JP6506582B2 - 基板洗浄方法および基板洗浄装置 - Google Patents

基板洗浄方法および基板洗浄装置 Download PDF

Info

Publication number
JP6506582B2
JP6506582B2 JP2015061189A JP2015061189A JP6506582B2 JP 6506582 B2 JP6506582 B2 JP 6506582B2 JP 2015061189 A JP2015061189 A JP 2015061189A JP 2015061189 A JP2015061189 A JP 2015061189A JP 6506582 B2 JP6506582 B2 JP 6506582B2
Authority
JP
Japan
Prior art keywords
liquid
substrate
ultrasonic wave
wave application
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015061189A
Other languages
English (en)
Other versions
JP2016181610A (ja
Inventor
洋祐 塙
洋祐 塙
悠太 佐々木
悠太 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015061189A priority Critical patent/JP6506582B2/ja
Publication of JP2016181610A publication Critical patent/JP2016181610A/ja
Application granted granted Critical
Publication of JP6506582B2 publication Critical patent/JP6506582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、基板の一方主面を洗浄する基板洗浄方法および装置に関するものである。なお、当該基板には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板などが含まれる。
半導体装置や液晶表示装置などの電子部品の製造工程においては、基板の表面に成膜やエッチングなどの処理を繰り返し施して微細パターンを形成する工程が含まれる。ここで、当該基板の裏面にパーティクルが付着していると、これがフォトリソグラフィ工程におけるデフォーカス要因となり、所望の微細パターンを形成するのが難しくなる。また、裏面にパーティクルが付着した基板によってクロスコンタミネーションが発生することもある。さらに、基板搬送時には基板の裏面を真空吸着することが多く、その過程で基板の裏面にパーティクルが付着してしまうことがある。そのため、基板の裏面を洗浄する技術が数多く提案されている。例えば特許文献1に記載の装置は、液体に超音波を印加した超音波印加液を基板の裏面中央部に向けて供給して基板の裏面に対する超音波洗浄を実行している。
特開2010−27816号公報
ところで、特許文献1に記載の装置では、超音波ノズルは基板を保持する基板保持部の主要構成であるスピンベースの径方向外側の近傍でしかも基板の裏面Wbよりも低い位置に位置決めされている。このため、超音波ノズルから基板の裏面中央部までの距離は比較的長く、裏面中央部に到達するまでに液体中でキャビテーションが数多く発生して裏面中央部に供給された時点で既に超音波のエネルギーが大幅に減衰していることがあった。この場合、十分な洗浄効果が得られない。
そこで、超音波ノズルを基板の裏面近傍に配置して上記問題の解消を図るのが望ましい。しかしながら、特許文献1に記載の装置では基板はスピンチャックにより保持されるために、上記ノズル配置は事実上不可能である。すなわち、基板の裏面に洗浄するために、基板はスピンチャックのスピンベースから微小間隔を隔て、基板の裏面がスピンベースと対向するように保持される。このため、基板の裏面の近傍位置に超音波ノズルを配置することは事実上困難であり、基板保持部に対して基板の反対側に超音波ノズルを配置せざるを得ず、依然として超音波ノズルから裏面に超音波印加液が供給されるまでの間に超音波のエネルギーが減衰してしまい、基板の裏面上で十分なキャビテーションが得られないという問題がある。
この発明は上記課題に鑑みなされたものであり、基板保持部により保持される基板のうち基板保持部と対向する一方主面に十分なエネルギーを有する超音波印加液を供給して一方主面を良好に洗浄することができる基板洗浄方法および基板洗浄装置を提供することを目的とする。
この発明の一態様は、基板の一方主面に対向して設けられるスピンベースとスピンベースに設けられたチャックピンとを有し、チャックピンによりスピンベースから所定間隔を隔てて基板を支持する基板保持部により保持される基板の一方主面を洗浄する基板洗浄方法であって、基板保持部に対して基板の反対側の超音波印加位置で超音波を脱気された液体である脱気液に印加して第1超音波印加液を生成し、一方主面に向けて供給する超音波印加液供給工程と、脱気液よりも溶存気体濃度が高い第1気体溶存液に超音波を印加した第2超音波印加液を基板の径方向外側から一方主面の周縁部に供給して第2超音波印加液により一方主面の周縁部を洗浄するとともに、超音波印加位置よりも一方主面に近い位置で第1超音波印加液の溶存気体濃度を上昇させた後で第1超音波印加液により一方主面の中央部を洗浄する洗浄工程とを備えることを特徴としている。
また、この発明の他の態様は、基板洗浄装置であって、基板の一方主面に対向して設けられるスピンベースとスピンベースに設けられたチャックピンとを有し、チャックピンによりスピンベースから所定間隔を隔てて基板を支持して基板を保持する基板保持部と、基板保持部に対して基板の反対側の超音波印加位置で超音波を脱気された液体である脱気液に印加して第1超音波印加液を生成し、一方主面の中央部に向けて供給する第1超音波印加液供給部と、記脱気液よりも溶存気体濃度が高い第1気体溶存液に超音波を印加した第2超音波印加液を基板の径方向外側から一方主面の周縁部に供給する第2超音波印加液供給部とを備え、第2超音波印加液により一方主面の周縁部を洗浄するとともに、超音波印加位置よりも一方主面に近い位置で第1超音波印加液の溶存気体濃度が上昇するように調整された第1超音波印加液で一方主面の中央部を洗浄することを特徴としている。
本発明によれば、超音波印加位置で脱気液に超音波を印加することで超音波印加液は生成されるが、当該超音波印加液はそのまま基板の一方主面に供給されるのではなく、超音波印加位置よりも一方主面に近い位置(以下「基板近接位置」という)で溶存気体濃度の上昇を受けた上で基板の一方主面に供給される。このため、超音波印加液の生成から基板近接位置に至る間、超音波印加液(=脱気液+超音波)ではキャビテーションの発生が抑制され、これによって超音波のエネルギー減衰が抑えられる。一方、基板近接位置では、超音波印加液はエネルギー減衰を免れた超音波と多くの溶存気体とを有しており、そのような状態の超音波印加液が基板の一方主面に供給される。そのため、一方主面上または近傍で数多くのキャビテーションが発生する。その結果、基板の一方主面から離れた超音波印加位置で超音波印加液を生成しているにもかかわらず、基板の一方主面を良好に洗浄することができる。
本発明にかかる基板洗浄装置の第1実施形態を示す図である。 図1に示す装置の部分平面図である。 図1に示す装置の電気的構成を示すブロック図である。 図1に示す基板洗浄装置の動作を示すフローチャートである。 図1に示す基板洗浄装置の動作を模式的に示す図である。 本発明にかかる基板洗浄装置の第2実施形態を示す図である。 本発明にかかる基板洗浄装置の第3実施形態を示す図である。 本発明にかかる基板洗浄装置の第4実施形態を示す図である。 本発明にかかる基板洗浄装置の第5実施形態を示す図である。 本発明にかかる基板洗浄装置の第6実施形態を示す図である。
図1は本発明にかかる基板洗浄装置の第1実施形態を示す図である。また、図2は図1に示す装置の部分平面図である。さらに、図3は図1に示す装置の電気的構成を示すブロック図である。この基板洗浄装置1は、基板Wの表面Wfを上方に向けたフェイスアップ状態で基板Wを保持しながら液体に超音波を印加した超音波印加液によって半導体ウエハ等の基板Wの裏面Wbに付着しているパーティクル(図5中の符号PT)などの不要物を除去する装置である。より具体的には、上記液体としてDIW(脱イオン水:De Ionized Water)を用いるとともに、DIWに対して超音波を印加した超音波印加液を基板Wの裏面Wbに対して供給して裏面洗浄処理を施した後、DIWで濡れた基板Wをスピン乾燥させる装置である。なお、図面への図示を省略するが、基板Wの表面Wfにはpoly−Si等からなるデバイスパターンが形成されている。
基板洗浄装置1は、基板Wの表面Wfを上方に向けた状態で基板Wを略水平姿勢に保持して回転させるスピンチャック10を備えている。スピンチャック10は、回転支軸11がモータを含むチャック回転機構31の回転支軸に連結されており、チャック回転機構31の駆動により回転軸J(鉛直軸)回りに回転可能となっている。回転支軸11の上端部には、円盤状のスピンベース12が一体的にネジなどの締結部品によって連結されている。したがって、装置全体を制御する制御ユニット30からの動作指令に応じてチャック回転機構31が作動することによりスピンベース12が回転軸J回りに回転する。また、制御ユニット30はチャック回転機構31を制御して回転数を調整する。
スピンベース12の周縁部付近には、基板Wの周縁部を把持するための複数個のチャックピン13が立設されている。チャックピン13は、円形の基板Wを確実に保持するために複数個設けてあればよく、スピンベース12の周縁部に沿って基板Wの回転中心(回転軸J)に対して等角度間隔で配置されている。なお、本実施形態では、図2に示すように、3つのチャックピン13が設けられている。
チャックピン13のそれぞれは、基板Wの周縁部を下方から支持する基板支持部と、基板支持部に支持された基板Wの外周端面を押圧して基板Wを保持する基板保持部とを備えている。各チャックピン13は、基板保持部が基板Wの外周端面を押圧する押圧状態と、基板保持部が基板Wの外周端面から離れる解放状態との間を切り替え可能に構成されている。
スピンベース12に対して基板Wが受渡しされる際には、複数個のチャックピン13を解放状態とし、基板Wに対して洗浄処理を行う際には、複数個のチャックピン13を押圧状態とする。押圧状態とすることによって、複数個のチャックピン13は基板Wの周縁部を把持してその基板Wをスピンベース12から所定間隔を隔てた上方位置で略水平姿勢に保持することができる。これにより、基板Wはその表面(パターン形成面)Wfを上方に向け、裏面Wbを下方に向けた状態、つまりフェイスアップ状態で支持される。このように、本実施形態では、基板Wの裏面Wbは、鉛直方向においてスピンチャック10のスピンベース12と所定距離だけ離間しながら対向して配置された状態で、スピンチャック10に保持される。
このように基板Wを保持したスピンチャック10をチャック回転機構31により回転駆動することで基板Wを所定の回転数で回転させながら、基板Wの下方側から基板Wの裏面Wbの中央部、基板Wの外側から基板Wの裏面Wbの周縁部、および基板Wの上方側から基板Wの表面Wfの中央部にDIWが供給されて洗浄処理が実行される。
本実施形態では、回転支軸11は中空形状に仕上げられており、超音波印加液を裏面Wbに向けて供給するための供給管14が回転支軸11の中空部分11aに挿通されている。この供給管14はスピンベース12の上面まで延び、その端面が基板Wの裏面Wbの中央部を臨んでいる。つまり、供給管14の上端部がノズル口141として機能する。一方、供給管14の下端部は基板Wの裏面中央部に供給するための超音波印加液を生成する超音波ノズル50dと接続されている。
超音波ノズル50dは、図1に示すように基板Wを保持するスピンチャック10に対して基板Wの反対側、つまり鉛直下方側の超音波印加位置P1に配置され、バルブ41および脱ガス機構42を介してDIW供給源に配管接続される。このDIW供給源としては、装置1が設置される工場に装備される用力を用いてもよい。もちろん、装置1内にDIWの貯留タンクを設け、これをDIW供給源として用いてもよい。
脱ガス機構42はDIW供給源から送られてくるDIWから溶存気体を取り去る、つまり脱ガス処理を施してDIW中の溶存気体濃度を低下させると、次に説明するようにDIWに超音波を印加してもDIW内でのキャビテーションの発生を抑制することができる。なお、ここでは、DIWに対して脱ガス処理を施してキャビテーション強度を低下させたものを「キャビテーション抑制液」と称し、その技術的意義については後で詳述する。
バルブ制御機構32がバルブ41に開指令を与えると、バルブ41が開いて脱ガス機構42から圧送されるキャビテーション抑制液(脱気液)が導入口51dを介してノズル内部に送り込まれる。さらに、キャビテーション抑制液は、超音波の印加を受けて超音波印加液となり、吐出口52dから供給管14を介して基板Wの裏面中央部に向けて吐出される。より詳しくは、超音波ノズル50dには振動子53dが図1に示すように吐出口52dから吐出されるキャビテーション抑制液の吐出方向において吐出口52dの反対側に配置されている。そして、制御ユニット30からの制御信号に基づき発振器60から発振信号が超音波ノズル50d内の振動子53dに出力されると、振動子53dが振動して超音波を発生させる。一方、バルブ制御機構32からの閉指令に応じてバルブ41が閉じると、超音波ノズル50dへのキャビテーション抑制液の圧送が停止され、超音波印加液の供給も停止される。
この実施形態では、上記超音波ノズル50d以外に、超音波ノズル50sが設けられている。この超音波ノズル50sが上記超音波ノズル50dと大きく相違する点は、その配設位置と、超音波を印加する対象液の種類とであり、その基本構造は同一である。つまり、超音波ノズル50sは、図1および図2に示すようにチャックピン13よりも径方向外側(同図の左手側)の近傍に固定配置され、バルブ43およびガス濃度調整機構44を介してDIW供給源に配管接続される。
ガス濃度調整機構44は、DIW供給源から供給されるDIWに窒素ガスなどの気体を溶解させてDIW中のガス濃度を飽和レベル程度にまで高め、これによってガスリッチなDIWを作成する機能を有している。具体的な構成としては例えば特開2004−79990号公報に記載されたものを用いることができる。このようにDIWでの溶存気体濃度を増大させると、DIWへの超音波の印加によって気泡の発生と消滅、つまりキャビテーションが促進され、優れた洗浄効果が得られる。そこで、本実施形態では、上記洗浄効果を得るためにガスリッチなDIW(以下「キャビテーション促進液」という)を生成する。そして、バルブ制御機構32がバルブ43に開指令を与えると、バルブ43が開いてガス濃度調整機構44から圧送されるキャビテーション促進液が超音波ノズル50sの導入口51sを介してノズル内部に送り込まれ、超音波の印加を受けて超音波印加液となり、吐出口52sから基板Wの裏面周縁部に向けて吐出されて基板Wの裏面Wb全体に超音波印加液(=キャビテーション促進液+超音波)の液膜を形成可能となっている。この超音波ノズル50sも振動子53sが図1に示すように吐出口52sから吐出されるキャビテーション促進液の吐出方向において吐出口52sの反対側に配置されている。そして、制御ユニット30からの制御信号に基づき発振器60から発振信号が振動子53sに出力されると、振動子53sが振動して超音波を発生させる。一方、バルブ制御機構32からの閉指令に応じてバルブ41が閉じると、超音波ノズル50sへのキャビテーション促進液の圧送が停止され、超音波印加液の供給も停止される。
上記したように、本実施形態では、2種類の超音波ノズル50d、50sが設けられ、基板Wの裏面Wbに対し、2種類の超音波印加液、つまり裏面Wbの中央部に供給される超音波印加液(=キャビテーション抑制液+超音波)および裏面Wbの周縁部に供給される超音波印加液(=キャビテーション促進液+超音波)が供給されるが、その作用効果については後で詳述する。なお、これらを区別するために、以下においては、超音波ノズル50dを「下方超音波ノズル50d」と称し、この下方超音波ノズル50dから供給される超音波印加液を「下方超音波印加液DL」と称する一方、超音波ノズル50sを「側方超音波ノズル50s」と称し、この側方超音波ノズル50sから供給される超音波印加液を「側方超音波印加液SL」と称する。
さらに、基板Wの上方側から基板Wの表面Wfの中央部にDIWを供給する機能と、基板Wの表面側にガスを供給する機能とを達成するために、本実施形態は次のように構成されている。すなわち、基板表面の略中央部の上方には、流体噴射ヘッド70が設けられている。流体噴射ヘッド70の上部から2つの流体導入部711、721が立設されている。これらのうち流体導入部711は、外部の窒素ガス供給源から圧送されてくる窒素ガスと、DIW供給源から圧送されてくるDIWとを取り込む機能を有している。一方、流体導入部721は外部の窒素ガス供給源から圧送されてくる窒素ガスを取り込む機能のみを有している。より詳しくは、流体導入部711に対して、外部の窒素ガス供給源と接続されバルブ712を介挿してなる配管713が接続されるとともに、上記した脱ガス機構42と接続されバルブ45を介挿してなる配管714が接続されている。
また、流体導入部711の内部には、2本の供給路715、716が上下方向に延設されており、各供給路715、716の下方端が流体噴射ヘッド70の下面(基板Wの表面Wfと対向する面)で基板Wの略中央に向けて開口し、それぞれガス吐出口717およびDIW吐出口718として機能する。また、各供給路715、716の上方端はそれぞれ配管713、714に連通されている。このため、バルブ制御機構32がバルブ712に開指令を与えると、バルブ712が開いて窒素ガス供給源から供給される窒素ガスを流体噴射ヘッド70へ送り込む。また、バルブ制御機構32がバルブ45に開指令を与えると、バルブ45が開いて脱ガス機構42から圧送されるキャビテーション抑制液(つまり、溶存気体が取り去られたDIW)を流体噴射ヘッド70へ送り込む。一方、バルブ制御機構32からの閉指令に応じてバルブ712、45が閉じると、窒素ガスおよびDIWの供給がそれぞれ停止される。
流体噴射ヘッド70に設けられた、もう一方の流体導入部721には、窒素ガス供給源と接続されバルブ722を介挿してなる配管723が接続されている。バルブ722は制御ユニット30により制御されたバルブ制御機構32によって開閉制御されており、必要に応じてバルブ722を開くことにより、窒素ガス供給源から供給される窒素ガスがガス供給路724を介して流体噴射ヘッド70の内部に形成されたバッファ空間BFに案内される。さらに、流体噴射ヘッド70の側面外周部には、バッファ空間BFに連通されたガス噴射口725が設けられている。
上記したように本実施形態では、2種類の窒素ガス供給系統を有している。そのうちの一方、つまり窒素ガス供給源、バルブ712、配管713および供給路715で構成される供給系統では、窒素ガス供給源から圧送される窒素ガスは、供給路715を通って流体噴射ヘッド70の下面に設けられたガス吐出口717から基板Wの表面中央部に向けて吐出される。
また、他方、つまり窒素ガス供給源、バルブ722、配管723およびガス供給路724で構成される供給系統では、窒素ガス供給源から圧送される窒素ガスは、流体噴射ヘッド70内に形成されたバッファ空間BFに送り込まれた後、ガス噴射口725を通って外部に向け噴射される。このとき、窒素ガスは略水平方向に延びるスリット状のガス噴射口725を通して押し出されるため、噴射された窒素ガスの広がりは、上下方向にはその範囲が規制される一方、水平方向(周方向)にはほぼ等方的となる。つまり、ガス噴射口725から窒素ガスが噴射されることにより、基板Wの上部には、その略中央部から周縁部に向かう薄層状の気流が形成される。特にこの実施形態では、圧送されてきたガスをいったんバッファ空間BFに案内し、そこからガス噴射口725を通して噴射しているので、周方向において均一な噴射量が得られる。また、加圧された窒素ガスが小さなギャップを通って噴出されることにより流速が速くなり、窒素ガスは周囲に向けて勢いよく噴射される。その結果、流体噴射ヘッド70の周囲から窒素ガス流が噴射され、基板Wの表面Wfに向け落下してくるゴミやミスト等および外部雰囲気を基板Wの表面Wfから遮断する。
このように構成された流体噴射ヘッド70は図示を省略するアームによってスピンベース12の上方に保持される一方、該アームは制御ユニット30により制御されるヘッド昇降機構33に接続されて昇降可能に構成されている。かかる構成により、スピンチャック10に保持される基板Wの表面Wfに対して流体噴射ヘッド70が所定の間隔(例えば2〜10mm程度)で対向位置決めされる。また、流体噴射ヘッド70、スピンチャック10、ヘッド昇降機構33およびチャック回転機構31は処理チャンバー(図示省略)内に収容されている。
なお、図3中の符号34は、タッチパネルなどにより構成される表示操作部であり、制御ユニット30から与えられる画像情報を表示する表示部として機能と、ユーザが表示部に表示されたキーやボタンなどを操作して入力した情報を受け取り、制御ユニット30の送信する操作入力部として機能とを兼ね備えている。もちろん、表示部と操作入力部とを個別に設けてもよいことは言うまでもない。また、図3中の符号301は制御ユニット30に設けられた記憶部であり、洗浄処理を行うに際して予め設定される種々の条件、つまり処理条件や洗浄プログラム等を記憶する機能を有している。
次に、上記のように構成された装置の動作について図4および図5を参照しつつ説明する。図4は図1に示す基板洗浄装置の動作を示すフローチャートである。また、図5は図1に示す基板洗浄装置の動作を模式的に示す図である。
処理の開始前には、バルブ41、43、45、712、722はいずれも閉じられており、スピンチャック10は静止している。そして、制御ユニット30は予め記憶部301に記憶されているプログラムにしたがって装置各部を以下のように制御して基板Wの裏面洗浄処理および乾燥処理を行う。すなわち、基板搬送ロボット(図示省略)により1枚の基板Wがスピンチャック10に載置されチャックピン13により保持される(ステップS1)。このとき、必要に応じてヘッド昇降機構33を作動させて流体噴射ヘッド70をスピンチャック10から上方の離間位置に移動させれば基板の搬入をよりスムーズに行うことができるが、基板と流体噴射ヘッド70との間に十分な距離が確保されていれば流体噴射ヘッド70の移動は不要である。後述する基板搬出時においても同様である。
次のステップS2ではスピンチャック10の回転を開始する。また、基板WへのDIW供給を開始する(ステップS3)。より詳しくは、バルブ41を開いてキャビテーション抑制液を下方超音波ノズル50dに圧送し、吐出口52dから基板Wの裏面中央部に向けて吐出する。また、バルブ43を開いてキャビテーション促進液を側方超音波ノズル50sに圧送し、吐出口52sから基板Wの裏面周縁部に向けて吐出する。これにより、図5に示すように基板Wの裏面WbにDIWの液膜Lbが形成される。なお、本実施形態では、キャビテーション抑制液およびキャビテーション促進液がそれぞれ裏面Wbに供給されるため、両者の合流位置(混合位置)P2で混合され、液膜Lb中の溶存気体濃度はキャビテーション抑制液中のそれよりも高くなっている。
一方、基板Wの表面Wfでも液膜Lfを形成する。すなわち、バルブ45を開いてキャビテーション抑制液をDIW吐出口718から基板Wの表面Wfに向けて吐出する。これによって、図5に示すように基板Wの表面Wf上にキャビテーション抑制液の液膜Lfが形成される(液膜形成工程)。
そして、スピンチャック10の回転数が上記プログラム中で設定されている設定回転数に到達する(ステップS4で「YES」)と、発振器60から発振信号を振動子53d、53sに出力する(ステップS5)。側方超音波ノズル50sでは、発振信号を受けて振動した振動子53sによってキャビテーション促進液に超音波が印加されて側方超音波印加液SLが生成される。そして、側方超音波印加液SLが側方超音波ノズル50sから基板Wの裏面周縁部に供給され、さらに裏面Wbに沿って裏面中央部に広がっていく。この側方超音波印加液SLは数多くの溶存気体DGを含んでおり、図5の領域Rsの拡大模式図に示すように基板Wの裏面Wbの近傍で発生するキャビテーションによって裏面WbからパーティクルPTを除去して裏面Wbを洗浄する。側方超音波印加液SLによる洗浄は裏面周縁部側から裏面中央部に向けて進行していく。なお、側方超音波ノズル50sはスピンチャック10の径方向外側の近傍に配置されているため、吐出口52sから側方超音波印加液SLの着液位置までの距離は短く、側方超音波印加液SLでの超音波のエネルギー減衰は少なく、効率的な裏面洗浄を行うことができる。
一方、下方超音波ノズル50dでは、発振信号を受けて振動した振動子53dによってキャビテーション抑制液に超音波が印加されて下方超音波印加液DLが生成される。そして、下方超音波印加液DLは供給管14を介して基板Wの裏面中央部に供給される。したがって、下方超音波印加液DLの送液距離は側方超音波印加液SLに比べて長くなってしまうが、下方超音波印加液DL中の溶存気体濃度は低いため、下方超音波印加液DLでの超音波のエネルギー減衰は少なく、基板Wの裏面中央部に到達した時点でも裏面洗浄に十分なエネルギーが存在している。また、基板Wの裏面中央部では、図5の領域Rcの拡大模式図に示すように、下方超音波印加液DLは位置P2で側方超音波印加液SLと合流し、液膜Lbでの溶存気体濃度が上昇する。このように、本実施形態では、基板Wの裏面中央部においても基板洗浄に好適な環境、つまり十分な溶存気体濃度および超音波の十分なエネルギーが存在しているため、基板Wの裏面中央部で発生するキャビテーションによって裏面WbからパーティクルPTを除去して効率的な裏面洗浄を行うことができる。その結果、基板Wの裏面Wb全体を良好に洗浄することができる(洗浄工程)。
上記した下方超音波印加液DLと側方超音波印加液SLとを用いた洗浄工程は上記プログラム中で設定されている設定時間だけ継続して行われ、ステップS6で当該設定時間の経過が確認されると、発振器60が発振信号の出力を停止し(ステップS7)、それに続いてバルブ41、43、45を閉じてキャビテーション促進液(DIW)およびキャビテーション抑制液(DIW)の供給を停止する(ステップS8)。
こうして洗浄処理が完了すると、基板Wの表面Wfおよび裏面Wbに残るDIWを除去する乾燥処理を行う。すなわち、基板Wを回転させたまま、バルブ722を開き、流体噴射ヘッド70の周囲に設けられたガス噴射口725から窒素ガスの噴射を開始する(ステップS9)。続いて、バルブ712を開き、流体噴射ヘッド70の下面に設けられたガス吐出口717から窒素ガスを基板Wの表面Wfに向けて供給を開始する(ステップS10)。
ガス噴射口725から供給される窒素ガスの流速は速く、しかも上下方向の噴射方向が絞られており、基板Wの上部において中央部から周囲に向かって放射状に流れる窒素ガスのカーテンを形成している。一方、ガス吐出口717から供給される窒素ガスの流速はこれより遅く、かつ基板Wの表面Wfに向けて強く吹き付ける流れとならないように流量が制限される。このため、ガス吐出口717から供給される窒素ガスは、ガス噴射口725から噴射されるカーテン状のガス層と基板Wの表面Wfとにより囲まれる空間に残存する空気をパージし該空間を窒素雰囲気に保つように作用する。そこで、ここでは、ガス噴射口725から供給される窒素ガスを「カーテン用ガス」と称する一方、ガス吐出口717から吐出される窒素ガスを「パージ用ガス」と称している。
こうして基板Wの上方にガスのカーテンを形成するとともに基板Wの表面Wfを窒素雰囲気に保った状態で、スピンチャック10の回転数を上げて基板Wを高速回転させ(ステップS11)、基板Wの表面Wfおよび裏面Wbの純水を振り切ることによって基板Wを乾燥させる。乾燥処理の実行中においてはカーテン用ガスおよびパージ用ガスを供給し続けることによって、乾燥した基板Wの表面Wfへのミスト等の付着や酸化が防止される。乾燥処理が終了するとスピンチャック10の回転を停止し(ステップS12)、パージ用ガスおよびカーテン用ガスの供給を順次停止する(ステップS13、S14)。そして、基板搬送ロボットが乾燥された基板Wをスピンチャック10から取り出し、別の装置へ搬出することで(ステップS15)、1枚の基板Wに対する裏面洗浄処理が完了する。また上記処理を繰り返すことにより、複数の基板を順次処理することができる。
以上のように、この実施形態では、超音波印加位置P1でキャビテーション抑制液(脱気液)に超音波を印加して下方超音波印加液DLを生成し、超音波印加位置P1よりも基板側の基板近接位置P2で裏面Wb上の側方超音波印加液SLに混合させて溶存気体濃度を上昇させている。このため、超音波印加位置P1から基板近接位置P2までの間において下方超音波印加液DLでキャビテーションが発生するのを抑制することができ、これによって下方超音波印加液DLでの超音波のエネルギー減衰が抑えられる。そして、基板近接位置P2では、下方超音波印加液DLはエネルギー減衰を免れた超音波を有したまま上記したように溶存気体濃度の上昇によって裏面Wb上または近傍で数多くのキャビテーションが発生する。その結果、基板Wの裏面Wbから離れた超音波印加位置P1で下方超音波印加液DLを生成しているにもかかわらず、基板Wの裏面Wbを良好に洗浄することができる。
また、基板Wの裏面中央部では主として下方超音波印加液DLに印加された超音波によりキャビテーションが発生し、裏面周縁部では主として側方超音波印加液SLに印加された超音波によりキャビテーションが発生して基板洗浄を行う。したがって、基板Wの裏面全体からパーティクルPTを効果的に除去することができ、基板Wの裏面Wbを良好に洗浄することができる。しかも、除去効率は高い面内均一性を有している。
また、超音波が印加された超音波印加液DL、SLを裏面Wbに与えているために表面Wf側にも音波が伝わり、パターンにダメージを与える可能性がある。しかしながら、本実施形態では、キャビテーション強度が小さいキャビテーション抑制液(脱気液)を用いて基板Wの表面Wfに液膜Lfを形成している。すなわち、表面Wfへの供給前に、DIWに対して脱ガス処理を施すことで溶存気体濃度をキャビテーション促進液よりも低下させ、これによって基板Wの表面Wfに供給する液体、つまりキャビテーション抑制液のキャビテーション強度を低下させている。ここで、「キャビテーション強度」とは、超音波により液中で発生するキャビテーションにより基板Wに作用する単位面積当たりの応力を意味しており、このキャビテーション強度は、キャビテーション係数αおよび気泡崩壊エネルギーUによって決まる。すなわち、キャビテーション係数αは次式
α=(Pe-Pv)/(ρV/2) … (式1)
ただし、Pe:静圧、Pv:蒸気圧、ρ:密度、V:流速、
で求められ、キャビテーション係数αが小さいほどキャビテーション強度は大きくなる。また、気泡崩壊エネルギーUは次式
U=4πrσ=16πσ/(Pe-Pv) … (式2)
ただし、r:崩壊前の気泡半径、σ:表面張力、
で求められ、気泡崩壊エネルギーUが大きいほどキャビテーション強度は大きくなる。
本実施形態では、脱ガス機構42による脱ガス処理によってキャビテーション抑制液に溶存するガス濃度は低く抑えられているため、蒸気圧Pvは大幅に低下している。そのため、キャビテーション係数αは大きくなる一方で、気泡崩壊エネルギーUは小さくなり、キャビテーション抑制液のキャビテーション強度は小さくなっている。その結果、裏面洗浄処理時に表面Wf側に音波が伝わるものの、キャビテーション強度が低く抑えられ、基板表面側でのパターン損壊を効果的に抑制することができる。
図6は本発明にかかる基板洗浄装置の第2実施形態を示す図である。この第2実施形態が第1実施形態と大きく相違する点は、下方超音波印加液DLの溶存気体濃度を上昇させるための構成および位置であり、その他の構成は基本的に第1実施形態と同一である。したがって、以下においては相違点を中心に説明し、同一構成については同一符号を付して構成説明を省略する。
この第2実施形態では、図6に示すように、回転支軸11の中空部分11aにおいて、供給管14から別の供給管15が分岐して反基板側(同図の下方側)に延設されている。この供給管15は、バルブ46を介してガス濃度調整機構44に配管接続される。そして、バルブ制御機構32がバルブ46に開指令を与えると、バルブ46が開いてガス濃度調整機構44から圧送されるキャビテーション促進液が供給管15を介して送液され、供給管14との合流位置P3で混合される。第2実施形態では、図6に示すように、合流位置P3は中空部分11aのうち最も基板Wに近い基板近接位置に設定されている。このため、超音波印加位置P1から合流位置(基板近接位置)P3までの間において下方超音波印加液DLでキャビテーションが発生するのを抑制することができ、これによって下方超音波印加液DLでの超音波のエネルギー減衰が抑えられる。そして、合流位置P3では、下方超音波印加液DLはエネルギー減衰を免れた超音波を有したまま上記したように下方超音波印加液DLの溶存気体濃度が上昇し、側方超音波印加液SLと同様の状態(つまり、キャビテーション促進液に超音波を印加した状態)となり、その状態で基板Wの裏面中央部に供給される。しかも、合流位置P3を基板Wに近接した位置に設定したことで合流位置P3と基板Wの裏面中央部までの距離は、超音波印加位置P1から基板Wの裏面中央部までの距離に比べて大幅に短く、超音波のエネルギー減衰も小さい。その結果、裏面Wb上または近傍で数多くのキャビテーションが発生し、基板Wの裏面Wbから離れた超音波印加位置P1で下方超音波印加液DLを生成しているにもかかわらず、基板Wの裏面Wbを良好に洗浄することができる。
また、第2実施形態では、第1実施形態と同様に、下方超音波印加液DLのみならず、側方超音波印加液SLを基板Wの裏面周縁部に供給しているため、基板Wの裏面全体からパーティクルPTを効率的に除去することができる。さらに、第1実施形態と同様に、上記裏面洗浄中にキャビテーション抑制液(脱気液)の液膜Lfを基板Wの表面Wfに形成しているため、基板表面側でのパターン損壊を効果的に抑制することができる。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記第2実施形態では、供給管14から供給管15を分岐させているが、例えば図7に示すように供給管14、15の代わりに複合配管16を用いてもよい(第3実施形態)。すなわち、複合配管16の配管本体16aは回転支軸11の中空部分11aに挿通自在な形状を有している。そして、配管本体16aの内部に対し、供給管14に相当する管路16bと、供給管15に相当する管路16cとが設けられている。管路16bは下方超音波ノズル50dから吐出される下方超音波印加液DLを基板Wの裏面中央部に向けて案内する一方、管路16cはガス濃度調整機構44から圧送されるキャビテーション促進液を案内し、管路16cとの合流位置P4で下方超音波印加液DLに合流させて溶存気体濃度を上昇させる。なお、この第3実施形態においても、第2実施形態と同様に、合流位置P4は配管本体16aのうち最も基板Wに近い基板近接位置に設定されている。
また、上記第1実施形態ないし第3実施形態では、基板Wの裏面周縁部に側方超音波印加液SLを供給しているが、側方超音波印加液SL(=キャビテーション促進液+超音波)に代え、例えば図8に示すようにノズル80からキャビテーション促進液ALを供給するように構成してもよい(第4実施形態)。この第4実施形態では、基板Wの裏面周縁部では、下方超音波印加液DLを介して裏面Wb上の液膜Lbに送られてきた超音波が裏面Wbに沿って伝播されてキャビテーションが発生する。こうして基板Wの裏面全体が洗浄される。
また、上記第2実施形態および第3実施形態では、基板Wの裏面Wbに下方超音波印加液DL(=キャビテーション促進液+超音波)を供給している。このため、下方超音波印加液DLの供給のみによって、基板Wの裏面全体にキャビテーション促進液で構成される液膜Lbを形成することが可能である。そこで、例えば図9に示すように基板Wの裏面周縁部への側方超音波印加液SLの供給を省略してもよい(第5実施形態)。この第5実施形態では、基板Wの裏面周縁部では、下方超音波印加液DLが裏面Wbに沿って裏面周縁部に広がり、裏面全体でキャビテーションが発生する。こうして基板Wの裏面全体が洗浄される。
また、上記第2実施形態では、合流位置P3でキャビテーション促進液を下方超音波印加液DLに合流させて溶存気体濃度を上昇させているが、キャビテーション促進液の代わりに窒素ガスなどの気体を下方超音波印加液DLに混合させてもよい(第6実施形態)。例えば図10に示すように合流位置P3に散気管17を配置するとともにバルブ47および供給管15を介して窒素ガス供給源から圧送されてくる窒素ガスNGを散気管17に送り込んで溶存気体濃度を上昇させてもよい。
また、上記第1実施形態では、下方超音波ノズル50dからのキャビテーション抑制液の吐出と、側方超音波ノズル50sからのキャビテーション促進液の吐出とを同時に行い(ステップS3)、しかも振動子53d、53sへの発振信号の印加を同時に行っている(ステップS5)。もちろん、これらのタイミングについては任意であり、キャビテーション促進液の吐出をキャビテーション抑制液の吐出よりも早く開始してもよい。
さらに、上記実施形態では、DIWに対して脱ガス処理を施してキャビテーション抑制液を生成し、DIWに窒素ガスなどの気体を溶解させてキャビテーション促進液を生成しているが、洗浄に使用する液体の種類はDIWに限定されるものではなく、イソプロピルアルコール(IPA)、エタノール、ハイドロフルオロエーテル(HFE)を主たる成分とする液体、SC1(アンモニア水と過酸化水素水との混合水溶液)など、基板洗浄に用いる一般的な洗浄液においても同様である。また、キャビテーション抑制液とキャビテーション促進液として互いに異なる組成の液体を用いてもよい。また、DIWに窒素ガスなどの気体を溶解させた液体をキャビテーション促進液として用いる代わりに、洗浄に適した程度の気体を溶存している液体であれば、そのままキャビテーション促進液として用いてもよい。
このように、上記実施形態では、基板Wの裏面Wbおよび表面Wfがそれぞれ本発明の「一方主面」および「他方主面」に相当している。また、スピンチャック10が本発明の「基板保持部」の一例に相当している。また、上記実施形態において、発振信号を振動子53dに与えて下方超音波ノズル50d内でキャビテーション抑制液に超音波を印加して下方超音波印加液DLを生成し、下方超音波ノズル50dから基板Wの裏面中央部に向けて供給する工程が本発明の「超音波印加液供給工程」の一例に相当し、下方超音波ノズル50dが本発明の「超音波印加液供給部」の一例に相当している。また、位置P2〜P4が本発明の「超音波印加位置よりも一方主面に近い位置」の一例に相当している。また、第1実施形態における側方超音波印加液SLおよび第4実施形態におけるキャビテーション促進液ALが本発明の「第1気体溶存液」の一例に相当し、これらを基板Wの裏面周縁部に供給する工程が本発明の「気体溶存液供給工程」の一例に相当している。また、第2実施形態において供給管15を流通するキャビテーション促進液と、第3実施形態において管路16cを流通するキャビテーション促進液とが本発明の「第2気体溶存液」の一例に相当している。また、超音波印加液により裏面Wbを洗浄する、洗浄工程中に基板Wの表面Wfに液膜Lfを形成する工程が本発明の「液膜形成工程」の一例であり、液膜Lfを構成するキャビテーション抑制液(脱気液)が本発明の「保護液」の一例に相当している。さらに、図5に示す第1実施形態における側方超音波ノズル50s、図6に示す第2実施形態および図9に示す第5実施形態における供給管15、図7に示す第3実施形態における複合配管16の管路16c、図8に示す第4実施形態におけるノズル80、ならびに図10に示す第6実施形態における供給管15および散気管17が、本発明の「濃度調整部」の一例に相当している。
以上、具体的な実施形態を例示して説明してきたように、本発明は、例えば、脱気液よりも溶存気体濃度が高い第1気体溶存液を一方主面に供給する気体溶存液供給工程をさらに備え、洗浄工程では、一方主面に供給された第1気体溶存液と、一方主面への供給前の超音波印加液とを混合させて超音波印加液の溶存気体濃度を上昇させるように構成してもよい。これにより、超音波印加液が一方主面に供給される直前に超音波印加液の溶存気体濃度が上昇され、超音波印加液内での超音波のエネルギー減衰を最小化することができる。
また、超音波印加液を供給する位置が任意であるが、気体溶存液供給工程では、基板の径方向外側から一方主面の周縁部に第1気体溶存液を供給して一方主面の全体に行き渡らせ、洗浄工程では、一方主面の中央部の近傍位置で混合を行うようにしてもよい。また、気体溶存液供給工程では、第1気体溶存液に超音波を印加して一方主面に供給してもよく、これによって一方主面全体を均一に洗浄することができる。
また、洗浄工程では、混合を行う混合位置と超音波印加位置との間で、脱気液よりも溶存気体濃度が高い第2気体溶存液を超音波印加液に混合させて超音波印加液の溶存気体濃度を上昇させるように構成してもよい。また、第2気体溶存液の代わりに、気体を混合させてもよい。すなわち、洗浄工程では、混合を行う混合位置と超音波印加位置との間に設けられる散気管に気体を供給することで散気管により気体を超音波印加液に混合させて超音波印加液の溶存気体濃度を上昇させるように構成してもよい。
また、洗浄工程では、脱気液よりも溶存気体濃度が気体溶存液を、超音波印加位置よりも一方主面に近い位置で超音波印加液に混合させて超音波印加液の溶存気体濃度を上昇させるように構成してもよい。また、洗浄工程では、超音波印加位置よりも一方主面に近い位置に散気管に気体を供給することで散気管により気体を、一方主面への供給前の超音波印加液に混合させて超音波印加液の溶存気体濃度を上昇させるように構成してもよい。
さらに、超音波印加液により一方主面を洗浄している間、保護液の液膜を基板の他方主面に形成する液膜形成工程をさらに備え、液膜形成工程では、基板の主面上に存在する液体に超音波が伝わるときに当該液体中で発生するキャビテーションにより基板に作用する単位面積当たりの応力であるキャビテーション強度が一方主面に供給される超音波印加液よりも低い液体を保護液として用いるように構成してもよい。このように保護液の液膜を基板の他方主面に形成することで洗浄工程中に他方主面に伝わる音波による影響を効果的に抑制することができる。
この発明は、超音波が印加された超音波印加液により基板の一方主面を洗浄する基板洗浄技術に好適である。
1…基板洗浄装置
10…スピンチャック(基板保持部)
15…供給管(濃度調整部)
16…複合配管(濃度調整部)
16c…管路(濃度調整部)
17…散気管(濃度調整部)
50d…下方超音波ノズル(超音波印加液供給部)
80…ノズル(濃度調整部)
AL…キャビテーション促進液(第1気体溶存液)
DL…下方超音波印加液
DG…溶存気体
NG…窒素ガス(気体)
P1…超音波印加位置
P2,P3,P4…合流位置
SL…側方超音波印加液(第1気体溶存液)
W…基板
Wb…裏面(基板の一方主面)
Wf…表面(基板の他方主面)

Claims (8)

  1. 基板の一方主面に対向して設けられるスピンベースと前記スピンベースに設けられたチャックピンとを有し、前記チャックピンにより前記スピンベースから所定間隔を隔てて前記基板を支持する基板保持部により保持される前記基板の前記一方主面を洗浄する基板洗浄方法であって、
    前記基板保持部に対して前記基板の反対側の超音波印加位置で超音波を脱気された液体である脱気液に印加して第1超音波印加液を生成し、前記一方主面に向けて供給する超音波印加液供給工程と、
    前記脱気液よりも溶存気体濃度が高い第1気体溶存液に超音波を印加した第2超音波印加液を前記基板の径方向外側から前記一方主面の周縁部に供給して前記第2超音波印加液により前記一方主面の周縁部を洗浄するとともに、前記超音波印加位置よりも前記一方主面に近い位置で前記第1超音波印加液の溶存気体濃度を上昇させた後で前記第1超音波印加液により前記一方主面の中央部を洗浄する洗浄工程と
    を備えることを特徴とする基板洗浄方法。
  2. 請求項1に記載の基板洗浄方法であって、
    記洗浄工程では、前記一方主面の周縁部に供給されて前記一方主面全体に行き渡った前記第2超音波印加液を前記一方主面の中央部の近傍位置で前記第1超音波印加液と混合させて前記第1超音波印加液の溶存気体濃度を上昇させる基板洗浄方法。
  3. 請求項に記載の基板洗浄方法であって、
    前記洗浄工程では、前記混合を行う混合位置と前記超音波印加位置との間で、前記脱気液よりも溶存気体濃度が高い第2気体溶存液を前記第1超音波印加液に混合させて前記第1超音波印加液の溶存気体濃度を上昇させる基板洗浄方法。
  4. 請求項に記載の基板洗浄方法であって、
    前記洗浄工程では、前記混合を行う混合位置と前記超音波印加位置との間に設けられる散気管に気体を供給することで前記散気管により前記気体を前記第1超音波印加液に混合させて前記第1超音波印加液の溶存気体濃度を上昇させる基板洗浄方法。
  5. 請求項1に記載の基板洗浄方法であって、
    前記洗浄工程では、前記脱気液よりも溶存気体濃度が高い気体溶存液を、前記超音波印加位置よりも前記一方主面に近い位置で前記第1超音波印加液に混合させて前記第1超音波印加液の溶存気体濃度を上昇させる基板洗浄方法。
  6. 請求項1に記載の基板洗浄方法であって、
    前記洗浄工程では、前記超音波印加位置よりも前記一方主面に近い位置に設けられた散気管に気体を供給することで前記散気管により前記気体を、前記一方主面への供給前の前記第1超音波印加液に混合させて前記第1超音波印加液の溶存気体濃度を上昇させる基板洗浄方法。
  7. 請求項1ないしのいずれか一項に記載の基板洗浄方法であって、
    前記第1超音波印加液および前記第2超音波印加液により前記一方主面を洗浄している間、保護液の液膜を前記基板の他方主面に形成する液膜形成工程をさらに備え、
    前記液膜形成工程では、前記基板の主面上に存在する液体に超音波が伝わるときに当該液体中で発生するキャビテーションにより前記基板に作用する単位面積当たりの応力であるキャビテーション強度が前記一方主面に供給される前記第1超音波印加液および前記第2超音波印加液よりも低い液体を前記保護液として用いる基板洗浄方法。
  8. 基板の一方主面に対向して設けられるスピンベースと前記スピンベースに設けられたチャックピンとを有し、前記チャックピンにより前記スピンベースから所定間隔を隔てて前記基板を支持して前記基板を保持する基板保持部と、
    前記基板保持部に対して前記基板の反対側の超音波印加位置で超音波を脱気された液体である脱気液に印加して第1超音波印加液を生成し、前記一方主面の中央部に向けて供給する第1超音波印加液供給部と、
    前記脱気液よりも溶存気体濃度が高い第1気体溶存液に超音波を印加した第2超音波印加液を前記基板の径方向外側から前記一方主面の周縁部に供給する第2超音波印加液供給部とを備え、
    前記第2超音波印加液により前記一方主面の周縁部を洗浄するとともに、前記超音波印加位置よりも前記一方主面に近い位置で前記第1超音波印加液の溶存気体濃度が上昇するように調整された前記第1超音波印加液で前記一方主面の中央部を洗浄することを特徴とする基板洗浄装置。
JP2015061189A 2015-03-24 2015-03-24 基板洗浄方法および基板洗浄装置 Active JP6506582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061189A JP6506582B2 (ja) 2015-03-24 2015-03-24 基板洗浄方法および基板洗浄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061189A JP6506582B2 (ja) 2015-03-24 2015-03-24 基板洗浄方法および基板洗浄装置

Publications (2)

Publication Number Publication Date
JP2016181610A JP2016181610A (ja) 2016-10-13
JP6506582B2 true JP6506582B2 (ja) 2019-04-24

Family

ID=57132670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061189A Active JP6506582B2 (ja) 2015-03-24 2015-03-24 基板洗浄方法および基板洗浄装置

Country Status (1)

Country Link
JP (1) JP6506582B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335525A (ja) * 2003-04-30 2004-11-25 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2007311756A (ja) * 2006-04-20 2007-11-29 Pre-Tech Co Ltd 超音波洗浄装置及び超音波洗浄方法
JP4599323B2 (ja) * 2006-04-27 2010-12-15 アルプス電気株式会社 超音波洗浄装置及び超音波洗浄方法
JP2010027816A (ja) * 2008-07-18 2010-02-04 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
JP2016181610A (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
KR101612633B1 (ko) 기판 세정 방법 및 기판 세정 장치
TWI558476B (zh) 基板清潔方法及基板清潔裝置
JP4767138B2 (ja) 基板処理装置、液膜凍結方法および基板処理方法
JP5449953B2 (ja) 基板処理装置および基板処理方法
CN101276739A (zh) 基板处理***和基板清洗装置
JP5891065B2 (ja) 基板処理装置および処理液吸引方法
JP2015088737A (ja) 基板処理方法および基板処理装置
JP2010027816A (ja) 基板処理方法および基板処理装置
JP2008177495A (ja) 基板処理方法および基板処理装置
KR20110038000A (ko) 기판 세정 방법, 기판 세정 장치 및 프로그램 기록 매체
JP2013168422A (ja) 基板処理方法および基板処理装置
JP2009054919A (ja) 基板処理装置
JP6506582B2 (ja) 基板洗浄方法および基板洗浄装置
JP2007048814A (ja) 基板保持装置、半導体製造装置及び半導体装置の製造方法
JP2008159728A (ja) 基板処理装置および基板処理方法
JP6542613B2 (ja) 基板洗浄装置および基板洗浄方法
JP2008066401A (ja) 基板処理装置および基板処理方法
JP6148363B2 (ja) 処理液供給方法
JP6238810B2 (ja) 基板洗浄装置および基板洗浄方法
JP6678448B2 (ja) 基板洗浄方法および基板洗浄装置
JP4877783B2 (ja) 裏面洗浄装置、基板処理装置および裏面洗浄方法
JP2004247752A (ja) クローズドマニュファクチャリング装置およびこの装置を用いて被洗浄基板を処理する方法
JP2017059744A (ja) 基板洗浄装置および基板洗浄方法
KR20220066909A (ko) 처리액 노즐 및 세정 장치
JP6268410B2 (ja) 基板処理装置および基板処理方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250