JP6500743B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6500743B2
JP6500743B2 JP2015212675A JP2015212675A JP6500743B2 JP 6500743 B2 JP6500743 B2 JP 6500743B2 JP 2015212675 A JP2015212675 A JP 2015212675A JP 2015212675 A JP2015212675 A JP 2015212675A JP 6500743 B2 JP6500743 B2 JP 6500743B2
Authority
JP
Japan
Prior art keywords
phase
power supply
relay
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212675A
Other languages
Japanese (ja)
Other versions
JP2017085805A (en
Inventor
武礼 吉田
武礼 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2015212675A priority Critical patent/JP6500743B2/en
Publication of JP2017085805A publication Critical patent/JP2017085805A/en
Application granted granted Critical
Publication of JP6500743B2 publication Critical patent/JP6500743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、三相交流電源で動作する空気調和機に係わり、より詳細には、三相交流電源に接続された電源トランスと各相間に接続されたコンデンサにより欠相時に発生する鉄共振を防止する構成に関する。   The present invention relates to an air conditioner operating with a three-phase AC power supply, and more specifically, prevents iron resonance occurring at the time of a phase failure by a power supply transformer connected to the three-phase AC power supply and a capacitor connected between the phases. Related to the configuration.

従来、三相電源を使用してそれぞれの相間にノイズ除去用のコンデンサが接続された機器において、二相間に電源トランスを接続し、このトランスから制御用のDC電源を生成する構成がある。この時、トランスに接続されている相の何れか1つが欠相となった場合、コンデンサとトランスが直列となって鉄共振による過電圧が発生する。このため、トランスの焼損や部品の破壊が発生する場合があった。   Conventionally, in an apparatus in which a capacitor for removing noise is connected between each phase using a three-phase power supply, there is a configuration in which a power supply transformer is connected between the two phases and a DC power supply for control is generated from this transformer. At this time, if any one of the phases connected to the transformer is out of phase, the capacitor and the transformer are in series to generate an overvoltage due to iron resonance. For this reason, there was a case where burning of the transformer or destruction of parts occurred.

鉄共振による過電圧の対策のためには発生が予想される過電圧以上の耐圧を有する部品を使用しなければならずコスト上昇となる。もしくは、鉄共振が発生しないようにトランスの仕様と、このトランスの負荷を実験的に決定する必要があるが、負荷の変動や電源電圧の変動があるために鉄共振の発生を完全に防止することはできない。   In order to cope with overvoltage due to iron resonance, it is necessary to use a component having a withstand voltage higher than the overvoltage expected to be generated, resulting in cost increase. Alternatively, it is necessary to experimentally determine the specifications of the transformer and the load of this transformer so that iron resonance does not occur, but completely prevent occurrence of iron resonance due to load fluctuation and supply voltage fluctuation. It is not possible.

このような三相交流電源を用いた回路で発生する鉄共振を防止するものとして、図4に示す特許文献1の構成が開示されている。
図4はA相、B相およびC相の受電ケーブル130a〜130cからなる三相交流電路130に負荷開閉器100を設置した構成を示している。また、受電ケーブル130a〜130cにコンデンサ140a〜140cの一端がそれぞれ接続され、コンデンサ140a〜140cの他端がアースに接続されている。
一方、負荷開閉器100内には計器用変圧器120が備えられており、この計器用変圧器120の一次巻線にコンデンサ150が並列に接続されている。
The structure of patent document 1 shown in FIG. 4 is disclosed as what prevents the iron resonance which generate | occur | produces in the circuit which used such a three-phase alternating current power supply.
FIG. 4 shows a configuration in which the load switch 100 is installed in a three-phase AC electrical path 130 composed of A-phase, B-phase and C-phase power receiving cables 130a to 130c. Further, one ends of capacitors 140a to 140c are connected to power reception cables 130a to 130c, respectively, and the other ends of capacitors 140a to 140c are connected to the ground.
On the other hand, an instrument transformer 120 is provided in the load switch 100, and a capacitor 150 is connected in parallel to the primary winding of the instrument transformer 120.

例えばA相が欠相した場合、B相の電圧とC相の電圧が印加される回路、つまり、受電ケーブル130b、コンデンサ140b、コンデンサ140a、計器用変圧器120、受電ケーブル130cからなる直列共振回路が形成されるが、図4に示すように計器用変圧器120の一次巻線にコンデンサ150を並列に接続した回路にすることにより計器用変圧器120の両端に印加される交流電圧をコンデンサ150でバイパスするため、鉄共振の発生を防止する構成になっている。   For example, when the A phase is broken, a circuit to which the B phase voltage and the C phase voltage are applied, that is, a series resonant circuit including the power receiving cable 130b, the capacitor 140b, the capacitor 140a, the instrument transformer 120, and the power receiving cable 130c In the circuit in which the capacitor 150 is connected in parallel to the primary winding of the instrument transformer 120 as shown in FIG. In order to bypass by, the occurrence of iron resonance is prevented.

しかしながら、鉄共振は電源周波数の1/3の周波数で発振するため、この低い共振周波数での発振を防止するために容量の大きなコンデンサが必要であり、コストが上昇する問題があった。また、この容量の大きなコンデンサに常に交流電流が流れ続けるため消費電流が増加する問題もあった。
一方、図示しない空気調和機にはインバータや、これで駆動される圧縮機、各受電ケーブル間に接続されたノイズフィルタ用のコンデンサ、三相交流電源の電圧を変圧する電源トランス、この電源トランスの出力電圧を整流した直流電源で動作する制御部が備えられている。鉄共振が発生しない欠相であれば、このノイズフィルタ用のコンデンサを介して欠相した電圧以外の他の相の電圧が電源トランスに供給されるため、制御部は継続動作が可能である。
しかしながら、欠相により発生した鉄共振を防止するために、空気調和機の制御部がノイズフィルタ用のコンデンサと交流電源が接続される受電ケーブルの間の接続を切断した場合、制御部を動作させる電圧も同時に供給されなくなるため、制御部がインバータや圧縮機の停止処理を正常に行なうことができず、場合によってはスイッチング素子などの部品を破壊するおそれがあった。
However, since the iron resonance oscillates at one-third the power supply frequency, a capacitor having a large capacity is required to prevent oscillation at this low resonance frequency, which causes a problem of cost increase. In addition, there is also a problem that consumption current increases because alternating current continues to flow through the capacitor having a large capacity.
On the other hand, in the air conditioner not shown, an inverter, a compressor driven by this, a capacitor for a noise filter connected between the respective receiving cables, a power transformer for transforming the voltage of the three-phase AC power source, and the power transformer A control unit is provided that operates with a DC power supply that rectifies an output voltage. If the phase is not a phase where iron resonance does not occur, the voltage of the phase other than the phase-opened voltage is supplied to the power supply transformer through the capacitor for the noise filter, so the control unit can operate continuously.
However, in order to prevent iron resonance generated due to a phase loss, when the control unit of the air conditioner disconnects the connection between the noise filter capacitor and the receiving cable to which the AC power supply is connected, the control unit is operated. Since the voltage is not supplied at the same time, the control unit can not normally perform the stop processing of the inverter and the compressor, and in some cases, there is a possibility that the parts such as the switching element may be broken.

特開2008−53334号公報(第4−5頁、図1)JP, 2008-53334, A (page 4-5, FIG. 1)

空気調和機において、確実に鉄共振による過電圧発生を防止し、かつ、欠相が発生し た場合に機器の正常停止を行なうなどの緊急処理が完了するまで一時的に制御用電源を 動作させることを目的とする。     In the air conditioner, ensure that the overvoltage does not occur due to iron resonance, and temporarily operate the control power supply until emergency processing such as normal shutdown of the equipment is completed when a phase failure occurs. With the goal.

本発明は上述の課題を解決するため、本発明の請求項1に記載の発明は、A相とB相とC相とからなる三相交流電源に接続され、同三相交流電源を直流電源に変換する第1整流回路と、前記第1整流回路の出力が入力されるインバータと、同インバータで駆動される圧縮機のモータとを備えた室外機と、同室外機に通信接続された室内機とを備え、
前記室外機は、前記A相と前記B相と前記C相の電圧がそれぞれ印加される第1電源ラインと第2電源ラインと第3電源ラインと、前記A相と前記B相と前記C相のいずれかの印加電圧の欠相を検出して欠相検出信号を出力する欠相検出部と、前記三相交流電源の電圧を変圧して出力する電源トランスと、同電源トランスに印加される電圧の過電圧を検出して過電圧検出信号を出力する過電圧検出部と、前記電源トランスの出力電圧を直流電圧に変換して出力する第2整流回路とを備えた空気調和機であって、
前記室外機は、
それぞれの共通接点が相互に接続され、それぞれの第1接点又はそれぞれの第2接点が切り換えられて前記共通接点に接続される第1リレ−と第2リレーと第3リレーと、第1抵抗と第2抵抗と第3抵抗と、第1コンデンサと第2コンデンサと第3コンデンサを備え、前記欠相検出信号と前記過電圧検出信号が入力されるフィルタ手段と、
前記第2整流回路が出力する直流電圧によって動作し、前記インバータを介して前記圧縮機のモータを駆動する制御手段とを備え、
前記フィルタ手段は、
前記第1電源ラインに前記第1コンデンサと前記第1抵抗のそれぞれの一端が接続され、前記第1抵抗の他端が前記第1リレーの第1接点に接続され、前記第1コンデンサの他端が前記第1リレーの第2接点に接続され、
前記第2電源ラインに前記第2コンデンサと前記第2抵抗のそれぞれの一端が接続され、前記第2抵抗の他端が前記第2リレーの第1接点に接続され、前記第2コンデンサの他端が前記第2リレーの第2接点に接続され、
前記第3電源ラインに前記第3コンデンサと前記第3抵抗のそれぞれの一端が接続され、前記第3抵抗の他端が前記第3リレーの第1接点に接続され、前記第3コンデンサの他端が前記第3リレーの第2接点に接続されており、
前記フィルタ手段は、
前記欠相検出部が欠相を検出し、かつ、前記過電圧検出部が過電圧を検出した時、前記電源トランスによる鉄共振の発生を通知する異常状態信号を前記制御手段に出力すると共に、前記第1リレーの共通接点に前記第1抵抗を、前記第2リレーの共通接点に前記第2抵抗を、前記第3リレーの共通接点に前記第3抵抗をそれぞれ接続して、前記鉄共振を停止させ、
前記制御手段は、
前記異常状態信号が入力された時、前記第1抵抗と前記第2抵抗と前記第3抵抗のいずれかを経由して前記電源トランスで変圧された前記三相交流電源の電圧を用いて動作すると共に、前記インバータによる前記圧縮機のモータ駆動を停止させる、もしくは前記圧縮機のモータの回転数を低下させる処理を実行する。
The present invention solves the above-mentioned problems, and the invention according to claim 1 of the present invention is connected to a three-phase AC power supply consisting of A-phase, B-phase and C-phase. An outdoor unit provided with a first rectifier circuit for converting into an inverter, an inverter to which the output of the first rectifier circuit is input, and a motor of a compressor driven by the inverter, and an indoor unit communicatively connected to the outdoor unit Equipped with
The outdoor unit includes a first power line, a second power line, and a third power line to which voltages of the A phase, the B phase, and the C phase are respectively applied, the A phase, the B phase, and the C phase. And a power supply transformer for transforming the voltage of the three-phase AC power supply and outputting the same, and being applied to the same power supply transformer. An air conditioner comprising: an overvoltage detection unit that detects an overvoltage of a voltage and outputs an overvoltage detection signal; and a second rectifier circuit that converts an output voltage of the power transformer into a DC voltage and outputs the DC voltage.
The outdoor unit is
A first relay, a second relay, a third relay, and a first resistor, in which respective common contacts are mutually connected, and respective first contacts or respective second contacts are switched to be connected to the common contacts. Filter means comprising a second resistor and a third resistor, a first capacitor, a second capacitor and a third capacitor, and wherein the phase loss detection signal and the overvoltage detection signal are input;
Control means for operating with a DC voltage output from the second rectifier circuit and driving a motor of the compressor via the inverter;
The filter means is
One end of each of the first capacitor and the first resistor is connected to the first power supply line, the other end of the first resistor is connected to the first contact of the first relay, and the other end of the first capacitor Is connected to the second contact of the first relay,
One end of each of the second capacitor and the second resistor is connected to the second power supply line, the other end of the second resistor is connected to the first contact of the second relay, and the other end of the second capacitor Is connected to the second contact of the second relay,
One end of each of the third capacitor and the third resistor is connected to the third power supply line, the other end of the third resistor is connected to the first contact of the third relay, and the other end of the third capacitor Is connected to the second contact of the third relay,
The filter means is
When the open phase detection unit detects an open phase and the overvoltage detection unit detects an overvoltage, an abnormal state signal notifying generation of iron resonance by the power supply transformer is output to the control means, and The first resonance is connected to the common contact of one relay, the second resistance is connected to the common contact of the second relay, and the third resistance is connected to the common contact of the third relay to stop the iron resonance. ,
The control means
When the abnormal state signal is input, it operates using the voltage of the three-phase alternating current power supply transformed by the power supply transformer via any one of the first resistance, the second resistance and the third resistance. At the same time, processing for stopping the motor drive of the compressor by the inverter or reducing the rotational speed of the motor of the compressor is executed.

以上の手段を用いることにより、本発明による空気調和機によれば、請求項1に係わる発明は、空気調和機において確実に鉄共振による過電圧発生を防止し、かつ、欠相が発生した場合に緊急処理が完了するまで一時的に制御用電源を動作させることができる。   By using the above means, according to the air conditioner of the present invention, in the air conditioner according to the present invention, the occurrence of an overvoltage due to iron resonance is surely prevented in the air conditioner, and the open phase occurs. The control power supply can be operated temporarily until the emergency process is completed.

本発明による空気調和機の実施例を示すブロック図である。It is a block diagram which shows the Example of the air conditioner by this invention. 各電源ラインに印加される電圧が欠相となった時を示す要部ブロック図である。It is a principal part block diagram which shows when the voltage applied to each power supply line becomes a phase loss. 本発明による空気調和機の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air conditioner by this invention. 従来の鉄共振防止の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional iron resonance prevention.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。なお、本発明に関係のない冷媒回路などは図示と説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings. In addition, illustration and description are abbreviate | omitted for the refrigerant circuit etc. which are not related to this invention.

図1は本発明による空気調和機1の実施例を示すブロック図である。この空気調和機1は室内機2と室外機3が通信接続されている。
室外機3は、図示しない三相交流電源のA相電圧が印加される入力端14と、B相電圧が印加される入力端15と、C相電圧が印加される入力端16と、入力端14に接続された電源ライン11(第1電源ライン)と、入力端15に接続された電源ライン12(第2電源ライン)と、入力端15に接続された電源ライン13(第3電源ライン)と、これらの電源ラインが入力に接続された直流電源部17(第1整流回路)と、直流電源部17の出力が入力に接続されるインバータ18と、このインバータ18の出力に接続された圧縮機のモータ19を備えている。
FIG. 1 is a block diagram showing an embodiment of an air conditioner 1 according to the present invention. In the air conditioner 1, the indoor unit 2 and the outdoor unit 3 are communicably connected.
The outdoor unit 3 has an input end 14 to which an A-phase voltage of a three-phase AC power supply (not shown) is applied, an input end 15 to which a B-phase voltage is applied, an input end 16 to which a C-phase voltage is applied, and an input end Power supply line 11 (first power supply line) connected to 14, power supply line 12 (second power supply line) connected to input terminal 15, and power supply line 13 (third power supply line) connected to input terminal 15 , A DC power supply unit 17 (first rectifier circuit) whose power supply line is connected to the input, an inverter 18 whose output is connected to the input, and a compression circuit connected to the output of the inverter 18 The motor 19 of the machine is provided.

また、室外機3は、三相交流電源のいずれかの相電圧の欠相を検出して欠相検出信号を出力する欠相検出部20と、電源ライン11と電源ライン13の間に一次側の巻線が接続された電源トランス22と、この電源トランス22の両端電圧の過電圧を検出して過電圧信号を出力する過電圧検出部21と、電源トランス22の二次側に接続されて直流電圧を出力する制御用電源部23(第2整流回路)と、ここから出力された直流電圧で動作し、欠相検出信号と過電圧検出信号が入力され、インバータ18に駆動信号を出力し、室内機2と通信を行なう室外機制御部24(制御手段)と、電源ライン11〜13に接続されるフィルタ部6(フィルタ手段)を備えている。なお、フィルタ部6と過電圧検出部21と欠相検出部20も制御用電源部23から出力された直流電圧で動作する。   Further, the outdoor unit 3 detects the open phase of any phase voltage of the three-phase AC power supply and outputs an open phase detection signal, and the primary side between the power supply line 11 and the power supply line 13 Power supply transformer 22 connected to the winding, an overvoltage detection unit 21 which detects an overvoltage of the voltage across the power supply transformer 22 and outputs an overvoltage signal, and is connected to the secondary side of the power supply transformer 22 to Operates with the control power supply unit 23 (second rectifier circuit) to output and the DC voltage output from this, receives the open phase detection signal and the overvoltage detection signal, outputs the drive signal to the inverter 18, and And a filter unit 6 (filter means) connected to the power supply lines 11-13. The filter unit 6, the overvoltage detection unit 21, and the phase loss detection unit 20 also operate with the DC voltage output from the control power supply unit 23.

フィルタ部6は、リレー51(第1リレー)とリレー41(第2リレー)とリレー31(第3リレー)と、これらのリレーを同時に駆動する駆動回路9と、アンド回路7と、フリップフロップ8と、抵抗53(第1抵抗)と抵抗43(第2抵抗)と抵抗33(第3抵抗)と、コンデンサ52(第1コンデンサ)とコンデンサ42(第2コンデンサ)とコンデンサ32(第3コンデンサ)を備えている。
なお、各リレーにはa接点(第1接点)とb接点(第2接点)とc接点(共通接点)の3つの接点が備えられており、a接点かb接点かのいずれか一方が切り換えられてc接点に接続される。
The filter unit 6 includes a relay 51 (first relay), a relay 41 (second relay), a relay 31 (third relay), a drive circuit 9 for simultaneously driving these relays, an AND circuit 7, and a flip flop 8. , Resistor 53 (first resistor), resistor 43 (second resistor), resistor 33 (third resistor), capacitor 52 (first capacitor), capacitor 42 (second capacitor) and capacitor 32 (third capacitor) Is equipped.
Each relay is provided with three contacts, an a contact (first contact), a b contact (second contact), and a c contact (common contact), and either the a contact or the b contact is switched. And connected to the c-contact.

また、フィルタ部6は、電源ライン11に抵抗53とコンデンサ52のそれぞれの一端が接続され、抵抗53の他端がリレー51のb接点に接続され、コンデンサ52の他端がリレー51のa接点に接続され、電源ライン12に抵抗43とコンデンサ42のそれぞれの一端が接続され、抵抗43の他端がリレー41のb接点に接続され、コンデンサ42の他端がリレー41のa接点に接続され、電源ライン13に抵抗33とコンデンサ32のそれぞれの一端が接続され、抵抗33の他端がリレー31のb接点に接続され、コンデンサ32の他端がリレー31のa接点に接続されている。そして、各リレーのc接点はそれぞれ相互に接続されている。通常の空調運転時は各リレーのc接点がそれぞれのリレーのa接点に接続されるため、電源ライン11〜13のそれぞれの線間に各コンデンサが接続されることになり、この各コンデンサで電源ライン11〜13のそれぞれの線間に発生するノイズを低減させている。   In the filter unit 6, one end of each of the resistor 53 and the capacitor 52 is connected to the power supply line 11, the other end of the resistor 53 is connected to the b contact of the relay 51, and the other end of the capacitor 52 is the a contact of the relay 51 , The other end of the resistor 43 is connected to the b contact of the relay 41, and the other end of the capacitor 42 is connected to the a contact of the relay 41. One end of each of the resistor 33 and the capacitor 32 is connected to the power supply line 13, the other end of the resistor 33 is connected to the b contact of the relay 31, and the other end of the capacitor 32 is connected to the a contact of the relay 31. And, the c contacts of each relay are mutually connected. During normal air-conditioning operation, the c contacts of each relay are connected to the a contacts of the respective relays, so that each capacitor is connected between the respective lines of the power supply lines 11 to 13. The noise generated between the lines 11 to 13 is reduced.

アンド回路7の入力端子には欠相検出部20と過電圧検出部21の出力が接続されており、アンド回路7の出力端子はフリップフロップ8のセット端子に接続されている。一方、フリップフロップ8のリセット端子には室外機制御部24が出力するリセット信号を伝達する信号線が接続されており、フリップフロップ8の出力端子は駆動回路9と室外機制御部24に接続されている。フリップフロップ8は、欠相検出信号と過電圧検出信号が共に出力された時にセットされ、この状態を示す異常状態信号を出力する。一方、室外機制御部24が出力するリセット信号によりこの状態がリセットされる。   The outputs of the phase loss detection unit 20 and the overvoltage detection unit 21 are connected to the input terminal of the AND circuit 7, and the output terminal of the AND circuit 7 is connected to the set terminal of the flip flop 8. On the other hand, a signal line for transmitting a reset signal output from the outdoor unit controller 24 is connected to the reset terminal of the flip flop 8, and an output terminal of the flip flop 8 is connected to the drive circuit 9 and the outdoor unit controller 24. ing. The flip flop 8 is set when both the phase loss detection signal and the overvoltage detection signal are output, and outputs an abnormal state signal indicating this state. On the other hand, this state is reset by the reset signal output from the outdoor unit controller 24.

図2は各電源ラインに印加される電圧が欠相となった時を示す要部ブロック図である。図2(1)は電源ライン11(A相電圧)が欠相時、図2(2)は電源ライン12(B相電圧)が欠相時、図2(3)は電源ライン13(C相電圧)が欠相時をそれぞれ示している。   FIG. 2 is a principal block diagram showing when the voltage applied to each power supply line is out of phase. 2 (1) shows the case where the power supply line 11 (phase A voltage) is out of phase, FIG. 2 (2) shows the case when the power supply line 12 (phase B voltage) is out of phase, FIG. 2 (3) shows the power supply line 13 (phase C) (Voltage) indicates the phase loss time.

電源ライン11のA相電圧が欠相し、かつ、過電圧検出部21が過電圧を検出した場合、つまり、鉄共振が発生した場合、図2(1)に示すようにフィルタ部6はリレー31とリレー41とリレー51のそれぞれのc接点に接続される接点をa接点からb接点に切り換える。このため電源ライン11,12,13に接続されているコンデンサ32,42,52が電源トランス22から切り離されるために鉄共振が停止する。なお、フィルタ部6の動作については後で詳細に説明する。   When the A-phase voltage of the power supply line 11 is out of phase and the overvoltage detection unit 21 detects an overvoltage, that is, when iron resonance occurs, as shown in FIG. The contacts connected to the respective c contacts of the relay 41 and the relay 51 are switched from the a contact to the b contact. For this reason, since the capacitors 32, 42 and 52 connected to the power supply lines 11, 12 and 13 are disconnected from the power supply transformer 22, iron resonance is stopped. The operation of the filter unit 6 will be described in detail later.

また、コンデンサ32,42,52が電源トランス22から切り離されると同時に、電源ライン12から抵抗43、抵抗53、電源トランス22、電源ライン13に電流が流れるように回路が接続されるため、電源トランス22に交流電源が供給される回路が形成される。このため、電源トランス22から電源の供給を受ける制御用電源部23は直流電圧の供給を継続し、この結果、室外機制御部24は動作を継続することができる。なお、各リレーの接点が切り換わる約10ミリセカンドの間は電源トランス22に電源が供給されないが、制御用電源部23内には図示しない平滑コンデンサが備えられており、制御用電源部23は、この切り換えの動作中はこの平滑コンデンサに蓄積された電荷により直流電圧を供給し続ける。   In addition, since the circuits are connected so that current flows from the power supply line 12 to the resistor 43, the resistor 53, the power supply transformer 22, and the power supply line 13 at the same time as the capacitors 32, 42 and 52 are disconnected from the power supply transformer 22, A circuit to which AC power is supplied at 22 is formed. Therefore, the control power supply unit 23 receiving the supply of power from the power supply transformer 22 continues the supply of the DC voltage, and as a result, the outdoor unit control unit 24 can continue the operation. Although the power supply transformer 22 is not supplied with power during about 10 milliseconds when the contacts of the relays are switched, the control power supply unit 23 is provided with a smoothing capacitor (not shown). During the switching operation, the charge accumulated in the smoothing capacitor continues to supply the DC voltage.

図2(2)は電源ライン12のB相電圧が欠相した場合を示している。この場合、欠相が発生しても電源トランス22に直列にコンデンサが接続されることがないため、鉄共振は発生しない。従ってフィルタ部6は、各リレーを切り換えることがないため、リレー31とリレー41とリレー51のそれぞれの接点cはa接点に接続されたままである。このため、直列に接続されたコンデンサ32とコンデンサ52が電源ライン11と電源ライン13の間に接続された状態のままである。   FIG. 2 (2) shows the case where the B phase voltage of the power supply line 12 is out of phase. In this case, even if a phase loss occurs, a capacitor is not connected in series to the power supply transformer 22, so no iron resonance occurs. Accordingly, since the filter unit 6 does not switch the relays, the contacts c of the relays 31, 41 and 51 remain connected to the a-contacts. Therefore, the capacitors 32 and 52 connected in series remain connected between the power supply line 11 and the power supply line 13.

電源ライン13のC相電圧が欠相し、かつ、過電圧検出部21が過電圧を検出した場合、つまり、鉄共振が発生した場合、図2(3)に示すようにフィルタ部6はリレー31とリレー41とリレー51のそれぞれの接点cに接続される接点をa接点からb接点に切り換える。このため電源ライン11,12,13に接続されているコンデンサ32,42,52が電源トランス22から切り離されるために鉄共振が停止する。   When the C-phase voltage of the power supply line 13 is out of phase and the overvoltage detection unit 21 detects an overvoltage, that is, when iron resonance occurs, the filter unit 6 is connected to the relay 31 as shown in FIG. The contacts connected to the respective contacts c of the relays 41 and 51 are switched from the a-contact to the b-contact. For this reason, since the capacitors 32, 42 and 52 connected to the power supply lines 11, 12 and 13 are disconnected from the power supply transformer 22, iron resonance is stopped.

また、コンデンサ32,42,52が電源トランス22から切り離されると同時に、電源ライン12から抵抗43、抵抗33、電源トランス22、電源ライン11に電流が流れるように回路が接続されるため、電源トランス22に電源が供給される回路が形成される。このため、電源トランス22から電源の供給を受ける制御用電源部23は直流電圧の供給を継続し、この結果、室外機制御部24は動作を継続することができる。   In addition, since the circuits are connected so that current flows from the power supply line 12 to the resistor 43, the resistor 33, the power supply transformer 22, and the power supply line 11 at the same time as the capacitors 32, 42 and 52 are disconnected from the power supply transformer 22, A circuit to which power is supplied to 22 is formed. Therefore, the control power supply unit 23 receiving the supply of power from the power supply transformer 22 continues the supply of the DC voltage, and as a result, the outdoor unit control unit 24 can continue the operation.

図3は本発明による空気調和機の動作を説明する説明図である。図3の横軸は時間を示している。図3の縦軸において、図3(1)は電源ライン11の電圧(A相電圧)を、図3(2)は電源ライン12の電圧(B相電圧)を、図3(3)は電源ライン13の電圧(C相電圧)を、図3(4)は欠相検出信号を、図3(5)は過電圧検出信号を、図3(6)は異常状態信号を、図3(7)は各リレーの動作を、図3(8)はリセット信号を、図3(9)は室外機制御部24の動作をそれぞれ示している。なお、t1〜t7は時刻である。   FIG. 3 is an explanatory view for explaining the operation of the air conditioner according to the present invention. The horizontal axis in FIG. 3 indicates time. 3 (1) shows the voltage (phase A voltage) of the power supply line 11, FIG. 3 (2) shows the voltage (phase B voltage) of the power supply line 12, and FIG. 3 (3) shows the power supply. The voltage on line 13 (C-phase voltage), FIG. 3 (4) shows an open phase detection signal, FIG. 3 (5) shows an overvoltage detection signal, FIG. 3 (6) shows an abnormal state signal, FIG. 3 shows the operation of each relay, FIG. 3 (8) shows the reset signal, and FIG. 3 (9) shows the operation of the outdoor unit controller 24. Note that t1 to t7 are times.

図3(1)に示すように電源ライン11のA相電圧がt1〜t5の期間で欠相した場合、欠相検出部20はt1から電源電圧の1/4周期が経過したt2でもA相電圧を検出できないため、A相電圧の欠相が発生したと判断して図3(4)に示すように欠相検出信号をローレベルからハイレベルにする。また、欠相検出部20はt5から電源電圧の1/4周期が経過したt6でA相電圧を検出した場合、A相電圧の欠相が終了して電源電圧が復帰したとして図3(4)に示すように欠相検出信号をハイレベルからローレベルにする。   As shown in FIG. 3 (1), when the A phase voltage of the power supply line 11 loses phase in the period from t1 to t5, the phase loss detection unit 20 generates the A phase even at t2 when 1⁄4 of the power supply voltage has elapsed from t1. Since the voltage can not be detected, it is determined that an open phase of the A phase voltage has occurred, and the open phase detection signal is changed from the low level to the high level as shown in FIG. 3 (4). In addition, when the phase loss detection unit 20 detects the A-phase voltage at t6 when a quarter cycle of the power supply voltage has elapsed from t5, the phase loss of the A-phase voltage ends and the power supply voltage recovers as shown in FIG. As shown in 2.), the phase failure detection signal is changed from high level to low level.

一方、過電圧検出部21は、電源ライン11のA相電圧がt1で欠相となった結果、鉄共振が発生して電源トランス22の一次側の電圧が所定の瞬時電圧(380ボルト)以上となった場合、過電圧が発生したとして図3(5)に示すように過電圧検出信号をt3でローレベルからハイレベルにするパルス信号として出力する。   On the other hand, the overvoltage detection unit 21 generates an iron resonance as a result of the A-phase voltage of the power supply line 11 losing phase at t1, and the voltage on the primary side of the power supply transformer 22 exceeds the predetermined instantaneous voltage (380 volts). When it becomes, as shown in FIG. 3 (5), the over voltage detection signal is outputted as a pulse signal for changing the low level to the high level at t3, as shown in FIG. 3 (5).

ハイレベルの欠相検出信号と過電圧検出信号が入力されたフィルタ部6のアンド回路7はセット信号をローレベルからハイレベルにすることで、フリップフロップ8の出力である異常状態信号をt3でローレベルからハイレベルにセットする。このハイレベルの異常状態信号は室外機制御部24と駆動回路9に出力されている。このため、室外機制御部24は異常状態信号により鉄共振の発生を認識できる。   The AND circuit 7 of the filter unit 6 to which the high-level phase failure detection signal and the overvoltage detection signal are input changes the set signal from the low level to the high level, and the abnormal state signal output from the flip flop 8 is low at t3. Set from level to high level. The high level abnormal state signal is output to the outdoor unit controller 24 and the drive circuit 9. For this reason, the outdoor unit controller 24 can recognize the occurrence of iron resonance from the abnormal state signal.

一方、ハイレベルの異常状態信号が入力された駆動回路9は、リレー駆動信号をローレベルからハイレベルにして各リレーを駆動する。この結果、異常状態信号がハイレベルとなったt3から各リレーの動作遅延時間の10ミリセカンドが経過したt4で、各リレーのc接点に接続される接点がa接点からb接点に切り換えられて接続される。   On the other hand, when the high level abnormal state signal is input, the drive circuit 9 drives each relay by changing the relay drive signal from low level to high level. As a result, at t4 when 10 milliseconds of the operation delay time of each relay has elapsed since t3 when the abnormal state signal became high level, the contact connected to the c contact of each relay is switched from the a contact to the b contact Connected

一方、室外機制御部24はt3で異常状態信号が入力されると、インバータ18の駆動を中止してモータ19の回転を停止、ユーザーへ欠相発生の報知をするなどの運転停止処理を開始する。そして室外機制御部24は、欠相検出信号を随時確認して欠相状態終了を監視する。そして室外機制御部24は、t6で欠相状態終了を認識すると図3(8)に示すようにローレベルからハイレベルに変化するパルス信号であるリセット信号をフィルタ部6のフリップフロップ8へ出力する。   On the other hand, when the abnormal condition signal is input at t3, the outdoor unit controller 24 stops driving the inverter 18 to stop the rotation of the motor 19, and starts operation stop processing such as notifying the user of the occurrence of a phase failure. Do. Then, the outdoor unit controller 24 monitors the phase loss detection signal as needed to monitor the end of the phase loss state. Then, the outdoor unit controller 24 outputs a reset signal, which is a pulse signal that changes from low level to high level, to the flip flop 8 of the filter unit 6, as shown in FIG. Do.

フリップフロップ8はリセット信号が入力されると図3(6)に示すようにt6で異常状態信号をハイレベルからローレベルにする。この結果、異常状態信号がローレベルとなったt6から各リレーの動作遅延時間の10ミリセカンドが経過したt7で、各リレーのc接点に接続される接点がb接点からa接点に切り換えられて接続される。   When the reset signal is input, the flip flop 8 changes the abnormal state signal from high level to low level at t6 as shown in FIG. 3 (6). As a result, the contact connected to the c contact of each relay is switched from the b contact to the a contact at t7 when 10 milliseconds of the operation delay time of each relay has elapsed from t6 when the abnormal state signal has become low level. Connected

一方、室外機制御部24はt6で異常状態信号がハイレベルからローレベルになると、欠相状態が終了したとして空調運転を再開させる処理(再起動)を開始して通常運転に復帰する。ただし、t6〜t7は各リレーの動作遅延時間であるため、室外機制御部24はt7で確実に切り換わったことを所定時間の経過で確認してから再起動処理を実行する。   On the other hand, when the abnormal state signal changes from the high level to the low level at t6, the outdoor unit control section 24 assumes that the phase loss state has ended and starts the process (restart) to restart the air conditioning operation and returns to the normal operation. However, since t6 to t7 are operation delay times of the respective relays, the outdoor unit control unit 24 executes the restart processing after confirming that the switching has been made reliably at t7 after the elapse of a predetermined time.

以上説明したように、空気調和機1は背景技術で説明した高価な容量の大きいコンデンサを電源トランスに並列に接続して鉄共振を防止する構成でなく、安価な小電流用のリレーを用いてコンデンサ32、42、52を電源トランス22から切り離して鉄共振を防止し、同時に抵抗を用いて交流電源を電源トランス22に供給する構成であるため、コスト上昇や消費電流の増加を抑制しつつ確実に鉄共振による過電圧発生を防止し、かつ、欠相が発生した場合に緊急処理(運転停止処理)が完了するまで制御用電源部23を動作させることができる。このため、安全にインバータ18の動作を停止させたり、図示しないユーザーに異常状態を報知する事ができる。   As described above, the air conditioner 1 is not configured to prevent the iron resonance by connecting the expensive high capacity capacitor described in the background art in parallel to the power supply transformer, but using an inexpensive relay for small current. The capacitors 32, 42, 52 are separated from the power supply transformer 22 to prevent iron resonance and at the same time supply the AC power supply to the power supply transformer 22 using a resistor, so it is possible to suppress cost increase and current consumption increase while ensuring It is possible to prevent the occurrence of an overvoltage due to iron resonance and to operate the control power supply unit 23 until the emergency processing (operation stop processing) is completed when a phase loss occurs. Therefore, the operation of the inverter 18 can be safely stopped or an abnormal state can be notified to a user (not shown).

本実施例では各リレーのa接点側にコンデンサを、b接点側に抵抗を接続しているが、これに限るものでなく、a接点側に抵抗を、b接点側にコンデンサを接続してもよい。ただしこの場合、駆動回路9は鉄共振が発生した時、c接点をa接点に接続するように制御する。
また、本実施例では室外機制御部24が異常状態時に運転停止処理を終了した後、再起動のために欠相終了を監視しているが、これに限るものでなく、運転停止処理を終了すると空気調和機1の電源を全て切断するようにしてもよいし、異常状態時に運転停止処理を終了するのでなく、二相運転によりインバータ18に過度な電流が流れないように圧縮機のモータ19の回転数を低下させて空調運転を継続してもよい。
In this embodiment, a capacitor is connected to the a-contact side of each relay, and a resistor is connected to the b-contact side. However, the invention is not limited thereto. A resistor may be connected to the a-contact side and a capacitor may be connected to the b-contact side. Good. However, in this case, the drive circuit 9 is controlled to connect the c-contact to the a-contact when iron resonance occurs.
Further, in the present embodiment, after the outdoor unit control unit 24 ends the operation stop process in the abnormal state, the end of the open phase is monitored for restart, but the present invention is not limited to this, and the operation stop process is ended. Then, all the power supplies of the air conditioner 1 may be cut off, and the motor 19 of the compressor may be operated so that an excessive current does not flow in the inverter 18 due to the two-phase operation instead of ending the operation stop process in the abnormal state. The air conditioning operation may be continued by reducing the number of revolutions of the motor.

さらに、本実施例では電源トランス22が電源ライン11と電源ライン13との間に接続される構成となっているが、電源ライン11と電源ライン12との間、または、電源ライン12と電源ライン13との間に接続される構成でもよい。いずれの構成であっても、欠相が発生した相以外の相から抵抗を介して電源トランス22に交流電圧が供給される。
また、本実施例では電源トランス22は三相のうち二相の電圧が入力される構成になっているが、これに限るものでなく、三相の電圧が入力される構成になっていてもよい。さらに、本実施例では過電圧検出部21を電源トランス22の一次側に設けているが、これに限るものでなく、二次側に設けてもよい。
Furthermore, in the present embodiment, the power supply transformer 22 is configured to be connected between the power supply line 11 and the power supply line 13. However, between the power supply line 11 and the power supply line 12, or between the power supply line 12 and the power supply line 13 may be connected. In either configuration, an AC voltage is supplied to the power supply transformer 22 from the phase other than the phase in which the open phase has occurred through the resistor.
Further, in the present embodiment, the power transformer 22 is configured to receive two of the three-phase voltages. However, the present invention is not limited to this, and may be configured to receive three-phase voltages. Good. Furthermore, although the overvoltage detection unit 21 is provided on the primary side of the power supply transformer 22 in the present embodiment, the present invention is not limited to this, and may be provided on the secondary side.

1 空気調和機
2 室内機
3 室外機
6 フィルタ部(フィルタ手段)
7 アンド回路
8 フリップフロップ
9 駆動回路
11 電源ライン(第1電源ライン)
12 電源ライン(第2電源ライン)
13 電源ライン(第3電源ライン)
14 入力端
15 入力端
16 入力端
17 直流電源部(第1整流回路)
18 インバータ
19 モータ
20 欠相検出部
21 過電圧検出部
22 電源トランス
23 制御用電源部(第2整流回路)
24 室外機制御部(制御手段)
31 リレー(第3リレー)
32 コンデンサ(第3コンデンサ)
33 抵抗(第3抵抗)
41 リレー(第2リレー)
42 コンデンサ(第2コンデンサ)
43 抵抗(第2抵抗)
51 リレー(第1リレー)
52 コンデンサ(第1コンデンサ)
53 抵抗(第1抵抗)
1 air conditioner 2 indoor unit 3 outdoor unit 6 filter section (filter means)
7 AND circuit 8 flip flop 9 drive circuit 11 power supply line (first power supply line)
12 Power supply line (second power supply line)
13 Power supply line (3rd power supply line)
14 input end 15 input end 16 input end 17 DC power supply section (first rectifier circuit)
18 inverter 19 motor 20 phase loss detection unit 21 overvoltage detection unit 22 power supply transformer 23 control power supply unit (second rectification circuit)
24 outdoor unit controller (control means)
31 relay (third relay)
32 capacitor (third capacitor)
33 resistance (third resistance)
41 relay (second relay)
42 capacitor (second capacitor)
43 resistance (second resistance)
51 relay (first relay)
52 capacitor (first capacitor)
53 Resistance (1st resistance)

Claims (1)

A相とB相とC相とからなる三相交流電源に接続され、同三相交流電源を直流電源に変換する第1整流回路と、前記第1整流回路の出力が入力されるインバータと、同インバータで駆動される圧縮機のモータとを備えた室外機と、同室外機に通信接続された室内機とを備え、
前記室外機は、前記A相と前記B相と前記C相の電圧がそれぞれ印加される第1電源ラインと第2電源ラインと第3電源ラインと、前記A相と前記B相と前記C相のいずれかの印加電圧の欠相を検出して欠相検出信号を出力する欠相検出部と、前記三相交流電源の電圧を変圧して出力する電源トランスと、同電源トランスに印加される電圧の過電圧を検出して過電圧検出信号を出力する過電圧検出部と、前記電源トランスの出力電圧を直流電圧に変換して出力する第2整流回路とを備えた空気調和機であって、
前記室外機は、
それぞれの共通接点が相互に接続され、それぞれの第1接点又はそれぞれの第2接点が切り換えられて前記共通接点に接続される第1リレ−と第2リレーと第3リレーと、第1抵抗と第2抵抗と第3抵抗と、第1コンデンサと第2コンデンサと第3コンデンサを備え、前記欠相検出信号と前記過電圧検出信号が入力されるフィルタ手段と、
前記第2整流回路が出力する直流電圧によって動作し、前記インバータを介して前記圧縮機のモータを駆動する制御手段とを備え、
前記フィルタ手段は、
前記第1電源ラインに前記第1コンデンサと前記第1抵抗のそれぞれの一端が接続され、前記第1抵抗の他端が前記第1リレーの第1接点に接続され、前記第1コンデンサの他端が前記第1リレーの第2接点に接続され、
前記第2電源ラインに前記第2コンデンサと前記第2抵抗のそれぞれの一端が接続され、前記第2抵抗の他端が前記第2リレーの第1接点に接続され、前記第2コンデンサの他端が前記第2リレーの第2接点に接続され、
前記第3電源ラインに前記第3コンデンサと前記第3抵抗のそれぞれの一端が接続され、前記第3抵抗の他端が前記第3リレーの第1接点に接続され、前記第3コンデンサの他端が前記第3リレーの第2接点に接続されており、
前記フィルタ手段は、
前記欠相検出部が欠相を検出し、かつ、前記過電圧検出部が過電圧を検出した時、前記電源トランスによる鉄共振の発生を通知する異常状態信号を前記制御手段に出力すると共に、前記第1リレーの共通接点に前記第1抵抗を、前記第2リレーの共通接点に前記第2抵抗を、前記第3リレーの共通接点に前記第3抵抗をそれぞれ接続して、前記鉄共振を停止させ、
前記制御手段は、
前記異常状態信号が入力された時、前記第1抵抗と前記第2抵抗と前記第3抵抗のいずれかを経由して前記電源トランスで変圧された前記三相交流電源の電圧を用いて動作すると共に、前記インバータによる前記圧縮機のモータ駆動を停止させる、もしくは前記圧縮機のモータの回転数を低下させる処理を実行することを特徴とする空気調和機。
A first rectifier circuit connected to a three-phase AC power supply consisting of A-phase, B-phase and C-phase and converting the three-phase AC power supply into a DC power supply, and an inverter to which the output of the first rectifier circuit is input; An outdoor unit having a compressor motor driven by the inverter, and an indoor unit communicatively connected to the outdoor unit;
The outdoor unit includes a first power line, a second power line, and a third power line to which voltages of the A phase, the B phase, and the C phase are respectively applied, the A phase, the B phase, and the C phase. And a power supply transformer for transforming the voltage of the three-phase AC power supply and outputting the same, and being applied to the same power supply transformer. An air conditioner comprising: an overvoltage detection unit that detects an overvoltage of a voltage and outputs an overvoltage detection signal; and a second rectifier circuit that converts an output voltage of the power transformer into a DC voltage and outputs the DC voltage.
The outdoor unit is
A first relay, a second relay, a third relay, and a first resistor, in which respective common contacts are mutually connected, and respective first contacts or respective second contacts are switched to be connected to the common contacts. Filter means comprising a second resistor and a third resistor, a first capacitor, a second capacitor and a third capacitor, and wherein the phase loss detection signal and the overvoltage detection signal are input;
Control means for operating with a DC voltage output from the second rectifier circuit and driving a motor of the compressor via the inverter;
The filter means is
One end of each of the first capacitor and the first resistor is connected to the first power supply line, the other end of the first resistor is connected to the first contact of the first relay, and the other end of the first capacitor Is connected to the second contact of the first relay,
One end of each of the second capacitor and the second resistor is connected to the second power supply line, the other end of the second resistor is connected to the first contact of the second relay, and the other end of the second capacitor Is connected to the second contact of the second relay,
One end of each of the third capacitor and the third resistor is connected to the third power supply line, the other end of the third resistor is connected to the first contact of the third relay, and the other end of the third capacitor Is connected to the second contact of the third relay,
The filter means is
When the open phase detection unit detects an open phase and the overvoltage detection unit detects an overvoltage, an abnormal state signal notifying generation of iron resonance by the power supply transformer is output to the control means, and The first resonance is connected to the common contact of one relay, the second resistance is connected to the common contact of the second relay, and the third resistance is connected to the common contact of the third relay to stop the iron resonance. ,
The control means
When the abnormal state signal is input, it operates using the voltage of the three-phase alternating current power supply transformed by the power supply transformer via any one of the first resistance, the second resistance and the third resistance. At the same time, an air conditioner characterized by executing a process of stopping the motor drive of the compressor by the inverter or reducing the rotational speed of the motor of the compressor.
JP2015212675A 2015-10-29 2015-10-29 Air conditioner Active JP6500743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212675A JP6500743B2 (en) 2015-10-29 2015-10-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212675A JP6500743B2 (en) 2015-10-29 2015-10-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017085805A JP2017085805A (en) 2017-05-18
JP6500743B2 true JP6500743B2 (en) 2019-04-17

Family

ID=58713501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212675A Active JP6500743B2 (en) 2015-10-29 2015-10-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP6500743B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390364A (en) * 2018-05-04 2018-08-10 安徽徽电科技股份有限公司 A kind of overhead transmission line end overvoltage inhibiting apparatus
CN111509964A (en) * 2020-06-11 2020-08-07 国网上海市电力公司 Three-phase L C series current limiting circuit and method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743889A (en) * 1971-12-16 1973-07-03 Hatch Inc Polyphase electric system protective apparatus
JPS51158071U (en) * 1975-06-11 1976-12-16
JPS622866A (en) * 1985-06-28 1987-01-08 Fuji Electric Co Ltd Controller of inverter
JPS62189920A (en) * 1986-02-15 1987-08-19 株式会社日立ビルシステムサ−ビス Protective device of electric equipment
JP2006292324A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2017085805A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP5358873B2 (en) Inverter device
JP7363562B2 (en) air conditioner
JP6517862B2 (en) Converter apparatus having short circuit fault detection function and short circuit fault detection method for converter apparatus
JP2008301585A (en) Electrical apparatus equipped with noise filter circuit
JP6500743B2 (en) Air conditioner
AU2007236906B2 (en) Control Apparatus
JP2010178594A (en) Power supply apparatus
JP2019061499A (en) Power supply circuit and acoustic apparatus
WO2019021397A1 (en) Air conditioner
JP2013192392A (en) Inverter device
JP2011160517A (en) Overcurrent protection circuit, and switching power supply device
JP2006340532A (en) Inrush current prevention circuit and power conversion device
JP6203126B2 (en) Hermetic compressor drive
JP5130248B2 (en) Switch operating device and three-phase switch
EP3432433B1 (en) Power supply system
JP2005201587A (en) Controller for air conditioner
JP6567930B2 (en) Air conditioner
JP2007024389A (en) Controller for air conditioner
JP6484570B2 (en) Power converter
JP4561493B2 (en) Air conditioner
JP2014027798A (en) Power conversion device
WO2019207788A1 (en) Motor control device and machine device
JP5873425B2 (en) Uninterruptible power system
JP2009189200A (en) Phase switch for three-phase motor
JP6940770B2 (en) A method for detecting the independent operating state of the distributed power supply unit and the distributed power supply when the frequency fluctuates.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151