JP6512362B2 - 過硫酸アンモニウムの製造方法 - Google Patents

過硫酸アンモニウムの製造方法 Download PDF

Info

Publication number
JP6512362B2
JP6512362B2 JP2018502427A JP2018502427A JP6512362B2 JP 6512362 B2 JP6512362 B2 JP 6512362B2 JP 2018502427 A JP2018502427 A JP 2018502427A JP 2018502427 A JP2018502427 A JP 2018502427A JP 6512362 B2 JP6512362 B2 JP 6512362B2
Authority
JP
Japan
Prior art keywords
ammonium persulfate
ammonium sulfate
solution
ammonium
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018502427A
Other languages
English (en)
Other versions
JPWO2018131493A1 (ja
Inventor
未生 吉井
未生 吉井
幹人 手塚
幹人 手塚
文雄 福田
文雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018131493A1 publication Critical patent/JPWO2018131493A1/ja
Application granted granted Critical
Publication of JP6512362B2 publication Critical patent/JP6512362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、硫酸アンモニウムを原料に過硫酸アンモニウムを製造する方法に関し、とくに、過硫酸アンモニウムを製造し、同時にアンモニアを併産できる過硫酸アンモニウムの製造方法に関する。
硫酸アンモニウムは硫安とも呼ばれ、かつては目的物として合成されていたが、現在は主にカプロラクタムやラウロラクタム、アクリロニトリル、メタクリル酸メチルといった有機化学工業や石炭乾留によるコークス製造工程で副生されるものが流通している。硫酸アンモニウムはアンモニア態窒素を20%程度含有するので肥料として利用することが可能であり、前述した工程で副生した硫酸アンモニウムの大部分は肥料用として利用されている。しかしながら、硫酸アンモニウムは硫酸根を有するため、土壌酸性化や塩の生成といった植物生育において負の側面も有しており、施肥可能量には制限がある。このため、今日我が国において副生される硫酸アンモニウムの多くは輸出されているのが現状である。
かかる問題点に対処する方法として、従来、硫酸アンモニウムを副生しないカプロラクタムやアクリロニトリル、メタクリル酸メチルの製法が開発されてきた。ところがこれらの製法はプロセスが複雑であることや、既存製法からの転換が容易でないといった課題を有する。そのため、未だに多くの硫酸アンモニウムが大過剰に副生しており、安価で輸出されているのが現状である。
一方、過硫酸アンモニウムは主に乳化重合の重合開始剤や酸化漂白剤、銅エッチング剤等で広く工業的に利用されている。過硫酸アンモニウムのこれまで知られてきた製造方法としては、陽極側原料として、特許文献1に記載されているように硫酸水素アンモニウムを含有した水溶液を用いる方法や、特許文献2に記載されているように硫酸アンモニウムのみの水溶液を用いる方法、特許文献3に記載されているように硫酸アンモニウムおよび過硫酸アンモニウムを用いる電解製法が知られている。陰極側原料としては、いずれの方法においても硫酸水溶液や塩を含む硫酸水溶液のみが選択されており、かつ、いずれの場合においても電解による電荷移動量が硫酸由来の酸解離可能な水素イオン量未満で制御されてきた。言い換えれば、陰極側の電解反応は全て下記反応式の硫酸由来の水素イオンが水素分子となる反応のみが実施されてきた。
2H+ 2e → H
この方法では硫酸の水素イオンが消費され、陽極側より泳動してきたアンモニウムイオンと交換されるため、陰極側生成物として硫酸アンモニウム水溶液が得られる。本水溶液は陽極側原料として再利用されてきた。
例えば図1に示すように、電解槽1の陽極側2には陽極側原料として硫酸アンモニウム((NHSO)が供給され、陽極反応としては、下記の如く、硫酸イオンが反応(消費)して、過硫酸イオンが発生する。
2SO 2− → S 2− + 2e
溶存イオンとしては、
電解前:NH 、SO 2− = 硫酸アンモニウム水溶液
電解後:NH 、S 2−= 過硫酸アンモニウム水溶液
となり、アンモニウムイオンが陰極側へ泳動するとともに、過硫酸アンモニウム水溶液が生成していく。
一方、陰極側3では、硫酸が供給され、陰極反応として、下記反応式の如く硫酸由来の水素イオンが反応(消費)し、水素ガスが発生する。
2H+ 2e → H
溶存イオンとしては、
電解前:H、SO 2− = 硫酸水溶液
電解後:NH 、H、SO 2− = 硫酸アンモニウム水溶液
となり、陽極側より泳動したアンモニウムイオンが濃縮され、硫酸アンモニウム水溶液が生成して行く。この硫酸アンモニウム水溶液にさらにアンモニアが添加されて硫酸アンモニウムとされ、その硫酸アンモニウムが陽極側原料として再利用される。
特開昭57−198275号公報 特開平11−293484号公報 特開2001−220695号公報
上述の如く、従来の技術では、陽極側原料として硫酸アンモニウムを利用するものの、陰極側に硫酸アンモニウム水溶液が生成され、それが陽極側原料として再利用されるため、このような過硫酸アンモニウムの製造工程では、他工程より安価で過剰に副生する硫酸アンモニウムを多量に利用することができず、また、原料としてアンモニア、硫酸を利用することが必要であった。
そこで本発明の課題は、上記のような従来技術に鑑み、他工程にて安価で過剰に副生する硫酸アンモニウムを本工程で陽極側原料として多量に利用することが可能で、特に、陰極側には、従来再利用されていた硫酸アンモニウムを生成させず、各種工程に有効利用できるアンモニアを生成可能であり、しかも高効率で過硫酸アンモニウムを製造可能な方法を提供することにある。
上記課題を解決するために、本発明に係る過硫酸アンモニウムの製造方法は、硫酸アンモニウム(化学式:(NHSO)を電解して過硫酸アンモニウム(化学式:(NH8)を製造する方法において、陽極側原料として硫酸アンモニウム水溶液を供給し、陰極側原料として、電荷移動量1.0molに対し酸由来の酸解離可能な水素イオン量が1.0mol未満の溶液を供給して電解し、陽極側に過硫酸アンモニウム、陰極側に少なくともアンモニアを生成することを特徴とする方法からなる。
すなわち、本発明に係る過硫酸アンモニウムの製造方法は、陰極側原料の酸解離可能な水素イオン量を電解による電荷移動量未満に抑えて陰極側(陰極室)に供給し、電気分解により陽極側には従来技術と同様に過硫酸アンモニウムを生成させ、かつ、陰極側には、少なくともアンモニア、より具体的には、例えば、水酸化アンモニウム/アンモニアガスおよび水素ガスを生成させる方法である。
本発明に係る過硫酸アンモニウムの製造方法においては、上記陰極側原料として供給される、電荷移動量1.0molに対し酸由来の酸解離可能な水素イオン量が1.0mol未満の溶液としては、水も使用可能であるが、本発明における電気分解、反応を効率よく行わせるために、電解質含有溶液を使用することが好ましい。このような陰極側原料溶液としては、上記電解による電荷移動量未満の酸解離可能な水素イオン量の条件を満たす限り、硫酸アンモニウム溶液を用いることができ、硫酸を含む溶液を用いることもでき、水酸化アンモニウム溶液を用いることもできる。これらの混合溶液を使用することも可能である。陰極側原料として硫酸アンモニウム水溶液を用いる場合には、その濃度としては、30〜45重量%の範囲にあることが好ましい。なお、電荷移動量当たりの最大のアンモニア生成量を得る、言い換えるとアンモニア生成効率をより高めるためには、陰極側原料として酸解離可能な水素イオンを有する硫酸を高濃度で含む溶液は好ましくない。
また、陽極側原料としての硫酸アンモニウム水溶液の濃度としては、30〜45重量%の範囲にあることが好ましい。さらに好ましくは40〜45重量%である。このような高濃度硫酸アンモニウム水溶液を陽極側原料として使用することで、工業的に有利に過硫酸アンモニウムを製造することができる。陽極側、陰極側いずれも原料供給、生成物払出方式についてはバッチ方式でもよいが、工業的には連続方式の方が有利である。
なお、本発明に係る過硫酸アンモニウムの製造方法により生成された過硫酸アンモニウムは、前述したように、乳化重合の重合開始剤や酸化漂白剤、銅エッチング剤等として広く工業的に利用することができ、アンモニアは後述のラクタム製造工程のほか各種工程で利用でき、水素は有機化学工業の水添工程や燃料電池用の燃料等として利用することができる。
このように、本発明に係る過硫酸アンモニウムの製造方法によれば、系内で生成する硫酸アンモニウムに依らない硫酸アンモニウムを主原料とすることができるため、工業的に有利であり、また電解製法により、過硫酸アンモニウムのみならず、アンモニア、水素といった有価なものを併産することが可能であり、さらに過硫酸アンモニウム製造の電流効率が80%以上、さらに好ましくは85%以上、特に好ましくは90%以上と高効率での製造が可能な過硫酸アンモニウムの製造方法を提供することができる。
従来の過硫酸アンモニウムの製造方法の一例を示す概略構成図である。 本発明の一実施態様に係る過硫酸アンモニウムの製造方法を示す概略構成図である。
以下に、本発明について、実施の形態とともにさらに詳細に説明する。
本発明に係る過硫酸アンモニウムの製造方法は、硫酸アンモニウムを電解して過硫酸アンモニウムを製造する方法において、陽極側原料として硫酸アンモニウム水溶液を供給し、陰極側原料として、電荷移動量1.0molに対し酸由来の酸解離可能な水素イオン量が1.0mol未満の溶液を供給して電解し、陽極側に過硫酸アンモニウム、陰極側に少なくともアンモニアを生成することを特徴とする方法である。
陽極側原料としては、例えば、電荷移動量以上のアンモニウムイオンを含有した硫酸アンモニウム水溶液を用いることができ、硫酸や水酸化アンモニウムが過剰な状態でもよい。濃度については特に限定されないが、工業的には濃厚なほど有利であり、硫酸アンモニウム30〜45重量%の濃度範囲が好ましい。この陽極側原料は必要量の分極剤を含むが、分極剤については、既知の過硫酸塩の製造に有利なものであれば特に限定されない。好ましい分極剤としては、グアニジン、グアニジン塩、チオシアン酸塩、シアン化物、シアン酸塩、フッ化物などが用いられる。特に好ましくはグアニジン、またはグアニジン塩である。グアニジン塩としては、スルファミン酸グアニジン、硝酸グアニジン、硫酸グアニジン、リン酸グアニジンまたは炭酸グアニジンなどが挙げられる。分極剤の濃度は、陽極側原料に対して、0.01〜1重量%が例示でき、0.01〜0.05重量%が好ましい。
陰極側原料としては、電解による電荷移動量1.0molに対し1.0mol未満の酸解離可能な水素イオン量で構成される溶液であれば特に制限されず、例えば希薄な硫酸溶液を使用できる。この場合、硫酸は二価の酸であるため、上記酸解離可能な水素イオン量の条件を満たすためには、具体的には0.5mol未満の硫酸溶液となる。上記酸解離可能な水素イオン量の条件を満たしていれば、純水や水酸化アンモニウムのような塩基または硫酸アンモニウムのような塩を含む水溶液を用いてもよい。好ましくは硫酸アンモニウム水溶液や水酸化アンモニウム水溶液を用いれば、電解質を含有するため電気抵抗を低減し、かつ、隔膜を隔てた陽極側原料と同一組成のイオンで構成され、さらに、陰極反応に供される硫酸由来の水素イオンが存在しないため、最大限のアンモニアを生成させることができる。濃度については特に限定されないが、硫酸アンモニウム水溶液については工業的には濃厚なほど有利であり、30〜45重量%の濃度範囲がより好ましい。硫酸を使用する場合は反応の初期過程において陰極生成液中に硫酸アンモニウムが優先して生成され、電荷移動量単位当たりのアンモニア生成効率が低減するため、希薄溶液が好ましく、硫酸濃度として電解による電荷移動量1.0molに対し0.5mol未満であればよいが、具体的には、0.001〜1重量%の硫酸水溶液が好ましい。水酸化アンモニウム水溶液の場合は、特に限定されない。また、工業的にはアンモニア生成効率の面や、硫酸による腐食性が低減されることで陰極使用材質選定の面から、硫酸を用いるよりも硫酸アンモニウム水溶液や水酸化アンモニウム水溶液を用いるほうがより好ましい。
陰極側原料を上記の組成とすることにより、陽極液中に硫酸由来の水素イオンが存在する範囲では下記反応式(1)が優先され、陰極側生成物として水素を発生させるが、酸由来の水素イオン欠乏後は下記反応式(2)や下記反応式(3)といった反応が優先される。系内では下記反応式(4)の平衡反応が存在するため、反応式(2)、反応式(3)のいずれの場合においても陰極側生成物として水素およびアンモニアを生成させることができる。
Figure 0006512362
本発明において使用する電解槽は特に限定されるものではなく、隔膜でへだてられた陽極室と陰極室に区切られた電解槽であればよい。箱形電解槽や、フィルタープレス型電解槽を使用することができる。ここで、陽極室と陰極室をへだてる隔膜は、陽極室にて生成する陰イオンの陰極室への泳動を阻害することが出来る隔膜を用いる。隔膜としては、陽イオン交換膜、中性アルミナ隔膜などが挙げられるが、好ましくは陽イオン交換膜が用いられる。
陽極は好ましくは白金または白金族であるが、導電ダイヤモンド電極など知られている酸素過電圧の高い材料も用いることができる。陰極は好ましくは鉛、ジルコニウム、白金、ニッケル、SUS316などのステンレスを用いることができる。また、電極としては、これらの金属で構成される金網を用いることができる。
陽極の電流密度は、20A/dm以上が好ましい。これより低いと電流効率が低くなる場合がある。好ましくは40A/dm2以上であり、500A/dm2以下が好ましく、さらに好ましくは、200A/dm2以下、特に好ましくは、80A/dm2以下である。工業的には装置サイズを小さくすることができるため、高電流密度での運転がより好ましい。電解槽内の温度は、15〜40℃が好ましい。この範囲とすることで、電解槽内の塩類の溶解を適切な範囲に維持することができ、好ましくない副反応を抑えることができるので好ましい。
本発明の製造方法を採用することで、高い電流効率で、過硫酸アンモニウムを製造することができる。好ましい条件においては、電流効率80%以上での過硫酸アンモニウムの製造が可能であり、さらに好ましくは電流効率85%以上、特に好ましくは90%以上である。電流効率の上限は理論上100%である。ここで、電流効率(%)は、(生成した過硫酸イオン(mol)×2)/通電量(F)×100で表される値であり、単位通電量当たりに生成した過硫酸イオンの量を測定することで算出することができる。
陽極室に陽極液を満たした状態で電解することにより陽極液中に過硫酸イオンが生成するため、この陽極生成液を従来技術と同様に、例えば広く一般的に用いられる晶析槽へ供給し、濃縮晶析することができる。晶析後の含過硫酸アンモニウムスラリーは広く一般に使用される遠心分離機等の固液分離器により過硫酸アンモニウム結晶と晶析母液とに分離される。得られた過硫酸アンモニウム結晶は粉体乾燥機を用いて乾燥・製品化することができる。晶析母液は陽極側原料として工程に再供給することができる。
また、陰極室に陰極液を通液した状態で前記電荷移動量以上の電流を通電して電解することにより、陰極室の陰極生成ガスに水素およびアンモニアの混合ガスおよび/または生成液中に水酸化アンモニウム(アンモニア含有水)を生成する。陰極側で生成される水素・アンモニア混合ガスは広く一般的に用いられるアンモニアガス分離方法、例えば深冷分離や圧縮分離により分離することができる。また、生成したアンモニアの供給先がたとえばラクタム工程における中和塩変換工程のような、アンモニア水として供給される工程の場合、広く一般的に用いられるガス吸収塔を用いて分離し、アンモニア水として回収することもできる。
分離された水素ガスは圧力変動吸着法等を用いて精製圧縮し、有機化学工業の水添工程や、燃料電池用の燃料として利用することができる。
本発明の過硫酸アンモニウムの製造方法は、先に述べた、ラクタム、アクリロニトリル、メタクリル酸メチルなどの製造工程や、石炭乾留によるコークス製造工程で副生する硫酸アンモニウムを原料として用いることができる。このとき、種々の工程における硫酸アンモニウムを含む副成物には硫酸アンモニウム以外の不純物などが含まれている場合があり、それらの成分や含有量によっては、副反応を起こすことで過硫酸アンモニウムの製造工程における電流効率が低下する場合がある。このような場合は、あらかじめ硫酸アンモニウムを含む副生物を精製して電流効率を低下させる成分を減少させてから過硫酸アンモニウム製造工程に供給することが好ましい。
本発明に係る過硫酸アンモニウムの製造方法の具体的な例として、図2に、陰極側原料溶液として、硫酸アンモニウム(硫安)溶液を用いた場合について例示する。図2において、11は電解槽を示しており、電解槽11の陽極側12には陽極側原料として、例えば他製造工程14としてのラクタム製造工程14で副生された硫酸アンモニウム((NHSO)が供給され、陽極反応としては、従来技術と同様、下記のように、硫酸イオンが反応(消費)して、過硫酸イオンが発生する。
2SO 2− → S 2− + 2e
溶存イオンとしては、
電解前:NH 、SO 2− = 硫酸アンモニウム水溶液
電解後:NH 、S 2−= 過硫酸アンモニウム水溶液
となり、アンモニウムイオンが陰極側へ泳動するとともに、過硫酸アンモニウム水溶液が生成していく。この陽極側生成液が濃縮晶析され、晶析母液と結晶とに分離され、結晶は例えば粉体乾燥機により過硫酸アンモニウムの塩として製品化できる。晶析母液は陽極側原料として工程に再供給できる。
一方、陰極側13では、水と例えばラクタム製造工程14で副生された硫酸アンモニウムからなる硫酸アンモニウム溶液(硫安溶液)が供給され、陰極反応としては、反応源の水素イオンが無いか乏しいため、下記反応式の如く陽極より泳動したアンモニウムイオンが反応し、アンモニアと水素が生成していく。また、陰極側13に少量の酸がある場合には、下記反応式の如く酸由来の水素イオンが反応(消費)し、水素ガスが発生する。
2NH + 2e → 2NH + H
2H+ 2e → H(少量の酸がある場合)
溶存イオンとしては、陰極側13に硫酸アンモニウムからなる硫酸アンモニウム溶液(硫安溶液)が供給される場合について説明するに、
電解前:NH 、SO 2− = 硫酸アンモニウム水溶液
電解後:NH 、SO 2− = 硫酸アンモニウム水溶液
となり、実質的に変化がない。つまり、陰極側13に少量の酸があり、上記の如く酸由来の水素イオンが反応(消費)する場合を除き、陰極側13の溶存イオンには実質的に変化がない。
このように、陰極側13では、硫酸アンモニウムを生成することなく、アンモニア、アンモニア含有水、水素が生成され、アンモニア、アンモニア含有水はラクタム製造工程等に使用でき、水素は回収されて各種分野に使用できる。
以下、実施例により、本発明を具体的に説明するが、本発明は、これらの実施例により何ら限定を受けるものではない。なお、実施例中の電流効率は(生成した過硫酸イオン(mol)×2)/通電量(F)×100%で表され、単位通電量当たりに生成した過硫酸イオンの割合を表す。
(実施例1)
隔膜に陽イオン交換膜(ケマーズ社製、Nafion(登録商標)117)で区切られた透明アクリル製の電解槽を用い、陽極に80メッシュの白金金網とチタンからなる電極を用い、陰極に80メッシュのSUS316金網からなる電極を用いた。陽極室には43重量%硫酸アンモニウム水溶液に分極剤としてスルファミン酸グアニジン0.03重量%添加した水溶液を500g供給した。それぞれのイオンの物質量としては、アンモニウムイオン3.25mol、硫酸イオン1.63molである。陰極室には43重量%硫酸アンモニウム水溶液を500g供給した。供給後、陽極電流密度は45A/dmとして通電した。電荷移動量は0.67molであった。電荷移動量は通電電流量×通電時間の値で求まる。通電後、得られた陽極生成液中の過硫酸アンモニウム濃度を滴定により測定した。陽極では0.315molの過硫酸アンモニウムが生成され、電流効率は94%であった。また、電解中の陰極生成ガスからは電解反応相当量の水素とアンモニアの発生が認められた。
(実施例2)
実施例1と同様の装置および、同様の陽極室供給液組成と陰極室供給液組成を用いて、陽極電流密度を6.43A/dmで通電した。電荷移動量は0.67molであった。通電後、得られた陽極生成液中の過硫酸アンモニウム濃度を滴定により測定した。陽極では0.311molの過硫酸アンモニウムが生成され、電流効率は93%であった。また、電解中の陰極生成ガスからは電解反応相当量の水素とアンモニアの発生が認められた。
(実施例3)
実施例1と同様の装置および、同様の陽極室供給液組成と陰極室供給液組成を用いて、陽極電流密度を2.86A/dmで通電した。電荷移動量は0.30molであった。通電後、得られた陽極生成液中の過硫酸アンモニウム濃度を滴定により測定した。陽極では0.140molの過硫酸アンモニウムが生成され、電流効率は93%であった。また、電解中の陰極生成ガスからは電解反応相当量の水素とアンモニアの発生が認められた。
(実施例4)
隔膜に中性アルミナ隔膜を用い、その他電解槽等の実験装置および陽極室供給液組成は実施例1と同様とした。陰極室には10重量%アンモニア水溶液を500g供給した。供給後、陽極電流密度を45A/dmで通電した。電荷移動量は0.67molであった。通電後、得られた陽極生成液中の過硫酸アンモニウム濃度を滴定により測定した。陽極では0.295molの過硫酸アンモニウムが生成され、電流効率は88%であった。また、電解中の陰極生成ガスからは電解反応相当量の水素とアンモニアの発生が認められた。
(実施例5)
実施例1と同様の装置で、ラクタム工程で副生された不純物を含有する硫酸アンモニウムを直接使って実施例1と同様の陽極室と陰極室の供給液組成とした。陽極電流密度を45A/dmとし、陽極生成液中の過硫酸アンモニウム濃度が実施例1と同様になる分だけの電荷移動量となるように通電した。得られた陽極生成液中の過硫酸アンモニウム濃度を滴定により測定した。陽極では0.535molの過硫酸アンモニウムが生成され、電流効率は80%であった。得られた陽極生成液を、2重管式のガラス容器内で攪拌しながら減圧脱水濃縮させることで過硫酸アンモニウムを晶析させた。濃縮時のガラス容器内の圧力は約20torrで、内液温度は約30℃、脱水率は34.1%であった。得られたスラリーをろ過して母液とケークに分離し、さらにケークを室温で乾燥させることで過硫酸アンモニウムの結晶を得た。この過硫酸アンモニウム結晶の純度を測定したところ、98.4%であった。ろ過によって得られた母液は、ラクタム工程で副生された硫酸アンモニウムの水溶液を、電解で消費する硫酸アンモニウム相当量分以上加えて、陽極室供給液としてリサイクルし、陰極室供給液は先の1回目の電解と同様のものを別途調整した。これを先の1回目の電解と同じ条件で通電し、陽極生成液中の過硫酸アンモニウム濃度を測定したところ、陽極では0.510molの過硫酸アンモニウムが生成され、電流効率は86%であった。得られた電解液を、先の1回目の晶析と同様の装置および条件で濃縮脱水晶析したところ、脱水率が25.9%で、過硫酸アンモニウム結晶の純度は98.7%であった。さらに同様の操作で母液をリサイクルして電解・晶析を2周、合計4周した時の4周目時の電流効率は85%で、脱水率は31.8%、過硫酸アンモニウム結晶の純度は99.4%であった。また、各電解において電解中の陰極生成ガスからは電解反応相当量の水素とアンモニアの発生が認められた。
(比較例1)
特許文献2の記載に準じた組成、電荷移動量で過硫酸アンモニウムの電解を実施した。電解槽等の実験装置は実施例1と同様とした。陽極室には43重量%硫酸アンモニウム水溶液に分極剤としてスルファミン酸グアニジン0.05重量%添加した水溶液を500g供給した。それぞれのイオンの物質量としては、アンモニウムイオン3.26mol、硫酸イオン1.63molであった。陰極室には18.9重量%硫酸、28.4重量%硫酸アンモニウム水溶液を500g供給した。それぞれのイオンの物質量としては、アンモニウムイオン2.15mol、硫酸イオン2.14mol、水素イオン1.93molであった。供給後、電荷移動量が1.92molとなるように通電電流量と通電時間を制御した。通電後、陽極生成液、陰極生成液および陰極生成ガス中から過剰の水でガスを捕集した溶液中の液組成を滴定により分析した。陽極側では0.84molの過硫酸アンモニウムの生成が、陰極側では0.84molの硫酸アンモニウムおよび電解反応相当量の水素ガスの生成および0.84molの硫酸が消費されたが、アンモニアは生成されなかった。このときの電流効率は87%であった。
本発明に係る方法は、原料としての硫酸アンモニウムを電解して過硫酸アンモニウムを高効率で製造するとともに、従来方法のように再利用される硫酸アンモニウムを生成することなく、各種工程に有効利用可能なアンモニアを併産することができ、過剰に副生されている硫酸アンモニウムを効率よく消費することが求められる過硫酸アンモニウムの製造に極めて好適に適用できる。
1、11 電解槽
2、12 陽極側
3、13 陰極側
14 他製造工程

Claims (10)

  1. 硫酸アンモニウムを電解して過硫酸アンモニウムを製造する方法において、陽イオン交換膜で隔てられた電解槽を用いて、陽極側原料として硫酸アンモニウム水溶液を供給し、陰極側原料として、電荷移動量1.0molに対し酸由来の酸解離可能な水素イオン量が1.0mol未満である、硫酸アンモニウム水溶液、水酸化アンモニウム水溶液、および0.001〜1重量%の硫酸水溶液から選ばれる少なくとも1種供給して電解し、陽極側に過硫酸アンモニウム、陰極側に少なくともアンモニアを生成することを特徴とする、過硫酸アンモニウムの製造方法。
  2. 前記陽極側原料としての硫酸アンモニウム水溶液の濃度が30〜45重量%の範囲にある、請求項1に記載の過硫酸アンモニウムの製造方法。
  3. 前記陰極側原料溶液が、硫酸アンモニウム水溶液である、請求項1または2に記載の過硫酸アンモニウムの製造方法。
  4. 前記陰極側原料としての硫酸アンモニウム水溶液の濃度が30〜45重量%である、請求項3に記載の過硫酸アンモニウムの製造方法。
  5. 前記陽極側原料に分極剤を添加する、請求項1〜4のいずれかに記載の過硫酸アンモニウムの製造方法。
  6. 分極剤がグアニジン、グアニジン塩またはチオシアン酸塩である、請求項5に記載の過硫酸アンモニウムの製造方法。
  7. 陽極電極が白金、白金族または導電ダイヤモンドである、請求項1〜6のいずれかに記載の過硫酸アンモニウムの製造方法。
  8. 電流効率80%以上で過硫酸アンモニウムを製造する、請求項1〜7のいずれかに記載の過硫酸アンモニウムの製造方法。
  9. 前記陽極側原料溶液中の硫酸アンモニウムが、ラクタム製造工程で副生されたものを含む、請求項1〜8のいずれかに記載の過硫酸アンモニウムの製造方法。
  10. 前記陰極側生成アンモニアをラクタム製造工程で利用する、請求項1〜9のいずれかに記載の過硫酸アンモニウムの製造方法。
JP2018502427A 2017-01-13 2017-12-27 過硫酸アンモニウムの製造方法 Active JP6512362B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017003993 2017-01-13
JP2017003993 2017-01-13
JP2017161111 2017-08-24
JP2017161111 2017-08-24
PCT/JP2017/047065 WO2018131493A1 (ja) 2017-01-13 2017-12-27 過硫酸アンモニウムの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018131493A1 JPWO2018131493A1 (ja) 2019-01-17
JP6512362B2 true JP6512362B2 (ja) 2019-05-15

Family

ID=62839517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018502427A Active JP6512362B2 (ja) 2017-01-13 2017-12-27 過硫酸アンモニウムの製造方法

Country Status (7)

Country Link
US (1) US20190323133A1 (ja)
EP (1) EP3569739A4 (ja)
JP (1) JP6512362B2 (ja)
KR (1) KR102260402B1 (ja)
CN (1) CN110073036A (ja)
TW (1) TWI736732B (ja)
WO (1) WO2018131493A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163841B2 (ja) * 2019-03-28 2022-11-01 東レ株式会社 過硫酸アンモニウムの製造方法
CN111020623A (zh) * 2019-12-31 2020-04-17 河北中科同创科技发展有限公司 一种密闭电解槽
KR102372734B1 (ko) * 2020-06-18 2022-03-10 한국지질자원연구원 탈황석고의 광물 탄산화 공정에서 발생하는 부산물을 이용한 과황산암모늄의 제조방법
CN113174604B (zh) * 2021-04-13 2022-12-06 浙江工业大学 一种直接电氧化制备过硫酸钠的方法
CN114314765A (zh) * 2021-12-28 2022-04-12 湖北华德莱节能减排科技有限公司 一种电化学资源化脱硫废水协同产氢的方法、装置及应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB746786A (en) * 1952-11-13 1956-03-21 Rohm & Haas Improvements in or relating to the production of aqueous solutions of persulfuric acid and ammonium persulfate
NL6603696A (ja) * 1965-04-28 1966-10-31
JPS57198275A (en) 1981-05-27 1982-12-04 Asahi Glass Co Ltd Production of ammonium peroxodisulfate
DE4230399A1 (de) * 1992-09-11 1994-03-17 Basf Ag Verfahren zur elektrochemischen Spaltung von Alkalisulfaten und Ammoniumsulfat in die freien Laugen und Schwefelsäure bei gleichzeitiger anodischer Oxidation von Schwefeldioxid
US5643437A (en) * 1995-11-03 1997-07-01 Huron Tech Canada, Inc. Co-generation of ammonium persulfate anodically and alkaline hydrogen peroxide cathodically with cathode products ratio control
TW416997B (en) * 1998-03-30 2001-01-01 Mitsubishi Gas Chemical Co Process for producing persulfate
JP3832534B2 (ja) * 1998-04-07 2006-10-11 三菱瓦斯化学株式会社 過硫酸ナトリウムの製造方法
JP3832533B2 (ja) 1998-04-07 2006-10-11 三菱瓦斯化学株式会社 過硫酸アンモニウムの製造方法
JP2000038691A (ja) * 1998-07-23 2000-02-08 Mitsubishi Gas Chem Co Inc 過硫酸塩類の電解製法
JP2001220695A (ja) 2000-02-07 2001-08-14 Mitsubishi Gas Chem Co Inc 過硫酸アンモニウムの製造方法
JP2013533246A (ja) * 2010-07-02 2013-08-22 ディーエスエム アイピー アセッツ ビー.ブイ. 高温ラクタム中和
CN102877085B (zh) * 2012-09-24 2015-06-17 山东东岳高分子材料有限公司 一种基于氯碱离子膜电解槽的电解氧化制备高纯度过硫酸盐的方法
CN104152943B (zh) * 2014-08-15 2017-05-10 东南大学 氨和尿素溶液烟气净化吸收液制过硫酸铵的装置及方法
KR101528911B1 (ko) * 2014-12-26 2015-06-15 (주) 테크윈 과황산암모늄의 고효율 연속 생산 방법 및 장치

Also Published As

Publication number Publication date
WO2018131493A1 (ja) 2018-07-19
EP3569739A4 (en) 2020-09-02
KR20190104328A (ko) 2019-09-09
EP3569739A1 (en) 2019-11-20
CN110073036A (zh) 2019-07-30
US20190323133A1 (en) 2019-10-24
JPWO2018131493A1 (ja) 2019-01-17
TWI736732B (zh) 2021-08-21
KR102260402B1 (ko) 2021-06-03
TW201831729A (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6512362B2 (ja) 過硫酸アンモニウムの製造方法
US4521285A (en) Electrolytic process for the preparation of organic compounds
JP7163841B2 (ja) 過硫酸アンモニウムの製造方法
AU2014203346A1 (en) A process for making lithium carbonate from lithium chloride
EP0544686A1 (en) PRODUCTION OF CHLORDIOXIDE FROM CHLORIC ACID.
FI94063C (fi) Menetelmä alkalimetalli- tai ammoniumperoksodisulfaattisuolojen ja alkalimetallihydroksidin samanaikaiseksi valmistamiseksi
US4059496A (en) Process for the preparation of sulfuric acid from sulphur dioxide
RU2751710C2 (ru) Способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития или хлорид лития
CN1073169C (zh) 联合制备过氧化二硫酸钠和氢氧化钠溶液的电化学方法
US6491807B2 (en) Process for producing sodium persulfate
KR910001138B1 (ko) 이산화염소와 수산화나트륨의 제조방법
JP2015529745A (ja) アルカリ金属の製造方法
US3240687A (en) Process for the manufacture of watersoluble basic aluminum compounds
EP0254361B1 (en) Process for the preparation of potassium nitrate
JP3832533B2 (ja) 過硫酸アンモニウムの製造方法
CN102839383A (zh) 一种基于氯碱用全氟离子交换膜的有机酸盐电解制备有机酸的方法
JP2022129759A (ja) 過硫酸アンモニウムの製造方法
CN1246501C (zh) 同时电化学制备连二亚硫酸钠和过氧二硫酸钠的方法
JP2023176312A (ja) 過硫酸アンモニウムの製造方法
JP4182302B2 (ja) 過硫酸カリウムの製造方法
CN115108916B (zh) 一种三氯硝基甲烷的制备方法
JP2001220695A (ja) 過硫酸アンモニウムの製造方法
JPH11293485A (ja) 過硫酸ナトリウムの製造方法
RU2031967C1 (ru) Способ получения фтортанталата калия
JP2021134411A (ja) 過硫酸アンモニウムの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6512362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151