JP2016180665A - METHOD FOR DETECTING CARDIAC FAILURE WITH β-ANP - Google Patents

METHOD FOR DETECTING CARDIAC FAILURE WITH β-ANP Download PDF

Info

Publication number
JP2016180665A
JP2016180665A JP2015060777A JP2015060777A JP2016180665A JP 2016180665 A JP2016180665 A JP 2016180665A JP 2015060777 A JP2015060777 A JP 2015060777A JP 2015060777 A JP2015060777 A JP 2015060777A JP 2016180665 A JP2016180665 A JP 2016180665A
Authority
JP
Japan
Prior art keywords
anp
total
heart failure
antibody
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015060777A
Other languages
Japanese (ja)
Other versions
JP6508996B2 (en
Inventor
南野 直人
Naoto Minamino
直人 南野
千晶 岡谷
Chiaki Okatani
千晶 岡谷
寒川 賢治
Kenji Sagawa
賢治 寒川
晃司 新谷
Koji Shintani
晃司 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
National Cerebral and Cardiovascular Center
Original Assignee
Tosoh Corp
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, National Cerebral and Cardiovascular Center filed Critical Tosoh Corp
Priority to JP2015060777A priority Critical patent/JP6508996B2/en
Publication of JP2016180665A publication Critical patent/JP2016180665A/en
Application granted granted Critical
Publication of JP6508996B2 publication Critical patent/JP6508996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting cardiac failure that can judge the progress of cardiac failure or the effects of treatments of cardiac failure.SOLUTION: Determining the ratio of β-ANP and a total ANP (for example, the ratio of β-ANP to a total ANP, β-ANP/a total ANP), using a measuring method with high specificity to β-ANP and a measuring method for the total ANP of α-type ANP, β-type ANP, and γ-type ANP, can detect cardiac failure and judge the progress of cardiac failure or the effects of treatments of cardiac failure.SELECTED DRAWING: Figure 4

Description

本発明は心不全の検出方法及びそのキットに関する。   The present invention relates to a method for detecting heart failure and a kit thereof.

心房性ナトリウム利尿ペプチド(ANP:atrial natriuretic peptide)は松尾・寒川らにより1984年に報告されたペプチドホルモンで(非特許文献1参照)、心臓で産生され強力な利尿、ナトリウム利尿活性と平滑筋弛緩活性を持つ。ANPは、ヒトばかりでなく、げっ歯類以外の哺乳類では同一のアミノ酸配列を有し、例えばヒト、ウシ、ブタのANPは同一である。ANPには、分子量約3000のα型、α型の逆平行二量体であるβ型、α型の前駆物質であるγ型の3種類の分子型が確認されている(図1参照)。   Atrial natriuretic peptide (ANP) is a peptide hormone reported in 1984 by Matsuo and Samukawa et al. (See Non-Patent Document 1), a strong diuresis produced in the heart, natriuretic activity and smooth muscle relaxation. Has activity. ANP has the same amino acid sequence not only in humans but also in mammals other than rodents. For example, ANP in humans, cows and pigs are identical. ANP has been confirmed to have three molecular types: α type having a molecular weight of about 3000, β type which is an antiparallel dimer of α type, and γ type which is a precursor of α type (see FIG. 1).

ANPは、心臓、特に心房から分泌されるホルモンで、利尿作用、Na利尿作用、血管拡張作用、レニン・アンジオテンシン・アルドステロン系や交感神経系の抑制作用など多様な生物活性を有し、体液量、血圧の調節に重要な役割を担っている(非特許文献2,3参照)。   ANP is a hormone secreted from the heart, particularly the atrium, and has various biological activities such as diuretic action, Na diuretic action, vasodilatory action, renin-angiotensin-aldosterone system and sympathetic nervous system suppressive action, It plays an important role in regulating blood pressure (see Non-Patent Documents 2 and 3).

ANPは心血行動態的負荷、特に心房内圧の増加が主要な産生、分泌刺激になると考えられ、体液量あるいは心房内圧の増加する各種心疾患、腎疾患において血中濃度の増加が認められることから、これら病態の把握、重症度の指標として極めて有用であり、ルーチンの検査項目として日常臨床に応用されている(非特許文献4〜6参照)。   ANP is considered to be a major production and secretion stimulus due to an increase in cardiac hemodynamic load, especially atrial pressure, and an increase in blood concentration is observed in various heart diseases and renal diseases in which body fluid volume or atrial pressure increases. It is extremely useful as an index of grasping and severity of these pathological conditions, and is applied to daily clinical practice as a routine test item (see Non-Patent Documents 4 to 6).

α−ANPは血中に存在するANP類の中心となる分子種であり、28アミノ酸残基からなり、N末端から7番目のCysと23番目のCysが分子内でジスルフィド結合し、その間の配列が環状構造をなしている。一方、β−ANPは、2分子のα−ANPが分子間でジスルフィド結合した、α−ANPの逆平行二量体である(特許文献1参照)。γ−ANPは126アミノ酸残基からなり、そのC末端にα−ANP配列を有する。健常者においては、γ−ANPは心房中に保存されており、分泌時にα−ANPとN末端ペプチドに切断され、血中ではこの2つの分子で存在する(非特許文献7参照)。   α-ANP is a molecular species that is the center of ANPs present in the blood, consists of 28 amino acid residues, and the 7th Cys and 23rd Cys from the N-terminus are disulfide-bonded in the molecule, and the sequence between them. Has a ring structure. On the other hand, β-ANP is an antiparallel dimer of α-ANP in which two molecules of α-ANP are disulfide bonded between molecules (see Patent Document 1). γ-ANP consists of 126 amino acid residues and has an α-ANP sequence at its C-terminus. In healthy individuals, γ-ANP is conserved in the atria, cleaved into α-ANP and an N-terminal peptide during secretion, and exists in these two molecules in blood (see Non-Patent Document 7).

ANPの測定は、酵素やラジオアイソトープで標識した抗体と、担体に固定化した固定化抗体とでサンドイッチされる免疫学的測定法が利用されており、特に臨床検査薬として広く医療現場で使用されており(非特許文献9参照)、α型、β型、γ型の3種類の総和が測定されるものである。   An ANP measurement uses an immunoassay method in which an antibody labeled with an enzyme or radioisotope and an immobilized antibody immobilized on a carrier are sandwiched. Particularly, it is widely used as a clinical test drug in the medical field. (See Non-Patent Document 9), and the total of three types of α type, β type, and γ type is measured.

α−ANPの有用性は多く報告されているが、β−ANPとγ−ANPについても重症心不全症例で増加していることが報告されている(非特許文献8参照)。特にβ−ANPの動向は顕著であり、健常者では確認されない様式であるが、心不全の重篤度に合わせて出現することが確認され、心不全病態との関係が確認されている(非特許文献10,11参照)。心不全治療前後におけるANPの存在様式を検討すると、心不全時は,α−、γ−ANPの他に、健常人では認めなかったβ−ANPと思われる中分子型ANPが出現し、心不全治療による血行動態・臨床症状が改善した後には、ANP濃度の低下とともにこのβ−ANPの割合が減少あるいは消失している。   Although the usefulness of α-ANP has been reported a lot, β-ANP and γ-ANP have also been reported to increase in cases of severe heart failure (see Non-Patent Document 8). In particular, the trend of β-ANP is remarkable, and it is a mode that is not confirmed in healthy individuals, but it has been confirmed that it appears in accordance with the severity of heart failure, and its relationship with heart failure pathology has been confirmed (Non-Patent Document). 10, 11). When the existence pattern of ANP before and after heart failure treatment was examined, in addition to α- and γ-ANP, medium molecular type ANP that seems to be β-ANP, which was not observed in healthy individuals, appeared during heart failure. After the kinetic / clinical symptoms improve, the ratio of β-ANP decreases or disappears with a decrease in ANP concentration.

治療により心不全が改善する過程における血中ANP濃度と存在様式の推移では、血中ANP濃度は治療により漸減し、存在様式は重症心不全時はβ−ANPがピークを形成していたが、治療によりβ−ANPは漸減し、血行動態および臨床症状が改善した時点では存在様式はβ−ANPの割合は著しく減少あるいは消失し、心不全病態とβ−ANPの関係が示されている(非特許文献11参照)。しかしながらこれらの報告では具体的にβ−ANP値のカットオフ値、参考基準値あるいは総ANPに対する存在比率などを用いて心不全の病態や治療効果を見ていない。加えてα型、β型、γ型の各分子型の共通領域(即ちα−ANP)を用いる抗体と逆相高速液体クロマト(RP−HPLC)法を用いた測定法により確認しているために、定量性に乏しく操作による変動も大きい。   In the process of improvement of heart failure by treatment, the blood ANP concentration gradually changed with the treatment, and the presence pattern showed that β-ANP peaked during severe heart failure. β-ANP gradually decreases, and at the time when hemodynamics and clinical symptoms are improved, the proportion of β-ANP is significantly reduced or disappeared, indicating the relationship between heart failure pathology and β-ANP (Non-patent Document 11). reference). However, these reports do not specifically examine the pathological condition or therapeutic effect of heart failure using the cut-off value of β-ANP value, the reference standard value, or the abundance ratio with respect to total ANP. In addition, because it is confirmed by a measurement method using an antibody using a common region (namely, α-ANP) of each molecular type of α-type, β-type, and γ-type and reverse-phase high-performance liquid chromatography (RP-HPLC) method Quantities are poor and fluctuations due to operation are large.

このように、従来は、β−ANPの分子型に対し特異的な抗体や測定方法は見出されていなかったために、β−ANPの総ANPに対する存在比率から心不全の状態を判断する例はなかった。   Thus, conventionally, since no antibody or measurement method specific to the molecular type of β-ANP has been found, there is no example of determining the state of heart failure from the abundance ratio of β-ANP to the total ANP. It was.

特開昭60−184098号公報Japanese Patent Laid-Open No. 60-184098 特許第2681370号公報Japanese Patent No. 2681370

Biochem. Biophys. Res. Commun.,118;131,1984Biochem. Biophys. Res. Commun. , 118; 131, 1984 成瀬光栄,成瀬清子:呼吸と循環,37:37:375−86,1989Naruse Mitsuei, Naruse Kiyoko: Respiration and Circulation, 37: 37: 375-86, 1989 lnagami, T. & Naruse, M.:Encyclopedia of Human Biology Vol. 1, Academic Press,1991,p.467lnagami, T .; & Naruse, M.M. : Encyclopedia of Human Biology Vol. 1, Academic Press, 1991, p. 467 Yoshinaga, K. et al.,Biomed. Res. 7:173−9,1986Yoshinaga, K. et al. et al. , Biomed. Res. 7: 173-9, 1986 Hasegawa, K., et al., J. Clin. Endocrinol. Metab 63:819−22,1986Hasegawa, K .; , Et al. , J. et al. Clin. Endocrinol. Metab 63: 819-22, 1986 Anderson, J. V., et al., J. Endocr. 110:193−6,1986Anderson, J.M. V. , Et al. , J. et al. Endocr. 110: 193-6, 1986 Sugawara, A., et al., Hypertension 8(Suppl.1), I−151−155, 1986Sugawara, A.A. , Et al. , Hypertension 8 (Suppl. 1), I-151-155, 1986. Akimoto, K. et el. J. Clin. Endocrinol. Metab.,67:93−97,1988Akimoto, K. et al. et el. J. et al. Clin. Endocrinol. Metab. 67: 93-97, 1988. 浜典男ら,基礎と臨床 25:4205−12,1991Norio Hama et al., Basic and Clinical 25: 4205-12, 1991 中尾一和:日内分泌会誌,68:134−142,1992Kazukazu Nakao: Journal of the Japan Endocrine Society, 68: 134-142, 1992 中尾一和ら,蛋白質 核酸 酵素 33(14):2461−2475,1988Kazukazu Nakao et al., Protein Nucleic Acid Enzyme 33 (14): 2461-1475, 1988

β−ANPは、心不全の重篤度に合わせて出現することが確認され、心不全病態との関係が確認されている。しかし市販されているANPを測定するサンドイッチ免疫測定法においては、α型、α型の2量体であるβ型、α型の前駆物質とされるγ型の3種類の分子型も測定され、β−ANPのみを特異的に測定する方法は一般化されていない。   β-ANP has been confirmed to appear in accordance with the severity of heart failure, and the relationship with the heart failure pathology has been confirmed. However, in the sandwich immunoassay for measuring ANP that is commercially available, three types of molecules, α-type, β-type that is a dimer of α-type, and γ-type that is a precursor of α-type, are also measured. A method for specifically measuring only β-ANP has not been generalized.

β−ANPに特異的な測定系については、α−ANPのホモダイマーであることから、同一のモノクローナル抗体を用いてβ−ANPを測定する測定系は報告されている(特許文献2参照)。しかし、β−ANPに特異的な抗体を用いているわけではなく、α−ANP濃度が高くなると競合阻害を受けることになり測定系によっては感度が低くなることがあり、依然、高感度にβ−ANPのみを測定するためには、課題が残っている(特許文献2参照)。   Since the measurement system specific for β-ANP is a homodimer of α-ANP, a measurement system for measuring β-ANP using the same monoclonal antibody has been reported (see Patent Document 2). However, an antibody specific for β-ANP is not used, and when the α-ANP concentration becomes high, competitive inhibition occurs and the sensitivity may be lowered depending on the measurement system. -A problem remains to measure only ANP (see Patent Document 2).

総ANPおよびβ−ANPが心不全の重症例で高値を示し、治療により改善すると低下することが報告されているが、これらの報告では具体的にβ−ANP値のカットオフ値、参考基準値あるいは総ANPに対する存在比率などを用いて心不全の病態や治療効果を見ていない。加えてα型、β型、γ型の各分子型の共通領域(即ちα−ANP)を用いる抗体と逆相高速液体クロマト(RP−HPLC)法を用いた測定法により確認しているために定量性に乏しく操作による変動も大きいために診断には利用されていない。   Total ANP and β-ANP have been reported to be high in severe cases of heart failure and decreased with improvement in treatment. In these reports, the cut-off value of β-ANP value, reference standard value or We do not look at the pathophysiology or therapeutic effect of heart failure using the ratio of total ANP. In addition, because it is confirmed by a measurement method using an antibody using a common region (namely, α-ANP) of each molecular type of α-type, β-type, and γ-type and reverse-phase high-performance liquid chromatography (RP-HPLC) method It is not used for diagnosis because of its poor quantitativeness and large variation due to operation.

このように、従来は、β−ANPの分子型に非常に特異的な抗体や測定方法は見出されていなかったために、β−ANPと総ANPとの存在比から心不全の状態を判断する例はなかった。   Thus, since no antibody or measurement method very specific to the molecular type of β-ANP has been found in the past, an example of determining the state of heart failure from the abundance ratio of β-ANP and total ANP There was no.

本発明の目的は、β−ANPと総ANPとの比から、心不全の進行または心不全治療の効果を判定することができる心不全の検出方法を提供することである。   An object of the present invention is to provide a heart failure detection method capable of determining the progress of heart failure or the effect of heart failure treatment from the ratio of β-ANP and total ANP.

本発明者らは、α−ANPの逆平行ダイマーが特異的につくるジスルフィド結合を含むアミノ酸配列や構造をエピトープとして認識する抗体を獲得し、それを利用するβ−ANPの高感度測定法を完成している(特願2014−214103号)。そして本発明者らは、上記課題に関し鋭意検討した結果、本発明に到達した。   The present inventors have obtained an antibody that recognizes an amino acid sequence or structure containing a disulfide bond specifically produced by an antiparallel dimer of α-ANP as an epitope, and completed a highly sensitive measurement method of β-ANP using this antibody. (Japanese Patent Application No. 2014-214103). And as a result of intensive studies on the above problems, the present inventors have reached the present invention.

即ち本発明は以下のとおりである。
(1)試料中のβ−ANPと総ANPとの比を求めることを特徴とする、心不全の検出方法。
(2)請求項1に記載の方法において、β−ANPと総ANPとの比が、総ANPに対するβ−ANPの比(β−ANP/総ANP)である方法。
(3)β−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むことを特徴とする、心不全の検出キット。
以下、本発明を更に詳細に説明する。
That is, the present invention is as follows.
(1) A method for detecting heart failure, wherein a ratio of β-ANP and total ANP in a sample is determined.
(2) The method according to claim 1, wherein the ratio of β-ANP to total ANP is the ratio of β-ANP to total ANP (β-ANP / total ANP).
(3) A detection kit for heart failure, comprising a reagent that specifically measures β-ANP and a reagent that measures total ANP.
Hereinafter, the present invention will be described in more detail.

本発明において、総ANPとは、α−ANP、β−ANP及びγ−ANPを合計したものを表す。総ANPの測定方法としては特に限定はなく、例えば市販の免疫測定試薬等を用いて行うことができる。例えばα−ANP、β−ANP、γ−ANPの共通部位を認識する抗体を組み合わせた測定系を用いることができ、市販キットのように例えばα−ANPの環状部位とC末端部分を認識するものでも良い。   In the present invention, the total ANP represents the sum of α-ANP, β-ANP and γ-ANP. The method for measuring total ANP is not particularly limited, and for example, a commercially available immunoassay reagent can be used. For example, a measurement system combining an antibody that recognizes the common site of α-ANP, β-ANP, and γ-ANP can be used, such as a commercially available kit that recognizes the cyclic site and C-terminal part of α-ANP, for example. But it ’s okay.

一方、β−ANPの測定方法も特に限定されるものではなく、例えばβ−ANPを特異的に測定する方法でもよく、また総ANPの測定値からα−ANPとγ−ANPの測定値を差し引いてもよい。β−ANPを特異的に測定する方法としては特に限定されるものではないが、β−ANPを特異的に認識することができ、α−ANPやγ−ANPを実質的に認識しない方法があげられる。好ましくはβ−ANPのジスルフィド結合を含むアミノ酸配列を認識する抗体を用いた測定系、さらに好ましくはβ−ANPのジスルフィド結合とその周辺のアミノ酸配列を認識する抗体を用いた測定系が選択される。   On the other hand, the β-ANP measurement method is not particularly limited. For example, β-ANP may be specifically measured, and the α-ANP and γ-ANP measurement values are subtracted from the total ANP measurement value. May be. The method for specifically measuring β-ANP is not particularly limited, but a method that can specifically recognize β-ANP and does not substantially recognize α-ANP or γ-ANP is mentioned. It is done. Preferably, a measurement system using an antibody recognizing an amino acid sequence containing a β-ANP disulfide bond, more preferably a measurement system using an antibody recognizing a β-ANP disulfide bond and its surrounding amino acid sequence is selected. .

β−ANPや総ANPを測定する方法として、免疫学的測定方法を用いる場合は、標識を用いることができる。標識としては、125I、Hなどの放射性物質、西洋わさびペルオキシダーゼ、β−D−ガラクトシダーゼ、アルカリホスファターゼ(ALP)などの酵素、フルオレッセインなどの蛍光物質、金コロイド、セレンコロイド、ルシフェリンなどの発光又は発色物質などが用いられ、標識された抗原あるいは抗体が試薬として用いられている。また、直接これらの物質を検出に用いる物質に標識せず、ビオチン−アビジン等を利用して間接的に標識してもよい。抗原に結合した標識物質を検出することは、例えば、公知の酵素免疫測定法(EIA、ELISA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、発光免疫測定法(LIA)又は発光酵素免疫測定法(CLEIA)等により行うことができる。 As a method for measuring β-ANP and total ANP, a label can be used when an immunological measurement method is used. Examples of labels include radioactive substances such as 125 I and 3 H, enzymes such as horseradish peroxidase, β-D-galactosidase and alkaline phosphatase (ALP), fluorescent substances such as fluorescein, colloidal gold, selenium colloid and luciferin. Luminescent or coloring substances are used, and labeled antigens or antibodies are used as reagents. Alternatively, these substances may be directly labeled using biotin-avidin or the like without being labeled with a substance used for detection. Detecting a labeled substance bound to an antigen can be performed by, for example, a known enzyme immunoassay (EIA, ELISA), radioimmunoassay (RIA), fluorescent immunoassay (FIA), luminescence immunoassay (LIA) or It can be performed by a luminescent enzyme immunoassay (CLEIA) or the like.

またβ−ANPや総ANPを測定する方法として、免疫学的測定方法を用いる場合は、不溶性担体を用いることができる。不溶性担体に関しては、よく知られているガラス、ポリスチレン、ポリプロピレン、デキストランなどの物質からなるビーズ、チューブ、プレート、磁性微粒子など用いることができ、反応後にB/F分離可能な担体が好ましく、その材質などは問わない。また、不溶性担体と抗体(あるいはレセプター、結合蛋白質)との結合は、物理的結合あるいは化学的に中間体を介した結合等、B/F分離時に結合能が失われない方法が好ましい。   Moreover, when using an immunological measuring method as a method for measuring β-ANP and total ANP, an insoluble carrier can be used. As for the insoluble carrier, beads, tubes, plates, magnetic fine particles, etc. made of well-known substances such as glass, polystyrene, polypropylene, dextran, etc. can be used. It doesn't matter. The insoluble carrier and the antibody (or receptor or binding protein) are preferably bound by a method that does not lose the binding ability during B / F separation, such as physical binding or chemical binding via an intermediate.

本発明における試料としては被験体由来の血液等が挙げられ、EDTA・アプロチニン血漿を用いるのが最も好ましい。   Examples of the sample in the present invention include blood derived from a subject, and it is most preferable to use EDTA / aprotinin plasma.

本発明では、β−ANPと総ANPとの比を求める。これは例えば、総ANPに対するβ−ANPの比(β−ANP/総ANP)であってもよく、またβ−ANPに対する総ANPの比(総ANP/β−ANP)であってもよい。   In the present invention, the ratio between β-ANP and total ANP is determined. This may be, for example, the ratio of β-ANP to total ANP (β-ANP / total ANP), or the ratio of total ANP to β-ANP (total ANP / β-ANP).

例えば本願実施例で用いた測定系の場合は、β−ANP/総ANPの値が10%以上の場合は心不全と判定される。   For example, in the case of the measurement system used in the examples of the present application, when the value of β-ANP / total ANP is 10% or more, it is determined as heart failure.

このようにして本発明の方法により心不全を検出することができ、それにより心不全又は心不全治療の効果を判定することができる。   In this way, heart failure can be detected by the method of the present invention, whereby the heart failure or the effect of heart failure treatment can be determined.

またβ−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むキットで、本発明の心不全の検出を行うこともできる。β−ANPを特異的に測定する試薬および総ANPを測定する試薬としては、前述のものを使用することができる。   In addition, the detection of heart failure of the present invention can be performed with a kit containing a reagent that specifically measures β-ANP and a reagent that measures total ANP. As the reagent for specifically measuring β-ANP and the reagent for measuring total ANP, those described above can be used.

本発明により、β−ANPと総ANPとの比から心不全の進行または心不全治療の効果を判定することが可能となった。この方法は心不全の診断に有用である。   According to the present invention, it is possible to determine the progress of heart failure or the effect of treatment for heart failure from the ratio of β-ANP and total ANP. This method is useful for the diagnosis of heart failure.

ヒトにおけるANPの3分子型を示す図である。A.α−、β−、γ−ANPの生合成経路。遺伝子、mRNA、前駆体タンパク質との関係を示す。B.α−、β−、γ−ANPのアミノ酸配列。システイン残基に付した線はジスルフィド結合を示す。It is a figure which shows the 3 molecular type | mold of ANP in a human. A. α-, β-, γ-ANP biosynthetic pathways. The relationship with gene, mRNA, and precursor protein is shown. B. Amino acid sequences of α-, β-, and γ-ANP. Lines attached to cysteine residues indicate disulfide bonds. β−ANPのCLEIA法に用いた抗体の認識部位を示す図である。It is a figure which shows the recognition site | part of the antibody used for CLEIA method of (beta) -ANP. CLEIA法におけるβ−ANPの標準曲線を示す図である。It is a figure which shows the standard curve of (beta) -ANP in CLEIA method. 急性心不全患者(47例)の治療経過[(1)入院時(1st)、(2)入院後1〜2日後(2nd)、(3)入院後5〜8日後(3rd)、(4)退院時(4th)の4時点]における血漿総ANP濃度、血漿β−ANP濃度、β−ANP/総ANPの比、血漿BNP濃度、血清NT−proBNP濃度を示す図である。図中の星印は、入院時(1st)と比較して有意差があることを示す(Dunnett’s test, p<0.05)。Treatment of acute heart failure patients (47 cases) [(1) At hospitalization (1st), (2) 1-2 days after hospitalization (2nd), (3) 5-8 days after hospitalization (3rd), (4) Discharge FIG. 4 is a graph showing plasma total ANP concentration, plasma β-ANP concentration, β-ANP / total ANP ratio, plasma BNP concentration, and serum NT-proBNP concentration at time (4th time point). The asterisk in the figure indicates that there is a significant difference compared to the time of admission (1st) (Dunnett's test, p <0.05).

以下、実施例により本発明をさらに詳細に説明するが、本発明は本実施例により限定されるものではない。また以下の試験では、健常者以外は被験者に本研究の説明文書に基づく説明を行い、文書で同意が得られた被験者の検体を用いて行われた。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a present Example. In the following tests, non-healthy subjects were given explanations to the subjects based on the explanatory documents of this study, and the subjects were given consent from the samples.

[対象被験者]
本実験に使用した検体としては、健常者10例、心不全患者(急性心不全患者)60例の血漿を用いた。急性心不全患者は、(1)入院時、(2)入院後1〜2日後、(3)入院後5〜8日後、(4)退院時の治療経過にあわせて採血した。健常者10例は、男性5例、女性5例で、年齢は40.3±13.5歳(mean±SD)を用いた。急性心不全患者60例は、男性43例、女性17例で、年齢は70.7±12.5歳(mean±SD)を用いた。急性心不全患者60例の入院時および退院時におけるニューヨーク心臓協会(NYHA)による分類、体重、平均血圧、心臓超音波検査(左室内径短縮率)を表1に示す。血漿BNP濃度は市販のCLEIAキット(ルミパルスG1200、富士レビオ社)を用いてEDTA・アプロチニン血漿を測定した。血清NT−proBNP濃度は市販の電気化学発光免疫測定法キット(エクルーシス試薬NT−proBNP II、ロシュ社)を用いて測定した。血漿レニン活性は、ラジオイムノアッセイ二抗体法を用いてEDTA血漿を測定した。血漿アルドステロン濃度は、ラジオイムノアッセイ固相法を用いてEDTA血漿を測定した。サイクリックGMPは、サクシニル化したEDTA血漿をラジオイムノアッセイ法を用いて測定した。血清尿素窒素濃度、血清クレアチニン濃度は、汎用生化学自動分析装置(Labospect 008、日立製作所)を用いて測定した。
[Target subjects]
As samples used in this experiment, plasmas of 10 healthy subjects and 60 heart failure patients (acute heart failure patients) were used. Patients with acute heart failure were (1) hospitalized, (2) 1-2 days after hospitalization, (3) 5-8 days after hospitalization, and (4) blood collected according to the course of treatment at discharge. Ten healthy subjects were 5 males and 5 females, and the age was 40.3 ± 13.5 years (mean ± SD). Sixty patients with acute heart failure were 43 males and 17 females, and the age was 70.7 ± 12.5 years (mean ± SD). Table 1 shows the classification, body weight, mean blood pressure, and cardiac ultrasonography (left ventricular diameter shortening rate) according to the New York Heart Association (NYHA) at the time of hospitalization and discharge of 60 patients with acute heart failure. The plasma BNP concentration was determined by measuring EDTA / aprotinin plasma using a commercially available CLEIA kit (Lumipulse G1200, Fujirebio). Serum NT-proBNP concentration was measured using a commercially available electrochemiluminescence immunoassay kit (Eccursis Reagent NT-proBNP II, Roche). Plasma renin activity was measured in EDTA plasma using the radioimmunoassay two-antibody method. Plasma aldosterone concentrations were measured in EDTA plasma using a radioimmunoassay solid phase method. Cyclic GMP was measured using radioimmunoassay on succinylated EDTA plasma. Serum urea nitrogen concentration and serum creatinine concentration were measured using a general-purpose biochemical automatic analyzer (Labospect 008, Hitachi, Ltd.).

[ヒト血漿抽出物の調製]
ヒト正常血漿は市販品(EDTA−2Na、コージンバイオ社 12271440)を使用した。血漿抽出物の調製には固相抽出カートリッジ(Sep−Pak C18 Plus、Waters社 WAT020515)を用いた。具体的には、固相抽出カートリッジを5mLの60% アセトニトリル/0.1%トリフルオロ酢酸(TFA)溶液にて洗浄し、5mLの0.1%TFA溶液にて平衡化した後、300μLの血漿を添加した。5mLの10% アセトニトリル/0.1% TFA溶液にて2回洗浄した後、6mLの40% アセトニトリル/0.1% TFA溶液にて溶出した。溶出液を濃縮した後、凍結乾燥し、反応液に溶解して測定に用いた。
[Preparation of human plasma extract]
As human normal plasma, a commercially available product (EDTA-2Na, Kojin Bio Inc. 12271440) was used. A solid phase extraction cartridge (Sep-Pak C18 Plus, Waters WAT020515) was used for the preparation of the plasma extract. Specifically, the solid-phase extraction cartridge was washed with 5 mL of 60% acetonitrile / 0.1% trifluoroacetic acid (TFA) solution, equilibrated with 5 mL of 0.1% TFA solution, and then 300 μL of plasma. Was added. After washing twice with 5 mL of 10% acetonitrile / 0.1% TFA solution, elution was performed with 6 mL of 40% acetonitrile / 0.1% TFA solution. The eluate was concentrated, freeze-dried, dissolved in the reaction solution and used for measurement.

(1)β−ANPの測定試薬の調製
[実験用試薬等]
・固相化用緩衝液:50mM炭酸−重炭酸緩衝液(pH9.5)
・PEG化試薬溶液:5μM methyl−PEG12−NHS ester(Thermo Scientific社 22685)、PBS(pH7.4)
・ブロッキング溶液:25mM Tris−HCl(pH7.4)、150mM NaCl、2% BlockAce(DSファーマバイオメディカル社 UK−B80)、5% ウマ血清、20% スクロース
・洗浄液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.05% Triton X−100、0.05% NaN
・反応液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.5mM EDTA−2Na、5% BSA、0.05% Triton X−100、500KIU/mL アプロチニン(和光純薬社)、0.05% NaN
・検出抗体希釈用緩衝液:25mM Tris−HCl(pH7.4)、150mM NaCl、0.4% BlockAce、0.05% NaN
・化学発光基質:CDP−Star with Emerald II(Applied Biosystems社 T2216)
[ALP標識#32−3の調製]
β−ANPのジスルフィド結合を含むアミノ酸配列を認識するマウスモノクローナル抗体#32−3(図2参照)のALP標識にはAlkaline Phosphatase Labeling Kit−NH(同仁化学社 L12)を用いた。標識および標識抗体の精製は製造業者のマニュアルに従い行った。なおマウスモノクローナル抗体#32−3の製法は、後述の参考例に記載した。
(1) Preparation of β-ANP measurement reagent [Experimental reagent, etc.]
-Buffer for solid phase: 50 mM carbonate-bicarbonate buffer (pH 9.5)
PEGylation reagent solution: 5 μM methyl-PEG 12 -NHS ester (Thermo Scientific 22865), PBS (pH 7.4)
Blocking solution: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2% BlockAce (DS Pharma Biomedical UK-B80), 5% horse serum, 20% sucrose. Washing solution: 25 mM Tris-HCl (pH 7.4) ), 150 mM NaCl, 0.05% Triton X-100, 0.05% NaN 3
Reaction solution: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.5 mM EDTA-2Na, 5% BSA, 0.05% Triton X-100, 500 KIU / mL aprotinin (Wako Pure Chemical Industries), 0. 05% NaN 3
Detection antibody dilution buffer: 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.4% BlockAce, 0.05% NaN 3
Chemiluminescent substrate: CDP-Star with Emerald II (Applied Biosystems T2216)
[Preparation of ALP Label # 32-3]
Alkaline Phosphatase Labeling Kit-NH 2 (Dojin Chemical Co., Ltd. L12) was used for ALP labeling of mouse monoclonal antibody # 32-3 (see FIG. 2) that recognizes an amino acid sequence containing a β-ANP disulfide bond. Purification of the label and labeled antibody was performed according to the manufacturer's manual. The production method of mouse monoclonal antibody # 32-3 was described in Reference Examples described later.

[#131−7固相化プレートの作製]
本CLEIA法では、ヒトα−ANPの13〜17残基目をエピトープとするウサギポリクローナル抗体#131−7(Anal. Biochem., 461;10−16,2014)(図2参照)を固相化抗体として用いた。ウサギポリクローナル抗体#131−7の製法は、後述の参考例に記載した。固相化プレートの作製では、プレートへの非特異的吸着および固相化抗体のFc領域への血漿由来成分の結合を低減するため、従来のCLEIA法と比較して、固相化抗体のFc領域を標的としたポリエチレングリコール修飾(PEG化)を追加した方法(Anal. Biochem., 461;10−16,2014)を採用した。具体的には、固相化用緩衝液に溶解した#131−7(3μg/mL、150μL)を96穴プレート(Fluoro−Nunc Maxi−Sorp、Nunc社 437796)に添加し、4℃で24時間インキュベートした。抗体溶液を除去し、PEG化試薬溶液(100μL)を添加し、室温で30分間インキュベートした。PEG化試薬溶液を除去し、ブロッキング溶液(200μL)を添加し、室温で2時間インキュベートした。ブロッキング溶液を除去した#131−7固相化プレートをデシケーターにより乾燥させ、酸素吸収剤(アズワン社 1−6655−02)およびゼオライト乾燥剤(アズワン社 1−6655−03)と同封して密閉し、使用時まで−20℃にて保存した。
[Production of # 131-7 solid-phase plate]
In the present CLEIA method, a rabbit polyclonal antibody # 131-7 (Anal. Biochem., 461; 10-16, 2014) (see FIG. 2) having epitopes 13 to 17 as human α-ANP as an epitope is immobilized. Used as an antibody. The production method of rabbit polyclonal antibody # 131-7 was described in Reference Examples described later. In the preparation of a solid-phased plate, in order to reduce non-specific adsorption to the plate and the binding of plasma-derived components to the Fc region of the solid-phased antibody, the Fc of the solid-phased antibody was compared with the conventional CLEIA method. A method (Anal. Biochem., 461; 10-16, 2014) in which polyethylene glycol modification (PEGylation) targeting the region was added was employed. Specifically, # 131-7 (3 μg / mL, 150 μL) dissolved in an immobilization buffer was added to a 96-well plate (Fluoro-Nunc Maxi-Sorp, Nunc 437796) for 24 hours at 4 ° C. Incubated. The antibody solution was removed, PEGylation reagent solution (100 μL) was added and incubated for 30 minutes at room temperature. The PEGylation reagent solution was removed, blocking solution (200 μL) was added and incubated for 2 hours at room temperature. The # 131-7 solid phase-immobilized plate from which the blocking solution has been removed is dried with a desiccator and sealed with an oxygen absorbent (ASONE 1-6655-02) and a zeolite desiccant (ASONE 1-6655-03). Stored at -20 ° C until use.

[CLEIA法を用いた測定手順]
マイクロプレートウォッシャー(バイオテック社 AMW−8R)を用いて#131−7固相化プレートを洗浄液(350μL)で3回洗浄した。反応液(50μL)を各ウェルに添加した後、標準β−ANP溶液(反応液に溶解した定量済の合成β−ANP溶液、ペプチド研究所)またはヒト血漿抽出物溶液(50μL)を添加し、マイクロプレートシェーカー(日伸理化社 N−704)を用いて振盪撹拌しながら4℃で24時間インキュベートした。上記と同様に3回洗浄した後、検出抗体希釈用緩衝液で0.2ng/mLに希釈したALP標識#32−3溶液(100μL)を添加し、マイクロプレートシェーカーを用いて振盪撹拌しながら室温で1時間インキュベートした。上記と同様に4回洗浄した後、化学発光基質(100μL)を添加し、室温で20分間インキュベートした。マイクロプレートルミノメーター(SpectraMax L、Molecular Devices社)により1秒間に生ずる発光量を測定した。各試料は異なる2ウェルで個別に測定し、その平均値より定量値を算出した。
[Measurement Procedure Using CLEIA Method]
Using a microplate washer (Biotech AMW-8R), the # 131-7 solid-phased plate was washed three times with a washing solution (350 μL). After adding reaction solution (50 μL) to each well, standard β-ANP solution (quantitative synthetic β-ANP solution dissolved in reaction solution, Peptide Institute) or human plasma extract solution (50 μL) is added, The mixture was incubated at 4 ° C. for 24 hours with shaking and stirring using a microplate shaker (Nissen Rika Co., Ltd. N-704). After washing three times in the same manner as described above, ALP-labeled # 32-3 solution (100 μL) diluted to 0.2 ng / mL with a detection antibody dilution buffer was added, and the mixture was stirred at room temperature while stirring using a microplate shaker And incubated for 1 hour. After washing 4 times as above, chemiluminescent substrate (100 μL) was added and incubated at room temperature for 20 minutes. The amount of luminescence generated per second was measured with a microplate luminometer (SpectraMax L, Molecular Devices). Each sample was individually measured in two different wells, and a quantitative value was calculated from the average value.

(2)総ANP測定
総ANPの測定は、市販のCLEIAキット(MI02 シオノギ ANP、シオノギ製薬社)を用いて測定した。
(2) Total ANP measurement Total ANP measurement was performed using a commercially available CLEIA kit (MI02 Shionogi ANP, Shionogi Pharmaceutical Co., Ltd.).

(3)β−ANP/総ANPの比の算出
健常者10例、急性心不全患者60例のβ−ANPと総ANPを測定した。その測定結果からβ−ANP/総ANPの比を算出した。
(3) Calculation of ratio of β-ANP / total ANP β-ANP and total ANP of 10 healthy subjects and 60 acute heart failure patients were measured. The ratio of β-ANP / total ANP was calculated from the measurement results.

(4)考察
健常者、急性心不全患者におけるβ−ANP/総ANPを表1(60例;入院時と退院時の比較)と図4(47例;1回目〜4回目の経時的変動)に示す。
(4) Discussion β-ANP / total ANP in healthy subjects and patients with acute heart failure are shown in Table 1 (60 cases; comparison between hospitalization and discharge) and FIG. 4 (47 cases; first to fourth changes over time). Show.

Figure 2016180665
表1は、急性心不全患者(60例)の治療経過における入院時及び退院時の血漿β−ANP濃度、血漿総ANP濃度、β−ANP/総ANP、心臓超音波検査(左室内径収縮率)、血漿BNP濃度、血清NT−proBNP濃度、血漿サイクリックGMP濃度、血漿レニン活性、血漿アルドステロン濃度、腎機能の指標(血清尿素窒素濃度、血清クレアチニン濃度、推算糸球体濾過量)を示す。
Figure 2016180665
Table 1 shows plasma β-ANP concentration, total plasma ANP concentration, β-ANP / total ANP, and echocardiogram (left ventricular diameter contraction rate) at the time of hospitalization and discharge in the course of treatment of acute heart failure patients (60 patients). , Plasma BNP concentration, serum NT-proBNP concentration, plasma cyclic GMP concentration, plasma renin activity, plasma aldosterone concentration, renal function index (serum urea nitrogen concentration, serum creatinine concentration, estimated glomerular filtration rate).

急性心不全患者の総ANPとβ−ANPは治療経過とともに低下していたが、退院時(4回目)ではどちらの値も健常者よりも高い値を示していた。一方、β−ANP/総ANPは健常者と同等の値を示していた。退院時には、心臓超音波検査における左室内径短縮率の上昇、NYHA分類の低下、体重の低下、平均血圧の低下で示されるように、心不全重症度が軽減したと判断されたことから、本方法で測定したβ−ANP/総ANPが心不全の改善に相関していることが示された。また、β−ANPおよびβ−ANP/総ANPは、既存の心不全マーカーであるBNPやNT−proBNPとは異なる経時的変動を示した。腎機能の指標(血清尿素窒素、血清クレアチニン、推算糸球体濾過量)が入院時と退院時では同等であったことから(表1)、上記のANP分子型の血漿濃度の変動は、腎機能の変化によるものではないと示された。本実施例の結果と文献等の研究に基づくと、総ANPは心不全の増悪に伴って増加してくるが、β−ANPの挙動が他のANPやBNP、NT−proBNPとは異なる挙動を示すことから、β−ANP/総ANPを観察することにより、心不全の進行または心不全治療の効果を判定することができる。また、BNPやNT−proBNPと併用することにより、心不全の進行の評価精度、心不全治療の効果判定の精度を上げることができると考えられる。   The total ANP and β-ANP of patients with acute heart failure decreased with the course of treatment, but both values were higher than those of healthy subjects at the time of discharge (fourth time). On the other hand, β-ANP / total ANP showed a value equivalent to that of healthy subjects. At the time of discharge, it was determined that the severity of heart failure was reduced as indicated by increased left ventricular diameter shortening rate, decreased NYHA classification, decreased body weight, and decreased mean blood pressure in cardiac ultrasonography. It was shown that β-ANP / total ANP measured in (1) correlated with improvement of heart failure. In addition, β-ANP and β-ANP / total ANP showed temporal changes different from those of existing heart failure markers BNP and NT-proBNP. Since the indicators of renal function (serum urea nitrogen, serum creatinine, estimated glomerular filtration rate) were the same at the time of hospitalization and at the time of discharge (Table 1), fluctuations in the plasma concentration of the above ANP molecular type It was shown that it was not due to changes in Based on the results of this example and studies in the literature, the total ANP increases with worsening heart failure, but the behavior of β-ANP is different from that of other ANP, BNP, and NT-proBNP. Therefore, by observing β-ANP / total ANP, the progression of heart failure or the effect of heart failure treatment can be determined. Moreover, it is thought that the combined use with BNP or NT-proBNP can improve the evaluation accuracy of the progression of heart failure and the accuracy of the effect determination of the heart failure treatment.

(5)参考例:マウスモノクローナル抗体#32−3及びウサギポリクローナル抗体#131−7の製法
(5−1)モノクローナル抗体産生ハイブリドーマの調製とモノクローナル抗体の産生
[抗原の調製]
固相法で合成、精製した還元型ヒトα−ANP(シグマジェノシス社製、2.1mg)を、ジスルフィド結合を形成しない状態で、マレイミド活性化キーホールリンペットヘモシアニン(3mg、Thermo Scientific社 77605)と結合した。これを透析し、生理的食塩水で1mg/mLの溶液とした。
(5) Reference Example: Production Method of Mouse Monoclonal Antibody # 32-3 and Rabbit Polyclonal Antibody # 131-7 (5-1) Preparation of Monoclonal Antibody-Producing Hybridoma and Production of Monoclonal Antibody [Preparation of Antigen]
Reduced human α-ANP (manufactured by Sigma Genosys, 2.1 mg) synthesized and purified by a solid-phase method is maleimide-activated keyhole limpet hemocyanin (3 mg, Thermo Scientific 77605) without forming a disulfide bond. ). This was dialyzed and made into a 1 mg / mL solution with physiological saline.

[モノクローナル抗体産生ハイブリドーマの調製]
抗原溶液100μLとアジュバント100μL(Freund complete adjuvant,三菱化学ヤトロン社 RM606−1)を十分に混合して安定したエマルジョンにして、4週齢のC3H系マウス(4匹)の足の裏に各50μLずつ免疫した。これを合計5回、3日おきに実施した。最終免疫の3日後にマウス両足からリンパ節を収集し、リンパ節内の細胞を回収した。リンパ節由来細胞と増殖させたミエローマ細胞(P3U1)を2:1〜10:1の割合で混和し、遠心して回収後、50%ポリエチレングリコールを加えて細胞を融合させた。
[Preparation of monoclonal antibody-producing hybridoma]
100 μL of antigen solution and 100 μL of adjuvant (Freund complete adjuvant, Mitsubishi Chemical Yatron RM606-1) were mixed thoroughly to form a stable emulsion, 50 μL each on the sole of 4 week old C3H mice (4 mice) I was immunized. This was performed a total of 5 times every 3 days. Three days after the final immunization, lymph nodes were collected from both mouse feet, and cells in the lymph nodes were collected. Lymph node-derived cells and proliferated myeloma cells (P3U1) were mixed at a ratio of 2: 1 to 10: 1, collected by centrifugation, and then 50% polyethylene glycol was added to fuse the cells.

無血清培地で洗浄後、レスキュー用supplement含有の15%ウシ胎児血清含有HAT培地に懸濁し、96穴プレート3枚に播種した。1〜2週間後に、ハイブリドーマのコロニー形成を確認し、各ウェルから培養上清を一部回収した。   After washing with serum-free medium, the suspension was suspended in 15% fetal bovine serum-containing HAT medium containing rescue supplements and seeded in three 96-well plates. After 1 to 2 weeks, formation of hybridoma colonies was confirmed, and a portion of the culture supernatant was collected from each well.

[ハイブリドーマの1次スクリーニング]
1次スクリーニングは標準的なELISA法(Methods in Immunodiagnosis 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980; Campbell, et al., Methods and Immunology, W. A. Benjamin, Inc., 1964; Oellerich, M., J. Clin. Chem. Clin. Biochem. 22:895−904, 1984; 羊土社 タンパク質実験ノート(下)岡田雅人編集 改訂第4版 2011年11月1日発行)で実施した。抗原を1μg/mLに希釈後、96穴プレート(NUNC 468667)に分注し、4℃で一晩、静置した。抗原溶液を除去後、Blocking Bufferを100μL/wellで分注し、ブロッキングを行った。培養上清50μLを各ウェルに添加して反応させた。洗浄後、西洋わさびペルオキシダーゼで標識した抗マウスIgGヤギ抗体と反応後、発色剤を添加し、450nmの吸光度を測定した。ヘモシアニンに対する吸光度が0.2以下で、抗原に対する特異的な吸光度を0.2以上有するクローンを陽性として選択した。
[Primary screening of hybridoma]
Primary screening was performed using standard ELISA methods (Methods in Immunodiagnosis 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980; Campbell, et al., Et al., Meth. Oellerich, M., J. Clin. Chem. Clin. Biochem.22: 895-904, 1984; Yochisha Protein Experiment Notes (below) edited by Masato Okada, revised 4th edition, issued on November 1, 2011) did. The antigen was diluted to 1 μg / mL, dispensed into a 96-well plate (NUNC 466667), and allowed to stand at 4 ° C. overnight. After removing the antigen solution, Blocking Buffer was dispensed at 100 μL / well for blocking. 50 μL of the culture supernatant was added to each well for reaction. After washing, after reacting with anti-mouse IgG goat antibody labeled with horseradish peroxidase, a color former was added and the absorbance at 450 nm was measured. A clone having an absorbance for hemocyanin of 0.2 or less and a specific absorbance for antigen of 0.2 or more was selected as positive.

[ハイブリドーマの2次スクリーニング]
ヒトα−ANP(ペプチド研究所製)を還元後、カルボキシアミドメチル(CAM)化し、RP−HPLCで精製した。精製したCAM−α−ANPをラクトペルオキシダーゼ法によりヨード125(125I)で標識し、RP−HPLCで精製することにより、1分子の125Iで標識されたペプチドを調製した。以下の反応には、RIA用標準バッファー(RIAバッファー、50 mMリン酸緩衝液、80mM NaCl、25mM EDTA、0.05% NaN、0.5% N−エチルマレイミド処理済BSA(SIGMA−Aldrich社 A7888)、0.5% Triton X−100、pH7.4)(Katafuchi T, et al., J. Biol. Chem., 278:12046−12054, 2003)を使用した。
[Secondary screening of hybridomas]
Human α-ANP (manufactured by Peptide Institute) was reduced, converted to carboxyamidomethyl (CAM), and purified by RP-HPLC. The purified CAM-α-ANP was labeled with iodo125 ( 125 I) by the lactoperoxidase method and purified by RP-HPLC to prepare one molecule of 125 I-labeled peptide. For the following reaction, RIA standard buffer (RIA buffer, 50 mM phosphate buffer, 80 mM NaCl, 25 mM EDTA, 0.05% NaN 3 , 0.5% N-ethylmaleimide-treated BSA (SIGMA-Aldrich) A7888), 0.5% Triton X-100, pH 7.4) (Katafuchi T, et al., J. Biol. Chem., 278: 12046-12504, 2003).

1次スクリーニング陽性クローンの培養上清を,1/10希釈より3倍希釈系列液を各100μL作製し、これに約20,000cpmの125I標識CAM−α−ANP(125I−CAM−α−ANP)を含む溶液100μL、RIAバッファー100μLを添加、撹拌し、4℃で40時間静置した。抗体に結合した125I−CAM−α−ANPの放射活性量をポリエチレングリコール分離法で分離し測定した(Katafuchi T, et al. 同上文献)。具体的には、リン酸緩衝生理食塩水(PBS、50mMリン酸緩衝液、80mM NaCl、0.05% NaN3、pH7.4)を用いて作製した100μLの1% ウシγ−グロブリン(Sigma−Aldrich社 G5009)溶液および500μの23%ポリエチレングリコール(#6000、ナカライテスク社 28254−85)溶液を加え、混合し、氷上で10分間静置した後、遠心分離(4℃、3000rpm、15分間)し、上清を除去した。得られた沈殿の1分間の放射活性をγカウンター(ARC−1000M、Aloka社)にて測定した。希釈された培養上清でも125I−CAM−α−ANPに対する結合能力のあるクローン5種選択した。 The culture supernatant of the primary screening positive clone was prepared by 100 μL each of a 3-fold diluted serial solution from 1/10 dilution, and about 20,000 cpm of 125 I-labeled CAM-α-ANP ( 125 I-CAM-α- 100 μL of a solution containing ANP) and 100 μL of RIA buffer were added, stirred, and left at 4 ° C. for 40 hours. The amount of radioactivity of 125 I-CAM-α-ANP bound to the antibody was measured by separation using a polyethylene glycol separation method (Katafuchi T, et al., Ibid.). Specifically, 100 μL of 1% bovine γ-globulin (Sigma-Aldrich) prepared using phosphate buffered saline (PBS, 50 mM phosphate buffer, 80 mM NaCl, 0.05% NaN3, pH 7.4). G5009) solution and 500μ 23% polyethylene glycol (# 6000, Nacalai Tesque 28254-85) solution were added, mixed, allowed to stand on ice for 10 minutes, and then centrifuged (4 ° C., 3000 rpm, 15 minutes). The supernatant was removed. The radioactivity of the resulting precipitate for 1 minute was measured with a γ counter (ARC-1000M, Aloka). Five clones capable of binding to 125 I-CAM-α-ANP were selected from the diluted culture supernatant.

[限界希釈法によるモノクローン化]
上記5種のクローンを増殖し、対数増殖期の状態でハイブリドーマを分散させ、培地で希釈後、96穴プレートに播種した。1〜2週間後にハイブリドーマのシングルコロニーの形成が確認された段階で、各ウェルから培養上清をサンプリングし、上述の「ハイブリドーマの1次スクリーニング」に記載した方法に従い、活性を評価した。抗原に対する特異的な吸光度の強いクローンを各3種、合計15種を選択した。
[Monocloning by limiting dilution method]
The above five clones were grown, hybridomas were dispersed in a logarithmic growth phase, diluted with a medium, and then seeded in a 96-well plate. After the formation of a single colony of hybridoma was confirmed after 1 to 2 weeks, the culture supernatant was sampled from each well, and the activity was evaluated according to the method described in the above-mentioned “primary screening of hybridoma”. Three clones each having a strong specific absorbance against the antigen were selected, for a total of 15 clones.

[ハイブリドーマの3次スクリーニング]
CAM−α−ANPに加えて、α−ANP、β−ANP(ペプチド研究所製)をそれぞれラクトペルオキシダーゼ法により125Iで標識後、RP−HPLCで精製し、1分子の125Iで標識されたペプチドを調製した(125I−α−ANP、125I−β−ANP)。
[Third screening of hybridomas]
In addition to CAM-α-ANP, α-ANP and β-ANP (manufactured by Peptide Institute) were each labeled with 125 I by the lactoperoxidase method, then purified by RP-HPLC and labeled with one molecule of 125 I. Peptides were prepared ( 125 I-α-ANP, 125 I-β-ANP).

上記5種のクローンより調製した各3種のクローンについて、連続した希釈液を作製し、125I−CAM−α−ANPに対する結合能力を評価し、2次スクリーニングより得られた5種のクローンより得られた各3種のクローンの中で、最も結合能力の高いクローンを選択した。 For each of the three clones prepared from the above five clones, serial dilutions were prepared, the binding ability to 125 I-CAM-α-ANP was evaluated, and the five clones obtained from the secondary screening were used. Among the three clones obtained, the clone with the highest binding ability was selected.

これら5種について、連続した希釈液を作製し、125I−α−ANP、125I−β−ANPを用いて2次スクリーニングに記載した方法に従い、各ペプチドに対する結合能力を評価した。 About these 5 types, the serial dilution liquid was produced and the binding ability with respect to each peptide was evaluated according to the method described in the secondary screening using 125 I- (alpha) -ANP and 125 I- (beta) -ANP.

次に、通常のRIA法に従い、125I−β−ANP、125I−CAM−α−ANP、125I−α−ANPをトレーサーとして、それぞれについてβ−ANP、α−ANP、CAM−α−ANPの標準曲線あるいは交差活性曲線を作成し、各クローンの特異性、感度を評価した。その結果、β−ANPに対して強い結合活性を有し、α−ANP、CAM−α−ANPとの交差性が少なく、かつRIA法において高感度にβ−ANPを測定できるクローン(#32−3)を選択した。 Next, according to a normal RIA method, 125 I-β-ANP, 125 I-CAM-α-ANP, 125 I-α-ANP are used as tracers, and β-ANP, α-ANP, and CAM-α-ANP are respectively used as tracers. A standard curve or cross-activity curve was prepared, and the specificity and sensitivity of each clone were evaluated. As a result, a clone having a strong binding activity to β-ANP, a low cross-reactivity with α-ANP and CAM-α-ANP, and capable of measuring β-ANP with high sensitivity by the RIA method (# 32- 3) was selected.

[モノクローナル抗体#32−3の産生]
腹水採取用にはヌードマウスを使用し、アジュバントとしてプリスタンを腹腔に注射して1週間後のマウスを用いた。選定したクローン(#32−3)を増殖、培養し、PBSにて懸濁し、上記のマウスに1匹当たり約1×10細胞を腹腔に注射した。2週間後ごろになると腹水がたまるので、経過をよく観察して腹水を複数回にわたり回収した。回収する容器には、予め保存用抗凝固剤(ACD液)を添加して凝固を抑制した。遠心により血球成分や不要物を除去し、上清を凍結保存した。
[Production of monoclonal antibody # 32-3]
Nude mice were used for collecting ascites, and mice one week after injection of pristane as an adjuvant were used. The selected clone (# 32-3) was grown, cultured, suspended in PBS, and about 1 × 10 6 cells per mouse were injected into the peritoneal cavity. Ascites accumulated around 2 weeks, and the ascites was collected several times with careful observation. A preservative anticoagulant (ACD solution) was added to the container to be collected in advance to suppress coagulation. Blood cell components and unnecessary substances were removed by centrifugation, and the supernatant was stored frozen.

(5−2)抗体の精製
[精製モノクローナル抗体#32−3の調製]
腹水の上清画分からのモノクローナル抗体の精製にはAffi Gel Protein A(BioRad社 153−6153)を用いたプロテインA結合アフィニティーカラムを使用した。アフィニティーカラムへのサンプルの結合、洗浄、溶出は製造業者のマニュアルに従った。溶出液を500μLごとに、予め1Mトリス塩酸緩衝液(pH9.0)160μLを加えた1.5mL容チューブに回収した。精製モノクローナル抗体を含む画分を、PBS中で4℃、オーバーナイトにて透析した。精製した溶液中のタンパク質量をBCA Protein Assay Kit(Pierce社 23227)を用いて定量した。
(5-2) Purification of antibody [Preparation of purified monoclonal antibody # 32-3]
A protein A-binding affinity column using Affi Gel Protein A (BioRad 153-1615) was used for purification of the monoclonal antibody from the ascites supernatant fraction. Binding of the sample to the affinity column, washing and elution were in accordance with the manufacturer's manual. The eluate was collected in a 1.5 mL tube to which 160 μL of 1M Tris-HCl buffer (pH 9.0) was added in advance every 500 μL. The fraction containing the purified monoclonal antibody was dialyzed overnight at 4 ° C. in PBS. The amount of protein in the purified solution was quantified using BCA Protein Assay Kit (Pierce 23227).

[精製ポリクローナル抗体#131−7の調製]
ポリクローナル抗体#131−7は、A. Sasaki, et al. Hypertension 10;308−312, 1987に記載の方法で調製した。得られたウサギ抗血清にキャリアタンパク質として使用したサイログロブリン(Sigma−Aldrich社 T1001、17mg/mL抗血清)およびアジュバント(M. Butyricum、DIFCO社 526−02651、10mg/mL抗血清)を加え、ローテーターにより撹拌しながら4℃、一晩インキュベートした後、遠心分離(4℃、13,000×g、15分間)し、上清を回収した。上清は直ちに上述のプロテインA結合アフィニティーカラムによる精製に供した。アフィニティーカラムへのサンプルの結合、洗浄、溶出は製造業者のマニュアルに従った。溶出液を500μLごとに、予め1Mトリス塩酸緩衝液(pH9.0)160μLを加えた1.5mL容チューブに回収した。精製ポリクローナル抗体を含む画分を、PBS中で4℃、一晩、透析した。精製した溶液中のタンパク質量をBCA Protein Assay Kitを用いて定量した。このようにして精製ポリクローナル抗体#131−7を得た。これはヒトα−ANPの13〜17残基目をエピトープとするウサギポリクロ―ナル抗体である(Nagai C, Minamino N., Anal. Biochem., 461:10−16, 2014)。
[Preparation of purified polyclonal antibody # 131-7]
Polyclonal antibody # 131-7 was prepared from A. Sasaki, et al. Hypertension 10; 308-312, 1987. Thyroglobulin (Sigma-Aldrich T1001, 17 mg / mL antiserum) and an adjuvant (M. Butyricum, DIFCO 526-02651, 10 mg / mL antiserum) used as carrier proteins were added to the obtained rabbit antiserum, and rotator was used. After incubating overnight at 4 ° C. with stirring, the mixture was centrifuged (4 ° C., 13,000 × g, 15 minutes), and the supernatant was collected. The supernatant was immediately subjected to purification using the above-mentioned protein A binding affinity column. Binding of the sample to the affinity column, washing and elution were in accordance with the manufacturer's manual. The eluate was collected in a 1.5 mL tube to which 160 μL of 1M Tris-HCl buffer (pH 9.0) was added in advance every 500 μL. The fraction containing the purified polyclonal antibody was dialyzed overnight at 4 ° C. in PBS. The amount of protein in the purified solution was quantified using BCA Protein Assay Kit. In this way, purified polyclonal antibody # 131-7 was obtained. This is a rabbit polyclonal antibody having epitopes at residues 13 to 17 of human α-ANP (Nagai C, Minamino N., Anal. Biochem., 461: 10-16, 2014).

(5−3)モノクローナル抗体の特性
ヒトα−ANPおよびβ−ANPに対する精製モノクローナル抗体#32−3の親和定数はRIA法を用いて算出した。具体的には、RIAバッファーを用いて精製モノクローナル抗体の5倍希釈系列液(200μL)を作製し、試験管内にて125Iで標識したα−ANPおよびβ−ANP(20,000cpm、100μL)と混合し、4℃で40時間インキュベートした。抗体に結合した125I−α−ANPまたは125I−β−ANPの放射活性量を上述のポリエチレングリコール分離法で分離し、測定した。125I−α−ANPまたは125I−β−ANPの結合量が50%となる抗体濃度をK値として算出したところ、モノクローナル抗体#32−3はヒトα−ANPに対して1.34×10−8M、ヒトβ−ANPに対して1.69×10−11MのK値を示し、この抗体がβ−ANPを選択的に認識することが実証された。
(5-3) Characteristics of monoclonal antibody The affinity constant of purified monoclonal antibody # 32-3 for human α-ANP and β-ANP was calculated using the RIA method. Specifically, a 5-fold diluted series solution (200 μL) of a purified monoclonal antibody was prepared using an RIA buffer, and α-ANP and β-ANP (20,000 cpm, 100 μL) labeled with 125 I in a test tube were used. Mix and incubate at 4 ° C. for 40 hours. The amount of radioactivity of 125 I-α-ANP or 125 I-β-ANP bound to the antibody was separated by the above-mentioned polyethylene glycol separation method and measured. The antibody concentration at which the binding amount of 125 I-α-ANP or 125 I-β-ANP was 50% was calculated as the K d value. Monoclonal antibody # 32-3 was found to be 1.34 × against human α-ANP. A K d value of 1.69 × 10 −11 M was shown against 10 −8 M, human β-ANP, demonstrating that this antibody selectively recognizes β-ANP.

Claims (3)

試料中のβ−ANPと総ANPとの比を求めることを特徴とする、心不全の検出方法。 A method for detecting heart failure, comprising determining a ratio of β-ANP to total ANP in a sample. 請求項1に記載の方法において、β−ANPと総ANPとの比が、総ANPに対するβ−ANPの比(β−ANP/総ANP)である方法。 2. The method of claim 1, wherein the ratio of [beta] -ANP to total ANP is the ratio of [beta] -ANP to total ANP ([beta] -ANP / total ANP). β−ANPを特異的に測定する試薬および総ANPを測定する試薬を含むことを特徴とする、心不全の検出キット。 A detection kit for heart failure, comprising a reagent that specifically measures β-ANP and a reagent that measures total ANP.
JP2015060777A 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP Active JP6508996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060777A JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060777A JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Publications (2)

Publication Number Publication Date
JP2016180665A true JP2016180665A (en) 2016-10-13
JP6508996B2 JP6508996B2 (en) 2019-05-08

Family

ID=57130971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060777A Active JP6508996B2 (en) 2015-03-24 2015-03-24 Method of detecting heart failure by β-ANP

Country Status (1)

Country Link
JP (1) JP6508996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535448A (en) * 2017-09-25 2020-12-03 ユニバーシティー オブ フロリダ リサーチ ファンデーション, インク. Immunity assay for detection of RAN protein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461500A (en) * 1987-09-01 1989-03-08 Shionogi & Co Alpha-hanp recognizing monoclonal antibody and immunologically measuring reagent for alpha-hanp
JPH01221399A (en) * 1988-02-29 1989-09-04 Shionogi & Co Ltd Monoclonal antibody capable of recognizing alpha-anp immunological measurement method of alpha-anp
JPH0242359A (en) * 1988-06-30 1990-02-13 Shionogi & Co Ltd Immunoassay
JPH02276591A (en) * 1989-04-19 1990-11-13 Shionogi & Co Ltd Monoclonal antibody recognizing c end side of anp
JPH034169A (en) * 1989-05-31 1991-01-10 Green Cross Corp:The Mehtod for immunoassay of hanp antibody and hanp
US20120065075A1 (en) * 2010-07-02 2012-03-15 Prognomix Inc. Method of determining a predisposition to atrial fibrillation (af) in a subject

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461500A (en) * 1987-09-01 1989-03-08 Shionogi & Co Alpha-hanp recognizing monoclonal antibody and immunologically measuring reagent for alpha-hanp
JPH01221399A (en) * 1988-02-29 1989-09-04 Shionogi & Co Ltd Monoclonal antibody capable of recognizing alpha-anp immunological measurement method of alpha-anp
JPH0242359A (en) * 1988-06-30 1990-02-13 Shionogi & Co Ltd Immunoassay
JPH02276591A (en) * 1989-04-19 1990-11-13 Shionogi & Co Ltd Monoclonal antibody recognizing c end side of anp
JPH034169A (en) * 1989-05-31 1991-01-10 Green Cross Corp:The Mehtod for immunoassay of hanp antibody and hanp
US20120065075A1 (en) * 2010-07-02 2012-03-15 Prognomix Inc. Method of determining a predisposition to atrial fibrillation (af) in a subject

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAGAI, C. ET AL.: "Direct chemiluminescent enzyme immunoassay for atrial natriuretic peptide in mammalian plasma using", ANALYTICAL BIOCHEMISTRY, vol. 461, JPN6018031681, 4 June 2014 (2014-06-04), pages 10 - 16, XP029012487, ISSN: 0004009323, DOI: 10.1016/j.ab.2014.05.022 *
黒澤利郎ほか: "心疾患における心房性ナトリウム利尿ペプチド(ANP)濃度とMolecular formの検討", 北里医学, vol. 18, JPN6018037986, 1988, pages 503 - 513, ISSN: 0003888240 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535448A (en) * 2017-09-25 2020-12-03 ユニバーシティー オブ フロリダ リサーチ ファンデーション, インク. Immunity assay for detection of RAN protein

Also Published As

Publication number Publication date
JP6508996B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
US11340239B2 (en) BNP (1-32) epitope and antibodies directed against said epitope
RU2673455C2 (en) Adrenomedullin to guide therapy of blood pressure decline
CN104067130B (en) Adrenomedullin assays and methods for determining mature adrenomedullin
US20050244904A1 (en) Diagnostics based on signal peptide detection
JP2006519754A (en) Identification of thyroid-stimulating hormone receptor autoantibodies using affinity purified antibodies
ES2661516T3 (en) Biomarkers
AU2017294549C1 (en) Adrenomedullin for assessing congestion in a subject with acute heart failure
US9994631B2 (en) Signal biomarkers
WO2016140063A1 (en) Method for measuring oxytocin with high sensitivity
RU2607588C2 (en) Method of producing agent, binding with pre-vasopressin or its fragments
JP6508996B2 (en) Method of detecting heart failure by β-ANP
JP2016079146A (en) SPECIFIC METHOD FOR MEASUREMENT OF β-ANP
JPH01221399A (en) Monoclonal antibody capable of recognizing alpha-anp immunological measurement method of alpha-anp
JP4423426B2 (en) Method of using increased concentration of adrenomedullin precursor C-terminal peptide as an indicator of cardiovascular disease or inflammatory disease
US20090081714A1 (en) Assays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6508996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250