shown in FIG. 1) of the frame which is the fixed end is about twice or more than the height h2) shown in FIG. Therefore, the liquid column resonance liquid chamber 18 shows temporal changes in velocity distribution and pressure distribution under the approximate condition that the both ends are both fixed ends.

図5(a)は、液滴吐出時の液柱共鳴液室18内の圧力波形(圧力分布)と速度波形(速度分布)を示している。また、図5(b)は、液滴吐出直後の液引き込みを行った後再びメニスカス圧が増加してくる様子を示している。これらの図5(a)及び図5(b)に示すように、液柱共鳴液室18における吐出孔19が設けられている流路内での圧力は、極大となっている。その後、図5(c)に示すように、吐出孔19付近の正の圧力は小さくなり、負圧の方向へ移行して液滴21が吐出される。そして、図5(d)に示すように、吐出孔19付近の圧力は極小になる。このときから液柱共鳴液室18への樹脂組成液14の充填が始まる。その後、図5(e)に示すように、吐出孔19付近の負の圧力は小さくなり、正圧の方向へ移行する。この時点で、樹脂組成液14の充填が終了する。そして、再び、図5(a)に示すように、液柱共鳴液室18の液滴吐出領域の正の圧力が極大となって、吐出孔19から液滴21が吐出される。このように、液柱共鳴液室内には振動発生部の高周波駆動によって液柱共鳴による定在波が発生する。また、圧力が最も大きく変動する位置となる液柱共鳴による定在波の腹に相当する液滴吐出領域に吐出孔19が配置されていることから、当該腹の周期に応じて液滴21が吐出孔19から連続的に吐出される。   FIG. 5A shows a pressure waveform (pressure distribution) and a velocity waveform (velocity distribution) in the liquid column resonance liquid chamber 18 at the time of droplet discharge. Further, FIG. 5B shows that the meniscus pressure increases again after the liquid is drawn in immediately after the droplet discharge. As shown in FIGS. 5A and 5B, the pressure in the flow channel in which the discharge hole 19 is provided in the liquid column resonance liquid chamber 18 is a maximum. After that, as shown in FIG. 5C, the positive pressure in the vicinity of the discharge hole 19 becomes smaller, and the negative pressure is shifted to discharge the droplet 21. And as shown in FIG.5 (d), the pressure of the discharge hole 19 vicinity becomes the minimum. From this time, the filling of the resin composition liquid 14 into the liquid column resonance liquid chamber 18 starts. Thereafter, as shown in FIG. 5E, the negative pressure in the vicinity of the discharge hole 19 decreases and shifts in the direction of the positive pressure. At this point, the filling of the resin composition liquid 14 is completed. Then, as shown in FIG. 5A again, the positive pressure in the droplet discharge area of the liquid column resonance liquid chamber 18 is maximized, and the droplet 21 is discharged from the discharge hole 19. As described above, a standing wave is generated in the liquid column resonance liquid chamber by the high frequency driving of the vibration generating unit due to the liquid column resonance. In addition, since the discharge hole 19 is disposed in the droplet discharge area corresponding to the antinode of the standing wave by the liquid column resonance where the pressure fluctuates the most, the droplet 21 corresponds to the antinode cycle. The ink is discharged continuously from the discharge hole 19.

次に、本実施形態の粒子製造装置の構成について説明する。
図6は、本実施形態に係る粒子製造装置の構成を説明する概略図である。図6に示すように、液滴形成手段11により吐出された液滴21は、気流供給手段30により供給されるとともに温度調整された搬送気流によって搬送される。そして、粒子形成手段60に搬送され、液滴は乾燥、固化して、捕集手段としての粒子捕集手段70に搬送され、固体粒子として捕集される。液滴形成手段11より吐出した液滴は、連続的に形成することができる。気流供給手段30は、液滴の吐出方向に対して、横方向からの搬送気流を気流路に供給し、その搬送気流で液滴を搬送することが望ましい。これは液滴どうしの距離を効率的に引き離すことが可能となるためである。液滴吐出方向と同じ向きの場合は、平面上に配置された吐出孔近傍で気流の滞留を生じるため、液滴同士を引き離すことができず、液滴同士が接触しやすくなる。
Next, the configuration of the particle production apparatus of the present embodiment will be described.
FIG. 6 is a schematic view illustrating the configuration of a particle production apparatus according to the present embodiment. As shown in FIG. 6, the droplets 21 discharged by the droplet forming means 11 are conveyed by the carrier air flow which is supplied by the air flow supply means 30 and whose temperature is adjusted. Then, the droplets are transported to the particle forming unit 60, and the droplets are dried and solidified, transported to the particle capturing unit 70 as a capturing unit, and collected as solid particles. The droplets discharged from the droplet forming means 11 can be formed continuously. It is desirable that the air flow supply means 30 supply a carrier air flow from the lateral direction to the air flow path in the droplet discharge direction, and carry the droplets by the carrier air flow. This is because the distance between droplets can be effectively separated. In the case of the same direction as the droplet discharge direction, the air flow stagnates in the vicinity of the discharge holes arranged on a plane, so that the droplets can not be separated, and the droplets are likely to be in contact with each other.

図6に示すように、液滴形成手段11(液滴形成ユニット)への樹脂組成液14の送液形態の一例について説明する。粒子製造装置1では、原料収容器13に収容されている樹脂組成液14を、液供給管16を通して液循環ポンプ15により圧送して液滴形成手段11に供給する。更に、樹脂組成液14は、液滴形成手段11から液戻り管23を通って原料収容器13に戻る。   As shown in FIG. 6, an example of a liquid transfer form of the resin composition liquid 14 to the droplet forming means 11 (droplet forming unit) will be described. In the particle manufacturing apparatus 1, the resin composition liquid 14 contained in the raw material container 13 is pressure-fed by the liquid circulation pump 15 through the liquid supply pipe 16 and supplied to the droplet forming means 11. Furthermore, the resin composition liquid 14 returns from the droplet forming means 11 to the raw material container 13 through the liquid return pipe 23.

図6に示す原料収容器13に収容されている樹脂組成液14は、当該樹脂組成液14を循環させるための液循環ポンプ15によって液供給管16を通って、液共通供給路17内に流入し、液柱共鳴液室18に供給される。そして、樹脂組成液14が充填されている液柱共鳴液室18内には、振動発生手段20によって発生する液柱共鳴定在波により圧力分布が形成される。そして、液柱共鳴定在波において振幅の大きな部分であって圧力変動が大きい、圧力定在波の腹となる領域に配置されている吐出孔19から液滴21が吐出される。   The resin composition liquid 14 contained in the raw material container 13 shown in FIG. 6 flows into the common liquid supply path 17 through the liquid supply pipe 16 by the liquid circulation pump 15 for circulating the resin composition liquid 14. , And is supplied to the liquid column resonance liquid chamber 18. Then, in the liquid column resonance liquid chamber 18 filled with the resin composition liquid 14, a pressure distribution is formed by the liquid column resonance standing wave generated by the vibration generating means 20. Then, in the liquid column resonance standing wave, the droplet 21 is discharged from the discharge hole 19 which is a portion having a large amplitude and having a large pressure fluctuation and which is an antinode of the pressure standing wave.

液滴形成手段11への送液圧力及び、粒子形成手段60内の圧力は、液圧力計P1及び粒子形成手段60内の圧力計P2によって管理される。このとき、P1>P2の関係であると、樹脂組成液14が吐出孔から染み出す恐れがあり、P1<P2の場合には液滴形成手段11に気体が入り、吐出が停止する恐れがあるため、P1≒P2があることが望ましい。   The liquid transfer pressure to the droplet forming means 11 and the pressure in the particle forming means 60 are controlled by a liquid pressure gauge P1 and a pressure gauge P2 in the particle forming means 60. At this time, if P1> P2, the resin composition liquid 14 may exude from the discharge hole, and if P1 <P2, gas may enter the droplet forming means 11 and the discharge may be stopped. Therefore, it is desirable to have P1 ≒ P2.

液共通供給路17を通過した樹脂組成液14は、図6に示す液戻り管23を流れて原料収容器13に戻される。液滴21の吐出によって液柱共鳴液室18内の樹脂組成液14の量が減少する。すると、液柱共鳴液室18内の液柱共鳴定在波の作用による吸引力が作用し、液共通供給路17から供給される樹脂組成液14の流量が増加し、液柱共鳴液室18内に樹脂組成液14が補充される。そして、液柱共鳴液室18内に樹脂組成液14が補充されると、液共通供給路17を通過する樹脂組成液14の流量が元に戻り、液供給管16及び液戻り管23には装置内を循環する樹脂組成液14の流れが再び形成された状態となる。   The resin composition liquid 14 having passed through the common liquid supply path 17 flows through the liquid return pipe 23 shown in FIG. 6 and is returned to the raw material container 13. By discharging the droplets 21, the amount of the resin composition liquid 14 in the liquid column resonance liquid chamber 18 decreases. Then, the suction force by the action of the liquid column resonance standing wave in the liquid column resonance liquid chamber 18 acts, and the flow rate of the resin composition liquid 14 supplied from the liquid common supply path 17 increases, and the liquid column resonance liquid chamber 18 The resin composition liquid 14 is replenished inside. Then, when the resin composition liquid 14 is replenished in the liquid column resonance liquid chamber 18, the flow rate of the resin composition liquid 14 passing through the common liquid supply path 17 returns to the original, and the liquid supply pipe 16 and the liquid return pipe 23 The flow of the resin composition liquid 14 circulating in the apparatus is again formed.

なお、図1に示すように、液滴形成工程において液滴形成手段11から吐出した樹脂組成液14の液滴21は、気流通路12内に、図示していない搬送気流発生手段によって発生する搬送気流41が通ることにより、図6に示す粒子形成手段60側に流出される。   As shown in FIG. 1, the droplets 21 of the resin composition liquid 14 discharged from the droplet forming means 11 in the droplet forming step are transported by the transport air flow generating means (not shown) into the air flow passage 12. As the air flow 41 passes, it flows out to the particle forming means 60 side shown in FIG.

図6に示すように、液滴形成ユニット(液滴形成手段11)により形成された液滴21は、粒子形成手段60のチャンバー61内を落下する。その際、液滴21は、チャンバー61の上部の搬送気流導入口64から送られる気流に乗って落下し、搬送気流排出口65に到達するまでに気流中で乾燥される。粒子捕集部71で捕集された固化粒子は、粒子貯留部72に貯留される。必要に応じて図示されない2次乾燥手段によって追加乾燥される。   As shown in FIG. 6, the droplets 21 formed by the droplet forming unit (droplet forming unit 11) fall within the chamber 61 of the particle forming unit 60. At that time, the droplets 21 fall on the air flow sent from the transfer air flow inlet 64 at the top of the chamber 61 and are dried in the air flow until reaching the transfer air flow outlet 65. The solidified particles collected by the particle collection unit 71 are stored in the particle storage unit 72. If necessary, it is additionally dried by a secondary drying means not shown.

図6に示す粒子製造装置1において、液滴形成手段11より図6の右方向に吐出した液滴21が、図6の上方から流れてくる搬送気流41によって搬送される。噴射された液滴同士が乾燥前に接触すると、液滴同士が合体し、1つの粒子になってしまう(以下この現象を「合着」と呼ぶことがある)。均一な粒径分布の固化粒子を得るためには、噴射された液滴同士の距離を保つ必要がある。しかし、噴射された液滴は、一定の初速度を持っているが、空気抵抗により、やがて失速する。失速した粒子には後から噴射された液滴が追いついてしまい、結果として合着する。この現象は、定常的に発生するため、この粒子を捕集すると粒径分布はひどく悪化することとなる。合着を防ぐためには液滴の速度低下をなくし、液滴同士を接触させないように気流によって合着を防ぎながら、液滴を固化させつつ搬送することが好ましい。そこで、気流によって、粒子捕集手段70まで固化粒子を運ぶことが、製造効率がよい点で好ましい。   In the particle manufacturing apparatus 1 shown in FIG. 6, the droplets 21 discharged in the right direction of FIG. 6 from the droplet forming means 11 are conveyed by the carrier air flow 41 flowing from the upper side of FIG. When the jetted droplets come in contact with each other before drying, the droplets coalesce and become one particle (hereinafter, this phenomenon may be referred to as "cohesion"). In order to obtain solidified particles having a uniform particle size distribution, it is necessary to maintain the distance between the jetted droplets. However, the ejected droplets have a constant initial velocity, but eventually stall due to air resistance. The stalled particles catch up with droplets ejected later, resulting in coalescence. Since this phenomenon occurs constantly, the particle size distribution will be greatly deteriorated when the particles are collected. In order to prevent coalescence, it is preferable to transport while solidifying the droplets while preventing coalescence by lowering the droplet speed and preventing coalescence between the droplets. Therefore, it is preferable to transport the solidified particles to the particle collection means 70 by the air flow, in terms of high production efficiency.

図6に示すように、気流供給手段30によって供給される搬送気流41の温度を調整してその搬送気流41を気流路内に供給できる手段であれば、特に制限はなく、目的に応じて適宜選択することができる。温度調整工程としては、液滴搬送手段での搬送気流41の温度を調整できる工程であれば、特に制限はなく、目的に応じて適宜選択することができるが、気流供給手段30を用いることが好ましい。気流供給手段30としては、図6には図示してないが、気流調整手段には気流温度を測定し、気流温度が安定化するような制御機構を持ったものが好ましい。本実施形態では複数の気流供給手段を有するが、気流供給手段毎に温度調整できる機構を有する。   As shown in FIG. 6, as long as it is a means capable of adjusting the temperature of the carrier air flow 41 supplied by the air supply means 30 and supplying the carrier air flow 41 into the air flow path, there is no particular limitation, and it is suitable according to the purpose. It can be selected. The temperature adjustment step is not particularly limited as long as it is a step capable of adjusting the temperature of the carrier air flow 41 by the droplet conveyance means, and can be appropriately selected according to the purpose, but using the air flow supply means 30 preferable. Although not shown in FIG. 6 as the air flow supply means 30, it is preferable that the air flow adjustment means have a control mechanism that measures the air flow temperature and stabilizes the air flow temperature. Although this embodiment has a plurality of air flow supply means, it has a mechanism capable of adjusting the temperature of each air flow supply means.

図6に示すように、粒子形成手段60としては、液滴21を気流中で乾燥させて固化し、粒子を形成する手段であれば、特に制限はなく、目的に応じて適宜選択することができる。粒子形成工程としては、液滴21を気流中で乾燥させて固化し、粒子を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができるが、粒子形成手段を用いて行うことが好ましい。   As shown in FIG. 6, as the particle forming means 60, there is no particular limitation as long as it is a means for drying and solidifying the droplets 21 in a gas flow to form the particles, which may be appropriately selected according to the purpose. it can. The particle forming step is not particularly limited as long as it is a step of forming the particles by drying and solidifying the droplets 21 in a gas flow, and can be appropriately selected according to the purpose, but using the particle forming means Is preferred.

液滴21を気流(以下、前述の「搬送気流」と区別し単に気流と称する。)中で乾燥させて固化する方法としては、特に制限はなく、目的に応じて適宜選択することができる。液滴形成手段11により液滴21を吐出孔の外に吐出後、該液滴21を気流で搬送しながら乾燥させる、即ち、液滴21を気流で搬送しながら液滴中の溶媒を気流中で揮発させる方法などが挙げられる。気流の速度としては、特に制限はなく、目的に応じて適宜選択することができるが、液滴および液滴が乾燥した粒子の自由落下速度よりも速いことが好ましい。気流に用いる気体の雰囲気(温度、蒸気圧、気体の種類等)としては、特に制限はなく、目的に応じて適宜選択することができる。気体の種類としては、例えば、空気または、窒素等の不燃性気体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as a method to dry and solidify the droplet 21 in air flow (Hereafter, it distinguishes from the above-mentioned "conveyance air flow", and it calls it simply air flow.), According to the objective, it can select suitably. After discharging the droplets 21 out of the discharge holes by the droplet forming means 11, the droplets 21 are dried while being transported by air flow, that is, while the droplets 21 are being transported by air flow, the solvent in the droplets is in the air stream And the like. There is no restriction | limiting in particular as an air flow velocity, Although it can select suitably according to the objective, It is preferable that a droplet and the particle | grain which dried the droplet have a faster free fall speed. There is no restriction | limiting in particular as atmosphere (temperature, vapor pressure, the kind of gas, etc.) of the gas used for airflow, According to the objective, it can select suitably. Examples of the type of gas include air and nonflammable gases such as nitrogen. These may be used alone or in combination of two or more.

なお、液滴が乾燥して得られる粒子は、固体状態を維持し得る限り、完全に乾燥された状態でなくてもよい。生産性を高めるためには、捕集可能な最低限の乾燥状態で捕集し、溶剤蒸気量の多い搬送気流から分離した状態で更に乾燥させることで、粒子乾燥の時間を抑えることができる。   The particles obtained by drying the droplets may not be completely dried as long as the solid state can be maintained. In order to improve the productivity, the particle drying time can be suppressed by collecting in a minimum collectable dry state and further drying in a separated state from the carrier air flow having a large amount of solvent vapor.

図6に示すように、捕集手段としての粒子捕集手段70は気流と固化粒子を分離し、捕集ができれば特に制限は無く、例えばサイクロンやバグフィルタ等の公知のものを使用することができる。また、サイクロンとバグフィルタ双方用いても良い。本発明では固化粒子が軟化しやすい性質を持つため、前段にサイクロン、後段にバグフィルタを用いる。これにより、バグフィルタで粒子が軟化した場合のフィルタ詰りを抑制しやすく、かつサイクロンで捕集しきれない極微量の極小粒視の通過を確実に抑制し、大気への放出を抑制できる。   As shown in FIG. 6, the particle collecting means 70 as the collecting means separates the air stream and the solidified particles, and there is no particular limitation as long as they can collect the particles. For example, known materials such as cyclones and bag filters may be used. it can. Also, both a cyclone and a bag filter may be used. In the present invention, since the solidified particles have the property of being easily softened, a cyclone is used at the front stage and a bag filter is used at the rear stage. As a result, filter clogging when particles are softened by the bag filter can be easily suppressed, and passage of an extremely small amount of ultrafine particles that can not be collected by the cyclone can be reliably suppressed, and emission to the atmosphere can be suppressed.

固化粒子が捕集された後、更に後述する2次乾燥工程が行われることが好ましい。   After the solidified particles are collected, it is preferable to carry out a secondary drying step described later.

その他の手段としては、例えば、2次乾燥手段などが挙げられる。その他の工程としては、例えば、2次乾燥工程などが挙げられる。   As other means, secondary drying means etc. are mentioned, for example. As another process, a secondary drying process etc. are mentioned, for example.

2次乾燥手段としては、粒子形成工程で形成された粒子を更に乾燥させる手段であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、流動床乾燥装置、真空乾燥装置などが挙げられる。2次乾燥工程としては、粒子形成工程で形成された粒子を更に乾燥させる工程であれば、特に制限はなく、目的に応じて適宜選択することができるが、2次乾燥手段により行うことが好ましい。   The secondary drying means is not particularly limited as long as it is a means for further drying the particles formed in the particle forming step, and can be appropriately selected according to the purpose. For example, a fluidized bed drying device, a vacuum drying device Etc. The secondary drying step is not particularly limited as long as it is a step of further drying the particles formed in the particle forming step, and can be appropriately selected according to the purpose, but it is preferable to carry out by the secondary drying means .

粒子がトナー粒子である場合には、粒子形成工程で形成された粒子中に含まれる(残存する)溶媒含有量が多いと、耐熱保存性、定着性、帯電特性等のトナー特性が経時で変動するだけでなく、加熱による定着時において溶媒が揮発する。このため、使用者及び周辺機器へ悪影響を及ぼす可能性が高まる。したがって、2次乾燥工程により、粒子中の溶媒を低減させることが好ましい。   When the particles are toner particles, when the content of the solvent contained (remained) in the particles formed in the particle forming step is large, the toner characteristics such as heat resistance storage stability, fixing property, charging characteristics, etc. fluctuate over time Not only that, the solvent evaporates at the time of fixing by heating. This increases the possibility of adversely affecting the user and peripheral devices. Therefore, it is preferable to reduce the solvent in the particles by the secondary drying step.

製造される粒子が二次電池正極材料用粒子のように樹脂成分を含まない粒子の場合には、樹脂組成液から粒子を作製後(粒子形成工程後)、又は粒子形成工程の際に、樹脂成分を熱分解する加熱処理を行う。これにより、樹脂成分を熱分解して、二次電池正極材料用粒子を得ることができる。加熱処理における加熱温度としては、樹脂組成液に含まれる樹脂成分を熱分解できる温度であれば、特に制限はなく、目的に応じて適宜選択することができる。   In the case where the particles to be produced do not contain a resin component such as particles for secondary battery positive electrode materials, the resin is produced after producing the particles from the resin composition liquid (after the particle forming step) or in the particle forming step. Heat treatment is performed to thermally decompose the components. Thereby, the resin component can be thermally decomposed to obtain particles for a secondary battery positive electrode material. There is no restriction | limiting in particular as a heating temperature in heat processing, if it is the temperature which can thermally decompose the resin component contained in a resin composition liquid, According to the objective, it can select suitably.

一部の吐出孔が詰まるなどして経時的に不吐出となり、樹脂組成液の吐出量が低下してゆくと、粒子形成手段又は粒子形成工程において揮発する溶媒の量が減る。溶媒が揮発する際には蒸発潜熱を気流から奪うため、搬送気流排出口65(図6参照)の気流の温度は搬送気流導入口64(図6参照)の温度よりも低くなる。そして、乾燥させる液滴の量が経時で減ると、搬送気流排出口の気流の温度は経時で高くなってくる。   As some of the discharge holes become clogged and the discharge becomes discontinuous with time, and the discharge amount of the resin composition liquid decreases, the amount of solvent volatilized in the particle forming means or the particle forming step decreases. Since the latent heat of vaporization is deprived from the air flow when the solvent evaporates, the temperature of the air flow at the conveyance air flow outlet 65 (see FIG. 6) is lower than the temperature of the conveyance air flow inlet 64 (see FIG. 6). When the amount of droplets to be dried decreases with time, the temperature of the air flow at the transport air flow outlet increases with time.

そこで、樹脂組成液の吐出量が減少した場合の粒子形成手段又は粒子形成工程における気流の温度及び粒子の温度を測定した。
例えば、以下の捕集条件1とした場合を考える。
搬送気流導入口64(図6参照)の気流量:60[m/時間]
気流の気体の種類:窒素ガス
搬送気流導入口における気流の温度:95[℃]
樹脂組成液の固形分濃度:10[質量%]
樹脂組成液の溶媒種:酢酸エチル(沸点77[℃])
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造される粒子の平均粒子径:5.4[μm]
粒子の比重:1.2[g/cm
液滴形成手段:液柱共鳴タイプ(図1、及び図2参照)
液滴形成ユニットの吐出孔の数:10240[個]
吐出の際の周波数:310[kHz]
搬送気流導入口64から搬送気流排出口65までの距離:3000[mm]
上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得たとすると、溶媒の蒸発潜熱によって気流の温度は低下し、吐出開始から60秒後の搬送気流排出口65における気流および粒子の温度は31[℃]になった。
Therefore, the temperature of the air stream and the temperature of the particles in the particle forming means or in the particle forming step were measured when the discharge amount of the resin composition liquid decreased.
For example, consider the case of the following collection condition 1.
Airflow volume of the carrier air flow inlet 64 (see FIG. 6): 60 [m 3 / hour]
Type of gas in air flow: Nitrogen gas Temperature of air flow in the carrier air flow inlet: 95 [° C]
Solid content concentration of resin composition liquid: 10 [mass%]
Solvent type of resin composition liquid: Ethyl acetate (boiling point 77 [° C])
Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle size of particles produced: 5.4 [μm]
Specific gravity of particle: 1.2 [g / cm 3 ]
Droplet forming means: liquid column resonance type (see FIGS. 1 and 2)
Number of discharge holes of droplet forming unit: 10240 [piece]
Frequency at discharge: 310 [kHz]
Distance from the carrier air flow inlet 64 to the carrier air flow outlet 65: 3000 [mm]
Under the above conditions, assuming that 6 [mass%] solvent is left to obtain dried particles, the temperature of the air flow is lowered by the latent heat of evaporation of the solvent, and the air flow and particles at the carrier air flow outlet 65 after 60 seconds from the discharge start Temperature became 31 [° C.].

しかしながら、液滴形成手段11は95[℃]の搬送気流に晒されるため、徐々に温度が上がると共に液滴の吐出量が低下した。10分後には液滴吐出量は半減し、搬送気流排出口65の気流の温度は、55[℃]になった。これは搬送気流の温度が原料液の溶媒の沸点を大きく上回ったため、搬送気流からの熱により液滴形成手段の温度が上昇する。   However, since the droplet forming means 11 is exposed to the carrier air flow of 95 ° C., the temperature gradually rises and the droplet discharge amount decreases. After 10 minutes, the droplet discharge amount was reduced by half, and the temperature of the air flow at the transfer air flow outlet 65 became 55 [° C.]. This is because the temperature of the carrier air flow greatly exceeds the boiling point of the solvent of the raw material liquid, the heat from the carrier air flow raises the temperature of the droplet forming means.

このように、樹脂組成液の吐出量が経時で減少すると、それに合わせて気流の温度低下が小さくなる。そのため、経時での乾燥が安定しなくなる。また、上述したように、固化した粒子の温度は、搬送気流排出口65の気流の温度とほぼ一致するため、捕集条件2の場合、固化した粒子は、捕集条件1よりも温度が高い状態で固化して粒子捕集手段70(図6参照)に到達する。液滴吐出初期に捕集された固化した粒子の軟化温度は約37[℃]であった。捕集条件1では、初期には捕集された固化した粒子の温度は軟化温度を下回るために、粒子は固い状態を維持し、捕集手段及び捕集工程によって捕集できる。しかし、約10分後においては、気流温度が55℃に達し、固化した粒子の温度は軟化温度を上回るために、粒子は軟化した状態で捕集される。捕集された粒子は、粒子同士が接触する確率が格段に上がるために、固化した基本粒子(図8参照)同士が接着し、ぶどう状の粒子(図9及び図10参照)が多量に発生し、粒径分布が悪化してしまう不具合を生じる。一旦ぶどう状の粒子となると、これを解くのは非常に困難である。参考としてぶどう状の粒子を含む場合の粒径分布を図11に、含まない場合の粒径分布を図12に示す。図11と図12の粒径分布を比較すると、ぶどう状粒子が粒径分布を大きく悪化させていることがわかる。   As described above, when the discharge amount of the resin composition liquid decreases with time, the temperature decrease of the air flow decreases accordingly. Therefore, the drying over time becomes unstable. Further, as described above, since the temperature of the solidified particles substantially matches the temperature of the air flow of the carrier air flow outlet 65, in the case of the collection condition 2, the solidified particles have a temperature higher than the collection condition 1 It solidifies in the state and reaches the particle collection means 70 (see FIG. 6). The softening temperature of the solidified particles collected at the initial stage of droplet discharge was about 37 [° C.]. Under the collection condition 1, the temperature of the solidified particles collected in the initial stage is below the softening temperature, so the particles remain solid and can be collected by the collection means and the collection process. However, after about 10 minutes, the air stream temperature reaches 55 ° C., and the temperature of the solidified particles exceeds the softening temperature, so the particles are collected in a softened state. In the collected particles, the solidified basic particles (see FIG. 8) adhere to each other because the probability that the particles contact with each other is significantly increased, and a large amount of grape-like particles (see FIGS. 9 and 10) are generated. As a result, the particle size distribution is aggravated. Once it is vine-like, it is very difficult to solve. As a reference, the particle size distribution in the case of containing grape-like particles is shown in FIG. 11, and the particle size distribution in the case of not containing grape-like particles is shown in FIG. Comparing the particle size distributions of FIG. 11 and FIG. 12, it can be seen that the vine-like particles greatly deteriorate the particle size distribution.

図6に示すように、粒子製造装置1において、液滴形成手段11の吐出孔は搬送気流41に晒されるために、搬送気流41の温度とほぼ同じ温度となる。搬送気流41は、上述のように粒子乾燥のために高い温度にする必要がある。液滴形成手段11の吐出孔が搬送気流41に直接晒されると、液滴形成手段11の平面状に形成された吐出孔に存在する原料液が乾燥、固化して閉塞したり、液滴形成手段11の内部の原料液中の溶剤が沸騰したり、液滴21を吐出できなくなる。このため、第1気流供給手段31、第2気流供給手段32及び気流分配手段35を用いることで、液滴形成手段11付近を流れる第1搬送気流41aと液滴乾燥に必要な熱量を持った第2搬送気流41bを分ける。これにより、ノズル閉塞を防ぎながら、効率よく液滴21を乾燥し微粒子を得ることができる。したがって、本実施形態では複数の気流供給手段によって、液滴形成手段の近傍を流れる第1搬送気流41aの温度は吐出孔の乾燥を防げるように比較的低温である必要がある。好ましくは原料液の沸点以下であり、より好ましくは原料液の沸点より20[℃]以上低い温度であり、更に好ましくは原料液の沸点の40[℃]より低い温度である。しかしながら、原料液によっては温度を下げ過ぎると溶解物の析出等の別の不具合を生じることもあり、第1搬送気流41aの温度はなるべく低い温度に設定することが望ましい。第1気流供給手段31、第2気流供給手段32は、ヒータやファンを備えている。   As shown in FIG. 6, in the particle manufacturing apparatus 1, since the discharge holes of the droplet forming means 11 are exposed to the carrier air flow 41, the temperature is almost the same as the carrier air flow 41. The carrier air stream 41 needs to be at a high temperature for particle drying as described above. When the discharge holes of the droplet forming means 11 are directly exposed to the carrier air flow 41, the raw material liquid present in the flatly formed discharge holes of the droplet forming means 11 is dried, solidified and clogged, or droplets are formed. The solvent in the raw material liquid inside the means 11 boils, and the droplet 21 can not be discharged. Therefore, by using the first air flow supply means 31, the second air flow supply means 32, and the air flow distribution means 35, the first carrier air flow 41a flowing around the droplet forming means 11 and the heat quantity necessary for drying the droplets are obtained. The second carrier air flow 41b is divided. Thereby, the droplets 21 can be efficiently dried to obtain fine particles while preventing nozzle clogging. Therefore, in the present embodiment, the temperature of the first carrier air stream 41a flowing in the vicinity of the droplet forming means by the plurality of air stream supplying means needs to be relatively low so as to prevent the drying of the discharge holes. The temperature is preferably not higher than the boiling point of the raw material liquid, more preferably 20 ° C. or more lower than the boiling point of the raw material liquid, and still more preferably 40 ° C. lower than the boiling point of the raw material liquid. However, depending on the raw material liquid, if the temperature is lowered too much, another problem such as precipitation of the melt may occur, and it is desirable to set the temperature of the first carrier air stream 41a as low as possible. The first air flow supply means 31 and the second air flow supply means 32 include a heater and a fan.

複数の搬送気流41(第1搬送気流41a及び第2搬送気流41b)は気流分配手段35により、吐出孔が形成された液滴形成手段11の吐出孔面からの搬送気流の層厚(高さ)を調整することができる。これにより、液滴形成手段11に形成される吐出孔面の温度上昇を低減することができる。複数の温度の搬送気流(第1搬送気流41aと第2搬送気流41b)はやがて混合するため、気流分配手段35はできる限り、液滴搬送手段内での液滴形成手段11の搬送気流41の上流側に位置していることが望ましい。第1搬送気流41aの搬送気流の層厚(高さ)は、0.5[mm]以上10[mm]未満が望ましい。0.5[mm]未満であると、吐出孔面の表面温度を下げる効果が充分に得られない。10[mm]以上だと、第2搬送気流41bの温度を非常に高める必要が出てくるため、液滴を乾燥させるのに充分な熱量を気流に付与することが難しくなる。   The plurality of carrier air flows 41 (the first carrier air flow 41 a and the second carrier air flow 41 b) have a layer thickness (height) of the carrier air flow from the discharge hole surface of the droplet forming means 11 in which the discharge holes are formed. ) Can be adjusted. Thereby, the temperature rise of the discharge hole surface formed in the droplet forming means 11 can be reduced. In order to mix the transport air currents (the first transport air stream 41a and the second transport air stream 41b) at a plurality of temperatures in a short time, the air stream distribution means 35 is as possible of the transport air stream 41 of the droplet forming means 11 in the droplet transfer means. It is desirable to be located upstream. As for the layer thickness (height) of the conveyance airflow of the 1st conveyance airflow 41a, 0.5 [mm] or more and less than 10 [mm] are desirable. If it is less than 0.5 [mm], the effect of lowering the surface temperature of the discharge hole surface can not be obtained sufficiently. If it is 10 [mm] or more, it is necessary to extremely increase the temperature of the second carrier air flow 41b, so it becomes difficult to provide the air flow with a sufficient amount of heat to dry the droplets.

更に、本実施形態の効果を高めるために、気流分配手段35の直後に、平行流に形成して搬送気流を整流する気流整流手段36を設ける。これにより、複数の温度の第1搬送気流41a、第2搬送気流41bが混合することなく層状を保った状態で液滴形成手段11付近を通過する。このため、液滴形成手段11に形成される吐出孔面の温度上昇を更に低減することができる。気流整流手段36は、ハニカム形状でも良いし、複数の平板を気流の向きに対して垂直方向に、液滴形成手段11を配置した気流路面に対して平行な平板でもよく、液滴形成手段11を配置した気流路面に対して平行な平板を層状に積み上げたものでも良い。整流効果が得られれば公知の手段を用いることができ、好ましくはハニカム形状である。ハニカム形状を用いる場合はハニカム形状を構成する板の種類は金属で薄い板であることが望ましいが、気流整流効果があればどのような材質や形状でもかまわない。ハニカム形状の孔径は細かいほど整流効果が期待できるが、細かすぎると圧損が増し、気流の流れを妨げるので、好ましくは孔径を0.1[mm]〜10[mm]程度にすることが好ましく、より好ましくは0.5[mm]〜2「mm」である。図6では複数の温度の気流として2つのの気流供給手段を有しているが、気流供給手段を2つ、あるいは3つ以上有してもかまわない。図7に示すように2つ以上の3つの気流供給手段を有していてもかまわない。この場合、液滴形手段から遠ざかるにつれて段階的に気流の温度を上げてもよい。   Furthermore, in order to enhance the effect of the present embodiment, immediately after the air flow distribution means 35, an air flow straightening means 36 is provided which forms a parallel flow and rectifies the carrier air flow. As a result, the first transport air flow 41a and the second transport air flow 41b at a plurality of temperatures pass near the droplet forming means 11 in a layered state without mixing. Therefore, the temperature rise of the discharge hole surface formed in the droplet forming means 11 can be further reduced. The air flow straightening means 36 may have a honeycomb shape, or may be a flat plate parallel to the air flow path on which the droplet forming means 11 is disposed in a direction perpendicular to the direction of the air flow. The flat plate may be stacked in layers parallel to the air flow path on which the. A well-known means can be used if the rectification effect is obtained, and it is preferably in a honeycomb shape. In the case of using a honeycomb shape, the type of plate constituting the honeycomb shape is desirably a metal and thin plate, but any material or shape may be used as long as it has an airflow rectifying effect. The smaller the pore diameter of the honeycomb shape, the more the rectification effect can be expected, but if it is too small, the pressure loss increases and the flow of the air flow is hindered, so the pore diameter is preferably about 0.1 mm to 10 mm. More preferably, it is 0.5 [mm]-2 "mm". Although two airflow supply means are provided as airflows of a plurality of temperatures in FIG. 6, two or three or more airflow supply means may be provided. As shown in FIG. 7, two or more air flow supply means may be provided. In this case, the temperature of the air stream may be raised stepwise as it goes away from the droplet forming means.

<原料液>
(樹脂組成液)
樹脂組成液は、樹脂と、溶媒とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。樹脂組成液としては、例えば、少なくとも樹脂を溶媒に溶解又は分散させた樹脂組成液などが挙げられる。本発明の粒子製造装置及び粒子製造方法は、トナーの製造装置及びトナーの製造方法としても好適に利用可能である。この場合の樹脂組成液は、トナー組成液である。樹脂組成液がトナー組成液である場合、該トナー組成液中のその他の成分としては、例えば、着色剤、離型剤、帯電調整剤、磁性体、添加剤などが挙げられる。以下、トナーの製造に特に適した樹脂組成液(トナー組成液)の組成について詳細に説明するが、本発明における樹脂組成液は、トナーを製造するための樹脂組成液に限定されるものではなく、液晶パネルのスペーサー粒子を製造するための樹脂組成液、電子ペーパー用の着色微粒子を製造するための樹脂組成液、医薬品の薬剤担持体を製造するための樹脂組成液であってもよい。
Raw material liquid
(Resin composition liquid)
The resin composition liquid contains at least a resin and a solvent, and further contains other components as required. Examples of the resin composition liquid include a resin composition liquid in which at least a resin is dissolved or dispersed in a solvent. The particle production apparatus and the particle production method of the present invention can also be suitably used as a toner production apparatus and a toner production method. The resin composition liquid in this case is a toner composition liquid. When the resin composition liquid is a toner composition liquid, examples of other components in the toner composition liquid include a colorant, a release agent, a charge control agent, a magnetic material, an additive, and the like. Hereinafter, the composition of the resin composition liquid (toner composition liquid) particularly suitable for toner production will be described in detail, but the resin composition liquid in the present invention is not limited to the resin composition liquid for producing toner. It may be a resin composition liquid for producing spacer particles of a liquid crystal panel, a resin composition liquid for producing colored fine particles for electronic paper, or a resin composition liquid for producing a drug carrier of a medicine.

(樹脂)
樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、溶媒に分散乃至溶解するものであることが好ましく、例えば、結着樹脂などが挙げられる。結着樹脂としては、例えば、スチレン系単量体、アクリル系単量体、メタクリル系単量体等からなるビニル重合体、これらの単量体又は2種類以上からなる共重合体、ポリエステル樹脂、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
(resin)
There is no restriction | limiting in particular as resin, Although it can select suitably according to the objective, It is preferable that it is what is disperse | distributed thru | or melt | dissolved in a solvent, For example, binder resin etc. are mentioned. As the binder resin, for example, a vinyl polymer comprising a styrene-based monomer, an acrylic monomer, a methacrylic monomer, etc., a copolymer of these monomers or two or more kinds, a polyester resin, Polyol resin, phenol resin, silicone resin, polyurethane resin, polyamide resin, furan resin, epoxy resin, xylene resin, terpene resin, coumarone indene resin, polycarbonate resin, petroleum resin and the like. These may be used alone or in combination of two or more.

ポリエステル樹脂を構成するモノマーとしては、例えば、アルコール成分、酸成分などが挙げられる。   As a monomer which comprises polyester resin, an alcohol component, an acid component, etc. are mentioned, for example.

アルコール成分としては、例えば、2価のアルコール成分、3価以上のアルコール成分などが挙げられる。2価のアルコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオールなどが挙げられる。記3価以上のアルコール成分としては、例えば、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼンなどが挙げられる。   Examples of the alcohol component include dihydric alcohol components and trivalent or higher alcohol components. Examples of the divalent alcohol component include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, diol obtained by polymerizing cyclic ether such as ethylene oxide and propylene oxide to bisphenol A . Examples of the trivalent or higher alcohol component include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, and 1,2,4-butane Triol, 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene etc. Can be mentioned.

酸成分としては、例えば、2価のカルボン酸、3価以上のカルボン酸などが挙げられる。2価のカルボン酸としては、例えば、ベンゼンジカルボン酸又はその無水物、アルキルジカルボン酸又はその無水物、不飽和二塩基酸又はその無水物などが挙げられる。ベンゼンジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。アルキルジカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、アゼライン酸などが挙げられる。不飽和二塩基酸としては、例えば、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸などが挙げられる。
3価以上のカルボン酸成分としては、例えば、トリメリット酸、ピロメリット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、これらの無水物、部分低級アルキルエステルなどが挙げられる。
Examples of the acid component include divalent carboxylic acids and trivalent or higher carboxylic acids. Examples of the divalent carboxylic acid include benzenedicarboxylic acid or its anhydride, alkyldicarboxylic acid or its anhydride, unsaturated dibasic acid or its anhydride, and the like. Examples of benzenedicarboxylic acid include phthalic acid, isophthalic acid and terephthalic acid. Examples of the alkyl dicarboxylic acid include succinic acid, adipic acid, sebacic acid, azelaic acid and the like. Examples of unsaturated dibasic acids include maleic acid, citraconic acid, itaconic acid, alkenylsuccinic acid, fumaric acid, mesaconic acid and the like.
Examples of trivalent or higher carboxylic acid components include trimellitic acid, pyromellitic acid, 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxy-2-methyl-2-methylenecarboxypropane, tetra (methylene) Carboxy) methane, 1,2,7,8-octane tetracarboxylic acid, empol trimer acid, their anhydrides, partial lower alkyl esters, etc. may be mentioned.

ポリエステル樹脂を架橋させるためには、3価以上のアルコールや3価以上のカルボン酸を併用することが好ましい。その際は、樹脂が溶剤に溶解することを妨げない範囲の少量の添加量とする必要がある。   In order to crosslink the polyester resin, it is preferable to use a trivalent or higher alcohol or a trivalent or higher carboxylic acid in combination. In that case, it is necessary to make it a small addition amount of the range which does not prevent resin dissolving in a solvent.

結着樹脂がポリエステル樹脂の場合は、その分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、GPC(ゲル浸透クロマトグラフ分析)による分子量分布で、分子量3,000〜50,000の領域に少なくとも1つのピークが存在するのが、トナーの定着性、耐ホットオフセット性の点で好ましい。また、テトラヒドロフラン(THF)可溶分の分子量としては、100,000以下の成分が60[%]〜100「%」となるような結着樹脂が吐出性の面から好ましく、分子量5,000〜20,000の領域に少なくとも1つのピークが存在する結着樹脂がより好ましい。   When the binder resin is a polyester resin, the molecular weight thereof is not particularly limited and may be appropriately selected depending on the purpose. However, the molecular weight distribution by GPC (gel permeation chromatography analysis) has a molecular weight of 3,000 to The presence of at least one peak in the area of 50,000 is preferable in terms of toner fixability and hot offset resistance. In addition, as the molecular weight of the tetrahydrofuran (THF) soluble component, a binder resin having a component of 100,000 or less at 60% to 100% is preferable from the viewpoint of dischargeability, and a molecular weight of 5,000 to More preferred is a binder resin having at least one peak in the 20,000 region.

結着樹脂がポリエステル樹脂の場合、その酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1[mgKOH/g]〜100[mgKOH/g]が好ましく、0.1[mgKOH/g]〜70[mgKOH/g]がより好ましく、0.1[mgKOH/g]〜50[mgKOH/g]が特に好ましい。なお、本発明において、樹脂の酸価は、JIS K−0070に準じて測定したものである。   When the binder resin is a polyester resin, the acid value thereof is not particularly limited and may be appropriately selected depending on the purpose, but preferably 0.1 [mg KOH / g] to 100 [mg KOH / g], 0.1 [mg KOH / g] to 70 [mg KOH / g] is more preferable, and 0.1 [mg KOH / g] to 50 [mg KOH / g] is particularly preferable. In the present invention, the acid value of the resin is measured in accordance with JIS K-0070.

(溶媒)
溶媒としては、樹脂を溶解、分散し得る限り、特に制限はなく、目的に応じて適宜選択することができるが、液滴形成手段、又は液滴形成工程で形成された液滴(吐出孔から気相に吐出された液滴)は、粒子形成手段、又は粒子形成工程で乾燥されることから、容易に乾燥できる溶媒が好ましい。このような溶媒としては、沸点が100[℃]以下のものが、乾燥速度が速い点で好ましい。沸点が100[℃]以下の溶媒としては、例えば、エーテル類、ケトン類、エステル類、芳香族炭化水素類、アルコール類などが挙げられる。エーテル類としては、例えば、テトラヒドロフラン(THF)などが挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトンなどが挙げられる。エステル類としては、例えば、酢酸エチル、酢酸ブチルなどが挙げられる。芳香族炭化水素類としては、例えば、トルエン、キシレンなどが挙げられる。アルコール類としては、例えば、メタノール、エタノール、ブタノールなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、トルエン、キシレンが好ましい。
(solvent)
The solvent is not particularly limited as long as it can dissolve and disperse the resin, and can be appropriately selected according to the purpose. However, droplets formed in the droplet forming means or the droplet forming step (from the discharge holes) It is preferable to use a solvent which can be easily dried, since the droplets (liquid droplets) discharged into the gas phase are dried in the particle forming means or in the particle forming step. As such a solvent, one having a boiling point of 100 [° C.] or less is preferable in that the drying speed is fast. As a solvent whose boiling point is 100 [° C.] or less, for example, ethers, ketones, esters, aromatic hydrocarbons, alcohols and the like can be mentioned. Examples of the ethers include tetrahydrofuran (THF) and the like. As ketones, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone etc. are mentioned, for example. As esters, for example, ethyl acetate, butyl acetate and the like can be mentioned. Examples of aromatic hydrocarbons include toluene, xylene and the like. Examples of alcohols include methanol, ethanol, butanol and the like. These may be used alone or in combination of two or more. Among these, tetrahydrofuran (THF), acetone, methyl ethyl ketone (MEK), ethyl acetate, toluene and xylene are preferable.

(着色剤)
着色剤としては、特に制限はなく、従来公知の顔料、染料などを使用することができる。樹脂組成液における着色剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、得られるトナーに対して、1[質量%]〜15[質量%]が好ましく、3[質量%]〜10[質量%]がより好ましい。
(Colorant)
There is no restriction | limiting in particular as a coloring agent, A conventionally well-known pigment, dye, etc. can be used. There is no restriction | limiting in particular as content of the coloring agent in a resin composition liquid, Although it can select suitably according to the objective, 1 [mass%]-15 [mass%] is preferable with respect to the toner obtained. 3 [mass%]-10 [mass%] are more preferable.

着色剤は、樹脂(マスターバッチ用樹脂)と複合化されたマスターバッチとして用いることもできる。マスターバッチは、一般的に、顔料とマスターバッチ用樹脂と混合物に高せん断をかけることで、該マスターバッチ用樹脂中に該顔料を硬度に分散させたものである。したがって、顔料の充分な分散が得られていれば、マスターバッチを用いなくてもよい。   The coloring agent can also be used as a master batch complexed with a resin (resin for master batch). A masterbatch is generally one in which the pigment is dispersed in hardness in the masterbatch resin by subjecting the mixture of the pigment and the masterbatch resin to high shear. Therefore, if sufficient dispersion of the pigment is obtained, the masterbatch may not be used.

マスターバッチ用樹脂としては、特に制限はなく、従来公知のものを使用することができる。これらは、1種単独で使用してもよいし、2種以上を混合して使用してもよい。   The resin for master batch is not particularly limited, and conventionally known resins can be used. These may be used singly or in combination of two or more.

マスターバッチの使用量としては、結着樹脂100質量部に対して、0.1質量部〜20質量部が好ましい。   As a usage-amount of a masterbatch, 0.1 mass part-20 mass parts are preferable with respect to 100 mass parts of binder resin.

マスターバッチ製造時に顔料の分散性を高めるために分散剤を用いてもよい。分散剤は、顔料分散性の点で、結着樹脂との相溶性が高いことが好ましく、従来公知のものを用いることができる。分散剤の市販品の具体例としては、例えば、商品名で、アジスパーPB821、アジスパーPB822(以上、味の素ファインテクノ株式会社製)、Disperbyk−2001(ビックケミー株式会社製)、EFKA(登録商標)−4010(EFKA社製)などが挙げられる。   A dispersing agent may be used to enhance the dispersibility of the pigment during masterbatch production. The dispersant is preferably highly compatible with the binder resin in terms of pigment dispersibility, and conventionally known ones can be used. Specific examples of commercially available dispersants include, under the trade names, Addisper PB 821, Addisper PB 822 (all manufactured by Ajinomoto Fine Techno Co., Ltd.), Disperbyk-2001 (manufactured by Bick Chemie Co., Ltd.), EFKA (registered trademark)-4010 (Manufactured by EFKA) and the like.

分散剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、着色剤に対して、0.1[質量%]〜10[質量%]が好ましい。含有量が、0.1[質量%]未満であると、顔料分散性が不十分となることがあり、10[質量%]を超えると、高湿下での帯電性が低下することがある。   There is no restriction | limiting in particular as content of a dispersing agent, Although it can select suitably according to the objective, 0.1 [mass%]-10 [mass%] are preferable with respect to a coloring agent. When the content is less than 0.1% by mass, the pigment dispersibility may be insufficient, and when it exceeds 10% by mass, the chargeability under high humidity may be reduced. .

(離型剤)
離型剤としては、特に制限はなく、目的に応じて適宜選択することができるが、ワックスが好ましい。ワックスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族炭化水素系ワックス、脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合体、植物系ワックス、動物系ワックス、鉱物系ワックス、脂肪酸エステルを主成分とするものなどが挙げられる。また、脂肪酸エステルの一部又は全部を脱酸化したものを用いることもできる。脂肪族炭化水素系ワックスとしては、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックスなどが挙げられる。脂肪族炭化水素系ワックスの酸化物としては、例えば、酸化ポリエチレンワックスなどが挙げられる。植物系ワックスとしては、例えば、キャンデリラワックス、カルナバワックス、木ろう、ホホバろうなどが挙げられる。動物系ワックスとしては、例えば、みつろう、ラノリン、鯨ろうなどが挙げられる。鉱物系ワックスとしては、例えば、オゾケライト、セレシン、ペテロラタムなどが挙げられる。脂肪酸エステルを主成分とするものとしては、例えば、モンタン酸エステルワックス、カスターワックスなどが挙げられる。
(Release agent)
There is no restriction | limiting in particular as a mold release agent, Although it can select suitably according to the objective, Wax is preferable. The wax is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include aliphatic hydrocarbon waxes, oxides of aliphatic hydrocarbon waxes, and block copolymers thereof, vegetable waxes, Examples include animal waxes, mineral waxes, and fatty acid esters as main components. Further, it is also possible to use one obtained by deoxidizing a part or all of the fatty acid ester. Examples of aliphatic hydrocarbon waxes include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin wax, microcrystalline wax, paraffin wax, and sasol wax. Examples of the oxide of aliphatic hydrocarbon wax include oxidized polyethylene wax and the like. Examples of plant waxes include candelilla wax, carnauba wax, wax wax, jojoba wax and the like. Examples of animal waxes include, for example, beeswax, lanolin, spermaceti and the like. As mineral-based wax, for example, ozokerite, ceresin, petrolatum and the like can be mentioned. Examples of the fatty acid ester as a main component include montanic acid ester wax and castor wax.

離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、定着性と耐ホットオフセット性のバランスを取る点で、70[℃]〜140[℃]が好ましく、70[℃]〜120[℃]がより好ましい。融点が、70[℃]未満であると、耐ブロッキング性が低下することがあり、140[℃]を超えると、耐ホットオフセット効果が発現しにくくなることがある。なお、DSC(示差走査熱量測定)で測定される離型剤の吸熱ピークの最大ピークのピークトップの温度を離型剤の融点とする。   There is no restriction | limiting in particular as melting | fusing point of a mold release agent, Although it can select suitably according to the objective, 70 [degreeC]-140 [degreeC] is preferred at the point which balances fixability and hot offset resistance. And 70 [° C.] to 120 [° C.] are more preferable. If the melting point is less than 70 ° C., the blocking resistance may be lowered, and if it exceeds 140 ° C., it may be difficult to exhibit the hot offset resistance effect. In addition, let the temperature of the peak top of the maximum peak of the endothermic peak of the mold release agent measured by DSC (differential scanning calorimetry) be the melting point of the mold release agent.

DSCは、高精度の内熱式入力補償型の示差走査熱量計で測定することが好ましい。測定方法としては、ASTM D3418−82に準じて行う。DSC曲線は、1回昇温、降温させ前履歴を取った後、温度速度10[℃/分]で、昇温させた時に測定されるものを用いる。   The DSC is preferably measured by a high-precision, internally-heated, input-compensated, differential scanning calorimeter. As a measuring method, it carries out according to ASTM D3418-82. The DSC curve uses one that is measured when the temperature is raised at a temperature rate of 10 [° C./min] after the temperature rise and fall once to obtain a history before heat treatment.

樹脂組成液における離型剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、結着樹脂100質量部に対して、0.2質量部〜20質量部が好ましく、0.5質量部〜10質量部がより好ましい。   There is no restriction | limiting in particular as content of the mold release agent in a resin composition liquid, Although it can select suitably according to the objective, 0.2 mass part-20 mass parts are with respect to 100 mass parts of binder resin. Preferably, 0.5 parts by mass to 10 parts by mass is more preferable.

(添加剤)
添加剤としては、特に制限はなく、目的に応じて適宜選択することができる。樹脂組成液(トナー組成液)には、例えば、静電潜像担持体やキャリアの保護、クリーニング性の向上、熱特性、電気特性、物理特性の調整、抵抗調整、軟化点調整、定着率向上等を目的として、各種金属石けん、フッ素系界面活性剤、フタル酸ジオクチル、導電性付与剤、無機微粒子などの添加剤を必要に応じて添加することができる。無機微粒子は、必要に応じて疎水化してもよい。また、研磨剤、ケーキング防止剤、更に、トナー粒子と逆極性の白色微粒子及び黒色微粒子とを、添加剤の1種である現像性向上剤として少量用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、無機微粒子が好ましい。
(Additive)
There is no restriction | limiting in particular as an additive, According to the objective, it can select suitably. For resin composition liquid (toner composition liquid), for example, protection of electrostatic latent image carrier and carrier, improvement of cleanability, adjustment of thermal characteristics, electrical characteristics, physical characteristics, resistance adjustment, softening point adjustment, fixing rate improvement Additives such as various metal soaps, fluorosurfactants, dioctyl phthalate, conductivity imparting agents, inorganic fine particles and the like can be added as necessary for the purpose. The inorganic fine particles may be made hydrophobic if necessary. In addition, a small amount of an abrasive, an anti-caking agent, and further, white particles and black particles of reverse polarity to toner particles can be used as a developability improver which is one of the additives. These may be used alone or in combination of two or more. Among these, inorganic fine particles are preferable.

これらの添加剤は、帯電量コントロール等の目的で表面処理剤により表面処理が施されたものであってもよい。添加剤に表面処理が施されていると、疎水性を上げ、高湿度下においても添加剤自身の劣化を防止することができる点で有利である。表面処理剤としては、例えば、シランカップリング剤、シリル化剤、官能基を有するシランカップリング剤、有機ケイ素化合物、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンワニス、シリコーンオイル、変性シリコーンオイルなどが挙げられる。   These additives may be subjected to surface treatment with a surface treatment agent for the purpose of charge amount control and the like. The surface treatment of the additive is advantageous in that the hydrophobicity can be increased and deterioration of the additive itself can be prevented even under high humidity. As a surface treatment agent, for example, a silane coupling agent, a silylating agent, a silane coupling agent having a functional group, an organosilicon compound, an organic titanate coupling agent, an aluminum coupling agent, a silicone varnish, a silicone oil, A modified silicone oil etc. are mentioned.

添加剤の1次粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、5[nm]〜2[μm]が好ましく、5[nm]〜500[nm]がより好ましい。また、添加剤のBET法による比表面積としては、特に制限はなく、目的に応じて適宜選択することができるが、20[m/g]〜500[m/g]が好ましい。添加剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、粒子がトナーとして用いられる場合、該トナーに対して、0.01[質量%]〜5[質量%]が好ましく、0.01[質量%]〜2.0[質量%]がより好ましい。 There is no restriction | limiting in particular as a primary particle diameter of an additive, Although it can select suitably according to the objective, 5 [nm]-2 [micrometers] are preferable, and 5 [nm]-500 [nm] are more preferable preferable. Moreover, there is no restriction | limiting in particular as a specific surface area by the BET method of an additive, Although it can select suitably according to the objective, 20 [m < 2 > / g]-500 [m < 2 > / g] is preferable. There is no restriction | limiting in particular as content of an additive, Although it can select suitably according to the objective, When particle | grains are used as a toner, 0.01 [mass%]-5 [mass] is said with respect to this toner. %] Is preferable and 0.01 [mass%]-2.0 [mass%] are more preferable.

樹脂組成液中の固形分濃度としては、液滴が形成できる限り、特に制限はなく、目的に応じて適宜選択することができる。溶液粘度、液の音速、液の表面張力などの物性の変化が少ない方が、吐出条件を大きく変える必要がないため好ましく、30[質量%]以下がより好ましく、5[質量%]〜20[質量%]がより好ましい。固形分濃度が、5[質量%]未満であると、粒子形成工程において、乾燥エネルギー等が増大して、生産面での効率が低下することがあり、20[質量%]を超えると、吐出条件を大きく変える必要があるため、安定して均一な液滴形成ができないことがある。   The solid concentration in the resin composition liquid is not particularly limited as long as droplets can be formed, and can be appropriately selected according to the purpose. It is preferable that the change in physical properties such as solution viscosity, sound velocity of liquid, surface tension of liquid, etc. is small because the discharge conditions do not need to be largely changed, and 30 mass% or less is more preferable, 5 mass% to 20 % By mass is more preferable. If the solid content concentration is less than 5 [mass%], drying energy etc. may increase in the particle forming step, and the efficiency in production may decrease, and if it exceeds 20 [mass%], discharge Since it is necessary to change the conditions largely, stable and uniform droplet formation may not be possible.

本発明の粒子製造装置、及び粒子製造方法は、電子写真用のトナー、液晶パネルのスペーサー粒子、電子ペーパー用の着色微粒子、二次電池や燃料電池の電極材料用粒子、医薬品の薬剤担持体など様々な粒子の製造に利用可能である。   The particle production apparatus and particle production method of the present invention are, for example, toners for electrophotography, spacer particles for liquid crystal panels, colored particles for electronic paper, particles for electrode materials of secondary batteries and fuel cells, drug carriers for medicines, etc. It can be used to produce various particles.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。「部」は、特に明示しない限り「質量部」を表す。「%」は、特に明示しない限り「質量%」を表す。   EXAMPLES Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples. The term "parts" refers to "parts by mass" unless otherwise specified. "%" Represents "% by mass" unless otherwise specified.

(製造例)
<樹脂組成液(トナー組成液)の製造>
(着色剤分散液の調製)
先ず、着色剤としての、カーボンブラックの分散液を調製した。
カーボンブラック(RegaL400、Cabot社製)17部、及び顔料分散剤3部を、酢酸エチル80部に添加し、攪拌羽を有するミキサーを使用し、一次分散させた。該顔料分散剤としては、アジスパーPB821(味の素ファインテクノ株式会社製)を使用した。得られた一次分散液を、ビーズミル(アシザワファインテック社製LMZ型、ジルコニアビーズ直径0.3[mm])を用いて強力なせん断力により細かく分散し、5[μm]以上の凝集体を完全に除去した二次分散液(着色剤分散液)を得た。
(Production example)
<Production of Resin Composition Liquid (Toner Composition Liquid)>
(Preparation of Colorant Dispersion)
First, a dispersion of carbon black as a colorant was prepared.
17 parts of carbon black (Rega L400, manufactured by Cabot) and 3 parts of a pigment dispersant were added to 80 parts of ethyl acetate, and were primarily dispersed using a mixer having a stirring blade. As the pigment dispersant, Agisper PB 821 (manufactured by Ajinomoto Fine Techno Co., Ltd.) was used. The obtained primary dispersion is finely dispersed by a strong shear force using a bead mill (LMZ type manufactured by Ashizawa Finetech, zirconia bead diameter 0.3 [mm]), and aggregates of 5 [μm] or more are completely eliminated. The secondary dispersion (colorant dispersion) was obtained.

(ワックス分散液の調製)
次に、ワックス分散液を調製した。
カルナバワックス(東亜化成株式会社製:WA−03)18部、及びワックス分散剤2部を、酢酸エチル80質量部に添加し、攪拌羽を有するミキサーを使用し、一次分散させた。この一次分散液を攪拌しながら80[℃]まで昇温し、カルナバワックスを溶解した後、室温まで液温を下げ最大径が3[μm]以下となるようワックス粒子を析出させた。ワックス分散剤としては、ポリエチレンワックスにスチレン−アクリル酸ブチル共重合体をグラフト化したものを使用した。得られた分散液を、更にビーズミル(アシザワファインテック社製LMZ型、ジルコニアビーズ直径0.3[mm])を用いて強力なせん断力により細かく分散し、最大径が1[μm]以下なるよう調整し、ワックス分散液を得た。
(Preparation of wax dispersion)
Next, a wax dispersion was prepared.
Eighteen parts of carnauba wax (manufactured by Toa Kasei Co., Ltd .: WA-03) and 2 parts of a wax dispersant were added to 80 parts by mass of ethyl acetate, and primary dispersion was performed using a mixer having stirring blades. The temperature of the primary dispersion was raised to 80 ° C. while stirring to dissolve carnauba wax, and then the temperature of the solution was lowered to room temperature to precipitate wax particles so that the maximum diameter was 3 μm or less. As the wax dispersant, polyethylene wax on which a styrene-butyl acrylate copolymer was grafted was used. The obtained dispersion is further finely dispersed by a strong shear force using a bead mill (LMZ type manufactured by Ashizawa Finetech, zirconia bead diameter 0.3 [mm]) so that the maximum diameter is 1 μm or less Adjusted to obtain a wax dispersion.

(溶解、分散液の調製)
次に、結着樹脂としての樹脂、着色剤分散液及びワックス分散液を添加した下記組成からなるトナー組成液を調製した。
結着樹脂としてのポリエステル樹脂100部(ガラス転移温度=60.5[℃]、重量平均分子量Mw=35,000)、着色剤分散液30部、及びワックス分散液30部を、酢酸エチル840部に添加し、攪拌羽を有するミキサーを使用して10分間攪拌を行い、均一に分散させた。溶媒希釈によるショックで顔料やワックス粒子が凝集することはなかった。
(Dissolution, preparation of dispersion)
Next, a toner composition liquid comprising the following composition to which a resin as a binder resin, a colorant dispersion and a wax dispersion were added was prepared.
100 parts of a polyester resin as a binder resin (glass transition temperature = 60.5 [° C.], weight average molecular weight Mw = 35,000), 30 parts of a colorant dispersion, and 30 parts of a wax dispersion, 840 parts of ethyl acetate The mixture was stirred for 10 minutes using a mixer having a stirring blade and uniformly dispersed. Shock due to solvent dilution did not cause aggregation of pigment or wax particles.

(実施例1)
次に、上記実施形態の粒子製造装置の一実施例(以下、本実施例を「実施例1」という。)について説明する。
実施例1では、図6に示す粒子製造装置を用いた。装置の詳細は以下の通りである。
図6の粒子形成手段60は、内径が400[mm]であり、高さが3,000[mm]となる円筒形で垂直に固定され、上端部及び下端部が絞られているチャンバー61を有する。搬送気流導入口64は、液滴形成手段面が80[mm]であり、高さが15[mm]の直方体断面で形成されている。搬送気流排出口65の内径は80[mmφ]である。液滴形成手段11は、チャンバー61内上端より上に30[mm]の位置に配置されている。搬送気流41では、窒素ガスを用い、気流速度が10.0[m/s]、気流温度を75[℃](搬送気流排出口65における条件)とする。
Example 1
Next, an example of the particle manufacturing apparatus of the above embodiment (hereinafter, this example will be referred to as “example 1”) will be described.
In Example 1, a particle production apparatus shown in FIG. 6 was used. The details of the device are as follows.
The particle forming means 60 shown in FIG. 6 has a cylindrical shape with an inner diameter of 400 mm and a height of 3,000 mm, which is vertically fixed and has a chamber 61 in which the upper end and the lower end are narrowed. Have. The transport air flow introduction port 64 has a surface of droplet formation means of 80 mm and is formed in a rectangular cross section with a height of 15 mm. The inner diameter of the carrier air flow outlet 65 is 80 [mmφ]. The droplet forming means 11 is disposed at a position of 30 [mm] above the upper end in the chamber 61. In the conveyance air flow 41, nitrogen gas is used, and the air flow velocity is 10.0 [m / s], and the air flow temperature is 75 [° C.] (conditions at the conveyance air flow outlet 65).

図5(a)に示すように、液滴形成手段内の液柱共鳴液室の長手方向の両端間の長さLが1.85[mm]、N=2の共鳴モードであって、第1から第4の吐出孔が、N=2の共鳴モードの圧力定在波の腹の位置に配置されたものを用いた。駆動信号発生源(図示しない)には、ファンクションジェネレーター(WF1973、株式会社エヌエフ回路設計ブロック製)を用い、ポリエチレンで被覆したリード線で振動発生手段20に接続した。この時の駆動周波数は、液共鳴周波数に合わせて310[kHz]となる。液滴形成ユニットの吐出孔の数は10,240[個]で、開孔径10[μm]とした。   As shown in FIG. 5A, the resonance mode in which the length L between the longitudinal ends of the liquid column resonance liquid chamber in the droplet forming means is 1.85 mm and N = 2, The 1st to 4th discharge holes were used at the position of the antinode of the pressure standing wave of the resonance mode of N = 2. As a drive signal generation source (not shown), a function generator (WF 1973, manufactured by NF Circuit Design Block Co., Ltd.) was used, and it was connected to the vibration generation means 20 by a lead wire coated with polyethylene. The driving frequency at this time is 310 [kHz] in accordance with the liquid resonance frequency. The number of discharge holes of the droplet forming unit was 10,240 [pieces], and the opening diameter was 10 [μm].

以下の捕集条件とした。
気流の気体の種類:窒素ガス
第1搬送気流41aの温度、気流量:25[℃]、20[m/hr]
第2搬送気流41bの温度、気流量:135[℃]、40[m/hr]
気流分配手段35の高さ:液滴形成手段の吐出孔面より5[mm]
トナー組成液の固形分濃度:10[質量%]
トナー組成液の溶媒種:酢酸エチル
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造されるトナーの平均粒子径:5.4[μm]
トナーの比重:1.2[g/cm
液滴形成手段:液柱共鳴タイプ(図1、及び図2参照)
液滴形成ユニットの吐出孔の数:10,240[個]
吐出の際の周波数:310[kHz]
搬送気流導入口64から搬送気流排出口65までの距離:3,000[mm]
粒子形成手段60の形状がサイクロンであり、円管内径が70[mmφ]、絞りが35[mm]、高さが350[mm]、出口口径が30[mmφ]、ダストボックス形状80[mmφ]×110[mm]とした。
上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は29[℃]であった。吐出を1時間継続して実施したところ、搬送気流排出口65における気流の温度は29[℃]で変動は無かった。この時点での粒子の捕集量は814[g]であった。なお、この捕集したトナーを2次乾燥(40[℃]、72時間送風下に放置)し、完全に溶剤を除去した実施例1のトナー粒子を得た。
The following collection conditions were used.
Gas type of air flow: Nitrogen gas Temperature of the first carrier air flow 41a, air flow rate: 25 [° C.], 20 [m 3 / hr]
Temperature and flow rate of the second carrier air flow 41b: 135 [° C.], 40 [m 3 / hr]
The height of the air flow distribution means 35: 5 [mm] from the discharge hole surface of the droplet formation means
Solid content concentration of toner composition liquid: 10 [mass%]
Solvent type of toner composition liquid: Ethyl acetate Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle diameter of manufactured toner: 5.4 [μm]
Specific gravity of toner: 1.2 [g / cm 3 ]
Droplet forming means: liquid column resonance type (see FIGS. 1 and 2)
Number of discharge holes of droplet forming unit: 10, 240 [pieces]
Frequency at discharge: 310 [kHz]
Distance from the carrier air flow inlet 64 to the carrier air flow outlet 65: 3,000 [mm]
The shape of the particle forming means 60 is a cyclone, and the inner diameter of the circular tube is 70 [mmφ], the aperture is 35 [mm], the height is 350 [mm], the outlet diameter is 30 [mmφ], the dust box shape 80 [mmφ] × It was set to 110 [mm].
Under the above conditions, dried particles were obtained leaving a solvent of 6% by mass. The temperature of the air flow was lowered due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge was 29 [° C.]. When the discharge was continued for one hour, the temperature of the air flow at the carrier air flow outlet 65 did not change at 29 [° C.]. The amount of collected particles at this point was 814 [g]. The collected toner was secondarily dried (40 ° C., left for 72 hours under air flow) to obtain toner particles of Example 1 from which the solvent was completely removed.

このトナーの粒径分布をフロー式粒子像解析装置(シスメックス社製、FPIA−3000)で下記に示す測定条件にて測定した。これを3回繰り返したところ、体積平均粒径(Dv)の平均は5.7[μm]、個数平均粒径(Dn)の平均は5.4[μm]であり、Dv/Dnの平均は1.05であり、ノズルの閉塞はほぼ認められなかった。なお、粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は0.8[%]であった。   The particle size distribution of the toner was measured with a flow type particle image analyzer (FPIA-3000, manufactured by Sysmex Corporation) under the measurement conditions shown below. Repeating this three times, the average of the volume average particle diameter (Dv) is 5.7 [μm], the average of the number average particle diameter (Dn) is 5.4 [μm], and the average of Dv / Dn is It was 1.05 and blockage of the nozzle was almost not observed. From the particle image, the ratio of the number of particles in which two or more particles are bound in a grape-like shape to the total measured particles was 0.8 [%].

フロー式粒子像分析装置(Flow Particle Image Analyzer)を使用したトナーの体積平均粒径、及び個数平均粒径の測定方法に関して以下に説明する。
フロー式粒子像分析装置による測定は、シスメックス社製のFPIA−3000を用いて測定した。測定は、フィルタを通して微細なごみを取り除き、その結果として10−3[cm]の水中に測定範囲(例えば、円相当径0.60[μm]以上159.21[μm]未満)の粒子数が20個以下の水10mLを用意した。そこへ、ノニオン系界面活性剤(好ましくは、和光純薬社製コンタミノンN)を数滴加え、更に、測定試料を5[mg]加え、超音波分散器(STM社製、UH−50)で20[kHz]、50[W/10cm]の条件で1分間分散処理を行った。更に、合計5分間の分散処理を行い、測定試料の粒子濃度が4,000[個/10−3cm]〜8,000[個/10−3cm](測定円相当径範囲の粒子を対象として)の試料分散液を得た。それを用いて、0.60[μm]以上159.21[μm]未満の円相当径を有する粒子の粒度分布を測定した。試料分散液は、フラットで偏平な透明フローセル(厚み約200[μm])の流路(流れ方向に沿って広がっている)を通過させた。フローセルの厚みに対して交差して通過する光路を形成するために、ストロボとCCDカメラが、フローセルに対して、相互に反対側に位置するように装着されている。試料分散液が流れている間に、フローセルを流れている粒子の画像を得るために1/30秒間隔でストロボ光を照射した。その結果、それぞれの粒子は、フローセルに平行な一定範囲を有する2次元画像として撮影された。それぞれの粒子の2次元画像の面積から、同一の面積を有する円の直径を円相当径として算出した。約1分間で、1,200個以上の粒子の円相当径を測定することができ、円相当径分布に基づく数及び規定された円相当径を有する粒子の割合(個数%)を測定できる。結果(頻度%及び累積%)は、0.06[μm]〜400[μm]の範囲を226チャンネル(1オクターブに対し30チャンネルに分割)に分割して得ることができる。
The method of measuring the volume average particle diameter and number average particle diameter of toner using a flow particle image analyzer will be described below.
The measurement by a flow type particle image analyzer was measured using FPIA-3000 manufactured by Sysmex Corporation. In the measurement, fine dust is removed through a filter, and as a result, the number of particles in a measurement range (for example, circle equivalent diameter 0.60 [μm or more and less than 159.21 [μm]) in 10 -3 [cm 3 ] water. 10 mL or less of water were prepared. A few drops of a nonionic surfactant (preferably, Wako Pure Chemical Industries, Continon N) are added thereto, and 5 mg of the sample to be measured is further added thereto, and an ultrasonic disperser (UH-50, manufactured by STM) is added. The dispersion treatment was performed for 1 minute under the conditions of 20 [kHz] and 50 [W / 10 cm 3 ]. Furthermore, the dispersion treatment is carried out for a total of 5 minutes, and the particle concentration of the measurement sample is 4,000 [particles / 10 −3 cm 3 ] to 8,000 [particles / 10 −3 cm 3 ] (particles of measurement circle equivalent diameter range Sample dispersion was obtained. Using it, the particle size distribution of particles having a circle equivalent diameter of 0.60 [μm] or more and less than 159.21 [μm] was measured. The sample dispersion was passed through a flat, flat, transparent flow cell (having a thickness of about 200 μm) (which spreads along the flow direction). A strobe and a CCD camera are mounted on opposite sides of the flow cell to form an optical path that crosses and passes through the thickness of the flow cell. While the sample dispersion was flowing, strobe light was emitted at 1/30 second intervals to obtain an image of the particles flowing through the flow cell. As a result, each particle was photographed as a two-dimensional image having a certain range parallel to the flow cell. From the area of the two-dimensional image of each particle, the diameter of a circle having the same area was calculated as the equivalent circle diameter. The equivalent circle diameter of 1,200 or more particles can be measured in about one minute, and the number based on the equivalent circle diameter distribution and the percentage (number of particles) of particles having the defined equivalent circle diameter can be measured. The results (frequency% and cumulative%) can be obtained by dividing the range of 0.06 μm to 400 μm into 226 channels (divided into 30 channels for one octave).

(実施例2)
次に、上記実施形態の粒子製造装置の他の実施例(以下、本実施例を「実施例2」という。)について説明する。
実施例2では、図6に対して、気流供給手段および気流分配手段を1つずつ追加した図7の粒子製造装置を用い、下記の条件で微粒子製造を実施した。
実施例1と同じである。
捕集条件は下記である。
気流の気体の種類:窒素ガス
第1搬送気流41aの温度、気流量:25[℃]、15[m/hr]
第2搬送気流41bの温度、気流量:85[℃]、30[m/hr]
第3搬送気流41cの温度、気流量:40[℃]、15[m/hr]
第1気流分配手段35aの高さ:液滴形成手段の吐出孔面より3.75[mm]
第2気流分配手段35bの高さ:液滴形成手段の吐出孔面に対向する壁面より3.75[mm]
トナー組成液の固形分濃度:10[質量%]
トナー組成液の溶媒種:酢酸エチル
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造されるトナーの平均粒子径:5.4[μm]
トナーの比重:1.2[g/cm
液滴形成手段:液柱共鳴タイプ(図1及び図2参照)
液滴形成ユニットの吐出孔の数:10,240[個]
吐出の際の周波数:310[kHz]
搬送気流導入口64から搬送気流排出口65までの距離:3,000[mm]
(Example 2)
Next, another example of the particle manufacturing apparatus of the above embodiment (hereinafter, this example will be referred to as “example 2”) will be described.
In Example 2, fine particle production was carried out under the following conditions using the particle production apparatus of FIG. 7 to which one airflow supply means and one airflow distribution means were added with respect to FIG.
It is the same as Example 1.
The collection conditions are as follows.
Gas type of air stream: Nitrogen gas Temperature of the first carrier air stream 41a, air flow rate: 25 [° C], 15 [m 3 / hr]
Temperature and flow rate of the second carrier air stream 41b: 85 [° C.], 30 [m 3 / hr]
Temperature and flow rate of the third carrier air stream 41c: 40 [° C.], 15 [m 3 / hr]
The height of the first air flow distribution means 35a: 3.75 [mm] from the discharge hole surface of the droplet formation means
The height of the second air flow distribution means 35b: 3.75 [mm] from the wall surface facing the discharge hole surface of the droplet formation means
Solid content concentration of toner composition liquid: 10 [mass%]
Solvent type of toner composition liquid: Ethyl acetate Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle diameter of manufactured toner: 5.4 [μm]
Specific gravity of toner: 1.2 [g / cm 3 ]
Droplet forming means: liquid column resonance type (see FIGS. 1 and 2)
Number of discharge holes of droplet forming unit: 10, 240 [pieces]
Frequency at discharge: 310 [kHz]
Distance from the carrier air flow inlet 64 to the carrier air flow outlet 65: 3,000 [mm]

粒子形成手段60の形状は、サイクロンであり、円管内径が70[mmφ]、絞りが35[mm]、高さが350[mm]、出口口径が30[mmφ]、ダストボックス形状80[mmφ]×110[mm]とした。上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は29[℃]であった。吐出を1時間継続して実施したところ、搬送気流排出口65における気流の温度は29[℃]で変動は無かった。この時点での粒子の捕集量は860[g]であり、ノズルの閉塞はほぼ認められなかった。なお、この捕集したトナーを2次乾燥(40[℃]、72時間送風下に放置)し、完全に溶剤を除去した実施例2のトナー粒子を得た。粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は0.5[%]であった。   The shape of the particle forming means 60 is a cyclone, and the inner diameter of the circular tube is 70 mm mm, the aperture is 35 mm, the height 350 mm, the outlet diameter is 30 mm diameter, and the dust box shape 80 mm diameter. × 110 [mm]. Under the above conditions, dried particles were obtained leaving a solvent of 6% by mass. The temperature of the air flow was lowered due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge was 29 [° C.]. When the discharge was continued for one hour, the temperature of the air flow at the carrier air flow outlet 65 did not change at 29 [° C.]. The amount of collected particles at this point was 860 [g], and blockage of the nozzle was hardly observed. The collected toner was secondarily dried (40 ° C., left for 72 hours under air flow) to obtain toner particles of Example 2 from which the solvent was completely removed. According to the particle image, the ratio of the number of particles in which two or more particles bound in a vine state to the total measured particles was 0.5 [%].

発明者らは鋭意研究を行ったところ、粒子製造装置の設置されている環境温度が変動した場合、捕集した粒子の粒径分布が大幅に広くなっていることがわかった。環境温度が比較的下がり、気流路を形成する部材の温度が下がってその部材の内壁面に接触しながら流れる図6の第2搬送気流41bの温度が狙いより低くなる。図6に示す第1搬送気流41aと第2搬送気流41bの混合した混合搬送気流中で、吐出孔から吐出された液滴を搬送しながら乾燥させている。そのため、第2搬送気流41bの温度が狙いより低くなると、混合搬送気流の温度が狙いより下がる。この結果、液滴の乾燥が不十分になって粒子が十分に固化されず、粒子同士が搬送中に付着して粗大な粒子になったと考えられる。
逆に、環境温度が上がり、第2搬送気流41bの温度が狙いより高くなる。第2搬送気流41bの温度が狙いより高くなると、混合搬送気流の温度も狙いより上がる。乾燥した粒子は混合搬送気流にのって搬送されるので、粒子の温度は狙いより高い混合搬送気流の温度と略同じになって狙いより高くなる。この結果、粒子はやわらかくなり、粒子同士が搬送中に付着して粗大な粒子になったと考えられる。以上のように、環境温度が変動すると、粒子同士が付着し狭い粒径分布を有する粒子が得られなくなる。
The inventors conducted earnest studies and found that when the environmental temperature at which the particle manufacturing apparatus is installed fluctuates, the particle size distribution of the collected particles is significantly broadened. The environmental temperature is relatively lowered, the temperature of the member forming the air flow passage is lowered, and the temperature of the second carrier air stream 41b of FIG. 6 flowing while contacting the inner wall surface of the member becomes lower than the target. The droplets discharged from the discharge holes are dried while being transported in the mixed transport air flow in which the first transport air flow 41a and the second transport air flow 41b shown in FIG. 6 are mixed. Therefore, when the temperature of the second carrier air stream 41b becomes lower than the target, the temperature of the mixed carrier air stream lowers than the target. As a result, it is considered that the drying of the droplets is insufficient and the particles are not sufficiently solidified, and the particles adhere to each other during transportation to become coarse particles.
Conversely, the environmental temperature rises, and the temperature of the second carrier air flow 41b becomes higher than the target. When the temperature of the second carrier air stream 41b becomes higher than the target, the temperature of the mixed carrier air stream also rises above the target. Since the dried particles are conveyed along the mixed conveying air stream, the temperature of the particles becomes substantially the same as the temperature of the mixed conveying air stream higher than the target, and becomes higher than the target. As a result, the particles become soft, and it is considered that the particles adhere to each other during transportation to become coarse particles. As described above, when the environmental temperature fluctuates, particles adhere to each other, and particles having a narrow particle size distribution can not be obtained.

そこで、発明者らは鋭意検討を行った結果、図7に示すように、第1搬送気流41aと第2搬送気流41bに加え、気流路を形成する部材の内壁面に接触しながら流れる第3搬送気流41cを気流路に供給する。その第3搬送気流41cの温度を調整することで、環境温度が変動した場合でも狭い粒径分布を有する粒子を製造できることを見出した。具体的には、第1搬送気流41aと第2搬送気流41bと第3搬送気流41cの混合した混合搬送気流が狙いの温度になるよう、第3気流供給手段37に備えられているヒータ(不図示)の出力温度を調整して第3搬送気流41cの温度を調整する。その温度調整分で環境温度の変動分を相殺することで、混合搬送気流は狙いの温度に保てる。これにより、液滴を十分に乾燥させて固化できるとともに、粒子の固化状態を維持できる。よって、環境温度が変動したとしても、粒子同士が付着することを抑制でき、狭い粒径分布を有する粒子を安定的に得ることができる。
なお、吐出孔でトナー組成液が乾燥しても吐出孔の口径を大きくして吐出孔の詰まりがなくなるのであれば、図7において第1搬送気流41aは流さずに、高温の第2搬送気流41bを吐出孔面に接触させながら流れるように供給する。環境温度の変動に応じて温度調整可能な第3搬送気流41cを、第2搬送気流41bを挟んで吐出孔面と反対側の気流路を形成する部材の内壁面に接触しながら流れるように供給する構成にしてもよい。
Then, as a result of the inventors' earnestly examining, as shown in FIG. 7, in addition to the 1st conveyance air stream 41a and the 2nd conveyance air stream 41b, it flows, contacting with the inner wall surface of the member which forms an air channel. The carrier air flow 41 c is supplied to the air flow path. It has been found that by adjusting the temperature of the third carrier air stream 41c, particles having a narrow particle size distribution can be produced even when the environmental temperature fluctuates. Specifically, the heater provided in the third air flow supplying means 37 (in order to achieve the target temperature, the mixed conveyance air flow obtained by mixing the first conveyance air flow 41a, the second conveyance air flow 41b, and the third conveyance air flow 41c) The temperature of the third carrier air stream 41c is adjusted by adjusting the output temperature of FIG. By offsetting the fluctuation of the environmental temperature by the temperature adjustment, the mixed carrier air flow can be maintained at the target temperature. Thereby, the droplets can be sufficiently dried and solidified, and the solidified state of the particles can be maintained. Therefore, even if the environmental temperature fluctuates, adhesion of particles can be suppressed, and particles having a narrow particle size distribution can be stably obtained.
If the diameter of the discharge hole is increased and clogging of the discharge hole is eliminated even if the toner composition liquid is dried in the discharge hole, the first transfer air stream 41a does not flow in FIG. 41b is supplied to flow while contacting the discharge hole surface. The third carrier air stream 41c whose temperature can be adjusted according to the fluctuation of the environmental temperature is supplied so as to flow in contact with the inner wall surface of the member forming the air channel opposite to the discharge hole surface across the second carrier air stream 41b. It may be configured to

(実施例3)
次に、上記実施形態の粒子製造装置のさらに他の実施例(以下、本実施例を「実施例3」という。)について説明する。
実施例3では、図6の装置を用い、下記の条件で微粒子製造を実施した。実施例1との違いは、気流分配手段の高さと第1搬送気流、第2搬送気流の違いである。
(Example 3)
Next, still another example of the particle manufacturing apparatus according to the above embodiment (hereinafter, this example will be referred to as “example 3”) will be described.
In Example 3, fine particle production was carried out using the apparatus shown in FIG. 6 under the following conditions. The difference from the first embodiment is the difference between the height of the air flow distribution means and the first transport air flow and the second transport air flow.

以下の捕集条件とした。
気流の気体の種類:窒素ガス
第1搬送気流41aの温度、気流量:25[℃]、4[m/hr]
第2搬送気流41bの温度、気流量:95[℃]、56[m/hr]
気流分配手段35の高さ:液滴形成手段の吐出孔面より1[mm]
トナー組成液の固形分濃度:10[質量%]
トナー組成液の溶媒種:酢酸エチル
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造されるトナーの平均粒子径:5.4[μm]
トナーの比重:1.2[g/cm
液滴形成手段:液柱共鳴タイプ(図1、及び図2参照)
液滴形成ユニットの吐出孔の数:10,240[個]
吐出の際の周波数:310[kHz]
搬送気流導入口64から搬送気流排出口65までの距離:3,000[mm]
The following collection conditions were used.
Gas type of air stream: Nitrogen gas Temperature of the first carrier air stream 41 a, air flow rate: 25 [° C.], 4 [m 3 / hr]
Temperature and flow rate of the second carrier air flow 41b: 95 [° C.], 56 [m 3 / hr]
Height of air flow distribution means 35: 1 [mm] from the discharge hole surface of the droplet formation means
Solid content concentration of toner composition liquid: 10 [mass%]
Solvent type of toner composition liquid: Ethyl acetate Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle diameter of manufactured toner: 5.4 [μm]
Specific gravity of toner: 1.2 [g / cm 3 ]
Droplet forming means: liquid column resonance type (see FIGS. 1 and 2)
Number of discharge holes of droplet forming unit: 10, 240 [pieces]
Frequency at discharge: 310 [kHz]
Distance from the carrier air flow inlet 64 to the carrier air flow outlet 65: 3,000 [mm]

粒子捕集手段の形状は、サイクロンであり、円管内径が70[mmφ]、絞りが35[mm]、高さが350[mm]、出口口径が30[mmφ]、ダストボックス形状80[mmφ]×110[mm]とした。上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は29[℃]であった。吐出を1時間継続して実施したところ、搬送気流排出口65における気流の温度は32[℃]で若干の上昇が確認された。この時点での粒子の捕集量は770[g]であり、ノズルは若干閉塞していることが確認された。なお、この捕集したトナーを2次乾燥(40[℃]、72時間送風下に放置)し、完全に溶剤を除去した実施例3のトナー粒子を得た。粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は1.5[%]であった。   The shape of the particle collection means is a cyclone, and the inner diameter of the circular tube is 70 mm mm, the aperture is 35 mm, the height is 350 mm, the outlet diameter is 30 mm diameter, and the dust box shape 80 mm diameter. × 110 [mm]. Under the above conditions, dried particles were obtained leaving a solvent of 6% by mass. The temperature of the air flow was lowered due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge was 29 [° C.]. When the discharge was continued for one hour, the temperature of the air flow at the transfer air flow outlet 65 was slightly increased at 32 ° C. The amount of collected particles at this point was 770 [g], and it was confirmed that the nozzle was slightly clogged. The collected toner was secondarily dried (40 ° C., left for 72 hours under air flow) to obtain toner particles of Example 3 from which the solvent was completely removed. According to the particle image, the ratio of the number of particles in which two or more particles bound in a vine state to the total measured particles was 1.5 [%].

(実施例4)
次に、上記実施形態の粒子製造装置のさらに他の実施例(以下、本実施例を「実施例4」という。)について説明する。
実施例4では、図6の装置を用い、下記の条件で微粒子製造を実施した。実施例1との違いは、気流分配手段の高さと第1搬送気流、第2搬送気流の違いである。
(Example 4)
Next, still another example of the particle manufacturing apparatus according to the above embodiment (hereinafter, this example will be referred to as “example 4”) will be described.
In Example 4, fine particle production was carried out using the apparatus shown in FIG. 6 under the following conditions. The difference from the first embodiment is the difference between the height of the air flow distribution means and the first transport air flow and the second transport air flow.

以下の捕集条件とした。
気流の気体の種類:窒素ガス
第1搬送気流41aの温度、気流量:25[℃]、40[m/hr]
第2搬送気流41bの温度、気流量:360[℃]、20[m/hr]
気流分配手段35の高さ:液滴形成手段の吐出孔面より10[mm]
トナー組成液の固形分濃度:10[質量%]
トナー組成液の溶媒種:酢酸エチル
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造されるトナーの平均粒子径:5.4[μm]
トナーの比重:1.2[g/cm
液滴形成手段:液柱共鳴タイプ(図1、及び図2参照)
液滴形成ユニットの吐出孔の数:10,240[個]
吐出の際の周波数:310[kHz]
搬送気流導入口64から搬送気流排出口65までの距離:3,000[mm]
The following collection conditions were used.
Gas type of air stream: Nitrogen gas Temperature of the first carrier air stream 41 a, air flow rate: 25 [° C.], 40 [m 3 / hr]
Temperature and flow rate of the second carrier air flow 41 b: 360 [° C.], 20 [m 3 / hr]
Height of air flow distribution means 35: 10 [mm] from the discharge hole surface of the droplet formation means
Solid content concentration of toner composition liquid: 10 [mass%]
Solvent type of toner composition liquid: Ethyl acetate Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle diameter of manufactured toner: 5.4 [μm]
Specific gravity of toner: 1.2 [g / cm 3 ]
Droplet forming means: liquid column resonance type (see FIGS. 1 and 2)
Number of discharge holes of droplet forming unit: 10, 240 [pieces]
Frequency at discharge: 310 [kHz]
Distance from the carrier air flow inlet 64 to the carrier air flow outlet 65: 3,000 [mm]

粒子捕集手段の形状は、サイクロンであり、円管内径が70[mmφ]、絞りが35[mm]、高さが350[mm]、出口口径が30[mmφ]、ダストボックス形状80[mmφ]×110[mm]とした。上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は28[℃]であった。吐出を1時間継続して実施したところ、搬送気流排出口65における気流の温度は28[℃]で変動は無かった。この時点での粒子の捕集量は860[g]であり、ノズルの閉塞が認められなかった。なお、この捕集したトナーを2次乾燥(40[℃]、72時間送風下に放置)し、完全に溶剤を除去した実施例3のトナー粒子を得た。粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は0.5[%]であった。   The shape of the particle collection means is a cyclone, and the inner diameter of the circular tube is 70 mm mm, the aperture is 35 mm, the height is 350 mm, the outlet diameter is 30 mm diameter, and the dust box shape 80 mm diameter. × 110 [mm]. Under the above conditions, dried particles were obtained leaving a solvent of 6% by mass. The temperature of the air flow was lowered due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge was 28 [° C.]. When the discharge was continued for one hour, the temperature of the air flow at the transfer air flow outlet 65 did not change at 28 [° C.]. The amount of collected particles at this point was 860 [g], and no blockage of the nozzle was observed. The collected toner was secondarily dried (40 ° C., left for 72 hours under air flow) to obtain toner particles of Example 3 from which the solvent was completely removed. According to the particle image, the ratio of the number of particles in which two or more particles bound in a vine state to the total measured particles was 0.5 [%].

上記実施例1〜4では、液滴吐出装置として液柱共鳴型の液滴吐出手段を挙げたが、その他として膜振動型、レイリー***型などの液滴吐出手段が挙げられる。以下の実施例5では、液滴吐出装置としてレイリー***型の液滴吐出手段を用いる。   Although liquid droplet discharge means of liquid column resonance type is mentioned as a droplet discharge device in the above-mentioned Examples 1-4, droplet discharge means of film vibration type, Rayleigh division type, etc. are mentioned as others. In the fifth embodiment described below, Rayleigh split type droplet discharge means is used as the droplet discharge device.

(実施例5)
次に、上記実施形態の粒子製造装置の更に他の実施例(以下、本実施例を「実施例5」という。)について説明する。実施例5では、図6の粒子製造装置を用い、液滴形成手段には上記レイリー***型の液滴吐出手段を用い、下記の条件で粒子製造を実施した。実施例1との違いは、液滴形成手段と第2搬送気流の違いである。
(Example 5)
Next, still another example of the particle manufacturing apparatus according to the above-described embodiment (hereinafter, this example will be referred to as “example 5”) will be described. In Example 5, particle production was carried out under the following conditions using the particle production apparatus of FIG. 6 and the above-mentioned Rayleigh split type droplet discharge means as the droplet formation means. The difference from the first embodiment is the difference between the droplet forming means and the second carrier air flow.

ここで、レイリー***タイプの液滴吐出手段における液柱の液滴化現象について図13を用いて説明する。
液柱の均一液滴化現象は非特許文献1に説明されるように、液柱が最も不安定になる波長条件λは、液柱直径d(jet)を用いて下記の式(6)で表される。
λ = 4.5d(jet) ・・・式(6)
ここで、発生する擾乱現象の周波数fは、液柱の速度をvとした場合下記の式(7)で表すことができる。
f = v/λ ・・・式(7)
また、非特許文献2で説明されるように、実験的に安定に均一粒子を形成する条件を導いた結果、下記の式(8)の条件において安定的に均一粒子を形成することが可能であるとしている。
3.5 < λ/d(jet) < 7.0 ・・・式(8)
更には、非特許文献3で説明されるように、エネルギー保存則を基に、吐出孔より排出される液が、液柱を形成する最小ジェットV(min)速度は下記の式(9)のように表現される。
v(min) = (8σ/ρd(jet))(1/2) ・・・式(9)
式(9)において、σは液の表面張力、ρは液密度、d(jet)は液柱の直径を表す。式(6)から式(9)の条件式はこのような現象を再現するための条件を推定するために有用である。これらの関係式は液物質の種類、混合物、分散物等によって変動し得ることを確認している。振動子を液室に取り付け、これを振動数fにおいて振動することにより液柱が、上記のような擾乱によって液滴化する現象は様々な液体において成立した。
Here, the droplet formation phenomenon of the liquid column in the droplet discharge means of the Rayleigh split type will be described with reference to FIG.
As described in Non-Patent Document 1, the uniform droplet formation phenomenon of the liquid column is the wavelength condition λ at which the liquid column becomes most unstable by using the liquid column diameter d (jet) by the following equation (6) expressed.
λ = 4.5 d (jet) formula (6)
Here, the frequency f of the generated disturbance phenomenon can be expressed by the following equation (7) when the velocity of the liquid column is v.
f = v / λ (7)
Further, as described in Non-Patent Document 2, as a result of experimentally deriving conditions for stably forming uniform particles, it is possible to stably form uniform particles under the condition of the following formula (8) It is supposed to be.
3.5 <λ / d (jet) <7.0 ··· Formula (8)
Furthermore, as described in Non-Patent Document 3, the minimum jet V (min) velocity at which the liquid discharged from the discharge hole forms a liquid column based on the energy conservation law is expressed by the following equation (9) It is expressed as
v (min) = (8σ / d d (jet)) (1/2) formula (9)
In equation (9), σ represents the surface tension of the liquid, ρ represents the liquid density, and d (jet) represents the diameter of the liquid column. The conditional expressions of Equations (6) to (9) are useful for estimating the conditions for reproducing such a phenomenon. It has been confirmed that these relational expressions can vary depending on the type of liquid substance, mixture, dispersion and the like. By attaching a vibrator to the liquid chamber and vibrating it at the frequency f, the phenomenon that the liquid column is formed into droplets by the disturbance as described above is established in various liquids.

液貯留部は、少なくとも、トナー組成液を加圧された状態において保持される必要があるため、SUS、アルミなどの金属等の部材からなり、少なくとも1[Mpa]程度の耐圧性があることが望ましいが、これに限るものではない。また、例えば、後述する図14に示すように、液貯留部へ液を供給する配管で接続され、液貯留部の一部を構成する板材に複数の吐出孔を有する構造が望ましい。また、液貯留部全体を振動する振動発生手段が、液貯留部に接している。振動発生手段には駆動装置と導電線によって接続されており、駆動装置によって振動状態を制御される形態が望ましい。   The liquid storage portion must be at least held in a pressurized state of the toner composition liquid, and thus is made of a member such as a metal such as SUS or aluminum, and has a pressure resistance of at least about 1 [Mpa]. Although desirable, it is not limited to this. For example, as shown in FIG. 14 described later, it is desirable to have a structure in which a plate material is connected by a pipe for supplying the liquid to the liquid storage portion and which constitutes a part of the liquid storage portion. Further, vibration generating means for vibrating the entire liquid storage portion is in contact with the liquid storage portion. It is desirable that the vibration generating means be connected to the drive device by a conductive wire, and the vibration state be controlled by the drive device.

振動発生手段は、吐出孔を有する液貯留部全体を励振させるのが好ましい。振動発生手段としては、確実な振動を一定の周波数で与えることができるものであれば特に制限はなく、適宜選択して使用することができ、圧電体、超音波振動発生部などが挙げられる。圧電体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックス、ポリフッ化ビニリデン(PVDF)等の圧電高分子、水晶、LiNbO、LiTaO、KNbO等の単結晶などの材質から形成された圧電体などが挙げられる。超音波振動発生部としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、磁歪素子などが挙げられる。一定の周波数としては、特に制限はなく、目的に応じて適宜選択することができるが、100[kHz]〜500[kHz]が好ましく、均一な粒子径を有する微小液滴を発生させる観点から、200[kHz]〜400[kHz]がより好ましい。 The vibration generating means preferably excites the entire liquid reservoir having the discharge hole. The vibration generating means is not particularly limited as long as it can give reliable vibration at a constant frequency, and can be appropriately selected and used, and examples include a piezoelectric body, an ultrasonic vibration generating portion, and the like. There is no restriction | limiting in particular as a piezoelectric material, According to the objective, it can select suitably, for example, piezoelectric ceramics, such as lead zirconate titanate (PZT), piezoelectric polymers, such as polyvinylidene fluoride (PVDF), quartz, Examples include piezoelectrics formed of materials such as single crystals of LiNbO 3 , LiTaO 3 , KNbO 3 and the like. There is no restriction | limiting in particular as an ultrasonic vibration generation part, According to the objective, it can select suitably, For example, a magnetostriction element etc. are mentioned. The constant frequency is not particularly limited and may be appropriately selected according to the purpose. However, 100 [kHz] to 500 [kHz] is preferable, and from the viewpoint of generating microdroplets having a uniform particle diameter, 200 [kHz]-400 [kHz] are more preferred.

振動発生手段は、液貯留部と接しており、吐出孔を有する板材は、吐出孔から発生する液柱に振動を均一に与える観点から、平行に配置されていることが最も好ましいが、図13に示すような液滴括れが発生できればどのような形態でも構わない。吐出孔は、1個のみ設けても粒子生産は可能であるが、極めて均一な粒子径を有する微小液滴を効率よく発生させる観点から、複数個設けることが好ましい。また、吐出孔の開口断面形状には、図3に示すようなものを用いることが好ましい。   The vibration generating means is in contact with the liquid storage portion, and it is most preferable that the plate members having the discharge holes are arranged in parallel from the viewpoint of uniformly giving vibration to the liquid column generated from the discharge holes. Any form may be used as long as the liquid droplet narrowing as shown in FIG. Although it is possible to produce particles even if only one discharge hole is provided, it is preferable to provide a plurality of discharge holes from the viewpoint of efficiently generating microdroplets having a very uniform particle diameter. Further, it is preferable to use one as shown in FIG. 3 as the opening cross-sectional shape of the discharge hole.

図14に示すように、液滴形成手段としての液滴形成ユニット100は、少なくともトナー組成液を貯留する液貯留部101と、振動発生手段102と、複数の吐出孔103から吐出されるトナー組成液が液貯留部101へ定量的に供給するため液貯留部101に連通して接続される配管104とを備えている。液貯留部101の液室サイズが幅60[mm]、奥行き5[mm]、高さ5[mm]のサイズとし、液貯留部101に15[mmφ]×3[mm]の柱状(円盤状)であり、銀ペーストで円平面に電極を設けたPZT(富士セラミックス社製)を接着剤で固定した。駆動信号発生源(不図示)には、ファンクションジェネレーター(WF1973、株式会社エヌエフ回路設計ブロック製)を用い、ポリエチレンで被覆したリード線で振動発生手段102の電極に接続した。この時の駆動周波数は、300[kHz]とした。液滴形成ユニット100の吐出孔103の数は1000[個]で、吐出孔径8.0[μm]とした。液の加圧はシリンジポンプを用い400[kPa]に保つように送液した。   As shown in FIG. 14, the droplet forming unit 100 as the droplet forming unit includes at least a liquid storage portion 101 for storing a toner composition liquid, a vibration generating unit 102, and a toner composition discharged from a plurality of discharge holes 103. In order to supply the liquid quantitatively to the liquid storage portion 101, the liquid storage portion 101 is provided with a pipe 104 connected in communication with the liquid storage portion 101. The liquid chamber size of the liquid storage unit 101 is 60 mm in width, 5 mm in depth, and 5 mm in height, and the liquid storage unit 101 has a columnar shape (disk shape of 15 mmφ × 3 mm). ), And PZT (Fuji Ceramics Co., Ltd.) provided with electrodes on a circular plane with silver paste was fixed with an adhesive. As a drive signal generation source (not shown), a function generator (WF1973, manufactured by NF Circuit Design Block Co., Ltd.) was used, and it was connected to the electrodes of the vibration generation means 102 by a lead wire coated with polyethylene. The driving frequency at this time was 300 [kHz]. The number of the discharge holes 103 of the droplet forming unit 100 is 1000 and the discharge hole diameter is 8.0 μm. The solution was pressurized to be maintained at 400 [kPa] using a syringe pump.

以下の捕集条件とした。
気流の気体の種類:窒素ガス
第1搬送気流41aの温度、気流量:25[℃]、20[m/hr]
第2搬送気流41bの温度、気流量:60[℃]、40[m/hr]
気流分配手段35の高さ:液滴形成手段の吐出孔面より5[mm]
トナー組成液の固形分濃度:5[質量%]
トナー組成液の溶媒種:酢酸エチル
溶媒の蒸発潜熱:368.6[J/g]
(参考文献:溶剤ハンドブック、浅原昭三他編、p.569)
製造されるトナーの平均粒子径:6.3[μm]
トナーの比重:1.2[g/cm
液滴形成手段:レイリー***タイプ(図13及び図14参照)
液滴形成ユニット100の吐出孔103の数:1,000[個]
吐出の際の周波数:300[kHz]
The following collection conditions were used.
Gas type of air flow: Nitrogen gas Temperature of the first carrier air flow 41a, air flow rate: 25 [° C.], 20 [m 3 / hr]
Temperature and flow rate of the second carrier air stream 41b: 60 [° C.], 40 [m 3 / hr]
The height of the air flow distribution means 35: 5 [mm] from the discharge hole surface of the droplet formation means
Solid content concentration of toner composition liquid: 5 [mass%]
Solvent type of toner composition liquid: Ethyl acetate Latent heat of evaporation of solvent: 368.6 [J / g]
(Reference: Solvent Handbook, Shozo Asahara, et al., P. 569)
Average particle size of manufactured toner: 6.3 [μm]
Specific gravity of toner: 1.2 [g / cm 3 ]
Droplet forming means: Rayleigh split type (see FIGS. 13 and 14)
Number of discharge holes 103 of the droplet forming unit 100: 1,000 [pieces]
Frequency at dispensing: 300 [kHz]

上記条件で、6.2[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は31[℃]であった。吐出を1時間継続して実施したところ、搬送気流排出口65における気流の温度は31[℃]で変動は無かった。この時点での粒子の捕集量は130[g]であり、ノズルの閉塞が認められなかった。なお、この捕集したトナーを2次乾燥(40[℃]、72時間送風下に放置)し、完全に溶剤を除去した実施例5のトナー粒子を得た。粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は1.0[%]であった。   Under the above conditions, dried particles were obtained leaving a solvent of 6.2% by mass. The temperature of the air flow decreased due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge was 31 [° C.]. When the discharge was continued for one hour, the temperature of the air flow at the transfer air flow outlet 65 did not change at 31 [° C.]. The amount of collected particles at this point was 130 [g], and no blockage of the nozzle was observed. The collected toner was secondarily dried (40 ° C., left for 72 hours under air flow) to obtain toner particles of Example 5 from which the solvent was completely removed. From the particle image, the ratio of the number of particles in which two or more particles were bound in a vine like to the total measured particles was 1.0 [%].

(比較例1)
次に、上記実施形態の粒子製造装置に対する比較例(以下、本比較例を「比較例1」という。)について説明する。
比較例1では、図6の装置を用い、第1気流供給手段31だけを使用し、気流分配手段35の高さを15[mm]、すなわち全高さを第1搬送気流41aのみが流れるようにした。また、第1搬送気流41aの温度および風量を82[℃]、60[m/hr]とした以外は実施例1と同様に実験を行った。なお、このときの第1搬送気流41aの総量と気流温度は、実施例1での第1搬送気流41aと第2搬送気流42aの混合したものと同じである。
(Comparative example 1)
Next, a comparative example (hereinafter, this comparative example is referred to as “comparative example 1”) with respect to the particle manufacturing apparatus of the above embodiment will be described.
In Comparative Example 1, using the apparatus shown in FIG. 6, only the first air flow supply means 31 is used, and the height of the air flow distribution means 35 is 15 mm, that is, only the first transport air flow 41a flows in the entire height. did. The experiment was performed in the same manner as in Example 1 except that the temperature and the air volume of the first carrier air stream 41a were set to 82 [° C.] and 60 [m 3 / hr]. The total amount of the first carrier air flow 41a and the air flow temperature at this time are the same as those of the first carrier air flow 41a and the second carrier air flow 42a in the first embodiment.

上記条件で、6[質量%]の溶媒を残して乾燥した粒子を得た。溶媒の蒸発潜熱によって気流の温度は低下し、液滴吐出開始から1分後の搬送気流排出口65における気流の温度は29[℃]になった。1時間の吐出後、搬送気流排出口65における気流の温度は48[℃]まで上昇していた。この時点での粒子の捕集量は407[g]であり、ノズルは目視で約半分が閉塞していた。得られたトナーの体積平均粒径(Dv)の平均は7.3[μm]、個数平均粒径(Dn)の平均は5.8[μm]であり、Dv/Dnの平均は1.25であった。なお、サイクロンにはトナーが半溶融状態で固着していた。これは液滴吐出が低下したため、気流の温度が上昇しトナーが固着しやすくなったためと考えられる。トナー同士が固着しやすくなったために、粒子画像より2個以上の粒子がぶどう状に結合した粒子の数の全測定粒子に対する割合は23.4[%]であり、実施例1及び実施例2に比べ大幅に悪化していた。   Under the above conditions, dried particles were obtained leaving a solvent of 6% by mass. The temperature of the air flow was lowered due to the latent heat of evaporation of the solvent, and the temperature of the air flow at the carrier air flow outlet 65 one minute after the start of droplet discharge became 29 [° C.]. After discharging for 1 hour, the temperature of the air flow at the transport air flow outlet 65 had increased to 48 [° C.]. The collected amount of particles at this point was 407 [g], and about half of the nozzles were visually blocked. The average volume average particle diameter (Dv) of the obtained toner is 7.3 [μm], the average number average particle diameter (Dn) is 5.8 [μm], and the average Dv / Dn is 1.25 Met. The toner was fixed in a semi-molten state to the cyclone. It is considered that this is because the temperature of the air flow is increased and the toner is easily fixed because the droplet discharge is lowered. The ratio of the number of particles in which two or more particles are bound like a grape to the total measured particles is 23.4 [%] because toners are easily fixed to each other, and Example 1 and Example 2 It was significantly worse than.

以上の結果から、実施例1〜5は、比較例1よりも、液滴吐出が安定し、搬送気流の温度に変化がなく、液滴の乾燥、捕集を安定的に行うことができ、粒子同士の合着を防止し、狭い粒径分布を有する粒子を製造できることが確認できた。   From the above results, in Examples 1 to 5, the droplet discharge is more stable, the temperature of the carrier air flow is not changed, and the droplets can be dried and collected more stably than in Comparative Example 1. It has been confirmed that it is possible to prevent cohesion between particles and to produce particles having a narrow particle size distribution.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
気流路形成手段と、平面上に複数の吐出孔19を有し、該吐出孔19から樹脂及び溶媒を含有する樹脂組成液14を気流路内に吐出させて液滴21を形成する液滴形成手段11と、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流41を気流路内に供給する気流供給手段と、高温の搬送気流中で乾燥させて固化した粒子を捕集する粒子捕集手段70とを備えた粒子製造装置1において、気流供給手段30は、吐出孔面に接触しながら流れるように供給する第1搬送気流41aと、該第1搬送気流41aを挟んで吐出孔面とは反対側を流れるように供給する第1搬送気流41aより高温の第2搬送気流41bとを気流路内に供給する。
これによれば、上記実施形態について説明したように、第2搬送気流41bの温度より低く、吐出孔19の詰まりが発生しない温度の第1搬送気流41aを吐出孔面に接触させることで、吐出孔で樹脂組成液14が乾くことを抑制する。これにより、吐出孔19の詰りを抑制し詰っている吐出孔19の数を減少させることができる。また、第2搬送気流41bの温度は、液滴21を十分に乾燥させて固化できる温度であるが、第2搬送気流41bは第1搬送気流41aを挟んで吐出孔面とは反対側を流れるので吐出孔面には接触しない。このため、吐出孔で樹脂組成液14が乾燥することがなくなり、かつ粒子が形成される際の蒸発潜熱の量が狙いの値を保持できる。搬送気流の温度は狙いの温度になり、粒子同士が付着することなく固化され、狙いの粒径の粒子を形成することができる。これらにより、搬送気流が接触する吐出孔面の温度上昇を抑制しつつ、狭い粒径分布を有する粒子を製造できる。
What has been described above is an example, and the present invention has unique effects in each of the following modes.
(Aspect A)
Droplet formation which forms a droplet 21 by discharging a resin composition liquid 14 containing a resin and a solvent from the discharge hole 19 into the air flow passage. Means 11, an air flow supplying means for supplying a high temperature carrier air flow 41 into the air flow path so as to flow in a direction parallel to the surface direction of the discharge hole surface, and particles which are dried and solidified in the high temperature carrier air flow In the particle manufacturing apparatus 1 including the particle collection means 70, the air flow supply means 30 sandwiches the first carrier air flow 41a supplied so as to flow while contacting the discharge hole surface, and the first carrier air flow 41a. The second carrier air flow 41 b having a temperature higher than that of the first carrier air flow 41 a supplied so as to flow on the side opposite to the discharge hole surface is supplied into the air flow path.
According to this, as described in the above embodiment, the discharge is performed by bringing the first transfer air flow 41 a at a temperature lower than the temperature of the second transfer air flow 41 b and at which clogging of the discharge hole 19 does not occur. The drying of the resin composition liquid 14 is suppressed at the holes. As a result, clogging of the discharge holes 19 can be suppressed, and the number of the discharged discharge holes 19 can be reduced. Further, the temperature of the second carrier air flow 41b is a temperature at which the droplets 21 can be sufficiently dried and solidified, but the second carrier air flow 41b flows on the opposite side to the ejection hole surface across the first carrier air flow 41a. Because it does not contact the discharge hole surface. For this reason, the resin composition liquid 14 is not dried in the discharge holes, and the amount of latent heat of vaporization when particles are formed can maintain the target value. The temperature of the carrier air flow becomes the target temperature, and the particles can be solidified without being attached to one another to form particles of the target particle diameter. As a result, it is possible to produce particles having a narrow particle size distribution while suppressing the temperature rise of the discharge hole surface in contact with the carrier air flow.

(態様B)
(態様A)において、気流供給手段30は、気流路を挟んで吐出孔面とは反対側の、気流路を形成する部材の内壁面に接触しながら流れる第3搬送気流41cを気流路内に供給し、第3搬送気流41cは、第2搬送気流41bより低温である。
これによれば、上記実施形態について説明したように、例えば環境温度が変動した場合、第3搬送気流41cの温度を調整すれば、その温度調整分で環境温度の変動分を相殺できる。このため、第1搬送気流41a、第2搬送気流41bや第3搬送気流41cの複数の搬送気流が混合した混合搬送気流を狙いの温度に保てる。この結果、液滴を十分に乾燥でき、粒子同士が付着することを抑制できる。よって、狭い粒径分布を有する粒子を製造することができる。
(Aspect B)
In (Aspect A), the air flow supply means 30 inserts the third carrier air flow 41c flowing in contact with the inner wall surface of the member forming the air flow path on the opposite side to the discharge hole surface across the air flow path. The third carrier air flow 41c is supplied at a lower temperature than the second carrier air flow 41b.
According to this, as described in the above embodiment, for example, when the environmental temperature fluctuates, if the temperature of the third carrier air stream 41c is adjusted, the fluctuation of the environmental temperature can be offset by the temperature adjustment. For this reason, it is possible to maintain a mixed transport airflow in which the plurality of transport airflows of the first transport airflow 41a, the second transport airflow 41b, and the third transport airflow 41c are mixed at a target temperature. As a result, the droplets can be sufficiently dried, and adhesion of particles can be suppressed. Thus, particles having a narrow particle size distribution can be produced.

(態様C)
(態様A)又は(態様B)において、高温の搬送気流41の流れ方向に対し吐出孔の上流側に、吐出孔面に平行な気流になるよう複数の搬送気流を整える気流整流手段36等の整流手段を設ける。これによれば、上記実施形態について説明したように、第1搬送気流41a、第2搬送気流41b及び第3搬送気流41cの複数の搬送気流が互いに平行な気流を保ちながら流れることで、複数の搬送気流が混合することを抑制できる。これにより、第1搬送気流41aの温度を狙いの温度に保つことができ、吐出孔面の温度上昇を抑制でき、吐出孔の詰まりを抑制できる。
(Aspect C)
In (Aspect A) or (Aspect B), the air flow straightening means 36 or the like which arranges a plurality of conveyance air currents on the upstream side of the discharge hole with respect to the flow direction of the high temperature carrier air flow 41 Providing rectifying means. According to this, as described in the above embodiment, the plurality of transport airflows of the first transport airflow 41a, the second transport airflow 41b, and the third transport airflow 41c flow while maintaining the airflow parallel to each other. It can suppress that conveyance air flow mixes. As a result, the temperature of the first carrier air stream 41a can be maintained at the target temperature, the temperature rise on the discharge hole surface can be suppressed, and the clogging of the discharge holes can be suppressed.

(態様D)
(態様A)〜(態様C)において、第1搬送気流41aの温度が、溶媒の沸点以下である。これによれば、上記実施形態について説明したように、溶媒の沸騰による吐出孔の詰まりを抑制できる。
(Aspect D)
In (Aspect A) to (Aspect C), the temperature of the first carrier air stream 41a is equal to or less than the boiling point of the solvent. According to this, as described in the above embodiment, the clogging of the discharge hole due to the boiling of the solvent can be suppressed.

(態様E)
(態様A)〜(態様D)において、第1搬送気流41aの温度が、溶媒の沸点より20[℃]以上低い。これによれば、上記実施形態について説明したように、溶媒の沸騰による吐出孔の詰まりを抑制できる。
(Aspect E)
In (Aspects A) to (Aspect D), the temperature of the first carrier air stream 41a is lower than the boiling point of the solvent by 20 [° C.] or more. According to this, as described in the above embodiment, the clogging of the discharge hole due to the boiling of the solvent can be suppressed.

(態様F)
気流路形成手段と、平面上に複数の吐出孔19を有し、該吐出孔19から樹脂及び溶媒を含有する樹脂組成液14を気流路内に吐出させて液滴21を形成する液滴形成手段11と、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流41を気流路内に供給する気流供給手段と、高温の搬送気流中で乾燥させて固化した粒子を捕集する粒子捕集手段70とを備えた粒子製造装置1において、気流供給手段30は、気流路を挟んで吐出孔面と反対側の、気流路を形成する部材の内壁面に接触しながら流れるように供給する第1搬送気流と、第1搬送気流を挟んで内壁面とは反対側を流れるように供給する第1搬送気流より高温の第2搬送気流とを気流路内に供給する。
これによれば、上記実施形態について説明したように、環境温度が変動した場合には、その環境温度の変動に応じて、高温の第2搬送気流とは別に内壁面に接触しながら流れるように供給している第1搬送気流の温度を調整すれば、その温度調整分で環境温度の変動分を相殺できる。よって、第1搬送気流や第2搬送気流が混合した混合搬送気流を狙いの温度に保てる。これにより、液滴を十分に乾燥でき、粒子同士が付着することを抑制でき、狭い粒径分布を有する粒子を製造できる。
(Aspect F)
Droplet formation which forms a droplet 21 by discharging a resin composition liquid 14 containing a resin and a solvent from the discharge hole 19 into the air flow passage. Means 11, an air flow supplying means for supplying a high temperature carrier air flow 41 into the air flow path so as to flow in a direction parallel to the surface direction of the discharge hole surface, and particles which are dried and solidified in the high temperature carrier air flow In the particle manufacturing apparatus 1 including the particle collection means 70, the air flow supply means 30 flows while being in contact with the inner wall surface of the member forming the air flow path on the opposite side to the discharge hole surface across the air flow path. And a second transport air stream having a temperature higher than that of the first transport air stream supplied so as to flow on the opposite side to the inner wall surface sandwiching the first transport air stream into the air flow path.
According to this, as described in the above embodiment, when the environmental temperature fluctuates, it flows while contacting the inner wall surface separately from the high temperature second carrier air flow according to the fluctuation of the environmental temperature. By adjusting the temperature of the supplied first carrier air stream, it is possible to offset the fluctuation of the environmental temperature by the temperature adjustment. Therefore, the mixed conveyance airflow which the 1st conveyance airflow and the 2nd conveyance airflow mixed can be maintained at the target temperature. Thereby, the droplets can be sufficiently dried, adhesion of particles can be suppressed, and particles having a narrow particle size distribution can be produced.

(態様G)
(態様A)〜(態様F)において、液滴形成手段は、複数の吐出孔が形成された液柱共鳴室内の樹脂組成液に振動を付与して液柱共鳴による圧力定在波を形成し、該圧力定在波の腹となる領域に形成された複数の吐出孔から樹脂組成液を吐出させて液滴を形成する。これによれば、上記実施形態について説明したように、圧力定在波の圧力が最も大きく変動する腹の領域に吐出孔を配置することで吐出効率が高くなり、粒子を効率よく製造することができる。圧力定在波の腹の周期に応じて互いに略同一液量の複数の液滴が吐出孔から連続的に吐出されることで、狭い粒径分布を有する粒子を製造することができる。
(Aspect G)
In (Aspect A) to (Aspect F), the droplet forming means applies vibration to the resin composition liquid in the liquid column resonance chamber in which a plurality of discharge holes are formed to form a pressure standing wave by liquid column resonance. The resin composition liquid is discharged from a plurality of discharge holes formed in the region which becomes the antinode of the pressure standing wave to form a droplet. According to this, as described in the above embodiment, by disposing the discharge holes in the area of the antinode where the pressure of the pressure standing wave fluctuates most, the discharge efficiency becomes high, and the particles can be efficiently manufactured. it can. A particle having a narrow particle size distribution can be manufactured by continuously discharging a plurality of droplets having substantially the same liquid amount from the discharge hole in accordance with the cycle of the pressure standing wave.

(態様H)
(態様A)〜(態様F)において、液滴形成手段は、複数の吐出孔と振動手段を有する液貯留部に該振動手段により振動を加えながら、液貯留部内の樹脂組成液を加圧し、複数の吐出孔から吐出した樹脂組成液が柱状から括れ状態を経て液滴を形成する。これによれば、上記実施形態について説明したように、高い振動周波数で液貯留部を振動させることで吐出孔から形成される液滴の数を比較的多くでき、吐出孔の閉塞が起こりづらい。このため、均一な液滴径の液滴が得られ、十分な生産性を得ることができる。
(Aspect H)
In (Aspects A) to (Aspect F), the droplet formation means pressurizes the resin composition liquid in the liquid reservoir while applying vibration to the liquid reservoir having the plurality of discharge holes and the vibration means by the vibrator. The resin composition liquid discharged from the plurality of discharge holes forms a droplet from a columnar through a narrowing state. According to this, as described in the above embodiment, by vibrating the liquid storage portion at a high vibration frequency, the number of droplets formed from the discharge holes can be relatively increased, and the discharge holes are unlikely to be blocked. Therefore, droplets of uniform droplet diameter can be obtained, and sufficient productivity can be obtained.

(態様I)
平面上に複数の吐出孔19を有し、該吐出孔19から樹脂及び溶媒を含有する樹脂組成液14を気流路内に吐出させ、液滴21を形成し、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流41を気流路内に供給し、高温の搬送気流中で乾燥させて固化し、粒子を形成し、粒子を捕集する粒子製造方法において、吐出孔面に接触しながら流れるように供給する第1搬送気流41aと、該第1搬送気流41aを挟んで吐出孔面とは反対側を流れるように供給する第1搬送気流41aより高温の第2搬送気流41bとを気流路内に供給する。
これによれば、上記実施形態について説明したように、第2搬送気流41bの温度より低く、吐出孔19の詰まりが発生しない温度の第1搬送気流41aを吐出孔面に接触させることで、吐出孔で樹脂組成液14が乾くことを抑制する。これにより、吐出孔19の詰りを抑制し詰っている吐出孔19の数を減少させることができる。また、第2搬送気流41bの温度は、液滴21を十分に乾燥させて固化できる温度であるが、第2搬送気流41bは第1搬送気流41aを挟んで吐出孔面とは反対側を流れるので吐出孔面には接触しない。このため、吐出孔で樹脂組成液14が乾燥することはなく、かつ粒子が形成される際の蒸発潜熱の量が狙いの値を保持できる。搬送気流の温度は狙いの温度になり、粒子同士が付着することなく固化され、狙いの粒径の粒子を形成することができる。これらにより、搬送気流が接触する吐出孔面の温度上昇を抑制しつつ、狭い粒径分布を有する粒子を製造できる。
(Aspect I)
A resin composition liquid 14 having a plurality of discharge holes 19 on a flat surface and containing a resin and a solvent is discharged from the discharge holes 19 into the air flow path to form droplets 21 and is parallel to the surface direction of the discharge hole surface. In the particle manufacturing method, the high temperature carrier air flow 41 is supplied into the air flow path so as to flow in any direction, dried and solidified in the high temperature carrier air flow, to form particles and collect the particles. The first carrier air flow 41a supplied so as to flow while contacting, and the second carrier air flow 41b having a temperature higher than that of the first carrier air flow 41a supplied so as to flow on the opposite side to the discharge hole surface across the first carrier air flow 41a. And into the air flow path.
According to this, as described in the above embodiment, the discharge is performed by bringing the first transfer air flow 41 a at a temperature lower than the temperature of the second transfer air flow 41 b and at which clogging of the discharge hole 19 does not occur. The drying of the resin composition liquid 14 is suppressed at the holes. As a result, clogging of the discharge holes 19 can be suppressed, and the number of the discharged discharge holes 19 can be reduced. Further, the temperature of the second carrier air flow 41b is a temperature at which the droplets 21 can be sufficiently dried and solidified, but the second carrier air flow 41b flows on the opposite side to the ejection hole surface across the first carrier air flow 41a. Because it does not contact the discharge hole surface. For this reason, the resin composition liquid 14 is not dried in the discharge holes, and the amount of latent heat of vaporization when particles are formed can maintain the target value. The temperature of the carrier air flow becomes the target temperature, and the particles can be solidified without being attached to one another to form particles of the target particle diameter. As a result, it is possible to produce particles having a narrow particle size distribution while suppressing the temperature rise of the discharge hole surface in contact with the carrier air flow.

(態様J)
平面上に複数の吐出孔19を有し、該吐出孔19から樹脂及び溶媒を含有する樹脂組成液14を気流路内に吐出させ、液滴21を形成し、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流41を気流路内に供給し、高温の搬送気流中で乾燥させて固化し、粒子を形成し、粒子を捕集する粒子製造方法において、気流路を挟んで吐出孔面と反対側の、気流路を形成する部材の内壁面に接触しながら流れるように供給する第1搬送気流と、第1搬送気流を挟んで内壁面とは反対側を流れるように供給する第1搬送気流より高温の第2搬送気流とを気流路内に供給する。
これによれば、上記実施形態について説明したように、環境温度が変動した場合には、その環境温度の変動に応じて、高温の第2搬送気流とは別に内壁面に接触しながら流れるように供給している第1搬送気流の温度を調整すれば、その温度調整分で環境温度の変動分を相殺できる。よって、第1搬送気流や第2搬送気流が混合した混合搬送気流を狙いの温度に保てる。これにより、液滴を十分に乾燥でき、粒子同士が付着することを抑制でき、狭い粒径分布を有する粒子を製造できる。
(Aspect J)
A resin composition liquid 14 having a plurality of discharge holes 19 on a flat surface and containing a resin and a solvent is discharged from the discharge holes 19 into the air flow path to form droplets 21 and is parallel to the surface direction of the discharge hole surface. In the particle manufacturing method, the high temperature carrier air flow 41 is supplied into the air flow channel so as to flow in any direction, and dried and solidified in the high temperature carrier air flow to form particles and collect the particles. The first carrier air stream supplied so as to flow while contacting the inner wall surface of the member forming the air flow path on the opposite side of the discharge hole surface and the inner wall surface opposite to the inner wall surface sandwiching the first carrier air stream A second carrier air stream having a temperature higher than the supplied first carrier air stream is supplied into the air flow path.
According to this, as described in the above embodiment, when the environmental temperature fluctuates, it flows while contacting the inner wall surface separately from the high temperature second carrier air flow according to the fluctuation of the environmental temperature. By adjusting the temperature of the supplied first carrier air stream, it is possible to offset the fluctuation of the environmental temperature by the temperature adjustment. Therefore, the mixed conveyance airflow which the 1st conveyance airflow and the 2nd conveyance airflow mixed can be maintained at the target temperature. Thereby, the droplets can be sufficiently dried, adhesion of particles can be suppressed, and particles having a narrow particle size distribution can be produced.

1 粒子製造装置
11 液滴形成手段
14 樹脂組成液
17 液共通供給路
18 液柱共鳴液室
19 吐出孔
20 振動発生手段
21 液滴
22 振動板
30 気流供給手段
31 第1気流供給手段
32 第2気流供給手段
33 第1気流路
34 第2気流路
35 気流分配手段
36 気流整流手段
37 第3気流供給手段
38 第3気流路
41 搬送気流
41a 第1搬送気流
41b 第2搬送気流
41c 第3搬送気流
60 粒子形成手段
61 チャンバー
64 搬送気流導入口
65 搬送気流排出口
70 粒子捕集手段
71 粒子捕集部
72 粒子貯留部
100 液滴形成ユニット
101 液貯留部
102 振動発生手段
103 吐出孔
104 配管
DESCRIPTION OF SYMBOLS 1 particle manufacturing apparatus 11 droplet forming means 14 resin composition liquid 17 common solution supply channel 18 liquid column resonance liquid chamber 19 discharge hole 20 vibration generating means 21 droplet 22 diaphragm 30 air flow supplying means 31 first air flow supplying means 32 second The air flow supply means 33 The first air flow path 34 The second air flow path 35 The air flow distribution means 36 The air flow rectification means 37 The third air flow supply means 38 The third air flow path 41 The transport air stream 41a The first transport air stream 41b The second transport air stream 41c The third transport air stream DESCRIPTION OF SYMBOLS 60 particle formation means 61 chamber 64 conveyance air flow inlet 65 conveyance air flow outlet 70 particle collection means 71 particle collection part 72 particle storage part 100 droplet formation unit 101 liquid storage part 102 vibration generation means 103 discharge hole 104 piping

特許第3786034号公報Patent No. 3786034 gazette 特許第3786035号公報Patent No. 3786035 gazette 特開昭57−201248号公報Japanese Patent Application Laid-Open No. 57-201248 特開2006−293320号公報JP, 2006-293320, A 特開2013−047767号公報JP, 2013-047767, A 特開2013−063406号公報JP, 2013-063406, A

Rayleigh, Lord "On the Instability of Jets" Proc. London Math. Soc. 110:4 [1878]Rayleigh, Lord "On the Instability of Jets" Proc. London Math. Soc. 110: 4 [1878] Schneider J. M., C. D. Hendricks, Rev. Instrum. 35 (10), 1349-50[1964]Schneider J. M., C. D. Hendricks, Rev. Instrum. 35 (10), 1349-50 [1964] Lindblad N. R. and J. M. Schneider, J. Sci. Instrum. 42, 635 [1965]Lindblad N. R. and J. M. Schneider, J. Sci. Instrum. 42, 635 [1965]

Claims (6)

気流路形成手段と、平面上に複数の吐出孔を有し、該吐出孔から樹脂及び溶媒を含有する樹脂組成液を気流路内に吐出させて液滴を形成する液滴形成手段と、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流を前記気流路内に供給する気流供給手段と、前記高温の搬送気流中で乾燥させて固化した粒子を捕集する捕集手段とを備えた粒子製造装置において、
前記気流供給手段は、前記吐出孔面に接触しながら流れるように供給する第1搬送気流と、該第1搬送気流を挟んで前記吐出孔面とは反対側を流れるように供給する前記第1搬送気流より高温の第2搬送気流と、前記第1搬送気流と前記第2搬送気流とをともに挟んで前記吐出孔面とは反対側の、前記気流路を形成する部材の内壁面に接触しながら流れるように供給する前記第2搬送気流より低温の第3搬送気流とを前記気流路内に供給し、
前記第3搬送気流の温度は環境温度の変動に応じて調整可能であり、
前記高温の搬送気流の流れ方向に対し前記吐出孔の上流側に、前記吐出孔面に平行な気流になるよう複数の搬送気流を整える孔径が0.1[mm]〜10[mm]のハニカム形状の整流手段を設けることを特徴とする粒子製造装置
Droplet forming means having a gas flow path forming means, a plurality of discharge holes on a flat surface, and discharging a resin composition liquid containing a resin and a solvent from the discharge holes into the gas flow path to form droplets; Air flow supply means for supplying a high temperature carrier air flow into the air flow passage so as to flow in a direction parallel to the surface direction of the hole surface, and collection means for collecting particles solidified by drying in the high temperature carrier air flow In a particle manufacturing apparatus comprising
The air flow supply means supplies a first carrier air flow supplied to flow while contacting the discharge hole surface, and a first supply air supplied so as to flow on the opposite side to the discharge hole surface across the first carrier air flow. It contacts the inner wall surface of the member forming the air flow path on the opposite side of the discharge hole surface, sandwiching both the second transfer air flow having a temperature higher than the transfer air flow, the first transfer air flow and the second transfer air flow. Supplying a third carrier air stream having a temperature lower than that of the second carrier air stream so as to flow while flowing into the air channel;
Temperature of the third conveying airflow Ri adjustable der in accordance with variations in ambient temperature,
Honeycomb having a hole diameter of 0.1 [mm] to 10 [mm] for arranging a plurality of carrier air flows on the upstream side of the discharge hole with respect to the flow direction of the high temperature carrier air flow so as to be a gas flow parallel to the discharge hole surface. particle production apparatus according to claim Rukoto provided rectifying means in the form.
求項1に記載の粒子製造装置において、
前記第1搬送気流の温度が、前記溶媒の沸点以下であることを特徴とする粒子製造装置。
In the apparatus for producing particles according to Motomeko 1,
The temperature of the said 1st conveyance airflow is below the boiling point of the said solvent, The particle manufacturing apparatus characterized by the above-mentioned.
請求項1または2に記載の粒子製造装置において、
前記第1搬送気流の温度が、前記溶媒の沸点より20[℃]以上低いことを特徴とする粒子製造装置。
In the particle manufacturing apparatus according to claim 1 or 2 ,
The temperature of the said 1st conveyance airflow is 20 [degreeC] or more lower than the boiling point of the said solvent, The particle manufacturing apparatus characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の粒子製造装置において、
前記液滴形成手段は、複数の吐出孔が形成された液柱共鳴室内の前記樹脂組成液に振動を付与して液柱共鳴による圧力定在波を形成し、該圧力定在波の腹となる領域に形成された前記複数の吐出孔から前記樹脂組成液を吐出させて液滴を形成することを特徴する粒子製造装置。
In the particle manufacturing apparatus according to any one of claims 1 to 3 ,
The droplet forming means applies vibration to the resin composition liquid in the liquid column resonance chamber in which a plurality of discharge holes are formed to form a pressure standing wave by liquid column resonance, and the antinode of the pressure standing wave A particle manufacturing apparatus characterized in that the resin composition liquid is discharged from the plurality of discharge holes formed in the region to form droplets.
請求項1〜4のいずれか1項に記載の粒子製造装置において、
前記液滴形成手段は、複数の吐出孔と振動手段を有する液貯留部に該振動手段により振動を加えながら、前記液貯留部内の樹脂組成液を加圧し、前記複数の吐出孔から吐出した前記樹脂組成液が柱状から括れ状態を経て液滴を形成することを特徴とする粒子製造装置。
In the particle manufacturing apparatus according to any one of claims 1 to 4 ,
The droplet formation means applies pressure to the resin composition liquid in the liquid storage portion while applying vibration to the liquid storage portion having a plurality of discharge holes and vibration means by the vibration means, and discharges the liquid from the plurality of discharge holes. What is claimed is: 1. A particle manufacturing apparatus characterized in that a resin composition liquid forms droplets from a columnar through a constricted state.
平面上に複数の吐出孔を有し、該吐出孔から樹脂及び溶媒を含有する樹脂組成液を気流路内に吐出させ、液滴を形成し、吐出孔面の面方向に平行な方向に流れるように高温の搬送気流を前記気流路内に供給し、前記高温の搬送気流中で乾燥させて固化し、粒子を形成し、前記粒子を捕集する粒子製造方法において、
前記吐出孔面に接触しながら流れるように供給する第1搬送気流と、該第1搬送気流を挟んで前記吐出孔面とは反対側を流れるように供給する前記第1搬送気流より高温の第2搬送気流と、前記第1搬送気流と前記第2搬送気流とをともに挟んで前記吐出孔面とは反対側の、前記気流路を形成する部材の内壁面に接触しながら流れるように供給する前記第2搬送気流より低温の第3搬送気流とを前記気流路内に供給し、
前記第3搬送気流の温度は環境温度の変動に応じて調整可能であり、
前記高温の搬送気流の流れ方向に対し前記吐出孔の上流側に設けた孔径が0.1[mm]〜10[mm]のハニカム形状の整流手段により、前記吐出孔面に平行な気流になるよう複数の搬送気流を整えることを特徴とする粒子製造方法。
A resin composition liquid containing a resin and a solvent is discharged into the air flow path from a plurality of discharge holes on a flat surface, and the discharge holes form droplets, which flow in a direction parallel to the surface direction of the discharge hole surface. In the particle manufacturing method, a high temperature carrier air flow is supplied into the air flow path, dried and solidified in the high temperature carrier air flow, to form particles, and collecting the particles,
A first carrier air flow supplied so as to flow while contacting the discharge hole surface, and a temperature higher than the first carrier air flow supplied so as to flow on the opposite side to the discharge hole surface across the first carrier air flow 2) Supply so as to flow while contacting with the inner wall surface of the member forming the air flow path on the opposite side of the discharge hole surface sandwiching both the transfer air flow, the first transfer air flow and the second transfer air flow Supplying a third carrier air stream having a temperature lower than that of the second carrier air stream into the air channel;
Temperature of the third conveying airflow Ri adjustable der in accordance with variations in ambient temperature,
It becomes an air flow parallel to the discharge hole surface by the honeycomb-shaped flow straightening means having a hole diameter of 0.1 [mm] to 10 [mm] provided on the upstream side of the discharge hole with respect to the flow direction of the high temperature carrier flow. A method of producing particles, comprising preparing a plurality of transport air flows .
JP2014193916A 2014-03-14 2014-09-24 Particle production apparatus and particle production method Active JP6519840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193916A JP6519840B2 (en) 2014-03-14 2014-09-24 Particle production apparatus and particle production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014051871 2014-03-14
JP2014051871 2014-03-14
JP2014193916A JP6519840B2 (en) 2014-03-14 2014-09-24 Particle production apparatus and particle production method

Publications (2)

Publication Number Publication Date
JP2015186793A JP2015186793A (en) 2015-10-29
JP6519840B2 true JP6519840B2 (en) 2019-05-29

Family

ID=54429383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193916A Active JP6519840B2 (en) 2014-03-14 2014-09-24 Particle production apparatus and particle production method

Country Status (1)

Country Link
JP (1) JP6519840B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376559B2 (en) * 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
EP4142928A4 (en) * 2019-06-28 2023-05-24 Ejoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
CN114687324A (en) * 2022-05-17 2022-07-01 中国水利水电第九工程局有限公司 Canal lining device for hydraulic engineering

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722794Y1 (en) * 1969-03-28 1972-07-24
JPS5916482B2 (en) * 1980-03-13 1984-04-16 日本鋼管株式会社 spray drying equipment
JP2006000796A (en) * 2004-06-18 2006-01-05 Seiko Epson Corp Resin particulate manufacturing apparatus, particulate manufacturing method and particulate
JP5046532B2 (en) * 2005-03-31 2012-10-10 株式会社リコー Fine particles and manufacturing method thereof, toner and manufacturing method thereof, developer, container containing toner, process cartridge, image forming method and image forming apparatus
JP4562707B2 (en) * 2006-09-07 2010-10-13 株式会社リコー Toner manufacturing method and toner
JP2014042906A (en) * 2012-07-31 2014-03-13 Ricoh Co Ltd Apparatus for producing fine particle, method for producing fine particle, and toner obtained by the method

Also Published As

Publication number Publication date
JP2015186793A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6103466B2 (en) Fine particle and toner manufacturing apparatus
KR101552390B1 (en) Particulate material production apparatus, particulate material production method, and toner produced thereby
JP6195152B2 (en) Fine particle production equipment
JP6519840B2 (en) Particle production apparatus and particle production method
JP2012223696A (en) Particulate production method and apparatus, toner production method and apparatus, and toner
JP2013212494A (en) Method for producing resin fine particle
JP6016078B2 (en) Fine particle manufacturing method
JP6536977B2 (en) Particle production method
JP6217147B2 (en) Particle manufacturing apparatus and particle manufacturing method
JP6350897B2 (en) Toner production method
JP5974727B2 (en) Particle manufacturing method and particle manufacturing apparatus
JP6283997B2 (en) Droplet discharge device and particle manufacturing device
JP6443774B2 (en) Particle production method
JP2013063408A (en) Fine particle manufacturing method and fine particle manufacturing apparatus
JP6168385B2 (en) Particle manufacturing apparatus and particle manufacturing method
JP5754315B2 (en) Production method of resin fine particles and toner, and production apparatus thereof
JP2015020144A (en) Manufacturing method of particle and toner
JP6156775B2 (en) Fine particle production method, fine particle production apparatus, and electrophotographic toner
JP2014147892A (en) Particle producing apparatus, particle producing method, and toner
JP7073037B2 (en) Particle manufacturing equipment and particle manufacturing method
JP2012185411A (en) Production method of toner
JP5999467B2 (en) Fine particle production apparatus and fine particle production method
JP2013075289A (en) Fine particles and method of manufacturing toner
JP2013064886A (en) Toner manufacturing method and toner
JP2014091104A (en) Manufacturing method and manufacturing apparatus of particles and particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R151 Written notification of patent or utility model registration

Ref document number: 6519840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151