JP6504365B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP6504365B2
JP6504365B2 JP2015527172A JP2015527172A JP6504365B2 JP 6504365 B2 JP6504365 B2 JP 6504365B2 JP 2015527172 A JP2015527172 A JP 2015527172A JP 2015527172 A JP2015527172 A JP 2015527172A JP 6504365 B2 JP6504365 B2 JP 6504365B2
Authority
JP
Japan
Prior art keywords
solar cell
cell module
wiring
receiving surface
wiring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015527172A
Other languages
Japanese (ja)
Other versions
JPWO2015008466A1 (en
Inventor
聡生 柳浦
聡生 柳浦
裕幸 神納
裕幸 神納
宜英 川下
宜英 川下
亮治 内藤
亮治 内藤
沙織 山下
沙織 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2015008466A1 publication Critical patent/JPWO2015008466A1/en
Application granted granted Critical
Publication of JP6504365B2 publication Critical patent/JP6504365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュールに関する。   The present invention relates to a solar cell module.

太陽電池モジュールは、例えば、複数の太陽電池を配線材で接続してなるストリングがガラス基板等の2つの保護部材で挟まれると共に、ストリングと保護部材との隙間に封止材が充填された構造を有する。配線材は、隣り合う太陽電池の間でモジュールの厚み方向に折れ曲がり、一方の太陽電池の受光面と他方の太陽電池の裏面とにそれぞれ取り付けられている(例えば、特許文献1参照)。   The solar cell module has, for example, a structure in which a string formed by connecting a plurality of solar cells with a wiring material is sandwiched between two protective members such as a glass substrate, and a gap between the string and the protective member is filled with a sealant. Have. The wiring material is bent in the thickness direction of the module between adjacent solar cells, and is attached to the light receiving surface of one solar cell and the back surface of the other solar cell (see, for example, Patent Document 1).

特開平11−312820号公報JP-A-11-312820

ところで、太陽電池モジュールでは、使用時等における温度変化により、保護部材や封止材の体積が膨張・収縮して、隣り合う太陽電池の間隔が伸縮する場合がある。この場合、例えば、太陽電池同士を接続する配線材に当該伸縮による応力が加わる。そして、場合によっては、配線材の屈曲部が破断する、或いは配線材が太陽電池から剥離するといった不具合を招くおそれがある。   By the way, in the solar cell module, the volume of the protective member or the sealing material may expand or contract due to temperature change at the time of use or the like, and the interval between adjacent solar cells may expand or contract. In this case, for example, stress due to the expansion and contraction is applied to the wiring material connecting the solar cells. And depending on the case, there is a possibility that a fault that a bent part of wiring material breaks or wiring material exfoliates from a solar cell may be caused.

本発明に係る太陽電池モジュールは、略同一平面上に配置される複数の太陽電池と、隣り合う太陽電池の間で折れ曲がって、一方の太陽電池の受光面及び他方の太陽電池の裏面にそれぞれ取り付けられ、当該各太陽電池を接続する配線材と、太陽電池の受光面側を覆う第1の保護部材と、太陽電池の裏面側を覆い、可撓性を有する第2の保護部材とを備え、配線材は、他方の太陽電池の裏面に沿って配置される平坦部と、一方の太陽電池の受光面側に折れ曲がる屈曲部とを有し、屈曲部が平坦部よりも裏面側に突出している。   The solar cell module according to the present invention is bent between a plurality of solar cells arranged on substantially the same plane and the adjacent solar cells, and attached to the light receiving surface of one solar cell and the back surface of the other solar cell. A wiring member connecting the respective solar cells, a first protection member covering the light receiving surface side of the solar cells, and a second protection member covering the back surface side of the solar cells and having flexibility, The wiring material has a flat portion disposed along the back surface of the other solar cell and a bent portion bent toward the light receiving surface of one of the solar cells, and the bent portion protrudes to the back surface side relative to the flat portion .

本発明によれば、信頼性に優れた太陽電池モジュールを提供することができる。   According to the present invention, a solar cell module with excellent reliability can be provided.

本発明の実施形態の一例である太陽電池モジュールの一部を受光面側から見た平面図である。It is the top view which looked at a part of solar cell module which is an example of embodiment of this invention from the light-receiving surface side. 図1のA−A線断面の一部を示す図である。It is a figure which shows a part of AA line cross section of FIG. 図1のB−B線断面の一部を示す図である。It is a figure which shows a part of BB line cross section of FIG. 図3のC部拡大図である。It is the C section enlarged view of FIG.

図面を参照しながら、本発明の実施形態について以下詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。   Embodiments of the invention will now be described in detail with reference to the drawings. The drawings referred to in the embodiments are schematically described, and the dimensional proportions and the like of the components drawn in the drawings may differ from the actual product. Specific dimensional ratios and the like should be determined in consideration of the following description.

図1は、本発明の実施形態の一例である太陽電池モジュール10の一部を示す受光面側から見た平面図である。図2は、図1のA−A線断面の一部を示す図であって、配線材30を幅方向に切断した断面図である。図3は、図1のB−B線断面の一部を示す図であって、配線材30を長手方向に切断した断面図である。   FIG. 1: is the top view seen from the light-receiving surface side which shows a part of solar cell module 10 which is an example of embodiment of this invention. FIG. 2 is a view showing a part of a cross section taken along line A-A of FIG. 1 and is a cross-sectional view of the wiring member 30 cut in the width direction. FIG. 3 is a view showing a part of a cross section taken along the line B-B in FIG. 1 and is a cross-sectional view of the wiring member 30 cut in the longitudinal direction.

ここで、「受光面」とは太陽電池モジュール10の外部から太陽光が主に入射する面を、「裏面」とは受光面と反対側の面をそれぞれ意味する。例えば、太陽電池モジュール10に入射する太陽光のうち50%超過〜100%が受光面側から入射する。   Here, the “light receiving surface” means a surface on which sunlight mainly enters from the outside of the solar cell module 10, and the “rear surface” means a surface on the opposite side to the light receiving surface. For example, over 50% to 100% of the sunlight incident on the solar cell module 10 is incident from the light receiving surface side.

図1〜図3に示すように、太陽電池モジュール10は、複数の太陽電池11と、各太陽電池11の受光面側を覆う第1の保護部材12と、各太陽電池11の裏面側を覆う第2の保護部材13とを備える。即ち、太陽電池モジュール10は、複数の太陽電池11が第1の保護部材12と第2の保護部材13とにより挟持された構造を有する。   As shown in FIGS. 1 to 3, the solar cell module 10 covers a plurality of solar cells 11, a first protective member 12 covering the light receiving surface side of each solar cell 11, and a back surface side of each solar cell 11. And a second protection member 13. That is, the solar cell module 10 has a structure in which the plurality of solar cells 11 are sandwiched by the first protective member 12 and the second protective member 13.

太陽電池モジュール10は、さらに隣り合う太陽電池11を電気的に接続する配線材30、及び配線材30同士を接続する渡り配線材、端子ボックス(いずれも図示せず)等を備える。複数の太陽電池11が配線材30で接続されてなるストリングと各保護部材との隙間には、封止材14を充填することが好適である。   The solar cell module 10 further includes a wiring member 30 for electrically connecting adjacent solar cells 11, a crossover wiring member for connecting the wiring members 30 to each other, a terminal box (all not shown), and the like. It is preferable that the sealing material 14 be filled in the gaps between the strings formed by connecting the plurality of solar cells 11 with the wiring material 30 and the respective protection members.

太陽電池モジュール10において、複数の太陽電池11は、略同一平面上に配置されている。即ち、各太陽電池11の各受光面同士、また各裏面同士が略同一平面上に配置される。本明細書において、「略**」とは、「略同一」を例に挙げて説明すると、全く同一はもとより実質的に同一と認められるものを含む意図である。例えば、隣り合う太陽電池11のモジュールの厚み方向に対するズレが、太陽電池11の厚みの10%以下、好ましくは5%以下となるように各太陽電池11が配置される。   In the solar cell module 10, the plurality of solar cells 11 are disposed substantially on the same plane. That is, the light receiving surfaces of the solar cells 11 and the back surfaces of the solar cells 11 are disposed on substantially the same plane. In the present specification, “about **” is intended to include ones that are regarded as completely the same or substantially the same, when “substantially the same” is described as an example. For example, each solar cell 11 is disposed such that the displacement of the adjacent solar cells 11 in the thickness direction of the modules is 10% or less, preferably 5% or less, of the thickness of the solar cells 11.

太陽電池11は、太陽光を受光することでキャリアを生成する光電変換部20と、光電変換部20の受光面上に形成された受光面電極と、光電変換部20の裏面上に形成された裏面電極とを備える。本実施形態では、受光面電極としてフィンガー電極21及びバスバー電極22を有し、同様に裏面電極としてフィンガー電極23及びバスバー電極24を有する。   The solar cell 11 is formed on a photoelectric conversion unit 20 that generates carriers by receiving sunlight, a light receiving surface electrode formed on the light receiving surface of the photoelectric conversion unit 20, and a back surface of the photoelectric conversion unit 20. And a back electrode. In the present embodiment, finger electrodes 21 and bus bar electrodes 22 are provided as light receiving surface electrodes, and finger electrodes 23 and bus bar electrodes 24 are similarly provided as back surface electrodes.

光電変換部20は、例えば結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、又はインジウム燐(InP)等の半導体材料からなる基板を有する。好適な基板としては、n型単結晶シリコン基板が例示できる。基板の厚みは、配線材30の厚みよりも小さく、80μm〜200μmが好ましく、90μm〜160μmがより好ましい。また、基板表面(受光面及び裏面)には、凹凸の高さが1μm〜15μm程度のテクスチャ構造(図示せず)を形成することが好ましい。   The photoelectric conversion unit 20 has a substrate made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphide (InP), for example. As a suitable substrate, an n-type single crystal silicon substrate can be exemplified. The thickness of the substrate is smaller than the thickness of the wiring member 30, preferably 80 μm to 200 μm, and more preferably 90 μm to 160 μm. In addition, it is preferable to form a texture structure (not shown) having a height of about 1 μm to 15 μm on the surface of the substrate (the light receiving surface and the back surface).

基板の受光面上には、非晶質シリコン層と、酸化インジウム等を主成分とする透光性導電酸化物(TCO)からなる透明導電層とが順に形成されることが好ましい。基板の裏面上には、非晶質シリコン層と、透明導電層とが順に形成されることが好ましい。受光面側の非晶質シリコン層は、例えばi型非晶質シリコン層と、p型非晶質シリコン層とが順に形成された層構造である。裏面側の非晶質シリコン層は、例えばi型非晶質シリコン層と、n型非晶質シリコン層とが順に形成された層構造である。   Preferably, on the light receiving surface of the substrate, an amorphous silicon layer and a transparent conductive layer made of a translucent conductive oxide (TCO) containing indium oxide or the like as a main component are sequentially formed. Preferably, an amorphous silicon layer and a transparent conductive layer are sequentially formed on the back surface of the substrate. The amorphous silicon layer on the light receiving surface side has, for example, a layer structure in which an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed. The amorphous silicon layer on the back side has, for example, a layer structure in which an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed.

フィンガー電極21は、受光面上の広範囲に形成される細線状の電極である。バスバー電極22は、フィンガー電極21からキャリアを集電する電極であって、全てのフィンガー電極21と電気的に接続されている。本実施形態では、3本のバスバー電極22が所定の間隔をあけて互いに略平行に配置され、これに交差して複数のフィンガー電極21が配置されている。裏面電極(フィンガー電極23及びバスバー電極24)についても受光面電極と同様の電極配置を有するが、電極面積は、裏面電極>受光面電極とすることが好ましい。各電極の厚みは、例えば10μm〜100μmであり、好ましくは20μm〜80μmである。   The finger electrode 21 is a thin wire-like electrode formed in a wide area on the light receiving surface. The bus bar electrode 22 is an electrode that collects a carrier from the finger electrode 21 and is electrically connected to all the finger electrodes 21. In the present embodiment, three bus bar electrodes 22 are disposed substantially in parallel with each other at a predetermined interval, and a plurality of finger electrodes 21 are disposed so as to intersect with this. The back electrode (finger electrode 23 and bus bar electrode 24) also has the same electrode arrangement as the light receiving surface electrode, but it is preferable that the electrode area be back surface electrode> light receiving surface electrode. The thickness of each electrode is, for example, 10 μm to 100 μm, and preferably 20 μm to 80 μm.

第1の保護部材12には、透光性を有する種々の部材を用いることができるが、耐久性等の観点からガラス基板を用いることが好適である。ガラス基板の厚みは、例えば0.5mm〜4mm程度である。   Although various members having translucency can be used for the first protective member 12, it is preferable to use a glass substrate from the viewpoint of durability and the like. The thickness of the glass substrate is, for example, about 0.5 mm to 4 mm.

第2の保護部材13には、後述の理由等からモジュールの使用環境下で可撓性を有する部材を用いることが好適であり、コストの削減や軽量化等の観点から、可撓性を有する樹脂製シートを用いることが特に好適である。樹脂製シートの厚みは、例えば50μm〜300μm程度である。樹脂製シートとしては、フッ素系樹脂、オレフィン系樹脂やスチレン系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂等からなるシートが例示できる。PETシートは、透光性に優れるため、裏面側からの受光を想定する用途にも好適である。樹脂製シートには、水蒸気透過度を低減するために、シリカやアルミナ等の金属化合物からなるガスバリア層を設けてもよい。なお、第2保護部材13としてガラス等の板状体を用いることもできる。しかしながら、第2保護部材13としてガラス等を用いる場合に比べて太陽電池11等に加わる応力を低減させる観点から可撓性を有する樹脂製シートとすることが好ましい。   For the second protective member 13, it is preferable to use a member having flexibility in the use environment of the module for reasons to be described later, etc., and has flexibility from the viewpoint of cost reduction and weight reduction. It is particularly preferable to use a resin sheet. The thickness of the resin sheet is, for example, about 50 μm to 300 μm. Examples of the resin sheet include sheets made of a fluorine resin, an olefin resin, a styrene resin, and a polyester resin such as polyethylene terephthalate (PET). Since a PET sheet is excellent in translucency, it is suitable also for the use supposing light reception from the back side. The resin sheet may be provided with a gas barrier layer made of a metal compound such as silica or alumina in order to reduce the water vapor transmission rate. A plate-like body such as glass can also be used as the second protective member 13. However, from the viewpoint of reducing the stress applied to the solar cell 11 or the like as compared to the case where glass or the like is used as the second protective member 13, it is preferable to use a resin sheet having flexibility.

封止材14は、上記のように、太陽電池11のストリングと各保護部材との隙間に充填される。封止材14には、透光性を有する樹脂を用いることできる。具体的には、少なくとも1種のαオレフィンを重合して得られるオレフィン系樹脂、例えばエチレン−プロピレン共重合体やエチレン−酢酸ビニル共重合体(EVA)等を主成分とする樹脂が好ましい。   The sealing material 14 is filled in the gaps between the strings of the solar cells 11 and the respective protection members as described above. For the sealing material 14, a light transmitting resin can be used. Specifically, an olefin-based resin obtained by polymerizing at least one α-olefin, for example, a resin comprising an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer (EVA) or the like as a main component is preferable.

配線材30は、細長い棒状の金属製部材である。配線材30は、隣り合う太陽電池11a,11bに跨って取り付け可能な長さを有し、好ましくはバスバー電極22,24の全長に亘って取り付けられる。本実施形態では、配線材30の幅がバスバー電極22,24の幅よりも太く、各バスバー電極の幅方向両側から張り出した状態で取り付けられている(図2参照)。また、配線材30の厚みは、光電変換部20(基板)及び太陽電池11の厚みよりも大きく、100μm〜400μmが好ましく、150μm〜300μmがより好ましい。   The wiring member 30 is an elongated rod-like metal member. Wiring member 30 has a length that can be attached across adjacent solar cells 11a and 11b, and is preferably attached over the entire length of bus bar electrodes 22 and 24. In the present embodiment, the width of the wiring member 30 is wider than the widths of the bus bar electrodes 22 and 24 and is attached in a state in which it protrudes from both sides in the width direction of each bus bar electrode (see FIG. 2). The thickness of the wiring member 30 is larger than the thicknesses of the photoelectric conversion unit 20 (substrate) and the solar cell 11, preferably 100 μm to 400 μm, and more preferably 150 μm to 300 μm.

配線材30は、第1の保護部材12側に向いた面に、光拡散用凹凸31(以下、「凹凸31」とする)を有する。凹凸31は、配線材30上に照射された光を拡散させる機能を有する。配線材30により拡散された光は、第1の保護部材12により再び太陽電池11側に反射するため、太陽電池11の受光効率を高めることができる。   The wiring member 30 has a light diffusion asperity 31 (hereinafter referred to as “asperity 31”) on the surface facing the first protective member 12 side. The unevenness 31 has a function of diffusing the light irradiated on the wiring member 30. The light diffused by the wiring member 30 is reflected by the first protective member 12 again to the side of the solar cell 11, so that the light receiving efficiency of the solar cell 11 can be enhanced.

凹凸31は、例えば配線材30の長手方向に沿って連続的に形成され、幅方向に切断したときの凸部の断面形状が略三角形状を有する(図2参照)。凹凸31の凹凸高さ(凹部から凸部までの厚み方向に沿った長さ)は、10μm〜60μm程度が好適である。一方、配線材30の第2の保護部材13側に向いた面は凹凸を有さず平坦である。即ち、配線材30は、太陽電池11bの裏面に対向する面のみに凹凸31を有する。   The unevenness 31 is formed, for example, continuously along the longitudinal direction of the wiring member 30, and the cross-sectional shape of the projection when cut in the width direction has a substantially triangular shape (see FIG. 2). The unevenness height (the length along the thickness direction from the concave portion to the convex portion) of the unevenness 31 is preferably about 10 μm to 60 μm. On the other hand, the surface of the wiring member 30 facing the second protective member 13 is flat without unevenness. That is, the wiring member 30 has the unevenness 31 only on the surface facing the back surface of the solar cell 11 b.

以下、図4をさらに参照して、配線材30の構成を説明する。図4は、図3のC部拡大図であって、配線材30の屈曲部33,35の近傍を拡大して示す図である。   Hereinafter, the configuration of the wiring member 30 will be described with further reference to FIG. FIG. 4 is an enlarged view of a portion C in FIG. 3 and is an enlarged view of the vicinity of the bent portions 33 and 35 of the wiring member 30. As shown in FIG.

図3,4に示すように、配線材30は、隣り合う太陽電池11a,11bの間でモジュールの厚み方向に折れ曲がって、太陽電池11aの受光面及び太陽電池11bの裏面に取り付けられ、当該各太陽電池を直列に接続する。太陽電池11aの裏面には、さらに別の配線材30が取り付けられる。これにより、太陽電池11aは、太陽電池11bと反対側に位置する太陽電池11と接続される。太陽電池11bについても同様に、さらに別の配線材30が受光面に取り付けられて、太陽電池11bと反対側に位置する太陽電池11に接続される。   As shown in FIGS. 3 and 4, the wiring member 30 is bent in the thickness direction of the module between the adjacent solar cells 11a and 11b and attached to the light receiving surface of the solar cell 11a and the back surface of the solar cell 11b. Connect solar cells in series. Another wiring member 30 is attached to the back surface of the solar cell 11a. Thereby, the solar cell 11a is connected with the solar cell 11 located on the opposite side to the solar cell 11b. Similarly, another wiring member 30 is attached to the light receiving surface of the solar cell 11b and connected to the solar cell 11 located on the opposite side to the solar cell 11b.

より詳しくは、配線材30の長手方向一端側が太陽電池11aのバスバー電極22の長手方向に沿ってバスバー電極22上に取り付けられ、長手方向他端側が太陽電池11bのバスバー電極24の長手方向に沿ってバスバー電極24上に取り付けられる。配線材30は、例えば、非導電性接着剤や導電性フィラーを含有する導電性接着剤等の接着剤37(図2参照)、或いは半田を用いてバスバー電極22,24上に取り付けられる。   More specifically, one longitudinal end of the wiring member 30 is attached to the bus bar electrode 22 along the longitudinal direction of the bus bar electrode 22 of the solar cell 11a, and the other longitudinal end is along the longitudinal direction of the bus bar electrode 24 of the solar cell 11b. Is mounted on the bus bar electrode 24. The wiring member 30 is attached on the bus bar electrodes 22 and 24 using, for example, an adhesive 37 (see FIG. 2) such as a nonconductive adhesive or a conductive adhesive containing a conductive filler, or solder.

配線材30は、太陽電池11aの受光面に沿って配置される平坦部32と、太陽電池11bの裏面側に折れ曲がる屈曲部33とを有する。また、配線材30は、太陽電池11bの裏面に沿って配置される平坦部36と、太陽電池11aの受光面側に折れ曲がる屈曲部35とを有する。即ち、配線材30は、屈曲部35から延び、太陽電池11bの裏面に沿って配置される平坦部36を有する。平坦部32,36は、各太陽電池の受光面上、裏面上にそれぞれ接着剤37を用いて取り付けられており、各面に沿って真っ直ぐに延びている。   Wiring member 30 has flat portion 32 disposed along the light receiving surface of solar cell 11a, and bent portion 33 bent on the back side of solar cell 11b. Wiring member 30 has flat portion 36 disposed along the back surface of solar cell 11 b and bent portion 35 bent toward the light receiving surface side of solar cell 11 a. That is, the wiring member 30 has a flat portion 36 extending from the bent portion 35 and disposed along the back surface of the solar cell 11 b. The flat portions 32 and 36 are respectively attached on the light receiving surface and the back surface of each solar cell using an adhesive 37, and extend straight along each surface.

つまり、配線材30は、2つの平坦部32,36の間であって、隣り合う太陽電池11a,11bの間に位置する部分に複数の屈曲部33,35を有する。本実施形態では、配線材30の長手方向中央部に複数の屈曲部33,35を有する。屈曲部33,35に挟まれた部分は、平坦部32,34に対して交差する方向に延びている。   That is, the wiring member 30 has a plurality of bent portions 33 and 35 in a portion located between the two flat portions 32 and 36 and between the adjacent solar cells 11 a and 11 b. In the present embodiment, a plurality of bent portions 33 and 35 are provided at the central portion in the longitudinal direction of the wiring member 30. The portion sandwiched between the bent portions 33 and 35 extends in a direction intersecting the flat portions 32 and 34.

隣り合う太陽電池11a,11bを接続する配線材30は、太陽電池11bに近い方の屈曲部35が、太陽電池11bに取り付けられた平坦部36よりも第2の保護部材13側、即ちモジュールの裏面側に突出している。屈曲部35は、第2の保護部材13側に凸となるように湾曲して、第1の保護部材12側、即ちモジュールの受光面側に曲がっている。これにより、配線材30の長手方向中央部に、配線材30の長手方向に伸縮し易い撓みが形成される。ゆえに、太陽電池モジュール10の使用時等における温度変化により各保護部材や封止材14の体積が膨張・収縮して太陽電池11a,11bの間隔が伸縮する場合に、当該伸縮による応力を緩和することができる。なお、屈曲部35は、配線材30に折り目をつけないようにして、平坦部36と屈曲部33,35の間の平坦部34のなす角が鈍角となるようにして構成される。   In the wiring member 30 connecting the adjacent solar cells 11a and 11b, the bending portion 35 closer to the solar cell 11b is closer to the second protective member 13 than the flat portion 36 attached to the solar cell 11b, that is, the module It protrudes to the back side. The bending portion 35 is curved so as to be convex toward the second protective member 13 side, and is bent toward the first protective member 12 side, that is, the light receiving surface side of the module. As a result, in the central portion in the longitudinal direction of the wiring member 30, a bend that easily expands and contracts in the longitudinal direction of the wiring member 30 is formed. Therefore, when the space of the solar cells 11a and 11b expands and contracts due to expansion and contraction of the volume of each protective member and the sealing material 14 due to temperature change during use of the solar cell module 10, the stress due to the expansion and contraction is relaxed. be able to. The bending portion 35 is configured such that the wiring member 30 is not creased, and the angle between the flat portion 36 and the flat portion 34 between the bending portions 33 and 35 is an obtuse angle.

配線材30は、裏面側の平坦部36に近い屈曲部35のみに上記突出形状を形成することが好適である。即ち、受光面側の平坦部32に近い屈曲部33は、平坦部32よりも第1の保護部材12側、即ちモジュールの受光面側に突出しないことが好適である。この理由は、屈曲部35のみに突出形状を形成することで上記応力緩和を実現可能だからである。また、第1の保護部材12にはガラス基板が用いられるため、屈曲部33に突出形状を形成すると、後述のラミネート工程で屈曲部33が押圧されて太陽電池11の配置が乱れるといった不具合が想定される。なお、屈曲部33は、配線材30に折り目をつけないようにして平坦部32と平坦部34のなす角が鈍角となるようにして構成される。   It is preferable that the wiring member 30 form the above-mentioned projecting shape only in the bent portion 35 close to the flat portion 36 on the back surface side. That is, it is preferable that the bent portion 33 close to the flat portion 32 on the light receiving surface side does not protrude to the first protective member 12 side, that is, the light receiving surface side of the module with respect to the flat portion 32. The reason is that the above-mentioned stress relaxation can be realized by forming the projecting shape only in the bending portion 35. In addition, since a glass substrate is used for the first protection member 12, it is assumed that when the projecting portion is formed in the bending portion 33, the bending portion 33 is pressed in the laminating process described later and the arrangement of the solar cells 11 is disturbed. Be done. The bent portion 33 is configured such that the angle between the flat portion 32 and the flat portion 34 is an obtuse angle so as not to crease the wiring member 30.

屈曲部35は、配線材30の厚みをT30としたときに、平坦部36の第2の保護部材13に対向する面(以下、「裏面」とする)から、T30×0.1以上の長さで突出することが好ましい。屈曲部35の突出長さ(平坦部36の裏面から頂点35pまでのモジュールの厚み方向に沿った長さ)は、より好ましくはT30×0.1〜1.0であり、特に好ましくはT30×0.1〜0.5程度である。突出高さが当該範囲内であれば、モジュールの厚みに殆ど影響を与えることなく、各保護部材や封止材14の体積変化に起因する応力を緩和することができる。When the thickness of the wiring member 30 is T 30 , the bending portion 35 has T 30 × 0.1 or more from the surface facing the second protective member 13 of the flat portion 36 (hereinafter referred to as “back surface”). It is preferable to project at a length of The protruding length of the bent portion 35 (the length along the thickness direction of the module from the back surface of the flat portion 36 to the apex 35 p) is more preferably T 30 × 0.1 to 1.0, and particularly preferably T It is about 30 × 0.1 to 0.5. If the protruding height is within the above range, the stress caused by the volume change of each protective member and the sealing material 14 can be relaxed without substantially affecting the thickness of the module.

配線材30は、太陽電池11bの端部と略重なる位置に、屈曲部35の頂点35pを有することが好適である。つまり、太陽電池11bの端部と屈曲部35の頂点35pとがモジュールの厚み方向に略並ぶことが好適である。これにより、太陽電池11bの端部と配線材30との間に大きな隙間が形成され、太陽電池11bの端部に配線材30が接触することを防止できる。太陽電池11(基板)の端部は破損し易く、また太陽電池11bの太陽電池11a側の端部は配線材30の凹凸31と接触し易いため特に破損し易いが、当該構成により、当該破損を防止することができる。   The wiring member 30 preferably has an apex 35 p of the bent portion 35 at a position substantially overlapping the end of the solar cell 11 b. That is, it is preferable that the end of the solar cell 11b and the apex 35p of the bent portion 35 be substantially aligned in the thickness direction of the module. As a result, a large gap is formed between the end of the solar cell 11b and the wiring member 30, and the wiring member 30 can be prevented from contacting the end of the solar cell 11b. The end of the solar cell 11 (substrate) is easily damaged, and the end of the solar cell 11b on the side of the solar cell 11a is particularly easy to be damaged since it easily contacts the unevenness 31 of the wiring member 30; Can be prevented.

本実施形態では、第2の保護部材13が屈曲部35に対応する部分が裏側に膨らんで膨出部13pが形成されている。つまり、第2の保護部材13は、可撓性のある樹脂製シートで構成されているため、後述のラミネート工程において屈曲部35の突出形状に対応して膨らむ。ゆえに、屈曲部35の突出形状が維持され易い。   In the present embodiment, a portion corresponding to the bending portion 35 of the second protective member 13 is expanded to the back side to form the expanded portion 13p. That is, since the second protective member 13 is made of a flexible resin sheet, the second protective member 13 swells corresponding to the projecting shape of the bending portion 35 in the laminating process described later. Therefore, the projecting shape of the bending portion 35 is easily maintained.

上記構成を備えた太陽電池モジュール10は、複数の太陽電池11を配線材30で接続してなるストリングを、第1の保護部材12、第2の保護部材13、及びシート状の封止材14(例えば、EVAシート)を用いてラミネートすることにより製造される。ラミネート装置では、例えばヒーター上に第1の保護部材12/EVAシート/ストリング/EVAシート/第2の保護部材13の順に配置して、真空状態で150℃程度に加熱する。その後、大気圧下でヒーター側にモジュールの構成部材を押し付けながら加熱を継続し、EVAを架橋させる。最後に、端子ボックス等を取り付けて太陽電池モジュール10が得られる。   The solar cell module 10 having the above configuration has a string formed by connecting a plurality of solar cells 11 with a wiring member 30 as a first protective member 12, a second protective member 13, and a sheet-like sealing material 14. It is manufactured by laminating using (for example, EVA sheet). In the laminating apparatus, for example, the first protective member 12 / EVA sheet / string / EVA sheet / second protective member 13 are sequentially arranged on the heater and heated to about 150 ° C. in a vacuum state. Thereafter, heating is continued while pressing the component of the module to the heater side under atmospheric pressure to crosslink the EVA. Finally, a terminal box or the like is attached to obtain the solar cell module 10.

配線材30には、ストリングを形成する前に又はストリングを形成すると同時に、金型等を用いて屈曲部33,35を形成することが好適である。このとき、屈曲部35は、太陽電池11bの端部と略重なる位置が最も突出する頂点35pとなるように加工されることが好ましい。   In the wiring member 30, it is preferable to form the bent portions 33, 35 using a mold or the like before forming the string or simultaneously forming the string. At this time, it is preferable that the bending portion 35 be processed so that the position substantially overlapping with the end portion of the solar cell 11b is the apex 35p most projecting.

以上のように、太陽電池モジュール10によれば、屈曲部35に上記突出形状を形成することで、各保護部材や封止材14の体積変化に起因して発生する応力を緩和することができる。つまり、当該体積変化により太陽電池11a,11bの間隔が伸縮する場合であっても、屈曲部35がバネのように機能して、配線材30の破断や配線材30の剥離を十分に防止することが可能となる。したがって、太陽電池モジュール10は、信頼性に優れた製品となる。   As described above, according to the solar cell module 10, by forming the projecting shape in the bending portion 35, the stress generated due to the volume change of each protective member and the sealing material 14 can be alleviated. . That is, even when the space between the solar cells 11a and 11b expands and contracts due to the volume change, the bending portion 35 functions like a spring to sufficiently prevent breakage of the wiring member 30 and peeling of the wiring member 30. It becomes possible. Therefore, the solar cell module 10 is a product with excellent reliability.

10 太陽電池モジュール、11,11a,11b 太陽電池、12 第1の保護部材、13 第2の保護部材、13p 膨出部、14 封止材、20 光電変換部、21,23 フィンガー電極、22,24 バスバー電極、30 配線材、31 光拡散用凹凸、32,34,36 平坦部、33,35 屈曲部、35p 頂点、37 接着剤   DESCRIPTION OF SYMBOLS 10 solar cell module, 11, 11a, 11b solar cell, 12 1st protection member, 13 2nd protection member, 13p swelling part, 14 sealing material, 20 photoelectric conversion part, 21, 23 finger electrode 22, 22, 24 bus bar electrodes, 30 wiring members, 31 light diffusion irregularities, 32, 34, 36 flat portions, 33, 35 bent portions, 35 p apex, 37 adhesive

Claims (5)

略同一平面上に配置される複数の太陽電池と、
隣り合う前記太陽電池の間で折れ曲がって、一方の太陽電池の受光面及び他方の太陽電池の裏面にそれぞれ取り付けられ、当該各太陽電池を接続する配線材と、
前記太陽電池の前記受光面側を覆う第1の保護部材と、
前記太陽電池の前記裏面側を覆い、可撓性を有する第2の保護部材と、
を備え、
前記配線材は、前記他方の太陽電池の前記裏面に沿って配置される平坦部と、前記一方の太陽電池の前記受光面側に折れ曲がる屈曲部と、を有し、前記屈曲部が前記平坦部よりも前記裏面側に突出し、
前記太陽電池の厚み方向における前記配線材の前記平坦部の裏面から突出部の裏面側の頂点までの長さである前記屈曲部の突出長さは、前記配線材の厚みを1.0としたときに、当該厚みに対して0.1〜0.9の範囲にあり、
前記第2の保護部材は、樹脂製シートにより構成され、前記配線材の長手方向に沿った断面視で、前記屈曲部に対応する部分が裏側に膨らんでいる、太陽電池モジュール。
A plurality of solar cells disposed on substantially the same plane;
A wiring material that is bent between the adjacent solar cells and is attached to the light receiving surface of one solar cell and the back surface of the other solar cell, respectively, and connects the respective solar cells;
A first protection member covering the light receiving surface side of the solar cell;
A flexible second protective member covering the back side of the solar cell;
Equipped with
The wiring member has a flat portion disposed along the back surface of the other solar cell and a bent portion bent toward the light receiving surface of the one solar cell, and the bent portion is the flat portion. Protrudes on the back side more than
The protruding length of the bent portion, which is the length from the back surface of the flat portion of the wiring member to the apex on the back surface side of the protruding portion in the thickness direction of the solar cell, was 1.0 in thickness of the wiring member When the thickness is in the range of 0.1 to 0.9,
The said 2nd protection member is comprised by resin sheet, The solar cell module to which the part corresponding to the said bending part is swelling on the back side by the cross sectional view along the longitudinal direction of the said wiring material.
請求項1に記載の太陽電池モジュールにおいて、
前記配線材の前記一方の太陽電池の前記受光面側に配置される部分は、前記第1の保護部材側に突出せずに前記屈曲部に連なっている、太陽電池モジュール。
In the solar cell module according to claim 1,
The part arrange | positioned at the said light-receiving surface side of the said one solar cell of the said wiring material is a solar cell module which is continued in the said bending part, without protruding to the said 1st protection member side.
請求項1又は2に記載の太陽電池モジュールにおいて、
前記配線材は、前記第1の保護部材側に向いた面に、光拡散用の凹凸を有している、太陽電池モジュール。
In the solar cell module according to claim 1 or 2,
The said wiring material is a solar cell module which has the unevenness | corrugation for light diffusion in the surface which faced the said 1st protection member side.
請求項3に記載の太陽電池モジュールにおいて、
前記配線材は、前記他方の太陽電池の端部と略重なる位置に前記屈曲部の頂点を有している、太陽電池モジュール。
In the solar cell module according to claim 3,
The solar cell module, wherein the wiring member has an apex of the bent portion at a position substantially overlapping the end of the other solar cell.
請求項1〜4のいずれか1項に記載の太陽電池モジュールにおいて、
前記配線材の厚みは、前記太陽電池の厚みよりも大きい、太陽電池モジュール。
In the solar cell module according to any one of claims 1 to 4,
The thickness of the said wiring material is a solar cell module larger than the thickness of the said solar cell.
JP2015527172A 2013-07-19 2014-07-11 Solar cell module Expired - Fee Related JP6504365B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013151008 2013-07-19
JP2013151008 2013-07-19
PCT/JP2014/003688 WO2015008466A1 (en) 2013-07-19 2014-07-11 Solar-cell module

Publications (2)

Publication Number Publication Date
JPWO2015008466A1 JPWO2015008466A1 (en) 2017-03-02
JP6504365B2 true JP6504365B2 (en) 2019-04-24

Family

ID=52345945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015527172A Expired - Fee Related JP6504365B2 (en) 2013-07-19 2014-07-11 Solar cell module

Country Status (2)

Country Link
JP (1) JP6504365B2 (en)
WO (1) WO2015008466A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399990B2 (en) * 2015-09-28 2018-10-03 株式会社豊田自動織機 Interconnector and solar panel
JP6646149B2 (en) * 2016-06-28 2020-02-14 京セラ株式会社 Solar cell module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754208B2 (en) * 1998-04-28 2006-03-08 三洋電機株式会社 Solar cell module and manufacturing method thereof
JP2008147260A (en) * 2006-12-06 2008-06-26 Sharp Corp Interconnector, solar cell string, solar cell module, and method for manufacturing solar cell module
JP2009081205A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Solar battery module
US20120240980A1 (en) * 2009-07-31 2012-09-27 Aqt Solar, Inc. Interconnection Schemes for Photovoltaic Cells
JP2013051339A (en) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd Solar cell module and manufacturing method of the same
JP5857241B2 (en) * 2011-12-13 2016-02-10 パナソニックIpマネジメント株式会社 Solar cell module

Also Published As

Publication number Publication date
JPWO2015008466A1 (en) 2017-03-02
WO2015008466A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6624418B2 (en) Solar cell module
WO2019146366A1 (en) Solar battery module
US10879410B2 (en) Solar cell module
WO2012102122A1 (en) Solar cell and solar cell module
WO2012102188A1 (en) Solar cell and solar cell module
JP6265135B2 (en) Manufacturing method of solar cell module
JP6709977B2 (en) Solar cell module
JP6478128B2 (en) Solar cell module and method for manufacturing solar cell module
JP6308471B2 (en) Solar cell module
US20190123229A1 (en) Solar cell module
US20140373903A1 (en) Solar cell module
US20190044001A1 (en) Solar cell wiring member and solar cell module
JP6504365B2 (en) Solar cell module
US20150372157A1 (en) Solar cell module
US20200035847A1 (en) Solar cell module
JP2016225624A (en) Solar cell module and solar cell device
JP6516228B2 (en) Solar cell module
WO2015008455A1 (en) Solar-cell module
JP7482708B2 (en) Solar Cells and Modules
WO2014050078A1 (en) Solar cell module
JP2016201516A (en) Solar cell module
JP6156718B2 (en) Solar panel
JP2015039005A (en) Solar battery and solar battery module
TW201818033A (en) Wavy shaped photovoltaic module and method of manufacture the same
JP2018056454A (en) Solar battery module and manufacturing method of solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R151 Written notification of patent or utility model registration

Ref document number: 6504365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees