JP6508996B2 - Method of detecting heart failure by β-ANP - Google Patents

Method of detecting heart failure by β-ANP Download PDF

Info

Publication number
JP6508996B2
JP6508996B2 JP2015060777A JP2015060777A JP6508996B2 JP 6508996 B2 JP6508996 B2 JP 6508996B2 JP 2015060777 A JP2015060777 A JP 2015060777A JP 2015060777 A JP2015060777 A JP 2015060777A JP 6508996 B2 JP6508996 B2 JP 6508996B2
Authority
JP
Japan
Prior art keywords
anp
heart failure
total
antibody
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015060777A
Other languages
Japanese (ja)
Other versions
JP2016180665A (en
Inventor
南野 直人
直人 南野
千晶 岡谷
千晶 岡谷
寒川 賢治
賢治 寒川
晃司 新谷
晃司 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
National Cerebral and Cardiovascular Center
Original Assignee
Tosoh Corp
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, National Cerebral and Cardiovascular Center filed Critical Tosoh Corp
Priority to JP2015060777A priority Critical patent/JP6508996B2/en
Publication of JP2016180665A publication Critical patent/JP2016180665A/en
Application granted granted Critical
Publication of JP6508996B2 publication Critical patent/JP6508996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は心不全の検出方法及びそのキットに関する。   The present invention relates to a method for detecting heart failure and a kit thereof.

心房性ナトリウム利尿ペプチド(ANP:atrial natriuretic peptide)は松尾・寒川らにより1984年に報告されたペプチドホルモンで(非特許文献1参照)、心臓で産生され強力な利尿、ナトリウム利尿活性と平滑筋弛緩活性を持つ。ANPは、ヒトばかりでなく、げっ歯類以外の哺乳類では同一のアミノ酸配列を有し、例えばヒト、ウシ、ブタのANPは同一である。ANPには、分子量約3000のα型、α型の逆平行二量体であるβ型、α型の前駆物質であるγ型の3種類の分子型が確認されている(図1参照)。   Atrial natriuretic peptide (ANP) is a peptide hormone reported in 1984 by Matsuo and Sakawa et al. (See Non-Patent Document 1), which is produced in the heart and has strong diuretic, natriuretic activity and smooth muscle relaxation. It has activity. ANPs have the same amino acid sequence in mammals as well as humans but rodents, for example, human, bovine and porcine ANPs are identical. In ANP, three molecular types of α-type having a molecular weight of about 3000, β-type which is an antiparallel dimer of α-type, and γ-type which is a precursor of α-type are confirmed (see FIG. 1).

ANPは、心臓、特に心房から分泌されるホルモンで、利尿作用、Na利尿作用、血管拡張作用、レニン・アンジオテンシン・アルドステロン系や交感神経系の抑制作用など多様な生物活性を有し、体液量、血圧の調節に重要な役割を担っている(非特許文献2,3参照)。   ANP is a hormone secreted from the heart, particularly the atria, and has various biological activities such as diuretic action, natriuretic action, vasodilator action, renin-angiotensin-aldosterone system and sympathetic nervous system-suppressing action, and It plays an important role in the regulation of blood pressure (see non-patent documents 2 and 3).

ANPは心血行動態的負荷、特に心房内圧の増加が主要な産生、分泌刺激になると考えられ、体液量あるいは心房内圧の増加する各種心疾患、腎疾患において血中濃度の増加が認められることから、これら病態の把握、重症度の指標として極めて有用であり、ルーチンの検査項目として日常臨床に応用されている(非特許文献4〜6参照)。   ANP is considered to be the stimulation of production and secretion mainly due to an increase in cardiovascular hemodynamic load, especially in atrial pressure, and an increase in blood concentration is observed in various heart diseases and renal diseases in which the fluid volume or atrial pressure is increased. It is extremely useful as a grasp of these pathological conditions and as an indicator of severity, and is applied to daily practice as a routine examination item (see Non-Patent Documents 4 to 6).

α−ANPは血中に存在するANP類の中心となる分子種であり、28アミノ酸残基からなり、N末端から7番目のCysと23番目のCysが分子内でジスルフィド結合し、その間の配列が環状構造をなしている。一方、β−ANPは、2分子のα−ANPが分子間でジスルフィド結合した、α−ANPの逆平行二量体である(特許文献1参照)。γ−ANPは126アミノ酸残基からなり、そのC末端にα−ANP配列を有する。健常者においては、γ−ANPは心房中に保存されており、分泌時にα−ANPとN末端ペプチドに切断され、血中ではこの2つの分子で存在する(非特許文献7参照)。   α-ANP is a central molecular species of ANPs present in blood and consists of 28 amino acid residues, and the seventh Cys from the N terminus and the 23rd Cys are intermolecularly disulfide bonded, and the sequence between them Has a ring structure. On the other hand, β-ANP is an antiparallel dimer of α-ANP in which two molecules of α-ANP are intermolecularly disulfide bonded (see Patent Document 1). γ-ANP consists of 126 amino acid residues and has an α-ANP sequence at its C-terminus. In healthy individuals, γ-ANP is conserved in the atrium, is cleaved into α-ANP and an N-terminal peptide upon secretion, and exists in the blood in these two molecules (see Non-patent Document 7).

ANPの測定は、酵素やラジオアイソトープで標識した抗体と、担体に固定化した固定化抗体とでサンドイッチされる免疫学的測定法が利用されており、特に臨床検査薬として広く医療現場で使用されており(非特許文献9参照)、α型、β型、γ型の3種類の総和が測定されるものである。   The measurement of ANP uses an immunoassay in which an antibody labeled with an enzyme or radioisotope and an immobilized antibody immobilized on a carrier are used, and in particular, it is widely used as a clinical test drug in the medical field. (See Non-Patent Document 9), and the sum of three types of α-type, β-type, and γ-type is measured.

α−ANPの有用性は多く報告されているが、β−ANPとγ−ANPについても重症心不全症例で増加していることが報告されている(非特許文献8参照)。特にβ−ANPの動向は顕著であり、健常者では確認されない様式であるが、心不全の重篤度に合わせて出現することが確認され、心不全病態との関係が確認されている(非特許文献10,11参照)。心不全治療前後におけるANPの存在様式を検討すると、心不全時は,α−、γ−ANPの他に、健常人では認めなかったβ−ANPと思われる中分子型ANPが出現し、心不全治療による血行動態・臨床症状が改善した後には、ANP濃度の低下とともにこのβ−ANPの割合が減少あるいは消失している。   Although the utility of α-ANP has been widely reported, it is also reported that β-ANP and γ-ANP are also increasing in severe heart failure cases (see Non-patent Document 8). In particular, the trend of β-ANP is remarkable and is a mode that is not confirmed in healthy people, but it has been confirmed to appear according to the severity of heart failure, and its relationship with heart failure pathologic condition has been confirmed (Non-patent literature 10, 11). Examination of the mode of existence of ANP before and after treatment for heart failure shows that during heart failure, in addition to α- and γ-ANP, a medium-molecular type ANP that appears to be β-ANP not recognized in healthy persons appears and circulation by heart failure treatment After kinetics and clinical symptoms have improved, the rate of this β-ANP decreases or disappears along with the decrease in ANP concentration.

治療により心不全が改善する過程における血中ANP濃度と存在様式の推移では、血中ANP濃度は治療により漸減し、存在様式は重症心不全時はβ−ANPがピークを形成していたが、治療によりβ−ANPは漸減し、血行動態および臨床症状が改善した時点では存在様式はβ−ANPの割合は著しく減少あるいは消失し、心不全病態とβ−ANPの関係が示されている(非特許文献11参照)。しかしながらこれらの報告では具体的にβ−ANP値のカットオフ値、参考基準値あるいは総ANPに対する存在比率などを用いて心不全の病態や治療効果を見ていない。加えてα型、β型、γ型の各分子型の共通領域(即ちα−ANP)を用いる抗体と逆相高速液体クロマト(RP−HPLC)法を用いた測定法により確認しているために、定量性に乏しく操作による変動も大きい。   In the transition of blood ANP concentration and mode of existence in the process of improvement of heart failure by treatment, blood ANP concentration gradually decreased by treatment, and the mode of existence was that β-ANP formed a peak during severe heart failure, but by treatment The β-ANP gradually decreases, and at the time when hemodynamics and clinical symptoms improve, the proportion of β-ANP significantly decreases or disappears, and the relationship between heart failure disease state and β-ANP is shown (Non-patent Document 11) reference). However, in these reports, specifically, the condition of the heart failure and the treatment effect are not seen using the cutoff value of the β-ANP value, the reference standard value or the abundance ratio to the total ANP. In addition, because it is confirmed by the measurement method using the antibody and the reverse phase high performance liquid chromatography (RP-HPLC) method using the common region (that is, α-ANP) of α-type, β-type and γ-type molecular types There is little quantitativeness and the fluctuation due to operation is large.

このように、従来は、β−ANPの分子型に対し特異的な抗体や測定方法は見出されていなかったために、β−ANPの総ANPに対する存在比率から心不全の状態を判断する例はなかった。   Thus, conventionally, no antibody or measurement method specific to the molecular form of β-ANP has been found, so there is no example of judging the state of heart failure from the abundance ratio of β-ANP to total ANP The

特開昭60−184098号公報Japanese Patent Application Laid-Open No. 60-184098 特許第2681370号公報Patent No. 2681370

Biochem. Biophys. Res. Commun.,118;131,1984Biochem. Biophys. Res. Commun. , 118; 131, 1984 成瀬光栄,成瀬清子:呼吸と循環,37:37:375−86,1989Kosei Naruse, Kiyoko Naruse: Respiration and circulation, 37: 37: 375-86, 1989 lnagami, T. & Naruse, M.:Encyclopedia of Human Biology Vol. 1, Academic Press,1991,p.467lnagami, T .; & Naruse, M. : Encyclopedia of Human Biology Vol. 1, Academic Press, 1991, p. 467 Yoshinaga, K. et al.,Biomed. Res. 7:173−9,1986Yoshinaga, K. et al. , Biomed. Res. 7: 173-9, 1986 Hasegawa, K., et al., J. Clin. Endocrinol. Metab 63:819−22,1986Hasegawa, K. , Et al. , J. Clin. Endocrinol. Metab 63: 819-22, 1986 Anderson, J. V., et al., J. Endocr. 110:193−6,1986Anderson, J. V. , Et al. , J. Endocr. 110: 193-6, 1986 Sugawara, A., et al., Hypertension 8(Suppl.1), I−151−155, 1986Sugawara, A. , Et al. , Hypertension 8 (Suppl. 1), I-151-155, 1986 Akimoto, K. et el. J. Clin. Endocrinol. Metab.,67:93−97,1988Akimoto, K. et el. J. Clin. Endocrinol. Metab. , 67: 93-97, 1988. 浜典男ら,基礎と臨床 25:4205−12,1991Hama, N. et al., Basics and Clinical Practice 25: 4205-12, 1991 中尾一和:日内分泌会誌,68:134−142,1992Kazuo Nakao: The Japan Endocrine Society, 68: 134-142, 1992 中尾一和ら,蛋白質 核酸 酵素 33(14):2461−2475,1988Kazuo Nakao et al., Protein Nucleic Acid Enzyme 33 (14): 2461-2475, 1988

β−ANPは、心不全の重篤度に合わせて出現することが確認され、心不全病態との関係が確認されている。しかし市販されているANPを測定するサンドイッチ免疫測定法においては、α型、α型の2量体であるβ型、α型の前駆物質とされるγ型の3種類の分子型も測定され、β−ANPのみを特異的に測定する方法は一般化されていない。   It is confirmed that (beta) -ANP appears according to the severity of heart failure, and the relationship with a heart failure pathology is confirmed. However, in a sandwich immunoassay that measures ANP that is commercially available, three types of molecular forms of α-type and α-type dimers, β-type and α-type precursors, which are regarded as precursors of α-type, are also measured. The method of specifically measuring only β-ANP is not generalized.

β−ANPに特異的な測定系については、α−ANPのホモダイマーであることから、同一のモノクローナル抗体を用いてβ−ANPを測定する測定系は報告されている(特許文献2参照)。しかし、β−ANPに特異的な抗体を用いているわけではなく、α−ANP濃度が高くなると競合阻害を受けることになり測定系によっては感度が低くなることがあり、依然、高感度にβ−ANPのみを測定するためには、課題が残っている(特許文献2参照)。   As a measurement system specific to β-ANP, a measurement system for measuring β-ANP using the same monoclonal antibody has been reported because it is a homodimer of α-ANP (see Patent Document 2). However, antibodies specific for β-ANP are not used, and as the concentration of α-ANP increases, competitive inhibition may occur and the sensitivity may be lowered depending on the measurement system. In order to measure only ANP, a subject remains (refer patent document 2).

総ANPおよびβ−ANPが心不全の重症例で高値を示し、治療により改善すると低下することが報告されているが、これらの報告では具体的にβ−ANP値のカットオフ値、参考基準値あるいは総ANPに対する存在比率などを用いて心不全の病態や治療効果を見ていない。加えてα型、β型、γ型の各分子型の共通領域(即ちα−ANP)を用いる抗体と逆相高速液体クロマト(RP−HPLC)法を用いた測定法により確認しているために定量性に乏しく操作による変動も大きいために診断には利用されていない。   Although it has been reported that total ANP and β-ANP show high values in severe cases of heart failure and they decrease when they are improved by treatment, these reports specifically cut off the β-ANP value, reference standard value or He did not see the pathophysiology and therapeutic effect of heart failure using the ratio to total ANP, etc. In addition, because it is confirmed by the measurement method using the antibody and the reverse phase high performance liquid chromatography (RP-HPLC) method using the common region (that is, α-ANP) of α-type, β-type and γ-type molecular types It has not been used for diagnosis because it is poorly quantified and the fluctuation due to operation is large.

このように、従来は、β−ANPの分子型に非常に特異的な抗体や測定方法は見出されていなかったために、β−ANPと総ANPとの存在比から心不全の状態を判断する例はなかった。   Thus, since no antibody or measurement method that is very specific to the molecular form of β-ANP has been found conventionally, an example of determining the state of heart failure from the abundance ratio of β-ANP to total ANP There was no.

本発明の目的は、β−ANPと総ANPとの比から、心不全の進行または心不全治療の効果を判定することができる心不全の検出方法を提供することである。   An object of the present invention is to provide a method for detecting heart failure which can determine the progress of heart failure or the effect of heart failure treatment from the ratio of β-ANP to total ANP.

本発明者らは、α−ANPの逆平行ダイマーが特異的につくるジスルフィド結合を含むアミノ酸配列や構造をエピトープとして認識する抗体を獲得し、それを利用するβ−ANPの高感度測定法を完成している(特願2014−214103号)。そして本発明者らは、上記課題に関し鋭意検討した結果、本発明に到達した。   The present inventors have acquired an antibody that recognizes as a epitope an amino acid sequence or structure containing a disulfide bond that is specifically formed by an antiparallel dimer of α-ANP, and completed a highly sensitive assay of β-ANP using it. (Japanese Patent Application No. 2014-214103). And the present inventors arrived at the present invention as a result of earnestly examining the above-mentioned subject.

即ち本発明は以下のとおりである。
(1)試料中のβ−ANPと総ANPとの比を求めることを特徴とする、心不全の検出方法。
(2)請求項1に記載の方法において、β−ANPと総ANPとの比が、総ANPに対するβ−ANPの比(β−ANP/総ANP)である方法。
(3)β−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むことを特徴とする、心不全の検出キット。
以下、本発明を更に詳細に説明する。
That is, the present invention is as follows.
(1) A method for detecting heart failure, which comprises determining the ratio of β-ANP to total ANP in a sample.
(2) The method according to claim 1, wherein the ratio of β-ANP to total ANP is the ratio of β-ANP to total ANP (β-ANP / total ANP).
(3) A kit for detecting heart failure, which comprises a reagent for specifically measuring β-ANP and a reagent for measuring total ANP.
Hereinafter, the present invention will be described in more detail.

本発明において、総ANPとは、α−ANP、β−ANP及びγ−ANPを合計したものを表す。総ANPの測定方法としては特に限定はなく、例えば市販の免疫測定試薬等を用いて行うことができる。例えばα−ANP、β−ANP、γ−ANPの共通部位を認識する抗体を組み合わせた測定系を用いることができ、市販キットのように例えばα−ANPの環状部位とC末端部分を認識するものでも良い。   In the present invention, total ANP refers to the sum of α-ANP, β-ANP and γ-ANP. There is no limitation in particular as a measuring method of total ANP, For example, it can carry out using a commercially available immunoassay reagent etc. For example, a measurement system combined with an antibody that recognizes a common site of α-ANP, β-ANP, γ-ANP can be used, such as a commercially available kit that recognizes cyclic part and C-terminal part of α-ANP, for example. But it is good.

一方、β−ANPの測定方法も特に限定されるものではなく、例えばβ−ANPを特異的に測定する方法でもよく、また総ANPの測定値からα−ANPとγ−ANPの測定値を差し引いてもよい。β−ANPを特異的に測定する方法としては特に限定されるものではないが、β−ANPを特異的に認識することができ、α−ANPやγ−ANPを実質的に認識しない方法があげられる。好ましくはβ−ANPのジスルフィド結合を含むアミノ酸配列を認識する抗体を用いた測定系、さらに好ましくはβ−ANPのジスルフィド結合とその周辺のアミノ酸配列を認識する抗体を用いた測定系が選択される。   On the other hand, the method of measuring β-ANP is not particularly limited, and may be, for example, a method of specifically measuring β-ANP, or by subtracting the measured values of α-ANP and γ-ANP from the measured value of total ANP. May be The method for specifically measuring β-ANP is not particularly limited, but a method capable of specifically recognizing β-ANP and substantially not recognizing α-ANP or γ-ANP is given. Be Preferably, a measurement system using an antibody that recognizes an amino acid sequence containing a disulfide bond of β-ANP, more preferably, a measurement system using an antibody that recognizes a disulfide bond of β-ANP and the surrounding amino acid sequence is selected. .

β−ANPや総ANPを測定する方法として、免疫学的測定方法を用いる場合は、標識を用いることができる。標識としては、125I、Hなどの放射性物質、西洋わさびペルオキシダーゼ、β−D−ガラクトシダーゼ、アルカリホスファターゼ(ALP)などの酵素、フルオレッセインなどの蛍光物質、金コロイド、セレンコロイド、ルシフェリンなどの発光又は発色物質などが用いられ、標識された抗原あるいは抗体が試薬として用いられている。また、直接これらの物質を検出に用いる物質に標識せず、ビオチン−アビジン等を利用して間接的に標識してもよい。抗原に結合した標識物質を検出することは、例えば、公知の酵素免疫測定法(EIA、ELISA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、発光免疫測定法(LIA)又は発光酵素免疫測定法(CLEIA)等により行うことができる。 When using an immunological measurement method as a method of measuring (beta) -ANP or total ANP, a label can be used. As the label, radioactive substances such as 125 I and 3 H, enzymes such as horseradish peroxidase, β-D-galactosidase, alkaline phosphatase (ALP), fluorescent substances such as fluorescein, gold colloid, selenium colloid, luciferin and the like Luminescent or chromogenic substances are used, and labeled antigens or antibodies are used as reagents. Also, these substances may not be directly labeled with the substance used for detection, but may be indirectly labeled using biotin-avidin or the like. The detection of the labeled substance bound to the antigen may be carried out, for example, by known enzyme immunoassay (EIA, ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), luminescence immunoassay (LIA) or It can be performed by luminescence enzyme immunoassay (CLEIA) or the like.

またβ−ANPや総ANPを測定する方法として、免疫学的測定方法を用いる場合は、不溶性担体を用いることができる。不溶性担体に関しては、よく知られているガラス、ポリスチレン、ポリプロピレン、デキストランなどの物質からなるビーズ、チューブ、プレート、磁性微粒子など用いることができ、反応後にB/F分離可能な担体が好ましく、その材質などは問わない。また、不溶性担体と抗体(あるいはレセプター、結合蛋白質)との結合は、物理的結合あるいは化学的に中間体を介した結合等、B/F分離時に結合能が失われない方法が好ましい。   Moreover, when using an immunological measurement method as a method of measuring (beta) -ANP or total ANP, an insoluble carrier can be used. With regard to insoluble carriers, beads, tubes, plates, magnetic microparticles, etc. made of well-known glass, polystyrene, polypropylene, dextran and other substances can be used, and carriers capable of B / F separation after reaction are preferred, and their materials Etc. does not matter. Further, the binding of an insoluble carrier to an antibody (or a receptor or binding protein) is preferably a method which does not lose binding ability at the time of B / F separation, such as physical binding or binding via an intermediate chemically.

本発明における試料としては被験体由来の血液等が挙げられ、EDTA・アプロチニン血漿を用いるのが最も好ましい。   The sample in the present invention includes blood from a subject and the like, and it is most preferable to use EDTA.aprotinin plasma.

本発明では、β−ANPと総ANPとの比を求める。これは例えば、総ANPに対するβ−ANPの比(β−ANP/総ANP)であってもよく、またβ−ANPに対する総ANPの比(総ANP/β−ANP)であってもよい。   In the present invention, the ratio of β-ANP to total ANP is determined. This may be, for example, the ratio of β-ANP to total ANP (β-ANP / total ANP) or the ratio of total ANP to β-ANP (total ANP / β-ANP).

例えば本願実施例で用いた測定系の場合は、β−ANP/総ANPの値が10%以上の場合は心不全と判定される。   For example, in the case of the measurement system used in the examples of the present application, heart failure is determined when the value of β-ANP / total ANP is 10% or more.

このようにして本発明の方法により心不全を検出することができ、それにより心不全又は心不全治療の効果を判定することができる。   In this way, heart failure can be detected by the method of the present invention, whereby the effect of heart failure or heart failure treatment can be determined.

またβ−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むキットで、本発明の心不全の検出を行うこともできる。β−ANPを特異的に測定する試薬および総ANPを測定する試薬としては、前述のものを使用することができる。   The detection of heart failure of the present invention can also be carried out with a kit comprising a reagent for specifically measuring β-ANP and a reagent for measuring total ANP. As the reagent for specifically measuring β-ANP and the reagent for measuring total ANP, those described above can be used.

本発明により、β−ANPと総ANPとの比から心不全の進行または心不全治療の効果を判定することが可能となった。この方法は心不全の診断に有用である。   The present invention made it possible to determine the progression of heart failure or the effect of heart failure treatment from the ratio of β-ANP to total ANP. This method is useful for the diagnosis of heart failure.

ヒトにおけるANPの3分子型を示す図である。A.α−、β−、γ−ANPの生合成経路。遺伝子、mRNA、前駆体タンパク質との関係を示す。B.α−、β−、γ−ANPのアミノ酸配列。システイン残基に付した線はジスルフィド結合を示す。FIG. 2 is a diagram showing three molecular forms of ANP in humans. A. Biosynthetic pathway of α-, β-, γ-ANP. The relationship between genes, mRNA and precursor proteins is shown. B. Amino acid sequence of α-, β-, γ-ANP. The line attached to the cysteine residue indicates a disulfide bond. β−ANPのCLEIA法に用いた抗体の認識部位を示す図である。It is a figure which shows the recognition site of the antibody used for the CLEIA method of (beta) -ANP. CLEIA法におけるβ−ANPの標準曲線を示す図である。It is a figure which shows the standard curve of (beta) -ANP in CLEIA method. 急性心不全患者(47例)の治療経過[(1)入院時(1st)、(2)入院後1〜2日後(2nd)、(3)入院後5〜8日後(3rd)、(4)退院時(4th)の4時点]における血漿総ANP濃度、血漿β−ANP濃度、β−ANP/総ANPの比、血漿BNP濃度、血清NT−proBNP濃度を示す図である。図中の星印は、入院時(1st)と比較して有意差があることを示す(Dunnett’s test, p<0.05)。Treatment progress of acute heart failure patients (47 cases) [(1) at admission (1st), (2) 1 to 2 days after admission (2nd), (3) 5 to 8 days after admission (3rd), (4) discharge Fig. 5 is a diagram showing total plasma ANP concentration, plasma β-ANP concentration, ratio of β-ANP / total ANP, plasma BNP concentration, serum NT-proBNP concentration at four time points (4th). The asterisk in the figure indicates that there is a significant difference compared to the time of admission (1st) (Dunnett's test, p <0.05).

以下、実施例により本発明をさらに詳細に説明するが、本発明は本実施例により限定されるものではない。また以下の試験では、健常者以外は被験者に本研究の説明文書に基づく説明を行い、文書で同意が得られた被験者の検体を用いて行われた。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited by the examples. In addition, in the following tests, subjects other than healthy subjects were explained based on the explanatory document of the present study, and were conducted using specimens of subjects whose consent was obtained in the document.

[対象被験者]
本実験に使用した検体としては、健常者10例、心不全患者(急性心不全患者)60例の血漿を用いた。急性心不全患者は、(1)入院時、(2)入院後1〜2日後、(3)入院後5〜8日後、(4)退院時の治療経過にあわせて採血した。健常者10例は、男性5例、女性5例で、年齢は40.3±13.5歳(mean±SD)を用いた。急性心不全患者60例は、男性43例、女性17例で、年齢は70.7±12.5歳(mean±SD)を用いた。急性心不全患者60例の入院時および退院時におけるニューヨーク心臓協会(NYHA)による分類、体重、平均血圧、心臓超音波検査(左室内径短縮率)を表1に示す。血漿BNP濃度は市販のCLEIAキット(ルミパルスG1200、富士レビオ社)を用いてEDTA・アプロチニン血漿を測定した。血清NT−proBNP濃度は市販の電気化学発光免疫測定法キット(エクルーシス試薬NT−proBNP II、ロシュ社)を用いて測定した。血漿レニン活性は、ラジオイムノアッセイ二抗体法を用いてEDTA血漿を測定した。血漿アルドステロン濃度は、ラジオイムノアッセイ固相法を用いてEDTA血漿を測定した。サイクリックGMPは、サクシニル化したEDTA血漿をラジオイムノアッセイ法を用いて測定した。血清尿素窒素濃度、血清クレアチニン濃度は、汎用生化学自動分析装置(Labospect 008、日立製作所)を用いて測定した。
[Subject subject]
As samples used in this experiment, plasma of 10 healthy subjects and 60 cases of heart failure patients (acute heart failure patients) was used. Patients with acute heart failure were (1) hospitalized, (2) 1 to 2 days after hospitalization, (3) 5 to 8 days after hospitalization, (4) blood was drawn according to the treatment course at discharge. Ten healthy subjects were 5 males and 5 females, and the age was 40.3 ± 13.5 years (mean ± SD). For 60 acute heart failure patients, 43 males and 17 females were used, and the age was 70.7 ± 12.5 years (mean ± SD). The classification by the New York Heart Association (NYHA), body weight, mean blood pressure, and cardiac ultrasonography (left ventricular internal shortening rate) at admission and discharge of 60 patients with acute heart failure are shown in Table 1. The plasma BNP concentration measured EDTA * aprotinin plasma using the commercially available CLEIA kit (Lumipulse G1200, Fujirebio). Serum NT-proBNP concentration was measured using a commercially available electrochemiluminescence immunoassay kit (Ecclusion reagent NT-proBNP II, Roche). Plasma renin activity was measured with EDTA plasma using radioimmunoassay two antibody method. Plasma aldosterone concentrations were measured with EDTA immunoassay using radioimmunoassay solid phase method. Cyclic GMP was measured using radioimmunoassay for succinylated EDTA plasma. Serum urea nitrogen concentration and serum creatinine concentration were measured using a general-purpose biochemistry automatic analyzer (Labospect 008, Hitachi, Ltd.).

[ヒト血漿抽出物の調製]
ヒト正常血漿は市販品(EDTA−2Na、コージンバイオ社 12271440)を使用した。血漿抽出物の調製には固相抽出カートリッジ(Sep−Pak C18 Plus、Waters社 WAT020515)を用いた。具体的には、固相抽出カートリッジを5mLの60% アセトニトリル/0.1%トリフルオロ酢酸(TFA)溶液にて洗浄し、5mLの0.1%TFA溶液にて平衡化した後、300μLの血漿を添加した。5mLの10% アセトニトリル/0.1% TFA溶液にて2回洗浄した後、6mLの40% アセトニトリル/0.1% TFA溶液にて溶出した。溶出液を濃縮した後、凍結乾燥し、反応液に溶解して測定に用いた。
[Preparation of human plasma extract]
As human normal plasma, a commercially available product (EDTA-2Na, 1221440 by Cordin Bio Inc.) was used. A solid phase extraction cartridge (Sep-Pak C18 Plus, Waters WAT020515) was used for preparation of the plasma extract. Specifically, the solid phase extraction cartridge is washed with 5 mL of a 60% acetonitrile / 0.1% trifluoroacetic acid (TFA) solution, equilibrated with 5 mL of a 0.1% TFA solution, and then 300 μL of plasma. Was added. After washing twice with 5 mL of a 10% acetonitrile / 0.1% TFA solution, elution was performed with 6 mL of a 40% acetonitrile / 0.1% TFA solution. The eluate was concentrated and then lyophilized to dissolve it in the reaction solution and used for measurement.

(1)β−ANPの測定試薬の調製
[実験用試薬等]
・固相化用緩衝液:50mM炭酸−重炭酸緩衝液(pH9.5)
・PEG化試薬溶液:5μM methyl−PEG12−NHS ester(Thermo Scientific社 22685)、PBS(pH7.4)
・ブロッキング溶液:25mM Tris−HCl(pH7.4)、150mM NaCl、2% BlockAce(DSファーマバイオメディカル社 UK−B80)、5% ウマ血清、20% スクロース
・洗浄液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.05% Triton X−100、0.05% NaN
・反応液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.5mM EDTA−2Na、5% BSA、0.05% Triton X−100、500KIU/mL アプロチニン(和光純薬社)、0.05% NaN
・検出抗体希釈用緩衝液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.4% BlockAce、0.05% NaN
・化学発光基質:CDP−Star with Emerald II(Applied Biosystems社 T2216)
[ALP標識#32−3の調製]
β−ANPのジスルフィド結合を含むアミノ酸配列を認識するマウスモノクローナル抗体#32−3(図2参照)のALP標識にはAlkaline Phosphatase Labeling Kit−NH(同仁化学社 L12)を用いた。標識および標識抗体の精製は製造業者のマニュアルに従い行った。なおマウスモノクローナル抗体#32−3の製法は、後述の参考例に記載した。
(1) Preparation of measurement reagent for β-ANP [Reagent for experiment etc.]
· Immobilization buffer: 50 mM carbonate-bicarbonate buffer (pH 9.5)
PEGylation reagent solution: 5 μM methyl-PEG 12 -NHS ester (Thermo Scientific 22685), PBS (pH 7.4)
Blocking solution: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2% Block Ace (DS Pharma Biomedical UK-B80), 5% horse serum, 20% sucrose Washing solution: 25 mM Tris-HCl (pH 7.4) ), 150 mM NaCl, 0.05% Triton X-100, 0.05% NaN 3
Reaction solution: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.5 mM EDTA-2Na, 5% BSA, 0.05% Triton X-100, 500 KIU / mL aprotinin (Wako Pure Chemical Industries, Ltd.), 0.1. 05% NaN 3
Detection antibody dilution buffer: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.4% BlockAce, 0.05% NaN 3
Chemiluminescent substrate: CDP-Star with Emerald II (Applied Biosystems T2216)
[Preparation of ALP Labeling # 32-3]
Alkaline Phosphatase Labeling Kit-NH 2 (Dojinka Chemical Co., Ltd. L12) was used for ALP labeling of mouse monoclonal antibody # 32-3 (see FIG. 2) that recognizes an amino acid sequence containing β-ANP disulfide bond. Purification of the labeled and labeled antibody was performed according to the manufacturer's manual. In addition, the manufacturing method of mouse monoclonal antibody # 32-3 was described in the below-mentioned reference example.

[#131−7固相化プレートの作製]
本CLEIA法では、ヒトα−ANPの13〜17残基目をエピトープとするウサギポリクローナル抗体#131−7(Anal. Biochem., 461;10−16,2014)(図2参照)を固相化抗体として用いた。ウサギポリクローナル抗体#131−7の製法は、後述の参考例に記載した。固相化プレートの作製では、プレートへの非特異的吸着および固相化抗体のFc領域への血漿由来成分の結合を低減するため、従来のCLEIA法と比較して、固相化抗体のFc領域を標的としたポリエチレングリコール修飾(PEG化)を追加した方法(Anal. Biochem., 461;10−16,2014)を採用した。具体的には、固相化用緩衝液に溶解した#131−7(3μg/mL、150μL)を96穴プレート(Fluoro−Nunc Maxi−Sorp、Nunc社 437796)に添加し、4℃で24時間インキュベートした。抗体溶液を除去し、PEG化試薬溶液(100μL)を添加し、室温で30分間インキュベートした。PEG化試薬溶液を除去し、ブロッキング溶液(200μL)を添加し、室温で2時間インキュベートした。ブロッキング溶液を除去した#131−7固相化プレートをデシケーターにより乾燥させ、酸素吸収剤(アズワン社 1−6655−02)およびゼオライト乾燥剤(アズワン社 1−6655−03)と同封して密閉し、使用時まで−20℃にて保存した。
[Preparation of # 131-7 immobilized plate]
In the present CLEIA method, rabbit polyclonal antibody # 131-7 (Anal. Biochem., 461; 10-16, 2014) (see FIG. 2), whose epitope is 13th to 17th residues of human α-ANP, is immobilized It was used as an antibody. The preparation method of rabbit polyclonal antibody # 131-7 was described in the below-mentioned reference example. In preparation of the immobilized plate, in order to reduce nonspecific adsorption to the plate and binding of the plasma-derived component to the Fc region of the immobilized antibody, compared to the conventional CLEIA method, Fc of the immobilized antibody is used. The method (Anal. Biochem., 461; 10-16, 2014) to which region-targeted polyethylene glycol modification (PEGylation) was added was adopted. Specifically, # 131-7 (3 μg / mL, 150 μL) dissolved in a buffer for immobilization was added to a 96-well plate (Fluoro-Nunc Maxi-Sorp, Nunc 437796), and allowed to stand at 4 ° C. for 24 hours. Incubated. The antibody solution was removed, PEGylation reagent solution (100 μL) was added and incubated for 30 minutes at room temperature. The PEGylation reagent solution was removed, blocking solution (200 μL) was added and incubated for 2 hours at room temperature. The # 131-7 immobilized plate from which the blocking solution has been removed is dried by a desiccator, sealed with an oxygen absorbent (As One 1-6655-02) and a zeolite desiccant (As One 1-6655-03), and sealed. , Stored at -20 ° C until use.

[CLEIA法を用いた測定手順]
マイクロプレートウォッシャー(バイオテック社 AMW−8R)を用いて#131−7固相化プレートを洗浄液(350μL)で3回洗浄した。反応液(50μL)を各ウェルに添加した後、標準β−ANP溶液(反応液に溶解した定量済の合成β−ANP溶液、ペプチド研究所)またはヒト血漿抽出物溶液(50μL)を添加し、マイクロプレートシェーカー(日伸理化社 N−704)を用いて振盪撹拌しながら4℃で24時間インキュベートした。上記と同様に3回洗浄した後、検出抗体希釈用緩衝液で0.2ng/mLに希釈したALP標識#32−3溶液(100μL)を添加し、マイクロプレートシェーカーを用いて振盪撹拌しながら室温で1時間インキュベートした。上記と同様に4回洗浄した後、化学発光基質(100μL)を添加し、室温で20分間インキュベートした。マイクロプレートルミノメーター(SpectraMax L、Molecular Devices社)により1秒間に生ずる発光量を測定した。各試料は異なる2ウェルで個別に測定し、その平均値より定量値を算出した。
[Measuring procedure using CLEIA method]
The # 131-7 immobilized plate was washed three times with a washing solution (350 μL) using a microplate washer (Biotech AMW-8R). After adding the reaction solution (50 μL) to each well, add a standard β-ANP solution (quantified synthetic β-ANP solution dissolved in the reaction solution, peptide laboratory) or human plasma extract solution (50 μL), The plate was incubated at 4 ° C. for 24 hours with shaking using a microplate shaker (Nisshinization N-704). After washing three times in the same manner as above, add 100 μL of ALP labeled # 32-3 solution diluted to 0.2 ng / mL with detection antibody dilution buffer, and shake at room temperature using a microplate shaker. Incubate for 1 hour. After washing four times as above, chemiluminescent substrate (100 μL) was added and incubated for 20 minutes at room temperature. The amount of luminescence generated per second was measured by a microplate luminometer (SpectraMax L, Molecular Devices). Each sample was measured separately in 2 different wells, and a quantitative value was calculated from the average value.

(2)総ANP測定
総ANPの測定は、市販のCLEIAキット(MI02 シオノギ ANP、シオノギ製薬社)を用いて測定した。
(2) Measurement of Total ANP Measurement of total ANP was performed using a commercially available CLEIA kit (MI02 Shionogi ANP, Shionogi Pharmaceutical Co., Ltd.).

(3)β−ANP/総ANPの比の算出
健常者10例、急性心不全患者60例のβ−ANPと総ANPを測定した。その測定結果からβ−ANP/総ANPの比を算出した。
(3) Calculation of ratio of β-ANP / total ANP β-ANP and total ANP were measured in 10 healthy subjects and 60 acute heart failure patients. From the measurement results, the ratio of β-ANP / total ANP was calculated.

(4)考察
健常者、急性心不全患者におけるβ−ANP/総ANPを表1(60例;入院時と退院時の比較)と図4(47例;1回目〜4回目の経時的変動)に示す。
(4) Discussion The values of β-ANP / total ANP in healthy subjects and patients with acute heart failure are shown in Table 1 (60 cases; comparison at admission and discharge) and in Fig. 4 (47 cases; first to fourth time-dependent changes) Show.

Figure 0006508996
表1は、急性心不全患者(60例)の治療経過における入院時及び退院時の血漿β−ANP濃度、血漿総ANP濃度、β−ANP/総ANP、心臓超音波検査(左室内径収縮率)、血漿BNP濃度、血清NT−proBNP濃度、血漿サイクリックGMP濃度、血漿レニン活性、血漿アルドステロン濃度、腎機能の指標(血清尿素窒素濃度、血清クレアチニン濃度、推算糸球体濾過量)を示す。
Figure 0006508996
Table 1 shows plasma β-ANP concentration, total plasma ANP concentration, β-ANP / total ANP, cardiac ultrasonography (left ventricular contraction rate) at admission and discharge in the treatment course of acute heart failure patients (60 cases) Fig. 7 shows plasma BNP concentration, serum NT-proBNP concentration, plasma cyclic GMP concentration, plasma renin activity, plasma aldosterone concentration, an index of renal function (serum urea nitrogen concentration, serum creatinine concentration, estimated glomerular filtration rate).

急性心不全患者の総ANPとβ−ANPは治療経過とともに低下していたが、退院時(4回目)ではどちらの値も健常者よりも高い値を示していた。一方、β−ANP/総ANPは健常者と同等の値を示していた。退院時には、心臓超音波検査における左室内径短縮率の上昇、NYHA分類の低下、体重の低下、平均血圧の低下で示されるように、心不全重症度が軽減したと判断されたことから、本方法で測定したβ−ANP/総ANPが心不全の改善に相関していることが示された。また、β−ANPおよびβ−ANP/総ANPは、既存の心不全マーカーであるBNPやNT−proBNPとは異なる経時的変動を示した。腎機能の指標(血清尿素窒素、血清クレアチニン、推算糸球体濾過量)が入院時と退院時では同等であったことから(表1)、上記のANP分子型の血漿濃度の変動は、腎機能の変化によるものではないと示された。本実施例の結果と文献等の研究に基づくと、総ANPは心不全の増悪に伴って増加してくるが、β−ANPの挙動が他のANPやBNP、NT−proBNPとは異なる挙動を示すことから、β−ANP/総ANPを観察することにより、心不全の進行または心不全治療の効果を判定することができる。また、BNPやNT−proBNPと併用することにより、心不全の進行の評価精度、心不全治療の効果判定の精度を上げることができると考えられる。   Total ANP and β-ANP in patients with acute heart failure decreased with the progress of treatment, but at discharge (the fourth time), both values were higher than those in healthy people. On the other hand, (beta) -ANP / total ANP showed the value equivalent to a healthy subject. At the time of discharge from the hospital, it was judged that heart failure severity was reduced as shown by an increase in left ventricular internal shortening rate in cardiac ultrasonography, a decrease in NYHA classification, a decrease in body weight, and a decrease in mean blood pressure. It has been shown that β-ANP / total ANP measured in A. has been correlated to the improvement of heart failure. Moreover, (beta) -ANP and (beta) -ANP / total ANP showed the time-dependent fluctuation | variation different from the existing heart failure markers BNP and NT-proBNP. Since the indicators of renal function (serum urea nitrogen, serum creatinine, estimated glomerular filtration rate) were the same at admission and discharge (Table 1), the above-mentioned fluctuations in plasma concentration of ANP molecular type indicate renal function It was shown that it was not due to changes in Based on the results of this example and research in the literature, total ANP increases with heart failure, but β-ANP behaves differently from other ANPs, BNPs, and NT-proBNPs. Thus, by observing β-ANP / total ANP, it is possible to determine the progression of heart failure or the effect of heart failure treatment. Moreover, it is thought that the accuracy of evaluation of the progression of heart failure and the accuracy of determination of the effect of heart failure treatment can be raised by using BNP or NT-proBNP in combination.

(5)参考例:マウスモノクローナル抗体#32−3及びウサギポリクローナル抗体#131−7の製法
(5−1)モノクローナル抗体産生ハイブリドーマの調製とモノクローナル抗体の産生
[抗原の調製]
固相法で合成、精製した還元型ヒトα−ANP(シグマジェノシス社製、2.1mg)を、ジスルフィド結合を形成しない状態で、マレイミド活性化キーホールリンペットヘモシアニン(3mg、Thermo Scientific社 77605)と結合した。これを透析し、生理的食塩水で1mg/mLの溶液とした。
(5) Reference Example: Preparation of Mouse Monoclonal Antibody # 32-3 and Rabbit Polyclonal Antibody # 131-7 (5-1) Preparation of Monoclonal Antibody-Producing Hybridoma and Production of Monoclonal Antibody [Preparation of Antigen]
Maleimido activated keyhole limpet hemocyanin (3 mg, Thermo Scientific 77605) in the state of not forming a disulfide bond, reduced human α-ANP (manufactured by Sigma Genosys, 2.1 mg) synthesized and purified by the solid phase method Combined with This was dialyzed into a 1 mg / mL solution in saline.

[モノクローナル抗体産生ハイブリドーマの調製]
抗原溶液100μLとアジュバント100μL(Freund complete adjuvant,三菱化学ヤトロン社 RM606−1)を十分に混合して安定したエマルジョンにして、4週齢のC3H系マウス(4匹)の足の裏に各50μLずつ免疫した。これを合計5回、3日おきに実施した。最終免疫の3日後にマウス両足からリンパ節を収集し、リンパ節内の細胞を回収した。リンパ節由来細胞と増殖させたミエローマ細胞(P3U1)を2:1〜10:1の割合で混和し、遠心して回収後、50%ポリエチレングリコールを加えて細胞を融合させた。
[Preparation of monoclonal antibody-producing hybridoma]
100 μL of antigen solution and 100 μL of adjuvant (Freund complete adjuvant, Mitsubishi Chemical Yatron RM 606-1) are thoroughly mixed to form a stable emulsion, 50 μL each on the sole of the foot of 4 week old C3H mice (4 animals) I was immunized. This was carried out five times in total every three days. Three days after the final immunization, lymph nodes were collected from both legs of the mouse and cells in the lymph nodes were collected. Lymph node-derived cells and expanded myeloma cells (P3U1) were mixed at a ratio of 2: 1 to 10: 1, centrifuged and collected, and then 50% polyethylene glycol was added to fuse the cells.

無血清培地で洗浄後、レスキュー用supplement含有の15%ウシ胎児血清含有HAT培地に懸濁し、96穴プレート3枚に播種した。1〜2週間後に、ハイブリドーマのコロニー形成を確認し、各ウェルから培養上清を一部回収した。   After washing with a serum-free medium, the cells were suspended in a HAT medium containing 15% fetal bovine serum containing a supplement for rescue and seeded onto three 96-well plates. One to two weeks later, hybridoma colony formation was confirmed, and a portion of the culture supernatant was recovered from each well.

[ハイブリドーマの1次スクリーニング]
1次スクリーニングは標準的なELISA法(Methods in Immunodiagnosis 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980; Campbell, et al., Methods and Immunology, W. A. Benjamin, Inc., 1964; Oellerich, M., J. Clin. Chem. Clin. Biochem. 22:895−904, 1984; 羊土社 タンパク質実験ノート(下)岡田雅人編集 改訂第4版 2011年11月1日発行)で実施した。抗原を1μg/mLに希釈後、96穴プレート(NUNC 468667)に分注し、4℃で一晩、静置した。抗原溶液を除去後、Blocking Bufferを100μL/wellで分注し、ブロッキングを行った。培養上清50μLを各ウェルに添加して反応させた。洗浄後、西洋わさびペルオキシダーゼで標識した抗マウスIgGヤギ抗体と反応後、発色剤を添加し、450nmの吸光度を測定した。ヘモシアニンに対する吸光度が0.2以下で、抗原に対する特異的な吸光度を0.2以上有するクローンを陽性として選択した。
[Hybridoma primary screening]
Primary screening is performed using a standard ELISA method (Methods in Immunodiagnosis 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980; Campbell, et al., Methods and Immunology, WA Benjamin, Inc., 1964 Oellerich, M., J. Clin. Chem. Clin. Biochem. 22: 895-904, 1984; Notes on protein experiments by Yodosha (bottom) edited by Masato Okada (revised 4th edition published on November 1, 2011) did. After diluting the antigen to 1 μg / mL, it was aliquoted into a 96-well plate (NUNC 468667) and allowed to stand at 4 ° C. overnight. After removing the antigen solution, blocking buffer was dispensed at 100 μL / well to perform blocking. 50 μl of culture supernatant was added to each well for reaction. After washing, after reacting with an anti-mouse IgG goat antibody labeled with horseradish peroxidase, a color former was added, and the absorbance at 450 nm was measured. Clones having an absorbance of 0.2 or less for hemocyanin and a specific absorbance of 0.2 or more for an antigen were selected as positive.

[ハイブリドーマの2次スクリーニング]
ヒトα−ANP(ペプチド研究所製)を還元後、カルボキシアミドメチル(CAM)化し、RP−HPLCで精製した。精製したCAM−α−ANPをラクトペルオキシダーゼ法によりヨード125(125I)で標識し、RP−HPLCで精製することにより、1分子の125Iで標識されたペプチドを調製した。以下の反応には、RIA用標準バッファー(RIAバッファー、50 mMリン酸緩衝液、80mM NaCl、25mM EDTA、0.05% NaN、0.5% N−エチルマレイミド処理済BSA(SIGMA−Aldrich社 A7888)、0.5% Triton X−100、pH7.4)(Katafuchi T, et al., J. Biol. Chem., 278:12046−12054, 2003)を使用した。
[Secondary screening of hybridomas]
After reduction, human α-ANP (manufactured by Peptide Laboratories) was converted to carboxamidomethyl (CAM) and purified by RP-HPLC. The purified CAM-α-ANP was labeled with iodo125 ( 125I ) by the lactoperoxidase method, and purified by RP-HPLC to prepare one molecule of 125I- labeled peptide. For the following reactions, RIA standard buffer (RIA buffer, 50 mM phosphate buffer, 80 mM NaCl, 25 mM EDTA, 0.05% NaN 3 , 0.5% N-ethylmaleimide-treated BSA (SIGMA-Aldrich) A 7888), 0.5% Triton X-100, pH 7.4) (Katafuchi T, et al., J. Biol. Chem., 278: 12046-12054, 2003) was used.

1次スクリーニング陽性クローンの培養上清を,1/10希釈より3倍希釈系列液を各100μL作製し、これに約20,000cpmの125I標識CAM−α−ANP(125I−CAM−α−ANP)を含む溶液100μL、RIAバッファー100μLを添加、撹拌し、4℃で40時間静置した。抗体に結合した125I−CAM−α−ANPの放射活性量をポリエチレングリコール分離法で分離し測定した(Katafuchi T, et al. 同上文献)。具体的には、リン酸緩衝生理食塩水(PBS、50mMリン酸緩衝液、80mM NaCl、0.05% NaN3、pH7.4)を用いて作製した100μLの1% ウシγ−グロブリン(Sigma−Aldrich社 G5009)溶液および500μの23%ポリエチレングリコール(#6000、ナカライテスク社 28254−85)溶液を加え、混合し、氷上で10分間静置した後、遠心分離(4℃、3000rpm、15分間)し、上清を除去した。得られた沈殿の1分間の放射活性をγカウンター(ARC−1000M、Aloka社)にて測定した。希釈された培養上清でも125I−CAM−α−ANPに対する結合能力のあるクローン5種選択した。 The culture supernatant of the primary screening positive clone is prepared in 100 μl each in 3-fold dilutions from 1/10 dilution, to which about 20,000 cpm of 125 I-labeled CAM-α-ANP ( 125 I-CAM-α- 100 μL of a solution containing ANP) and 100 μL of RIA buffer were added, stirred, and allowed to stand at 4 ° C. for 40 hours. The amount of radioactivity of 125 I-CAM-α-ANP bound to the antibody was separated and measured by polyethylene glycol separation (Katafuchi T, et al. Supra). Specifically, 100 μL of 1% bovine γ-globulin (Sigma-Aldrich) prepared using phosphate buffered saline (PBS, 50 mM phosphate buffer, 80 mM NaCl, 0.05% NaN 3, pH 7.4) G5009) solution and 500μ of 23% polyethylene glycol (# 6000, Nacalai Tesque 28254-85) solution, mixed, allowed to stand on ice for 10 minutes, and centrifuged (4 ° C, 3000 rpm, 15 minutes) And the supernatant was removed. The radioactivity of 1 minute of the obtained precipitate was measured by gamma counter (ARC-1000M, Aloka). Also in the diluted culture supernatant, five clones capable of binding to 125 I-CAM-α-ANP were selected.

[限界希釈法によるモノクローン化]
上記5種のクローンを増殖し、対数増殖期の状態でハイブリドーマを分散させ、培地で希釈後、96穴プレートに播種した。1〜2週間後にハイブリドーマのシングルコロニーの形成が確認された段階で、各ウェルから培養上清をサンプリングし、上述の「ハイブリドーマの1次スクリーニング」に記載した方法に従い、活性を評価した。抗原に対する特異的な吸光度の強いクローンを各3種、合計15種を選択した。
[Mono cloning by limiting dilution method]
The above five clones were grown, and hybridomas were dispersed in the logarithmic growth phase, diluted with culture medium, and then seeded in a 96-well plate. When formation of a single colony of hybridomas was confirmed after 1 to 2 weeks, the culture supernatant was sampled from each well, and the activity was evaluated according to the method described in the above-mentioned "primary screening of hybridomas". A total of 15 clones were selected, each containing 3 clones with strong specific absorbance against the antigen.

[ハイブリドーマの3次スクリーニング]
CAM−α−ANPに加えて、α−ANP、β−ANP(ペプチド研究所製)をそれぞれラクトペルオキシダーゼ法により125Iで標識後、RP−HPLCで精製し、1分子の125Iで標識されたペプチドを調製した(125I−α−ANP、125I−β−ANP)。
[Third-order screening of hybridomas]
In addition to CAM-α-ANP, α-ANP and β-ANP (manufactured by Peptide Laboratories) were each labeled with 125 I by the lactoperoxidase method, purified by RP-HPLC, and labeled with one molecule of 125 I The peptides were prepared ( 125 I-α-ANP, 125 I-β-ANP).

上記5種のクローンより調製した各3種のクローンについて、連続した希釈液を作製し、125I−CAM−α−ANPに対する結合能力を評価し、2次スクリーニングより得られた5種のクローンより得られた各3種のクローンの中で、最も結合能力の高いクローンを選択した。 Serial dilutions were prepared for each of the three clones prepared from the above five clones, and their binding ability to 125 I-CAM-α-ANP was evaluated, and from the five clones obtained by the secondary screening Among each of the obtained 3 types of clones, a clone with the highest binding ability was selected.

これら5種について、連続した希釈液を作製し、125I−α−ANP、125I−β−ANPを用いて2次スクリーニングに記載した方法に従い、各ペプチドに対する結合能力を評価した。 Serial dilutions were prepared for these five types, and 125 I-α-ANP and 125 I-β-ANP were used to evaluate the binding ability to each peptide according to the method described in the secondary screening.

次に、通常のRIA法に従い、125I−β−ANP、125I−CAM−α−ANP、125I−α−ANPをトレーサーとして、それぞれについてβ−ANP、α−ANP、CAM−α−ANPの標準曲線あるいは交差活性曲線を作成し、各クローンの特異性、感度を評価した。その結果、β−ANPに対して強い結合活性を有し、α−ANP、CAM−α−ANPとの交差性が少なく、かつRIA法において高感度にβ−ANPを測定できるクローン(#32−3)を選択した。 Next, in accordance with the usual RIA method, 125 I-β-ANP, 125 I-CAM-α-ANP, 125 I-α-ANP as a tracer, β-ANP, α-ANP, CAM-α-ANP, respectively. A standard curve or cross activity curve was generated, and the specificity and sensitivity of each clone were evaluated. As a result, a clone which has strong binding activity to β-ANP, less cross-reactivity with α-ANP and CAM-α-ANP, and which can measure β-ANP with high sensitivity in RIA method (# 32- 3) was selected.

[モノクローナル抗体#32−3の産生]
腹水採取用にはヌードマウスを使用し、アジュバントとしてプリスタンを腹腔に注射して1週間後のマウスを用いた。選定したクローン(#32−3)を増殖、培養し、PBSにて懸濁し、上記のマウスに1匹当たり約1×10細胞を腹腔に注射した。2週間後ごろになると腹水がたまるので、経過をよく観察して腹水を複数回にわたり回収した。回収する容器には、予め保存用抗凝固剤(ACD液)を添加して凝固を抑制した。遠心により血球成分や不要物を除去し、上清を凍結保存した。
[Production of monoclonal antibody # 32-3]
Nude mice were used for ascites fluid collection, and mice one week after injection of pristane into the abdominal cavity as an adjuvant were used. The selected clone (# 32-3) was expanded, cultured, suspended in PBS, and the above mice were injected intraperitoneally with about 1 × 10 6 cells per mouse. As the ascites build up around two weeks later, the course was closely observed and ascites was collected multiple times. A storage anticoagulant (ACD solution) was previously added to the container to be collected to suppress coagulation. Blood cell components and unwanted substances were removed by centrifugation, and the supernatant was cryopreserved.

(5−2)抗体の精製
[精製モノクローナル抗体#32−3の調製]
腹水の上清画分からのモノクローナル抗体の精製にはAffi Gel Protein A(BioRad社 153−6153)を用いたプロテインA結合アフィニティーカラムを使用した。アフィニティーカラムへのサンプルの結合、洗浄、溶出は製造業者のマニュアルに従った。溶出液を500μLごとに、予め1Mトリス塩酸緩衝液(pH9.0)160μLを加えた1.5mL容チューブに回収した。精製モノクローナル抗体を含む画分を、PBS中で4℃、オーバーナイトにて透析した。精製した溶液中のタンパク質量をBCA Protein Assay Kit(Pierce社 23227)を用いて定量した。
(5-2) Purification of Antibody [Preparation of Purified Monoclonal Antibody # 32-3]
A protein A binding affinity column using Affi Gel Protein A (BioRad 153-6153) was used for purification of the monoclonal antibody from the supernatant fraction of ascites fluid. Binding of the sample to the affinity column, washing and elution were according to the manufacturer's manual. The eluate was collected every 500 μL into a 1.5 mL tube to which 160 μL of 1 M Tris-HCl buffer solution (pH 9.0) was previously added. Fractions containing purified monoclonal antibody were dialyzed overnight at 4 ° C. in PBS. The amount of protein in the purified solution was quantified using BCA Protein Assay Kit (Pierce 23227).

[精製ポリクローナル抗体#131−7の調製]
ポリクローナル抗体#131−7は、A. Sasaki, et al. Hypertension 10;308−312, 1987に記載の方法で調製した。得られたウサギ抗血清にキャリアタンパク質として使用したサイログロブリン(Sigma−Aldrich社 T1001、17mg/mL抗血清)およびアジュバント(M. Butyricum、DIFCO社 526−02651、10mg/mL抗血清)を加え、ローテーターにより撹拌しながら4℃、一晩インキュベートした後、遠心分離(4℃、13,000×g、15分間)し、上清を回収した。上清は直ちに上述のプロテインA結合アフィニティーカラムによる精製に供した。アフィニティーカラムへのサンプルの結合、洗浄、溶出は製造業者のマニュアルに従った。溶出液を500μLごとに、予め1Mトリス塩酸緩衝液(pH9.0)160μLを加えた1.5mL容チューブに回収した。精製ポリクローナル抗体を含む画分を、PBS中で4℃、一晩、透析した。精製した溶液中のタンパク質量をBCA Protein Assay Kitを用いて定量した。このようにして精製ポリクローナル抗体#131−7を得た。これはヒトα−ANPの13〜17残基目をエピトープとするウサギポリクロ―ナル抗体である(Nagai C, Minamino N., Anal. Biochem., 461:10−16, 2014)。
[Preparation of Purified Polyclonal Antibody # 131-7]
The polyclonal antibody # 131-7 is Sasaki, et al. It was prepared by the method described in Hypertension 10; 308-312, 1987. To the obtained rabbit antiserum, thyroglobulin (Sigma-Aldrich T1001, 17 mg / mL antiserum) used as a carrier protein and an adjuvant (M. Butyricum, DIFCO 526-02651, 10 mg / mL antiserum) are added, and by a rotator After incubating overnight at 4 ° C. with stirring, centrifugation (4 ° C., 13,000 × g, 15 minutes) was carried out, and the supernatant was recovered. The supernatant was immediately subjected to purification by the above-mentioned protein A binding affinity column. Binding of the sample to the affinity column, washing and elution were according to the manufacturer's manual. The eluate was collected every 500 μL into a 1.5 mL tube to which 160 μL of 1 M Tris-HCl buffer solution (pH 9.0) was previously added. Fractions containing purified polyclonal antibody were dialyzed overnight at 4 ° C. in PBS. The amount of protein in the purified solution was quantified using BCA Protein Assay Kit. Thus, purified polyclonal antibody # 131-7 was obtained. This is a rabbit polyclonal antibody whose epitope is 13th to 17th residues of human α-ANP (Nagai C, Minamino N., Anal. Biochem., 461: 10-16, 2014).

(5−3)モノクローナル抗体の特性
ヒトα−ANPおよびβ−ANPに対する精製モノクローナル抗体#32−3の親和定数はRIA法を用いて算出した。具体的には、RIAバッファーを用いて精製モノクローナル抗体の5倍希釈系列液(200μL)を作製し、試験管内にて125Iで標識したα−ANPおよびβ−ANP(20,000cpm、100μL)と混合し、4℃で40時間インキュベートした。抗体に結合した125I−α−ANPまたは125I−β−ANPの放射活性量を上述のポリエチレングリコール分離法で分離し、測定した。125I−α−ANPまたは125I−β−ANPの結合量が50%となる抗体濃度をK値として算出したところ、モノクローナル抗体#32−3はヒトα−ANPに対して1.34×10−8M、ヒトβ−ANPに対して1.69×10−11MのK値を示し、この抗体がβ−ANPを選択的に認識することが実証された。
(5-3) Properties of Monoclonal Antibody The affinity constant of purified monoclonal antibody # 32-3 against human α-ANP and β-ANP was calculated using RIA method. Specifically, a 5-fold dilution series (200 μL) of purified monoclonal antibody is prepared using RIA buffer, and α-ANP and β-ANP (20,000 cpm, 100 μL) labeled with 125 I in a test tube are prepared. Mix and incubate at 4 ° C. for 40 hours. The amount of radioactivity of 125 I-α-ANP or 125 I-β-ANP bound to the antibody was separated and measured by the polyethylene glycol separation method described above. The antibody concentration at which the amount of 125 I-α-ANP or 125 I-β-ANP bound is 50% was calculated as the K d value, and monoclonal antibody # 32-3 was 1.34 × against human α-ANP. The K d value of 10 −8 M and 1.69 × 10 −11 M against human β-ANP was demonstrated, demonstrating that this antibody selectively recognizes β-ANP.

Claims (3)

心不全を検出するために、β−ANPのジスルフィド結合を含むアミノ酸配列を認識する抗体を用いて試料中のβ−ANPを測定し、試料中のβ−ANPと総ANPとの比を求める方法。 To detect failure, the beta-ANP in a sample is measured using an antibody that recognizes an amino acid sequence comprising a disulfide bond beta-ANP, who asking you to the ratio of the beta-ANP and total ANP in a sample Law. 請求項1に記載の方法において、β−ANPと総ANPとの比が、総ANPに対するβ−ANPの比(β−ANP/総ANP)である方法。 The method according to claim 1, wherein the ratio of β-ANP to total ANP is the ratio of β-ANP to total ANP (β-ANP / total ANP). β−ANPのジスルフィド結合を含むアミノ酸配列を認識する抗体を用いたβ−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むことを特徴とする、心不全の検出キット。 A kit for detecting heart failure, comprising: a reagent for specifically measuring β-ANP using an antibody that recognizes an amino acid sequence containing a disulfide bond of β-ANP and a reagent for measuring total ANP.
JP2015060777A 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP Active JP6508996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060777A JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060777A JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Publications (2)

Publication Number Publication Date
JP2016180665A JP2016180665A (en) 2016-10-13
JP6508996B2 true JP6508996B2 (en) 2019-05-08

Family

ID=57130971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060777A Active JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Country Status (1)

Country Link
JP (1) JP6508996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060918A1 (en) * 2017-09-25 2019-03-28 University Of Florida Research Foundation, Incorporated Immuoassays for detection of ran proteins

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461500A (en) * 1987-09-01 1989-03-08 Shionogi & Co Alpha-hanp recognizing monoclonal antibody and immunologically measuring reagent for alpha-hanp
JP2724315B2 (en) * 1988-02-29 1998-03-09 塩野義製薬株式会社 Monoclonal antibody recognizing α-ANP and immunoassay for α-ANP
JP2681370B2 (en) * 1988-06-30 1997-11-26 塩野義製薬株式会社 Immunoassay
JPH0667319B2 (en) * 1989-04-19 1994-08-31 塩野義製薬株式会社 Monoclonal antibody that recognizes the C-terminal side of ANP
JPH0748071B2 (en) * 1989-05-31 1995-05-24 株式会社ミドリ十字 hANP antibody and immunoassay for hANP
WO2012000119A1 (en) * 2010-07-02 2012-01-05 Prognomix Inc. A method of determining a predisposition to atrial fibrillation in a subject

Also Published As

Publication number Publication date
JP2016180665A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
US11340239B2 (en) BNP (1-32) epitope and antibodies directed against said epitope
ES2661516T3 (en) Biomarkers
AU2017294549C1 (en) Adrenomedullin for assessing congestion in a subject with acute heart failure
EP1664769B1 (en) Assay for detecting atrial and brain natriuretic peptide prohormones
EP3698134A1 (en) Therapy monitoring under treatment with an anti-adrenomedullin (adm) binder
CA2678465A1 (en) Method of determining nt-probnp
US20190100576A1 (en) Signal biomarkers
JP6508996B2 (en) Method of detecting heart failure by β-ANP
JP2022535513A (en) Assays to assess heart failure
CN113956355B (en) Anti-human Brain Natriuretic Peptide (BNP) rabbit monoclonal antibody and application thereof
JP2016079146A (en) SPECIFIC METHOD FOR MEASUREMENT OF β-ANP
JP4423426B2 (en) Method of using increased concentration of adrenomedullin precursor C-terminal peptide as an indicator of cardiovascular disease or inflammatory disease
EP3069146A1 (en) Biomarker for cardiac disorders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6508996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250